xref: /openbmc/linux/drivers/mtd/mtdpart.c (revision 8f347c42)
1 /*
2  * Simple MTD partitioning layer
3  *
4  * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
5  * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
6  * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/kmod.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/err.h>
33 
34 #include "mtdcore.h"
35 
36 /* Our partition linked list */
37 static LIST_HEAD(mtd_partitions);
38 static DEFINE_MUTEX(mtd_partitions_mutex);
39 
40 /**
41  * struct mtd_part - our partition node structure
42  *
43  * @mtd: struct holding partition details
44  * @parent: parent mtd - flash device or another partition
45  * @offset: partition offset relative to the *flash device*
46  */
47 struct mtd_part {
48 	struct mtd_info mtd;
49 	struct mtd_info *parent;
50 	uint64_t offset;
51 	struct list_head list;
52 };
53 
54 /*
55  * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
56  * the pointer to that structure.
57  */
58 static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
59 {
60 	return container_of(mtd, struct mtd_part, mtd);
61 }
62 
63 
64 /*
65  * MTD methods which simply translate the effective address and pass through
66  * to the _real_ device.
67  */
68 
69 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
70 		size_t *retlen, u_char *buf)
71 {
72 	struct mtd_part *part = mtd_to_part(mtd);
73 	struct mtd_ecc_stats stats;
74 	int res;
75 
76 	stats = part->parent->ecc_stats;
77 	res = part->parent->_read(part->parent, from + part->offset, len,
78 				  retlen, buf);
79 	if (unlikely(mtd_is_eccerr(res)))
80 		mtd->ecc_stats.failed +=
81 			part->parent->ecc_stats.failed - stats.failed;
82 	else
83 		mtd->ecc_stats.corrected +=
84 			part->parent->ecc_stats.corrected - stats.corrected;
85 	return res;
86 }
87 
88 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
89 		size_t *retlen, void **virt, resource_size_t *phys)
90 {
91 	struct mtd_part *part = mtd_to_part(mtd);
92 
93 	return part->parent->_point(part->parent, from + part->offset, len,
94 				    retlen, virt, phys);
95 }
96 
97 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
98 {
99 	struct mtd_part *part = mtd_to_part(mtd);
100 
101 	return part->parent->_unpoint(part->parent, from + part->offset, len);
102 }
103 
104 static int part_read_oob(struct mtd_info *mtd, loff_t from,
105 		struct mtd_oob_ops *ops)
106 {
107 	struct mtd_part *part = mtd_to_part(mtd);
108 	struct mtd_ecc_stats stats;
109 	int res;
110 
111 	stats = part->parent->ecc_stats;
112 	res = part->parent->_read_oob(part->parent, from + part->offset, ops);
113 	if (unlikely(mtd_is_eccerr(res)))
114 		mtd->ecc_stats.failed +=
115 			part->parent->ecc_stats.failed - stats.failed;
116 	else
117 		mtd->ecc_stats.corrected +=
118 			part->parent->ecc_stats.corrected - stats.corrected;
119 	return res;
120 }
121 
122 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
123 		size_t len, size_t *retlen, u_char *buf)
124 {
125 	struct mtd_part *part = mtd_to_part(mtd);
126 	return part->parent->_read_user_prot_reg(part->parent, from, len,
127 						 retlen, buf);
128 }
129 
130 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
131 				   size_t *retlen, struct otp_info *buf)
132 {
133 	struct mtd_part *part = mtd_to_part(mtd);
134 	return part->parent->_get_user_prot_info(part->parent, len, retlen,
135 						 buf);
136 }
137 
138 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
139 		size_t len, size_t *retlen, u_char *buf)
140 {
141 	struct mtd_part *part = mtd_to_part(mtd);
142 	return part->parent->_read_fact_prot_reg(part->parent, from, len,
143 						 retlen, buf);
144 }
145 
146 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
147 				   size_t *retlen, struct otp_info *buf)
148 {
149 	struct mtd_part *part = mtd_to_part(mtd);
150 	return part->parent->_get_fact_prot_info(part->parent, len, retlen,
151 						 buf);
152 }
153 
154 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
155 		size_t *retlen, const u_char *buf)
156 {
157 	struct mtd_part *part = mtd_to_part(mtd);
158 	return part->parent->_write(part->parent, to + part->offset, len,
159 				    retlen, buf);
160 }
161 
162 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
163 		size_t *retlen, const u_char *buf)
164 {
165 	struct mtd_part *part = mtd_to_part(mtd);
166 	return part->parent->_panic_write(part->parent, to + part->offset, len,
167 					  retlen, buf);
168 }
169 
170 static int part_write_oob(struct mtd_info *mtd, loff_t to,
171 		struct mtd_oob_ops *ops)
172 {
173 	struct mtd_part *part = mtd_to_part(mtd);
174 
175 	return part->parent->_write_oob(part->parent, to + part->offset, ops);
176 }
177 
178 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
179 		size_t len, size_t *retlen, u_char *buf)
180 {
181 	struct mtd_part *part = mtd_to_part(mtd);
182 	return part->parent->_write_user_prot_reg(part->parent, from, len,
183 						  retlen, buf);
184 }
185 
186 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
187 		size_t len)
188 {
189 	struct mtd_part *part = mtd_to_part(mtd);
190 	return part->parent->_lock_user_prot_reg(part->parent, from, len);
191 }
192 
193 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
194 		unsigned long count, loff_t to, size_t *retlen)
195 {
196 	struct mtd_part *part = mtd_to_part(mtd);
197 	return part->parent->_writev(part->parent, vecs, count,
198 				     to + part->offset, retlen);
199 }
200 
201 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
202 {
203 	struct mtd_part *part = mtd_to_part(mtd);
204 	int ret;
205 
206 	instr->addr += part->offset;
207 	ret = part->parent->_erase(part->parent, instr);
208 	if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
209 		instr->fail_addr -= part->offset;
210 	instr->addr -= part->offset;
211 
212 	return ret;
213 }
214 
215 void mtd_erase_callback(struct erase_info *instr)
216 {
217 }
218 EXPORT_SYMBOL_GPL(mtd_erase_callback);
219 
220 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
221 {
222 	struct mtd_part *part = mtd_to_part(mtd);
223 	return part->parent->_lock(part->parent, ofs + part->offset, len);
224 }
225 
226 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
227 {
228 	struct mtd_part *part = mtd_to_part(mtd);
229 	return part->parent->_unlock(part->parent, ofs + part->offset, len);
230 }
231 
232 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
233 {
234 	struct mtd_part *part = mtd_to_part(mtd);
235 	return part->parent->_is_locked(part->parent, ofs + part->offset, len);
236 }
237 
238 static void part_sync(struct mtd_info *mtd)
239 {
240 	struct mtd_part *part = mtd_to_part(mtd);
241 	part->parent->_sync(part->parent);
242 }
243 
244 static int part_suspend(struct mtd_info *mtd)
245 {
246 	struct mtd_part *part = mtd_to_part(mtd);
247 	return part->parent->_suspend(part->parent);
248 }
249 
250 static void part_resume(struct mtd_info *mtd)
251 {
252 	struct mtd_part *part = mtd_to_part(mtd);
253 	part->parent->_resume(part->parent);
254 }
255 
256 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
257 {
258 	struct mtd_part *part = mtd_to_part(mtd);
259 	ofs += part->offset;
260 	return part->parent->_block_isreserved(part->parent, ofs);
261 }
262 
263 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
264 {
265 	struct mtd_part *part = mtd_to_part(mtd);
266 	ofs += part->offset;
267 	return part->parent->_block_isbad(part->parent, ofs);
268 }
269 
270 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
271 {
272 	struct mtd_part *part = mtd_to_part(mtd);
273 	int res;
274 
275 	ofs += part->offset;
276 	res = part->parent->_block_markbad(part->parent, ofs);
277 	if (!res)
278 		mtd->ecc_stats.badblocks++;
279 	return res;
280 }
281 
282 static int part_get_device(struct mtd_info *mtd)
283 {
284 	struct mtd_part *part = mtd_to_part(mtd);
285 	return part->parent->_get_device(part->parent);
286 }
287 
288 static void part_put_device(struct mtd_info *mtd)
289 {
290 	struct mtd_part *part = mtd_to_part(mtd);
291 	part->parent->_put_device(part->parent);
292 }
293 
294 static int part_ooblayout_ecc(struct mtd_info *mtd, int section,
295 			      struct mtd_oob_region *oobregion)
296 {
297 	struct mtd_part *part = mtd_to_part(mtd);
298 
299 	return mtd_ooblayout_ecc(part->parent, section, oobregion);
300 }
301 
302 static int part_ooblayout_free(struct mtd_info *mtd, int section,
303 			       struct mtd_oob_region *oobregion)
304 {
305 	struct mtd_part *part = mtd_to_part(mtd);
306 
307 	return mtd_ooblayout_free(part->parent, section, oobregion);
308 }
309 
310 static const struct mtd_ooblayout_ops part_ooblayout_ops = {
311 	.ecc = part_ooblayout_ecc,
312 	.free = part_ooblayout_free,
313 };
314 
315 static int part_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
316 {
317 	struct mtd_part *part = mtd_to_part(mtd);
318 
319 	return part->parent->_max_bad_blocks(part->parent,
320 					     ofs + part->offset, len);
321 }
322 
323 static inline void free_partition(struct mtd_part *p)
324 {
325 	kfree(p->mtd.name);
326 	kfree(p);
327 }
328 
329 /**
330  * mtd_parse_part - parse MTD partition looking for subpartitions
331  *
332  * @slave: part that is supposed to be a container and should be parsed
333  * @types: NULL-terminated array with names of partition parsers to try
334  *
335  * Some partitions are kind of containers with extra subpartitions (volumes).
336  * There can be various formats of such containers. This function tries to use
337  * specified parsers to analyze given partition and registers found
338  * subpartitions on success.
339  */
340 static int mtd_parse_part(struct mtd_part *slave, const char *const *types)
341 {
342 	struct mtd_partitions parsed;
343 	int err;
344 
345 	err = parse_mtd_partitions(&slave->mtd, types, &parsed, NULL);
346 	if (err)
347 		return err;
348 	else if (!parsed.nr_parts)
349 		return -ENOENT;
350 
351 	err = add_mtd_partitions(&slave->mtd, parsed.parts, parsed.nr_parts);
352 
353 	mtd_part_parser_cleanup(&parsed);
354 
355 	return err;
356 }
357 
358 static struct mtd_part *allocate_partition(struct mtd_info *parent,
359 			const struct mtd_partition *part, int partno,
360 			uint64_t cur_offset)
361 {
362 	int wr_alignment = (parent->flags & MTD_NO_ERASE) ? parent->writesize :
363 							    parent->erasesize;
364 	struct mtd_part *slave;
365 	u32 remainder;
366 	char *name;
367 	u64 tmp;
368 
369 	/* allocate the partition structure */
370 	slave = kzalloc(sizeof(*slave), GFP_KERNEL);
371 	name = kstrdup(part->name, GFP_KERNEL);
372 	if (!name || !slave) {
373 		printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
374 		       parent->name);
375 		kfree(name);
376 		kfree(slave);
377 		return ERR_PTR(-ENOMEM);
378 	}
379 
380 	/* set up the MTD object for this partition */
381 	slave->mtd.type = parent->type;
382 	slave->mtd.flags = parent->flags & ~part->mask_flags;
383 	slave->mtd.size = part->size;
384 	slave->mtd.writesize = parent->writesize;
385 	slave->mtd.writebufsize = parent->writebufsize;
386 	slave->mtd.oobsize = parent->oobsize;
387 	slave->mtd.oobavail = parent->oobavail;
388 	slave->mtd.subpage_sft = parent->subpage_sft;
389 	slave->mtd.pairing = parent->pairing;
390 
391 	slave->mtd.name = name;
392 	slave->mtd.owner = parent->owner;
393 
394 	/* NOTE: Historically, we didn't arrange MTDs as a tree out of
395 	 * concern for showing the same data in multiple partitions.
396 	 * However, it is very useful to have the master node present,
397 	 * so the MTD_PARTITIONED_MASTER option allows that. The master
398 	 * will have device nodes etc only if this is set, so make the
399 	 * parent conditional on that option. Note, this is a way to
400 	 * distinguish between the master and the partition in sysfs.
401 	 */
402 	slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd_is_partition(parent) ?
403 				&parent->dev :
404 				parent->dev.parent;
405 	slave->mtd.dev.of_node = part->of_node;
406 
407 	if (parent->_read)
408 		slave->mtd._read = part_read;
409 	if (parent->_write)
410 		slave->mtd._write = part_write;
411 
412 	if (parent->_panic_write)
413 		slave->mtd._panic_write = part_panic_write;
414 
415 	if (parent->_point && parent->_unpoint) {
416 		slave->mtd._point = part_point;
417 		slave->mtd._unpoint = part_unpoint;
418 	}
419 
420 	if (parent->_read_oob)
421 		slave->mtd._read_oob = part_read_oob;
422 	if (parent->_write_oob)
423 		slave->mtd._write_oob = part_write_oob;
424 	if (parent->_read_user_prot_reg)
425 		slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
426 	if (parent->_read_fact_prot_reg)
427 		slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
428 	if (parent->_write_user_prot_reg)
429 		slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
430 	if (parent->_lock_user_prot_reg)
431 		slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
432 	if (parent->_get_user_prot_info)
433 		slave->mtd._get_user_prot_info = part_get_user_prot_info;
434 	if (parent->_get_fact_prot_info)
435 		slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
436 	if (parent->_sync)
437 		slave->mtd._sync = part_sync;
438 	if (!partno && !parent->dev.class && parent->_suspend &&
439 	    parent->_resume) {
440 		slave->mtd._suspend = part_suspend;
441 		slave->mtd._resume = part_resume;
442 	}
443 	if (parent->_writev)
444 		slave->mtd._writev = part_writev;
445 	if (parent->_lock)
446 		slave->mtd._lock = part_lock;
447 	if (parent->_unlock)
448 		slave->mtd._unlock = part_unlock;
449 	if (parent->_is_locked)
450 		slave->mtd._is_locked = part_is_locked;
451 	if (parent->_block_isreserved)
452 		slave->mtd._block_isreserved = part_block_isreserved;
453 	if (parent->_block_isbad)
454 		slave->mtd._block_isbad = part_block_isbad;
455 	if (parent->_block_markbad)
456 		slave->mtd._block_markbad = part_block_markbad;
457 	if (parent->_max_bad_blocks)
458 		slave->mtd._max_bad_blocks = part_max_bad_blocks;
459 
460 	if (parent->_get_device)
461 		slave->mtd._get_device = part_get_device;
462 	if (parent->_put_device)
463 		slave->mtd._put_device = part_put_device;
464 
465 	slave->mtd._erase = part_erase;
466 	slave->parent = parent;
467 	slave->offset = part->offset;
468 
469 	if (slave->offset == MTDPART_OFS_APPEND)
470 		slave->offset = cur_offset;
471 	if (slave->offset == MTDPART_OFS_NXTBLK) {
472 		tmp = cur_offset;
473 		slave->offset = cur_offset;
474 		remainder = do_div(tmp, wr_alignment);
475 		if (remainder) {
476 			slave->offset += wr_alignment - remainder;
477 			printk(KERN_NOTICE "Moving partition %d: "
478 			       "0x%012llx -> 0x%012llx\n", partno,
479 			       (unsigned long long)cur_offset, (unsigned long long)slave->offset);
480 		}
481 	}
482 	if (slave->offset == MTDPART_OFS_RETAIN) {
483 		slave->offset = cur_offset;
484 		if (parent->size - slave->offset >= slave->mtd.size) {
485 			slave->mtd.size = parent->size - slave->offset
486 							- slave->mtd.size;
487 		} else {
488 			printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
489 				part->name, parent->size - slave->offset,
490 				slave->mtd.size);
491 			/* register to preserve ordering */
492 			goto out_register;
493 		}
494 	}
495 	if (slave->mtd.size == MTDPART_SIZ_FULL)
496 		slave->mtd.size = parent->size - slave->offset;
497 
498 	printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
499 		(unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
500 
501 	/* let's do some sanity checks */
502 	if (slave->offset >= parent->size) {
503 		/* let's register it anyway to preserve ordering */
504 		slave->offset = 0;
505 		slave->mtd.size = 0;
506 		printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
507 			part->name);
508 		goto out_register;
509 	}
510 	if (slave->offset + slave->mtd.size > parent->size) {
511 		slave->mtd.size = parent->size - slave->offset;
512 		printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
513 			part->name, parent->name, (unsigned long long)slave->mtd.size);
514 	}
515 	if (parent->numeraseregions > 1) {
516 		/* Deal with variable erase size stuff */
517 		int i, max = parent->numeraseregions;
518 		u64 end = slave->offset + slave->mtd.size;
519 		struct mtd_erase_region_info *regions = parent->eraseregions;
520 
521 		/* Find the first erase regions which is part of this
522 		 * partition. */
523 		for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
524 			;
525 		/* The loop searched for the region _behind_ the first one */
526 		if (i > 0)
527 			i--;
528 
529 		/* Pick biggest erasesize */
530 		for (; i < max && regions[i].offset < end; i++) {
531 			if (slave->mtd.erasesize < regions[i].erasesize) {
532 				slave->mtd.erasesize = regions[i].erasesize;
533 			}
534 		}
535 		BUG_ON(slave->mtd.erasesize == 0);
536 	} else {
537 		/* Single erase size */
538 		slave->mtd.erasesize = parent->erasesize;
539 	}
540 
541 	/*
542 	 * Slave erasesize might differ from the master one if the master
543 	 * exposes several regions with different erasesize. Adjust
544 	 * wr_alignment accordingly.
545 	 */
546 	if (!(slave->mtd.flags & MTD_NO_ERASE))
547 		wr_alignment = slave->mtd.erasesize;
548 
549 	tmp = slave->offset;
550 	remainder = do_div(tmp, wr_alignment);
551 	if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
552 		/* Doesn't start on a boundary of major erase size */
553 		/* FIXME: Let it be writable if it is on a boundary of
554 		 * _minor_ erase size though */
555 		slave->mtd.flags &= ~MTD_WRITEABLE;
556 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase/write block boundary -- force read-only\n",
557 			part->name);
558 	}
559 
560 	tmp = slave->mtd.size;
561 	remainder = do_div(tmp, wr_alignment);
562 	if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
563 		slave->mtd.flags &= ~MTD_WRITEABLE;
564 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase/write block -- force read-only\n",
565 			part->name);
566 	}
567 
568 	mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops);
569 	slave->mtd.ecc_step_size = parent->ecc_step_size;
570 	slave->mtd.ecc_strength = parent->ecc_strength;
571 	slave->mtd.bitflip_threshold = parent->bitflip_threshold;
572 
573 	if (parent->_block_isbad) {
574 		uint64_t offs = 0;
575 
576 		while (offs < slave->mtd.size) {
577 			if (mtd_block_isreserved(parent, offs + slave->offset))
578 				slave->mtd.ecc_stats.bbtblocks++;
579 			else if (mtd_block_isbad(parent, offs + slave->offset))
580 				slave->mtd.ecc_stats.badblocks++;
581 			offs += slave->mtd.erasesize;
582 		}
583 	}
584 
585 out_register:
586 	return slave;
587 }
588 
589 static ssize_t mtd_partition_offset_show(struct device *dev,
590 		struct device_attribute *attr, char *buf)
591 {
592 	struct mtd_info *mtd = dev_get_drvdata(dev);
593 	struct mtd_part *part = mtd_to_part(mtd);
594 	return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset);
595 }
596 
597 static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
598 
599 static const struct attribute *mtd_partition_attrs[] = {
600 	&dev_attr_offset.attr,
601 	NULL
602 };
603 
604 static int mtd_add_partition_attrs(struct mtd_part *new)
605 {
606 	int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
607 	if (ret)
608 		printk(KERN_WARNING
609 		       "mtd: failed to create partition attrs, err=%d\n", ret);
610 	return ret;
611 }
612 
613 int mtd_add_partition(struct mtd_info *parent, const char *name,
614 		      long long offset, long long length)
615 {
616 	struct mtd_partition part;
617 	struct mtd_part *new;
618 	int ret = 0;
619 
620 	/* the direct offset is expected */
621 	if (offset == MTDPART_OFS_APPEND ||
622 	    offset == MTDPART_OFS_NXTBLK)
623 		return -EINVAL;
624 
625 	if (length == MTDPART_SIZ_FULL)
626 		length = parent->size - offset;
627 
628 	if (length <= 0)
629 		return -EINVAL;
630 
631 	memset(&part, 0, sizeof(part));
632 	part.name = name;
633 	part.size = length;
634 	part.offset = offset;
635 
636 	new = allocate_partition(parent, &part, -1, offset);
637 	if (IS_ERR(new))
638 		return PTR_ERR(new);
639 
640 	mutex_lock(&mtd_partitions_mutex);
641 	list_add(&new->list, &mtd_partitions);
642 	mutex_unlock(&mtd_partitions_mutex);
643 
644 	add_mtd_device(&new->mtd);
645 
646 	mtd_add_partition_attrs(new);
647 
648 	return ret;
649 }
650 EXPORT_SYMBOL_GPL(mtd_add_partition);
651 
652 /**
653  * __mtd_del_partition - delete MTD partition
654  *
655  * @priv: internal MTD struct for partition to be deleted
656  *
657  * This function must be called with the partitions mutex locked.
658  */
659 static int __mtd_del_partition(struct mtd_part *priv)
660 {
661 	struct mtd_part *child, *next;
662 	int err;
663 
664 	list_for_each_entry_safe(child, next, &mtd_partitions, list) {
665 		if (child->parent == &priv->mtd) {
666 			err = __mtd_del_partition(child);
667 			if (err)
668 				return err;
669 		}
670 	}
671 
672 	sysfs_remove_files(&priv->mtd.dev.kobj, mtd_partition_attrs);
673 
674 	err = del_mtd_device(&priv->mtd);
675 	if (err)
676 		return err;
677 
678 	list_del(&priv->list);
679 	free_partition(priv);
680 
681 	return 0;
682 }
683 
684 /*
685  * This function unregisters and destroy all slave MTD objects which are
686  * attached to the given MTD object.
687  */
688 int del_mtd_partitions(struct mtd_info *mtd)
689 {
690 	struct mtd_part *slave, *next;
691 	int ret, err = 0;
692 
693 	mutex_lock(&mtd_partitions_mutex);
694 	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
695 		if (slave->parent == mtd) {
696 			ret = __mtd_del_partition(slave);
697 			if (ret < 0)
698 				err = ret;
699 		}
700 	mutex_unlock(&mtd_partitions_mutex);
701 
702 	return err;
703 }
704 
705 int mtd_del_partition(struct mtd_info *mtd, int partno)
706 {
707 	struct mtd_part *slave, *next;
708 	int ret = -EINVAL;
709 
710 	mutex_lock(&mtd_partitions_mutex);
711 	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
712 		if ((slave->parent == mtd) &&
713 		    (slave->mtd.index == partno)) {
714 			ret = __mtd_del_partition(slave);
715 			break;
716 		}
717 	mutex_unlock(&mtd_partitions_mutex);
718 
719 	return ret;
720 }
721 EXPORT_SYMBOL_GPL(mtd_del_partition);
722 
723 /*
724  * This function, given a master MTD object and a partition table, creates
725  * and registers slave MTD objects which are bound to the master according to
726  * the partition definitions.
727  *
728  * For historical reasons, this function's caller only registers the master
729  * if the MTD_PARTITIONED_MASTER config option is set.
730  */
731 
732 int add_mtd_partitions(struct mtd_info *master,
733 		       const struct mtd_partition *parts,
734 		       int nbparts)
735 {
736 	struct mtd_part *slave;
737 	uint64_t cur_offset = 0;
738 	int i;
739 
740 	printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
741 
742 	for (i = 0; i < nbparts; i++) {
743 		slave = allocate_partition(master, parts + i, i, cur_offset);
744 		if (IS_ERR(slave)) {
745 			del_mtd_partitions(master);
746 			return PTR_ERR(slave);
747 		}
748 
749 		mutex_lock(&mtd_partitions_mutex);
750 		list_add(&slave->list, &mtd_partitions);
751 		mutex_unlock(&mtd_partitions_mutex);
752 
753 		add_mtd_device(&slave->mtd);
754 		mtd_add_partition_attrs(slave);
755 		if (parts[i].types)
756 			mtd_parse_part(slave, parts[i].types);
757 
758 		cur_offset = slave->offset + slave->mtd.size;
759 	}
760 
761 	return 0;
762 }
763 
764 static DEFINE_SPINLOCK(part_parser_lock);
765 static LIST_HEAD(part_parsers);
766 
767 static struct mtd_part_parser *mtd_part_parser_get(const char *name)
768 {
769 	struct mtd_part_parser *p, *ret = NULL;
770 
771 	spin_lock(&part_parser_lock);
772 
773 	list_for_each_entry(p, &part_parsers, list)
774 		if (!strcmp(p->name, name) && try_module_get(p->owner)) {
775 			ret = p;
776 			break;
777 		}
778 
779 	spin_unlock(&part_parser_lock);
780 
781 	return ret;
782 }
783 
784 static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
785 {
786 	module_put(p->owner);
787 }
788 
789 /*
790  * Many partition parsers just expected the core to kfree() all their data in
791  * one chunk. Do that by default.
792  */
793 static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
794 					    int nr_parts)
795 {
796 	kfree(pparts);
797 }
798 
799 int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
800 {
801 	p->owner = owner;
802 
803 	if (!p->cleanup)
804 		p->cleanup = &mtd_part_parser_cleanup_default;
805 
806 	spin_lock(&part_parser_lock);
807 	list_add(&p->list, &part_parsers);
808 	spin_unlock(&part_parser_lock);
809 
810 	return 0;
811 }
812 EXPORT_SYMBOL_GPL(__register_mtd_parser);
813 
814 void deregister_mtd_parser(struct mtd_part_parser *p)
815 {
816 	spin_lock(&part_parser_lock);
817 	list_del(&p->list);
818 	spin_unlock(&part_parser_lock);
819 }
820 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
821 
822 /*
823  * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
824  * are changing this array!
825  */
826 static const char * const default_mtd_part_types[] = {
827 	"cmdlinepart",
828 	"ofpart",
829 	NULL
830 };
831 
832 static int mtd_part_do_parse(struct mtd_part_parser *parser,
833 			     struct mtd_info *master,
834 			     struct mtd_partitions *pparts,
835 			     struct mtd_part_parser_data *data)
836 {
837 	int ret;
838 
839 	ret = (*parser->parse_fn)(master, &pparts->parts, data);
840 	pr_debug("%s: parser %s: %i\n", master->name, parser->name, ret);
841 	if (ret <= 0)
842 		return ret;
843 
844 	pr_notice("%d %s partitions found on MTD device %s\n", ret,
845 		  parser->name, master->name);
846 
847 	pparts->nr_parts = ret;
848 	pparts->parser = parser;
849 
850 	return ret;
851 }
852 
853 /**
854  * parse_mtd_partitions - parse MTD partitions
855  * @master: the master partition (describes whole MTD device)
856  * @types: names of partition parsers to try or %NULL
857  * @pparts: info about partitions found is returned here
858  * @data: MTD partition parser-specific data
859  *
860  * This function tries to find partition on MTD device @master. It uses MTD
861  * partition parsers, specified in @types. However, if @types is %NULL, then
862  * the default list of parsers is used. The default list contains only the
863  * "cmdlinepart" and "ofpart" parsers ATM.
864  * Note: If there are more then one parser in @types, the kernel only takes the
865  * partitions parsed out by the first parser.
866  *
867  * This function may return:
868  * o a negative error code in case of failure
869  * o zero otherwise, and @pparts will describe the partitions, number of
870  *   partitions, and the parser which parsed them. Caller must release
871  *   resources with mtd_part_parser_cleanup() when finished with the returned
872  *   data.
873  */
874 int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
875 			 struct mtd_partitions *pparts,
876 			 struct mtd_part_parser_data *data)
877 {
878 	struct mtd_part_parser *parser;
879 	int ret, err = 0;
880 
881 	if (!types)
882 		types = default_mtd_part_types;
883 
884 	for ( ; *types; types++) {
885 		pr_debug("%s: parsing partitions %s\n", master->name, *types);
886 		parser = mtd_part_parser_get(*types);
887 		if (!parser && !request_module("%s", *types))
888 			parser = mtd_part_parser_get(*types);
889 		pr_debug("%s: got parser %s\n", master->name,
890 			 parser ? parser->name : NULL);
891 		if (!parser)
892 			continue;
893 		ret = mtd_part_do_parse(parser, master, pparts, data);
894 		/* Found partitions! */
895 		if (ret > 0)
896 			return 0;
897 		mtd_part_parser_put(parser);
898 		/*
899 		 * Stash the first error we see; only report it if no parser
900 		 * succeeds
901 		 */
902 		if (ret < 0 && !err)
903 			err = ret;
904 	}
905 	return err;
906 }
907 
908 void mtd_part_parser_cleanup(struct mtd_partitions *parts)
909 {
910 	const struct mtd_part_parser *parser;
911 
912 	if (!parts)
913 		return;
914 
915 	parser = parts->parser;
916 	if (parser) {
917 		if (parser->cleanup)
918 			parser->cleanup(parts->parts, parts->nr_parts);
919 
920 		mtd_part_parser_put(parser);
921 	}
922 }
923 
924 int mtd_is_partition(const struct mtd_info *mtd)
925 {
926 	struct mtd_part *part;
927 	int ispart = 0;
928 
929 	mutex_lock(&mtd_partitions_mutex);
930 	list_for_each_entry(part, &mtd_partitions, list)
931 		if (&part->mtd == mtd) {
932 			ispart = 1;
933 			break;
934 		}
935 	mutex_unlock(&mtd_partitions_mutex);
936 
937 	return ispart;
938 }
939 EXPORT_SYMBOL_GPL(mtd_is_partition);
940 
941 /* Returns the size of the entire flash chip */
942 uint64_t mtd_get_device_size(const struct mtd_info *mtd)
943 {
944 	if (!mtd_is_partition(mtd))
945 		return mtd->size;
946 
947 	return mtd_get_device_size(mtd_to_part(mtd)->parent);
948 }
949 EXPORT_SYMBOL_GPL(mtd_get_device_size);
950