xref: /openbmc/linux/drivers/mtd/mtdpart.c (revision 5927145e)
1 /*
2  * Simple MTD partitioning layer
3  *
4  * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
5  * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
6  * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/kmod.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/err.h>
33 
34 #include "mtdcore.h"
35 
36 /* Our partition linked list */
37 static LIST_HEAD(mtd_partitions);
38 static DEFINE_MUTEX(mtd_partitions_mutex);
39 
40 /**
41  * struct mtd_part - our partition node structure
42  *
43  * @mtd: struct holding partition details
44  * @parent: parent mtd - flash device or another partition
45  * @offset: partition offset relative to the *flash device*
46  */
47 struct mtd_part {
48 	struct mtd_info mtd;
49 	struct mtd_info *parent;
50 	uint64_t offset;
51 	struct list_head list;
52 };
53 
54 /*
55  * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
56  * the pointer to that structure.
57  */
58 static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
59 {
60 	return container_of(mtd, struct mtd_part, mtd);
61 }
62 
63 
64 /*
65  * MTD methods which simply translate the effective address and pass through
66  * to the _real_ device.
67  */
68 
69 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
70 		size_t *retlen, u_char *buf)
71 {
72 	struct mtd_part *part = mtd_to_part(mtd);
73 	struct mtd_ecc_stats stats;
74 	int res;
75 
76 	stats = part->parent->ecc_stats;
77 	res = part->parent->_read(part->parent, from + part->offset, len,
78 				  retlen, buf);
79 	if (unlikely(mtd_is_eccerr(res)))
80 		mtd->ecc_stats.failed +=
81 			part->parent->ecc_stats.failed - stats.failed;
82 	else
83 		mtd->ecc_stats.corrected +=
84 			part->parent->ecc_stats.corrected - stats.corrected;
85 	return res;
86 }
87 
88 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
89 		size_t *retlen, void **virt, resource_size_t *phys)
90 {
91 	struct mtd_part *part = mtd_to_part(mtd);
92 
93 	return part->parent->_point(part->parent, from + part->offset, len,
94 				    retlen, virt, phys);
95 }
96 
97 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
98 {
99 	struct mtd_part *part = mtd_to_part(mtd);
100 
101 	return part->parent->_unpoint(part->parent, from + part->offset, len);
102 }
103 
104 static int part_read_oob(struct mtd_info *mtd, loff_t from,
105 		struct mtd_oob_ops *ops)
106 {
107 	struct mtd_part *part = mtd_to_part(mtd);
108 	struct mtd_ecc_stats stats;
109 	int res;
110 
111 	stats = part->parent->ecc_stats;
112 	res = part->parent->_read_oob(part->parent, from + part->offset, ops);
113 	if (unlikely(mtd_is_eccerr(res)))
114 		mtd->ecc_stats.failed +=
115 			part->parent->ecc_stats.failed - stats.failed;
116 	else
117 		mtd->ecc_stats.corrected +=
118 			part->parent->ecc_stats.corrected - stats.corrected;
119 	return res;
120 }
121 
122 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
123 		size_t len, size_t *retlen, u_char *buf)
124 {
125 	struct mtd_part *part = mtd_to_part(mtd);
126 	return part->parent->_read_user_prot_reg(part->parent, from, len,
127 						 retlen, buf);
128 }
129 
130 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
131 				   size_t *retlen, struct otp_info *buf)
132 {
133 	struct mtd_part *part = mtd_to_part(mtd);
134 	return part->parent->_get_user_prot_info(part->parent, len, retlen,
135 						 buf);
136 }
137 
138 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
139 		size_t len, size_t *retlen, u_char *buf)
140 {
141 	struct mtd_part *part = mtd_to_part(mtd);
142 	return part->parent->_read_fact_prot_reg(part->parent, from, len,
143 						 retlen, buf);
144 }
145 
146 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
147 				   size_t *retlen, struct otp_info *buf)
148 {
149 	struct mtd_part *part = mtd_to_part(mtd);
150 	return part->parent->_get_fact_prot_info(part->parent, len, retlen,
151 						 buf);
152 }
153 
154 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
155 		size_t *retlen, const u_char *buf)
156 {
157 	struct mtd_part *part = mtd_to_part(mtd);
158 	return part->parent->_write(part->parent, to + part->offset, len,
159 				    retlen, buf);
160 }
161 
162 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
163 		size_t *retlen, const u_char *buf)
164 {
165 	struct mtd_part *part = mtd_to_part(mtd);
166 	return part->parent->_panic_write(part->parent, to + part->offset, len,
167 					  retlen, buf);
168 }
169 
170 static int part_write_oob(struct mtd_info *mtd, loff_t to,
171 		struct mtd_oob_ops *ops)
172 {
173 	struct mtd_part *part = mtd_to_part(mtd);
174 
175 	return part->parent->_write_oob(part->parent, to + part->offset, ops);
176 }
177 
178 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
179 		size_t len, size_t *retlen, u_char *buf)
180 {
181 	struct mtd_part *part = mtd_to_part(mtd);
182 	return part->parent->_write_user_prot_reg(part->parent, from, len,
183 						  retlen, buf);
184 }
185 
186 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
187 		size_t len)
188 {
189 	struct mtd_part *part = mtd_to_part(mtd);
190 	return part->parent->_lock_user_prot_reg(part->parent, from, len);
191 }
192 
193 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
194 		unsigned long count, loff_t to, size_t *retlen)
195 {
196 	struct mtd_part *part = mtd_to_part(mtd);
197 	return part->parent->_writev(part->parent, vecs, count,
198 				     to + part->offset, retlen);
199 }
200 
201 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
202 {
203 	struct mtd_part *part = mtd_to_part(mtd);
204 	int ret;
205 
206 	instr->addr += part->offset;
207 	ret = part->parent->_erase(part->parent, instr);
208 	if (ret) {
209 		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
210 			instr->fail_addr -= part->offset;
211 		instr->addr -= part->offset;
212 	}
213 	return ret;
214 }
215 
216 void mtd_erase_callback(struct erase_info *instr)
217 {
218 	if (instr->mtd->_erase == part_erase) {
219 		struct mtd_part *part = mtd_to_part(instr->mtd);
220 
221 		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
222 			instr->fail_addr -= part->offset;
223 		instr->addr -= part->offset;
224 	}
225 	if (instr->callback)
226 		instr->callback(instr);
227 }
228 EXPORT_SYMBOL_GPL(mtd_erase_callback);
229 
230 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
231 {
232 	struct mtd_part *part = mtd_to_part(mtd);
233 	return part->parent->_lock(part->parent, ofs + part->offset, len);
234 }
235 
236 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
237 {
238 	struct mtd_part *part = mtd_to_part(mtd);
239 	return part->parent->_unlock(part->parent, ofs + part->offset, len);
240 }
241 
242 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
243 {
244 	struct mtd_part *part = mtd_to_part(mtd);
245 	return part->parent->_is_locked(part->parent, ofs + part->offset, len);
246 }
247 
248 static void part_sync(struct mtd_info *mtd)
249 {
250 	struct mtd_part *part = mtd_to_part(mtd);
251 	part->parent->_sync(part->parent);
252 }
253 
254 static int part_suspend(struct mtd_info *mtd)
255 {
256 	struct mtd_part *part = mtd_to_part(mtd);
257 	return part->parent->_suspend(part->parent);
258 }
259 
260 static void part_resume(struct mtd_info *mtd)
261 {
262 	struct mtd_part *part = mtd_to_part(mtd);
263 	part->parent->_resume(part->parent);
264 }
265 
266 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
267 {
268 	struct mtd_part *part = mtd_to_part(mtd);
269 	ofs += part->offset;
270 	return part->parent->_block_isreserved(part->parent, ofs);
271 }
272 
273 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
274 {
275 	struct mtd_part *part = mtd_to_part(mtd);
276 	ofs += part->offset;
277 	return part->parent->_block_isbad(part->parent, ofs);
278 }
279 
280 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
281 {
282 	struct mtd_part *part = mtd_to_part(mtd);
283 	int res;
284 
285 	ofs += part->offset;
286 	res = part->parent->_block_markbad(part->parent, ofs);
287 	if (!res)
288 		mtd->ecc_stats.badblocks++;
289 	return res;
290 }
291 
292 static int part_get_device(struct mtd_info *mtd)
293 {
294 	struct mtd_part *part = mtd_to_part(mtd);
295 	return part->parent->_get_device(part->parent);
296 }
297 
298 static void part_put_device(struct mtd_info *mtd)
299 {
300 	struct mtd_part *part = mtd_to_part(mtd);
301 	part->parent->_put_device(part->parent);
302 }
303 
304 static int part_ooblayout_ecc(struct mtd_info *mtd, int section,
305 			      struct mtd_oob_region *oobregion)
306 {
307 	struct mtd_part *part = mtd_to_part(mtd);
308 
309 	return mtd_ooblayout_ecc(part->parent, section, oobregion);
310 }
311 
312 static int part_ooblayout_free(struct mtd_info *mtd, int section,
313 			       struct mtd_oob_region *oobregion)
314 {
315 	struct mtd_part *part = mtd_to_part(mtd);
316 
317 	return mtd_ooblayout_free(part->parent, section, oobregion);
318 }
319 
320 static const struct mtd_ooblayout_ops part_ooblayout_ops = {
321 	.ecc = part_ooblayout_ecc,
322 	.free = part_ooblayout_free,
323 };
324 
325 static int part_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
326 {
327 	struct mtd_part *part = mtd_to_part(mtd);
328 
329 	return part->parent->_max_bad_blocks(part->parent,
330 					     ofs + part->offset, len);
331 }
332 
333 static inline void free_partition(struct mtd_part *p)
334 {
335 	kfree(p->mtd.name);
336 	kfree(p);
337 }
338 
339 /**
340  * mtd_parse_part - parse MTD partition looking for subpartitions
341  *
342  * @slave: part that is supposed to be a container and should be parsed
343  * @types: NULL-terminated array with names of partition parsers to try
344  *
345  * Some partitions are kind of containers with extra subpartitions (volumes).
346  * There can be various formats of such containers. This function tries to use
347  * specified parsers to analyze given partition and registers found
348  * subpartitions on success.
349  */
350 static int mtd_parse_part(struct mtd_part *slave, const char *const *types)
351 {
352 	struct mtd_partitions parsed;
353 	int err;
354 
355 	err = parse_mtd_partitions(&slave->mtd, types, &parsed, NULL);
356 	if (err)
357 		return err;
358 	else if (!parsed.nr_parts)
359 		return -ENOENT;
360 
361 	err = add_mtd_partitions(&slave->mtd, parsed.parts, parsed.nr_parts);
362 
363 	mtd_part_parser_cleanup(&parsed);
364 
365 	return err;
366 }
367 
368 static struct mtd_part *allocate_partition(struct mtd_info *parent,
369 			const struct mtd_partition *part, int partno,
370 			uint64_t cur_offset)
371 {
372 	int wr_alignment = (parent->flags & MTD_NO_ERASE) ? parent->writesize :
373 							    parent->erasesize;
374 	struct mtd_part *slave;
375 	u32 remainder;
376 	char *name;
377 	u64 tmp;
378 
379 	/* allocate the partition structure */
380 	slave = kzalloc(sizeof(*slave), GFP_KERNEL);
381 	name = kstrdup(part->name, GFP_KERNEL);
382 	if (!name || !slave) {
383 		printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
384 		       parent->name);
385 		kfree(name);
386 		kfree(slave);
387 		return ERR_PTR(-ENOMEM);
388 	}
389 
390 	/* set up the MTD object for this partition */
391 	slave->mtd.type = parent->type;
392 	slave->mtd.flags = parent->flags & ~part->mask_flags;
393 	slave->mtd.size = part->size;
394 	slave->mtd.writesize = parent->writesize;
395 	slave->mtd.writebufsize = parent->writebufsize;
396 	slave->mtd.oobsize = parent->oobsize;
397 	slave->mtd.oobavail = parent->oobavail;
398 	slave->mtd.subpage_sft = parent->subpage_sft;
399 	slave->mtd.pairing = parent->pairing;
400 
401 	slave->mtd.name = name;
402 	slave->mtd.owner = parent->owner;
403 
404 	/* NOTE: Historically, we didn't arrange MTDs as a tree out of
405 	 * concern for showing the same data in multiple partitions.
406 	 * However, it is very useful to have the master node present,
407 	 * so the MTD_PARTITIONED_MASTER option allows that. The master
408 	 * will have device nodes etc only if this is set, so make the
409 	 * parent conditional on that option. Note, this is a way to
410 	 * distinguish between the master and the partition in sysfs.
411 	 */
412 	slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd_is_partition(parent) ?
413 				&parent->dev :
414 				parent->dev.parent;
415 	slave->mtd.dev.of_node = part->of_node;
416 
417 	if (parent->_read)
418 		slave->mtd._read = part_read;
419 	if (parent->_write)
420 		slave->mtd._write = part_write;
421 
422 	if (parent->_panic_write)
423 		slave->mtd._panic_write = part_panic_write;
424 
425 	if (parent->_point && parent->_unpoint) {
426 		slave->mtd._point = part_point;
427 		slave->mtd._unpoint = part_unpoint;
428 	}
429 
430 	if (parent->_read_oob)
431 		slave->mtd._read_oob = part_read_oob;
432 	if (parent->_write_oob)
433 		slave->mtd._write_oob = part_write_oob;
434 	if (parent->_read_user_prot_reg)
435 		slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
436 	if (parent->_read_fact_prot_reg)
437 		slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
438 	if (parent->_write_user_prot_reg)
439 		slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
440 	if (parent->_lock_user_prot_reg)
441 		slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
442 	if (parent->_get_user_prot_info)
443 		slave->mtd._get_user_prot_info = part_get_user_prot_info;
444 	if (parent->_get_fact_prot_info)
445 		slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
446 	if (parent->_sync)
447 		slave->mtd._sync = part_sync;
448 	if (!partno && !parent->dev.class && parent->_suspend &&
449 	    parent->_resume) {
450 		slave->mtd._suspend = part_suspend;
451 		slave->mtd._resume = part_resume;
452 	}
453 	if (parent->_writev)
454 		slave->mtd._writev = part_writev;
455 	if (parent->_lock)
456 		slave->mtd._lock = part_lock;
457 	if (parent->_unlock)
458 		slave->mtd._unlock = part_unlock;
459 	if (parent->_is_locked)
460 		slave->mtd._is_locked = part_is_locked;
461 	if (parent->_block_isreserved)
462 		slave->mtd._block_isreserved = part_block_isreserved;
463 	if (parent->_block_isbad)
464 		slave->mtd._block_isbad = part_block_isbad;
465 	if (parent->_block_markbad)
466 		slave->mtd._block_markbad = part_block_markbad;
467 	if (parent->_max_bad_blocks)
468 		slave->mtd._max_bad_blocks = part_max_bad_blocks;
469 
470 	if (parent->_get_device)
471 		slave->mtd._get_device = part_get_device;
472 	if (parent->_put_device)
473 		slave->mtd._put_device = part_put_device;
474 
475 	slave->mtd._erase = part_erase;
476 	slave->parent = parent;
477 	slave->offset = part->offset;
478 
479 	if (slave->offset == MTDPART_OFS_APPEND)
480 		slave->offset = cur_offset;
481 	if (slave->offset == MTDPART_OFS_NXTBLK) {
482 		tmp = cur_offset;
483 		slave->offset = cur_offset;
484 		remainder = do_div(tmp, wr_alignment);
485 		if (remainder) {
486 			slave->offset += wr_alignment - remainder;
487 			printk(KERN_NOTICE "Moving partition %d: "
488 			       "0x%012llx -> 0x%012llx\n", partno,
489 			       (unsigned long long)cur_offset, (unsigned long long)slave->offset);
490 		}
491 	}
492 	if (slave->offset == MTDPART_OFS_RETAIN) {
493 		slave->offset = cur_offset;
494 		if (parent->size - slave->offset >= slave->mtd.size) {
495 			slave->mtd.size = parent->size - slave->offset
496 							- slave->mtd.size;
497 		} else {
498 			printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
499 				part->name, parent->size - slave->offset,
500 				slave->mtd.size);
501 			/* register to preserve ordering */
502 			goto out_register;
503 		}
504 	}
505 	if (slave->mtd.size == MTDPART_SIZ_FULL)
506 		slave->mtd.size = parent->size - slave->offset;
507 
508 	printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
509 		(unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
510 
511 	/* let's do some sanity checks */
512 	if (slave->offset >= parent->size) {
513 		/* let's register it anyway to preserve ordering */
514 		slave->offset = 0;
515 		slave->mtd.size = 0;
516 		printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
517 			part->name);
518 		goto out_register;
519 	}
520 	if (slave->offset + slave->mtd.size > parent->size) {
521 		slave->mtd.size = parent->size - slave->offset;
522 		printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
523 			part->name, parent->name, (unsigned long long)slave->mtd.size);
524 	}
525 	if (parent->numeraseregions > 1) {
526 		/* Deal with variable erase size stuff */
527 		int i, max = parent->numeraseregions;
528 		u64 end = slave->offset + slave->mtd.size;
529 		struct mtd_erase_region_info *regions = parent->eraseregions;
530 
531 		/* Find the first erase regions which is part of this
532 		 * partition. */
533 		for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
534 			;
535 		/* The loop searched for the region _behind_ the first one */
536 		if (i > 0)
537 			i--;
538 
539 		/* Pick biggest erasesize */
540 		for (; i < max && regions[i].offset < end; i++) {
541 			if (slave->mtd.erasesize < regions[i].erasesize) {
542 				slave->mtd.erasesize = regions[i].erasesize;
543 			}
544 		}
545 		BUG_ON(slave->mtd.erasesize == 0);
546 	} else {
547 		/* Single erase size */
548 		slave->mtd.erasesize = parent->erasesize;
549 	}
550 
551 	/*
552 	 * Slave erasesize might differ from the master one if the master
553 	 * exposes several regions with different erasesize. Adjust
554 	 * wr_alignment accordingly.
555 	 */
556 	if (!(slave->mtd.flags & MTD_NO_ERASE))
557 		wr_alignment = slave->mtd.erasesize;
558 
559 	tmp = slave->offset;
560 	remainder = do_div(tmp, wr_alignment);
561 	if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
562 		/* Doesn't start on a boundary of major erase size */
563 		/* FIXME: Let it be writable if it is on a boundary of
564 		 * _minor_ erase size though */
565 		slave->mtd.flags &= ~MTD_WRITEABLE;
566 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase/write block boundary -- force read-only\n",
567 			part->name);
568 	}
569 
570 	tmp = slave->mtd.size;
571 	remainder = do_div(tmp, wr_alignment);
572 	if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
573 		slave->mtd.flags &= ~MTD_WRITEABLE;
574 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase/write block -- force read-only\n",
575 			part->name);
576 	}
577 
578 	mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops);
579 	slave->mtd.ecc_step_size = parent->ecc_step_size;
580 	slave->mtd.ecc_strength = parent->ecc_strength;
581 	slave->mtd.bitflip_threshold = parent->bitflip_threshold;
582 
583 	if (parent->_block_isbad) {
584 		uint64_t offs = 0;
585 
586 		while (offs < slave->mtd.size) {
587 			if (mtd_block_isreserved(parent, offs + slave->offset))
588 				slave->mtd.ecc_stats.bbtblocks++;
589 			else if (mtd_block_isbad(parent, offs + slave->offset))
590 				slave->mtd.ecc_stats.badblocks++;
591 			offs += slave->mtd.erasesize;
592 		}
593 	}
594 
595 out_register:
596 	return slave;
597 }
598 
599 static ssize_t mtd_partition_offset_show(struct device *dev,
600 		struct device_attribute *attr, char *buf)
601 {
602 	struct mtd_info *mtd = dev_get_drvdata(dev);
603 	struct mtd_part *part = mtd_to_part(mtd);
604 	return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset);
605 }
606 
607 static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
608 
609 static const struct attribute *mtd_partition_attrs[] = {
610 	&dev_attr_offset.attr,
611 	NULL
612 };
613 
614 static int mtd_add_partition_attrs(struct mtd_part *new)
615 {
616 	int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
617 	if (ret)
618 		printk(KERN_WARNING
619 		       "mtd: failed to create partition attrs, err=%d\n", ret);
620 	return ret;
621 }
622 
623 int mtd_add_partition(struct mtd_info *parent, const char *name,
624 		      long long offset, long long length)
625 {
626 	struct mtd_partition part;
627 	struct mtd_part *new;
628 	int ret = 0;
629 
630 	/* the direct offset is expected */
631 	if (offset == MTDPART_OFS_APPEND ||
632 	    offset == MTDPART_OFS_NXTBLK)
633 		return -EINVAL;
634 
635 	if (length == MTDPART_SIZ_FULL)
636 		length = parent->size - offset;
637 
638 	if (length <= 0)
639 		return -EINVAL;
640 
641 	memset(&part, 0, sizeof(part));
642 	part.name = name;
643 	part.size = length;
644 	part.offset = offset;
645 
646 	new = allocate_partition(parent, &part, -1, offset);
647 	if (IS_ERR(new))
648 		return PTR_ERR(new);
649 
650 	mutex_lock(&mtd_partitions_mutex);
651 	list_add(&new->list, &mtd_partitions);
652 	mutex_unlock(&mtd_partitions_mutex);
653 
654 	add_mtd_device(&new->mtd);
655 
656 	mtd_add_partition_attrs(new);
657 
658 	return ret;
659 }
660 EXPORT_SYMBOL_GPL(mtd_add_partition);
661 
662 /**
663  * __mtd_del_partition - delete MTD partition
664  *
665  * @priv: internal MTD struct for partition to be deleted
666  *
667  * This function must be called with the partitions mutex locked.
668  */
669 static int __mtd_del_partition(struct mtd_part *priv)
670 {
671 	struct mtd_part *child, *next;
672 	int err;
673 
674 	list_for_each_entry_safe(child, next, &mtd_partitions, list) {
675 		if (child->parent == &priv->mtd) {
676 			err = __mtd_del_partition(child);
677 			if (err)
678 				return err;
679 		}
680 	}
681 
682 	sysfs_remove_files(&priv->mtd.dev.kobj, mtd_partition_attrs);
683 
684 	err = del_mtd_device(&priv->mtd);
685 	if (err)
686 		return err;
687 
688 	list_del(&priv->list);
689 	free_partition(priv);
690 
691 	return 0;
692 }
693 
694 /*
695  * This function unregisters and destroy all slave MTD objects which are
696  * attached to the given MTD object.
697  */
698 int del_mtd_partitions(struct mtd_info *mtd)
699 {
700 	struct mtd_part *slave, *next;
701 	int ret, err = 0;
702 
703 	mutex_lock(&mtd_partitions_mutex);
704 	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
705 		if (slave->parent == mtd) {
706 			ret = __mtd_del_partition(slave);
707 			if (ret < 0)
708 				err = ret;
709 		}
710 	mutex_unlock(&mtd_partitions_mutex);
711 
712 	return err;
713 }
714 
715 int mtd_del_partition(struct mtd_info *mtd, int partno)
716 {
717 	struct mtd_part *slave, *next;
718 	int ret = -EINVAL;
719 
720 	mutex_lock(&mtd_partitions_mutex);
721 	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
722 		if ((slave->parent == mtd) &&
723 		    (slave->mtd.index == partno)) {
724 			ret = __mtd_del_partition(slave);
725 			break;
726 		}
727 	mutex_unlock(&mtd_partitions_mutex);
728 
729 	return ret;
730 }
731 EXPORT_SYMBOL_GPL(mtd_del_partition);
732 
733 /*
734  * This function, given a master MTD object and a partition table, creates
735  * and registers slave MTD objects which are bound to the master according to
736  * the partition definitions.
737  *
738  * For historical reasons, this function's caller only registers the master
739  * if the MTD_PARTITIONED_MASTER config option is set.
740  */
741 
742 int add_mtd_partitions(struct mtd_info *master,
743 		       const struct mtd_partition *parts,
744 		       int nbparts)
745 {
746 	struct mtd_part *slave;
747 	uint64_t cur_offset = 0;
748 	int i;
749 
750 	printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
751 
752 	for (i = 0; i < nbparts; i++) {
753 		slave = allocate_partition(master, parts + i, i, cur_offset);
754 		if (IS_ERR(slave)) {
755 			del_mtd_partitions(master);
756 			return PTR_ERR(slave);
757 		}
758 
759 		mutex_lock(&mtd_partitions_mutex);
760 		list_add(&slave->list, &mtd_partitions);
761 		mutex_unlock(&mtd_partitions_mutex);
762 
763 		add_mtd_device(&slave->mtd);
764 		mtd_add_partition_attrs(slave);
765 		if (parts[i].types)
766 			mtd_parse_part(slave, parts[i].types);
767 
768 		cur_offset = slave->offset + slave->mtd.size;
769 	}
770 
771 	return 0;
772 }
773 
774 static DEFINE_SPINLOCK(part_parser_lock);
775 static LIST_HEAD(part_parsers);
776 
777 static struct mtd_part_parser *mtd_part_parser_get(const char *name)
778 {
779 	struct mtd_part_parser *p, *ret = NULL;
780 
781 	spin_lock(&part_parser_lock);
782 
783 	list_for_each_entry(p, &part_parsers, list)
784 		if (!strcmp(p->name, name) && try_module_get(p->owner)) {
785 			ret = p;
786 			break;
787 		}
788 
789 	spin_unlock(&part_parser_lock);
790 
791 	return ret;
792 }
793 
794 static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
795 {
796 	module_put(p->owner);
797 }
798 
799 /*
800  * Many partition parsers just expected the core to kfree() all their data in
801  * one chunk. Do that by default.
802  */
803 static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
804 					    int nr_parts)
805 {
806 	kfree(pparts);
807 }
808 
809 int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
810 {
811 	p->owner = owner;
812 
813 	if (!p->cleanup)
814 		p->cleanup = &mtd_part_parser_cleanup_default;
815 
816 	spin_lock(&part_parser_lock);
817 	list_add(&p->list, &part_parsers);
818 	spin_unlock(&part_parser_lock);
819 
820 	return 0;
821 }
822 EXPORT_SYMBOL_GPL(__register_mtd_parser);
823 
824 void deregister_mtd_parser(struct mtd_part_parser *p)
825 {
826 	spin_lock(&part_parser_lock);
827 	list_del(&p->list);
828 	spin_unlock(&part_parser_lock);
829 }
830 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
831 
832 /*
833  * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
834  * are changing this array!
835  */
836 static const char * const default_mtd_part_types[] = {
837 	"cmdlinepart",
838 	"ofpart",
839 	NULL
840 };
841 
842 static int mtd_part_do_parse(struct mtd_part_parser *parser,
843 			     struct mtd_info *master,
844 			     struct mtd_partitions *pparts,
845 			     struct mtd_part_parser_data *data)
846 {
847 	int ret;
848 
849 	ret = (*parser->parse_fn)(master, &pparts->parts, data);
850 	pr_debug("%s: parser %s: %i\n", master->name, parser->name, ret);
851 	if (ret <= 0)
852 		return ret;
853 
854 	pr_notice("%d %s partitions found on MTD device %s\n", ret,
855 		  parser->name, master->name);
856 
857 	pparts->nr_parts = ret;
858 	pparts->parser = parser;
859 
860 	return ret;
861 }
862 
863 /**
864  * parse_mtd_partitions - parse MTD partitions
865  * @master: the master partition (describes whole MTD device)
866  * @types: names of partition parsers to try or %NULL
867  * @pparts: info about partitions found is returned here
868  * @data: MTD partition parser-specific data
869  *
870  * This function tries to find partition on MTD device @master. It uses MTD
871  * partition parsers, specified in @types. However, if @types is %NULL, then
872  * the default list of parsers is used. The default list contains only the
873  * "cmdlinepart" and "ofpart" parsers ATM.
874  * Note: If there are more then one parser in @types, the kernel only takes the
875  * partitions parsed out by the first parser.
876  *
877  * This function may return:
878  * o a negative error code in case of failure
879  * o zero otherwise, and @pparts will describe the partitions, number of
880  *   partitions, and the parser which parsed them. Caller must release
881  *   resources with mtd_part_parser_cleanup() when finished with the returned
882  *   data.
883  */
884 int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
885 			 struct mtd_partitions *pparts,
886 			 struct mtd_part_parser_data *data)
887 {
888 	struct mtd_part_parser *parser;
889 	int ret, err = 0;
890 
891 	if (!types)
892 		types = default_mtd_part_types;
893 
894 	for ( ; *types; types++) {
895 		pr_debug("%s: parsing partitions %s\n", master->name, *types);
896 		parser = mtd_part_parser_get(*types);
897 		if (!parser && !request_module("%s", *types))
898 			parser = mtd_part_parser_get(*types);
899 		pr_debug("%s: got parser %s\n", master->name,
900 			 parser ? parser->name : NULL);
901 		if (!parser)
902 			continue;
903 		ret = mtd_part_do_parse(parser, master, pparts, data);
904 		/* Found partitions! */
905 		if (ret > 0)
906 			return 0;
907 		mtd_part_parser_put(parser);
908 		/*
909 		 * Stash the first error we see; only report it if no parser
910 		 * succeeds
911 		 */
912 		if (ret < 0 && !err)
913 			err = ret;
914 	}
915 	return err;
916 }
917 
918 void mtd_part_parser_cleanup(struct mtd_partitions *parts)
919 {
920 	const struct mtd_part_parser *parser;
921 
922 	if (!parts)
923 		return;
924 
925 	parser = parts->parser;
926 	if (parser) {
927 		if (parser->cleanup)
928 			parser->cleanup(parts->parts, parts->nr_parts);
929 
930 		mtd_part_parser_put(parser);
931 	}
932 }
933 
934 int mtd_is_partition(const struct mtd_info *mtd)
935 {
936 	struct mtd_part *part;
937 	int ispart = 0;
938 
939 	mutex_lock(&mtd_partitions_mutex);
940 	list_for_each_entry(part, &mtd_partitions, list)
941 		if (&part->mtd == mtd) {
942 			ispart = 1;
943 			break;
944 		}
945 	mutex_unlock(&mtd_partitions_mutex);
946 
947 	return ispart;
948 }
949 EXPORT_SYMBOL_GPL(mtd_is_partition);
950 
951 /* Returns the size of the entire flash chip */
952 uint64_t mtd_get_device_size(const struct mtd_info *mtd)
953 {
954 	if (!mtd_is_partition(mtd))
955 		return mtd->size;
956 
957 	return mtd_get_device_size(mtd_to_part(mtd)->parent);
958 }
959 EXPORT_SYMBOL_GPL(mtd_get_device_size);
960