1 /* 2 * Simple MTD partitioning layer 3 * 4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net> 5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de> 6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/list.h> 29 #include <linux/kmod.h> 30 #include <linux/mtd/mtd.h> 31 #include <linux/mtd/partitions.h> 32 #include <linux/err.h> 33 #include <linux/of.h> 34 35 #include "mtdcore.h" 36 37 /* Our partition linked list */ 38 static LIST_HEAD(mtd_partitions); 39 static DEFINE_MUTEX(mtd_partitions_mutex); 40 41 /** 42 * struct mtd_part - our partition node structure 43 * 44 * @mtd: struct holding partition details 45 * @parent: parent mtd - flash device or another partition 46 * @offset: partition offset relative to the *flash device* 47 */ 48 struct mtd_part { 49 struct mtd_info mtd; 50 struct mtd_info *parent; 51 uint64_t offset; 52 struct list_head list; 53 }; 54 55 /* 56 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve 57 * the pointer to that structure. 58 */ 59 static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd) 60 { 61 return container_of(mtd, struct mtd_part, mtd); 62 } 63 64 65 /* 66 * MTD methods which simply translate the effective address and pass through 67 * to the _real_ device. 68 */ 69 70 static int part_read(struct mtd_info *mtd, loff_t from, size_t len, 71 size_t *retlen, u_char *buf) 72 { 73 struct mtd_part *part = mtd_to_part(mtd); 74 struct mtd_ecc_stats stats; 75 int res; 76 77 stats = part->parent->ecc_stats; 78 res = part->parent->_read(part->parent, from + part->offset, len, 79 retlen, buf); 80 if (unlikely(mtd_is_eccerr(res))) 81 mtd->ecc_stats.failed += 82 part->parent->ecc_stats.failed - stats.failed; 83 else 84 mtd->ecc_stats.corrected += 85 part->parent->ecc_stats.corrected - stats.corrected; 86 return res; 87 } 88 89 static int part_point(struct mtd_info *mtd, loff_t from, size_t len, 90 size_t *retlen, void **virt, resource_size_t *phys) 91 { 92 struct mtd_part *part = mtd_to_part(mtd); 93 94 return part->parent->_point(part->parent, from + part->offset, len, 95 retlen, virt, phys); 96 } 97 98 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 99 { 100 struct mtd_part *part = mtd_to_part(mtd); 101 102 return part->parent->_unpoint(part->parent, from + part->offset, len); 103 } 104 105 static int part_read_oob(struct mtd_info *mtd, loff_t from, 106 struct mtd_oob_ops *ops) 107 { 108 struct mtd_part *part = mtd_to_part(mtd); 109 struct mtd_ecc_stats stats; 110 int res; 111 112 stats = part->parent->ecc_stats; 113 res = part->parent->_read_oob(part->parent, from + part->offset, ops); 114 if (unlikely(mtd_is_eccerr(res))) 115 mtd->ecc_stats.failed += 116 part->parent->ecc_stats.failed - stats.failed; 117 else 118 mtd->ecc_stats.corrected += 119 part->parent->ecc_stats.corrected - stats.corrected; 120 return res; 121 } 122 123 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from, 124 size_t len, size_t *retlen, u_char *buf) 125 { 126 struct mtd_part *part = mtd_to_part(mtd); 127 return part->parent->_read_user_prot_reg(part->parent, from, len, 128 retlen, buf); 129 } 130 131 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len, 132 size_t *retlen, struct otp_info *buf) 133 { 134 struct mtd_part *part = mtd_to_part(mtd); 135 return part->parent->_get_user_prot_info(part->parent, len, retlen, 136 buf); 137 } 138 139 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, 140 size_t len, size_t *retlen, u_char *buf) 141 { 142 struct mtd_part *part = mtd_to_part(mtd); 143 return part->parent->_read_fact_prot_reg(part->parent, from, len, 144 retlen, buf); 145 } 146 147 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len, 148 size_t *retlen, struct otp_info *buf) 149 { 150 struct mtd_part *part = mtd_to_part(mtd); 151 return part->parent->_get_fact_prot_info(part->parent, len, retlen, 152 buf); 153 } 154 155 static int part_write(struct mtd_info *mtd, loff_t to, size_t len, 156 size_t *retlen, const u_char *buf) 157 { 158 struct mtd_part *part = mtd_to_part(mtd); 159 return part->parent->_write(part->parent, to + part->offset, len, 160 retlen, buf); 161 } 162 163 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len, 164 size_t *retlen, const u_char *buf) 165 { 166 struct mtd_part *part = mtd_to_part(mtd); 167 return part->parent->_panic_write(part->parent, to + part->offset, len, 168 retlen, buf); 169 } 170 171 static int part_write_oob(struct mtd_info *mtd, loff_t to, 172 struct mtd_oob_ops *ops) 173 { 174 struct mtd_part *part = mtd_to_part(mtd); 175 176 return part->parent->_write_oob(part->parent, to + part->offset, ops); 177 } 178 179 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from, 180 size_t len, size_t *retlen, u_char *buf) 181 { 182 struct mtd_part *part = mtd_to_part(mtd); 183 return part->parent->_write_user_prot_reg(part->parent, from, len, 184 retlen, buf); 185 } 186 187 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, 188 size_t len) 189 { 190 struct mtd_part *part = mtd_to_part(mtd); 191 return part->parent->_lock_user_prot_reg(part->parent, from, len); 192 } 193 194 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs, 195 unsigned long count, loff_t to, size_t *retlen) 196 { 197 struct mtd_part *part = mtd_to_part(mtd); 198 return part->parent->_writev(part->parent, vecs, count, 199 to + part->offset, retlen); 200 } 201 202 static int part_erase(struct mtd_info *mtd, struct erase_info *instr) 203 { 204 struct mtd_part *part = mtd_to_part(mtd); 205 int ret; 206 207 instr->addr += part->offset; 208 ret = part->parent->_erase(part->parent, instr); 209 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 210 instr->fail_addr -= part->offset; 211 instr->addr -= part->offset; 212 213 return ret; 214 } 215 216 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 217 { 218 struct mtd_part *part = mtd_to_part(mtd); 219 return part->parent->_lock(part->parent, ofs + part->offset, len); 220 } 221 222 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 223 { 224 struct mtd_part *part = mtd_to_part(mtd); 225 return part->parent->_unlock(part->parent, ofs + part->offset, len); 226 } 227 228 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 229 { 230 struct mtd_part *part = mtd_to_part(mtd); 231 return part->parent->_is_locked(part->parent, ofs + part->offset, len); 232 } 233 234 static void part_sync(struct mtd_info *mtd) 235 { 236 struct mtd_part *part = mtd_to_part(mtd); 237 part->parent->_sync(part->parent); 238 } 239 240 static int part_suspend(struct mtd_info *mtd) 241 { 242 struct mtd_part *part = mtd_to_part(mtd); 243 return part->parent->_suspend(part->parent); 244 } 245 246 static void part_resume(struct mtd_info *mtd) 247 { 248 struct mtd_part *part = mtd_to_part(mtd); 249 part->parent->_resume(part->parent); 250 } 251 252 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs) 253 { 254 struct mtd_part *part = mtd_to_part(mtd); 255 ofs += part->offset; 256 return part->parent->_block_isreserved(part->parent, ofs); 257 } 258 259 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs) 260 { 261 struct mtd_part *part = mtd_to_part(mtd); 262 ofs += part->offset; 263 return part->parent->_block_isbad(part->parent, ofs); 264 } 265 266 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs) 267 { 268 struct mtd_part *part = mtd_to_part(mtd); 269 int res; 270 271 ofs += part->offset; 272 res = part->parent->_block_markbad(part->parent, ofs); 273 if (!res) 274 mtd->ecc_stats.badblocks++; 275 return res; 276 } 277 278 static int part_get_device(struct mtd_info *mtd) 279 { 280 struct mtd_part *part = mtd_to_part(mtd); 281 return part->parent->_get_device(part->parent); 282 } 283 284 static void part_put_device(struct mtd_info *mtd) 285 { 286 struct mtd_part *part = mtd_to_part(mtd); 287 part->parent->_put_device(part->parent); 288 } 289 290 static int part_ooblayout_ecc(struct mtd_info *mtd, int section, 291 struct mtd_oob_region *oobregion) 292 { 293 struct mtd_part *part = mtd_to_part(mtd); 294 295 return mtd_ooblayout_ecc(part->parent, section, oobregion); 296 } 297 298 static int part_ooblayout_free(struct mtd_info *mtd, int section, 299 struct mtd_oob_region *oobregion) 300 { 301 struct mtd_part *part = mtd_to_part(mtd); 302 303 return mtd_ooblayout_free(part->parent, section, oobregion); 304 } 305 306 static const struct mtd_ooblayout_ops part_ooblayout_ops = { 307 .ecc = part_ooblayout_ecc, 308 .free = part_ooblayout_free, 309 }; 310 311 static int part_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len) 312 { 313 struct mtd_part *part = mtd_to_part(mtd); 314 315 return part->parent->_max_bad_blocks(part->parent, 316 ofs + part->offset, len); 317 } 318 319 static inline void free_partition(struct mtd_part *p) 320 { 321 kfree(p->mtd.name); 322 kfree(p); 323 } 324 325 /** 326 * mtd_parse_part - parse MTD partition looking for subpartitions 327 * 328 * @slave: part that is supposed to be a container and should be parsed 329 * @types: NULL-terminated array with names of partition parsers to try 330 * 331 * Some partitions are kind of containers with extra subpartitions (volumes). 332 * There can be various formats of such containers. This function tries to use 333 * specified parsers to analyze given partition and registers found 334 * subpartitions on success. 335 */ 336 static int mtd_parse_part(struct mtd_part *slave, const char *const *types) 337 { 338 struct mtd_partitions parsed; 339 int err; 340 341 err = parse_mtd_partitions(&slave->mtd, types, &parsed, NULL); 342 if (err) 343 return err; 344 else if (!parsed.nr_parts) 345 return -ENOENT; 346 347 err = add_mtd_partitions(&slave->mtd, parsed.parts, parsed.nr_parts); 348 349 mtd_part_parser_cleanup(&parsed); 350 351 return err; 352 } 353 354 static struct mtd_part *allocate_partition(struct mtd_info *parent, 355 const struct mtd_partition *part, int partno, 356 uint64_t cur_offset) 357 { 358 int wr_alignment = (parent->flags & MTD_NO_ERASE) ? parent->writesize : 359 parent->erasesize; 360 struct mtd_part *slave; 361 u32 remainder; 362 char *name; 363 u64 tmp; 364 365 /* allocate the partition structure */ 366 slave = kzalloc(sizeof(*slave), GFP_KERNEL); 367 name = kstrdup(part->name, GFP_KERNEL); 368 if (!name || !slave) { 369 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n", 370 parent->name); 371 kfree(name); 372 kfree(slave); 373 return ERR_PTR(-ENOMEM); 374 } 375 376 /* set up the MTD object for this partition */ 377 slave->mtd.type = parent->type; 378 slave->mtd.flags = parent->flags & ~part->mask_flags; 379 slave->mtd.size = part->size; 380 slave->mtd.writesize = parent->writesize; 381 slave->mtd.writebufsize = parent->writebufsize; 382 slave->mtd.oobsize = parent->oobsize; 383 slave->mtd.oobavail = parent->oobavail; 384 slave->mtd.subpage_sft = parent->subpage_sft; 385 slave->mtd.pairing = parent->pairing; 386 387 slave->mtd.name = name; 388 slave->mtd.owner = parent->owner; 389 390 /* NOTE: Historically, we didn't arrange MTDs as a tree out of 391 * concern for showing the same data in multiple partitions. 392 * However, it is very useful to have the master node present, 393 * so the MTD_PARTITIONED_MASTER option allows that. The master 394 * will have device nodes etc only if this is set, so make the 395 * parent conditional on that option. Note, this is a way to 396 * distinguish between the master and the partition in sysfs. 397 */ 398 slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd_is_partition(parent) ? 399 &parent->dev : 400 parent->dev.parent; 401 slave->mtd.dev.of_node = part->of_node; 402 403 if (parent->_read) 404 slave->mtd._read = part_read; 405 if (parent->_write) 406 slave->mtd._write = part_write; 407 408 if (parent->_panic_write) 409 slave->mtd._panic_write = part_panic_write; 410 411 if (parent->_point && parent->_unpoint) { 412 slave->mtd._point = part_point; 413 slave->mtd._unpoint = part_unpoint; 414 } 415 416 if (parent->_read_oob) 417 slave->mtd._read_oob = part_read_oob; 418 if (parent->_write_oob) 419 slave->mtd._write_oob = part_write_oob; 420 if (parent->_read_user_prot_reg) 421 slave->mtd._read_user_prot_reg = part_read_user_prot_reg; 422 if (parent->_read_fact_prot_reg) 423 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg; 424 if (parent->_write_user_prot_reg) 425 slave->mtd._write_user_prot_reg = part_write_user_prot_reg; 426 if (parent->_lock_user_prot_reg) 427 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg; 428 if (parent->_get_user_prot_info) 429 slave->mtd._get_user_prot_info = part_get_user_prot_info; 430 if (parent->_get_fact_prot_info) 431 slave->mtd._get_fact_prot_info = part_get_fact_prot_info; 432 if (parent->_sync) 433 slave->mtd._sync = part_sync; 434 if (!partno && !parent->dev.class && parent->_suspend && 435 parent->_resume) { 436 slave->mtd._suspend = part_suspend; 437 slave->mtd._resume = part_resume; 438 } 439 if (parent->_writev) 440 slave->mtd._writev = part_writev; 441 if (parent->_lock) 442 slave->mtd._lock = part_lock; 443 if (parent->_unlock) 444 slave->mtd._unlock = part_unlock; 445 if (parent->_is_locked) 446 slave->mtd._is_locked = part_is_locked; 447 if (parent->_block_isreserved) 448 slave->mtd._block_isreserved = part_block_isreserved; 449 if (parent->_block_isbad) 450 slave->mtd._block_isbad = part_block_isbad; 451 if (parent->_block_markbad) 452 slave->mtd._block_markbad = part_block_markbad; 453 if (parent->_max_bad_blocks) 454 slave->mtd._max_bad_blocks = part_max_bad_blocks; 455 456 if (parent->_get_device) 457 slave->mtd._get_device = part_get_device; 458 if (parent->_put_device) 459 slave->mtd._put_device = part_put_device; 460 461 slave->mtd._erase = part_erase; 462 slave->parent = parent; 463 slave->offset = part->offset; 464 465 if (slave->offset == MTDPART_OFS_APPEND) 466 slave->offset = cur_offset; 467 if (slave->offset == MTDPART_OFS_NXTBLK) { 468 tmp = cur_offset; 469 slave->offset = cur_offset; 470 remainder = do_div(tmp, wr_alignment); 471 if (remainder) { 472 slave->offset += wr_alignment - remainder; 473 printk(KERN_NOTICE "Moving partition %d: " 474 "0x%012llx -> 0x%012llx\n", partno, 475 (unsigned long long)cur_offset, (unsigned long long)slave->offset); 476 } 477 } 478 if (slave->offset == MTDPART_OFS_RETAIN) { 479 slave->offset = cur_offset; 480 if (parent->size - slave->offset >= slave->mtd.size) { 481 slave->mtd.size = parent->size - slave->offset 482 - slave->mtd.size; 483 } else { 484 printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n", 485 part->name, parent->size - slave->offset, 486 slave->mtd.size); 487 /* register to preserve ordering */ 488 goto out_register; 489 } 490 } 491 if (slave->mtd.size == MTDPART_SIZ_FULL) 492 slave->mtd.size = parent->size - slave->offset; 493 494 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset, 495 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name); 496 497 /* let's do some sanity checks */ 498 if (slave->offset >= parent->size) { 499 /* let's register it anyway to preserve ordering */ 500 slave->offset = 0; 501 slave->mtd.size = 0; 502 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n", 503 part->name); 504 goto out_register; 505 } 506 if (slave->offset + slave->mtd.size > parent->size) { 507 slave->mtd.size = parent->size - slave->offset; 508 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n", 509 part->name, parent->name, (unsigned long long)slave->mtd.size); 510 } 511 if (parent->numeraseregions > 1) { 512 /* Deal with variable erase size stuff */ 513 int i, max = parent->numeraseregions; 514 u64 end = slave->offset + slave->mtd.size; 515 struct mtd_erase_region_info *regions = parent->eraseregions; 516 517 /* Find the first erase regions which is part of this 518 * partition. */ 519 for (i = 0; i < max && regions[i].offset <= slave->offset; i++) 520 ; 521 /* The loop searched for the region _behind_ the first one */ 522 if (i > 0) 523 i--; 524 525 /* Pick biggest erasesize */ 526 for (; i < max && regions[i].offset < end; i++) { 527 if (slave->mtd.erasesize < regions[i].erasesize) { 528 slave->mtd.erasesize = regions[i].erasesize; 529 } 530 } 531 BUG_ON(slave->mtd.erasesize == 0); 532 } else { 533 /* Single erase size */ 534 slave->mtd.erasesize = parent->erasesize; 535 } 536 537 /* 538 * Slave erasesize might differ from the master one if the master 539 * exposes several regions with different erasesize. Adjust 540 * wr_alignment accordingly. 541 */ 542 if (!(slave->mtd.flags & MTD_NO_ERASE)) 543 wr_alignment = slave->mtd.erasesize; 544 545 tmp = slave->offset; 546 remainder = do_div(tmp, wr_alignment); 547 if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) { 548 /* Doesn't start on a boundary of major erase size */ 549 /* FIXME: Let it be writable if it is on a boundary of 550 * _minor_ erase size though */ 551 slave->mtd.flags &= ~MTD_WRITEABLE; 552 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase/write block boundary -- force read-only\n", 553 part->name); 554 } 555 556 tmp = slave->mtd.size; 557 remainder = do_div(tmp, wr_alignment); 558 if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) { 559 slave->mtd.flags &= ~MTD_WRITEABLE; 560 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase/write block -- force read-only\n", 561 part->name); 562 } 563 564 mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops); 565 slave->mtd.ecc_step_size = parent->ecc_step_size; 566 slave->mtd.ecc_strength = parent->ecc_strength; 567 slave->mtd.bitflip_threshold = parent->bitflip_threshold; 568 569 if (parent->_block_isbad) { 570 uint64_t offs = 0; 571 572 while (offs < slave->mtd.size) { 573 if (mtd_block_isreserved(parent, offs + slave->offset)) 574 slave->mtd.ecc_stats.bbtblocks++; 575 else if (mtd_block_isbad(parent, offs + slave->offset)) 576 slave->mtd.ecc_stats.badblocks++; 577 offs += slave->mtd.erasesize; 578 } 579 } 580 581 out_register: 582 return slave; 583 } 584 585 static ssize_t mtd_partition_offset_show(struct device *dev, 586 struct device_attribute *attr, char *buf) 587 { 588 struct mtd_info *mtd = dev_get_drvdata(dev); 589 struct mtd_part *part = mtd_to_part(mtd); 590 return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset); 591 } 592 593 static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL); 594 595 static const struct attribute *mtd_partition_attrs[] = { 596 &dev_attr_offset.attr, 597 NULL 598 }; 599 600 static int mtd_add_partition_attrs(struct mtd_part *new) 601 { 602 int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs); 603 if (ret) 604 printk(KERN_WARNING 605 "mtd: failed to create partition attrs, err=%d\n", ret); 606 return ret; 607 } 608 609 int mtd_add_partition(struct mtd_info *parent, const char *name, 610 long long offset, long long length) 611 { 612 struct mtd_partition part; 613 struct mtd_part *new; 614 int ret = 0; 615 616 /* the direct offset is expected */ 617 if (offset == MTDPART_OFS_APPEND || 618 offset == MTDPART_OFS_NXTBLK) 619 return -EINVAL; 620 621 if (length == MTDPART_SIZ_FULL) 622 length = parent->size - offset; 623 624 if (length <= 0) 625 return -EINVAL; 626 627 memset(&part, 0, sizeof(part)); 628 part.name = name; 629 part.size = length; 630 part.offset = offset; 631 632 new = allocate_partition(parent, &part, -1, offset); 633 if (IS_ERR(new)) 634 return PTR_ERR(new); 635 636 mutex_lock(&mtd_partitions_mutex); 637 list_add(&new->list, &mtd_partitions); 638 mutex_unlock(&mtd_partitions_mutex); 639 640 add_mtd_device(&new->mtd); 641 642 mtd_add_partition_attrs(new); 643 644 return ret; 645 } 646 EXPORT_SYMBOL_GPL(mtd_add_partition); 647 648 /** 649 * __mtd_del_partition - delete MTD partition 650 * 651 * @priv: internal MTD struct for partition to be deleted 652 * 653 * This function must be called with the partitions mutex locked. 654 */ 655 static int __mtd_del_partition(struct mtd_part *priv) 656 { 657 struct mtd_part *child, *next; 658 int err; 659 660 list_for_each_entry_safe(child, next, &mtd_partitions, list) { 661 if (child->parent == &priv->mtd) { 662 err = __mtd_del_partition(child); 663 if (err) 664 return err; 665 } 666 } 667 668 sysfs_remove_files(&priv->mtd.dev.kobj, mtd_partition_attrs); 669 670 err = del_mtd_device(&priv->mtd); 671 if (err) 672 return err; 673 674 list_del(&priv->list); 675 free_partition(priv); 676 677 return 0; 678 } 679 680 /* 681 * This function unregisters and destroy all slave MTD objects which are 682 * attached to the given MTD object. 683 */ 684 int del_mtd_partitions(struct mtd_info *mtd) 685 { 686 struct mtd_part *slave, *next; 687 int ret, err = 0; 688 689 mutex_lock(&mtd_partitions_mutex); 690 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 691 if (slave->parent == mtd) { 692 ret = __mtd_del_partition(slave); 693 if (ret < 0) 694 err = ret; 695 } 696 mutex_unlock(&mtd_partitions_mutex); 697 698 return err; 699 } 700 701 int mtd_del_partition(struct mtd_info *mtd, int partno) 702 { 703 struct mtd_part *slave, *next; 704 int ret = -EINVAL; 705 706 mutex_lock(&mtd_partitions_mutex); 707 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 708 if ((slave->parent == mtd) && 709 (slave->mtd.index == partno)) { 710 ret = __mtd_del_partition(slave); 711 break; 712 } 713 mutex_unlock(&mtd_partitions_mutex); 714 715 return ret; 716 } 717 EXPORT_SYMBOL_GPL(mtd_del_partition); 718 719 /* 720 * This function, given a master MTD object and a partition table, creates 721 * and registers slave MTD objects which are bound to the master according to 722 * the partition definitions. 723 * 724 * For historical reasons, this function's caller only registers the master 725 * if the MTD_PARTITIONED_MASTER config option is set. 726 */ 727 728 int add_mtd_partitions(struct mtd_info *master, 729 const struct mtd_partition *parts, 730 int nbparts) 731 { 732 struct mtd_part *slave; 733 uint64_t cur_offset = 0; 734 int i; 735 736 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name); 737 738 for (i = 0; i < nbparts; i++) { 739 slave = allocate_partition(master, parts + i, i, cur_offset); 740 if (IS_ERR(slave)) { 741 del_mtd_partitions(master); 742 return PTR_ERR(slave); 743 } 744 745 mutex_lock(&mtd_partitions_mutex); 746 list_add(&slave->list, &mtd_partitions); 747 mutex_unlock(&mtd_partitions_mutex); 748 749 add_mtd_device(&slave->mtd); 750 mtd_add_partition_attrs(slave); 751 if (parts[i].types) 752 mtd_parse_part(slave, parts[i].types); 753 754 cur_offset = slave->offset + slave->mtd.size; 755 } 756 757 return 0; 758 } 759 760 static DEFINE_SPINLOCK(part_parser_lock); 761 static LIST_HEAD(part_parsers); 762 763 static struct mtd_part_parser *mtd_part_parser_get(const char *name) 764 { 765 struct mtd_part_parser *p, *ret = NULL; 766 767 spin_lock(&part_parser_lock); 768 769 list_for_each_entry(p, &part_parsers, list) 770 if (!strcmp(p->name, name) && try_module_get(p->owner)) { 771 ret = p; 772 break; 773 } 774 775 spin_unlock(&part_parser_lock); 776 777 return ret; 778 } 779 780 static inline void mtd_part_parser_put(const struct mtd_part_parser *p) 781 { 782 module_put(p->owner); 783 } 784 785 /* 786 * Many partition parsers just expected the core to kfree() all their data in 787 * one chunk. Do that by default. 788 */ 789 static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts, 790 int nr_parts) 791 { 792 kfree(pparts); 793 } 794 795 int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner) 796 { 797 p->owner = owner; 798 799 if (!p->cleanup) 800 p->cleanup = &mtd_part_parser_cleanup_default; 801 802 spin_lock(&part_parser_lock); 803 list_add(&p->list, &part_parsers); 804 spin_unlock(&part_parser_lock); 805 806 return 0; 807 } 808 EXPORT_SYMBOL_GPL(__register_mtd_parser); 809 810 void deregister_mtd_parser(struct mtd_part_parser *p) 811 { 812 spin_lock(&part_parser_lock); 813 list_del(&p->list); 814 spin_unlock(&part_parser_lock); 815 } 816 EXPORT_SYMBOL_GPL(deregister_mtd_parser); 817 818 /* 819 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you 820 * are changing this array! 821 */ 822 static const char * const default_mtd_part_types[] = { 823 "cmdlinepart", 824 "ofpart", 825 NULL 826 }; 827 828 static int mtd_part_do_parse(struct mtd_part_parser *parser, 829 struct mtd_info *master, 830 struct mtd_partitions *pparts, 831 struct mtd_part_parser_data *data) 832 { 833 int ret; 834 835 ret = (*parser->parse_fn)(master, &pparts->parts, data); 836 pr_debug("%s: parser %s: %i\n", master->name, parser->name, ret); 837 if (ret <= 0) 838 return ret; 839 840 pr_notice("%d %s partitions found on MTD device %s\n", ret, 841 parser->name, master->name); 842 843 pparts->nr_parts = ret; 844 pparts->parser = parser; 845 846 return ret; 847 } 848 849 /** 850 * mtd_part_get_compatible_parser - find MTD parser by a compatible string 851 * 852 * @compat: compatible string describing partitions in a device tree 853 * 854 * MTD parsers can specify supported partitions by providing a table of 855 * compatibility strings. This function finds a parser that advertises support 856 * for a passed value of "compatible". 857 */ 858 static struct mtd_part_parser *mtd_part_get_compatible_parser(const char *compat) 859 { 860 struct mtd_part_parser *p, *ret = NULL; 861 862 spin_lock(&part_parser_lock); 863 864 list_for_each_entry(p, &part_parsers, list) { 865 const struct of_device_id *matches; 866 867 matches = p->of_match_table; 868 if (!matches) 869 continue; 870 871 for (; matches->compatible[0]; matches++) { 872 if (!strcmp(matches->compatible, compat) && 873 try_module_get(p->owner)) { 874 ret = p; 875 break; 876 } 877 } 878 879 if (ret) 880 break; 881 } 882 883 spin_unlock(&part_parser_lock); 884 885 return ret; 886 } 887 888 static int mtd_part_of_parse(struct mtd_info *master, 889 struct mtd_partitions *pparts) 890 { 891 struct mtd_part_parser *parser; 892 struct device_node *np; 893 struct property *prop; 894 const char *compat; 895 const char *fixed = "fixed-partitions"; 896 int ret, err = 0; 897 898 np = of_get_child_by_name(mtd_get_of_node(master), "partitions"); 899 of_property_for_each_string(np, "compatible", prop, compat) { 900 parser = mtd_part_get_compatible_parser(compat); 901 if (!parser) 902 continue; 903 ret = mtd_part_do_parse(parser, master, pparts, NULL); 904 if (ret > 0) { 905 of_node_put(np); 906 return ret; 907 } 908 mtd_part_parser_put(parser); 909 if (ret < 0 && !err) 910 err = ret; 911 } 912 of_node_put(np); 913 914 /* 915 * For backward compatibility we have to try the "fixed-partitions" 916 * parser. It supports old DT format with partitions specified as a 917 * direct subnodes of a flash device DT node without any compatibility 918 * specified we could match. 919 */ 920 parser = mtd_part_parser_get(fixed); 921 if (!parser && !request_module("%s", fixed)) 922 parser = mtd_part_parser_get(fixed); 923 if (parser) { 924 ret = mtd_part_do_parse(parser, master, pparts, NULL); 925 if (ret > 0) 926 return ret; 927 mtd_part_parser_put(parser); 928 if (ret < 0 && !err) 929 err = ret; 930 } 931 932 return err; 933 } 934 935 /** 936 * parse_mtd_partitions - parse MTD partitions 937 * @master: the master partition (describes whole MTD device) 938 * @types: names of partition parsers to try or %NULL 939 * @pparts: info about partitions found is returned here 940 * @data: MTD partition parser-specific data 941 * 942 * This function tries to find partition on MTD device @master. It uses MTD 943 * partition parsers, specified in @types. However, if @types is %NULL, then 944 * the default list of parsers is used. The default list contains only the 945 * "cmdlinepart" and "ofpart" parsers ATM. 946 * Note: If there are more then one parser in @types, the kernel only takes the 947 * partitions parsed out by the first parser. 948 * 949 * This function may return: 950 * o a negative error code in case of failure 951 * o zero otherwise, and @pparts will describe the partitions, number of 952 * partitions, and the parser which parsed them. Caller must release 953 * resources with mtd_part_parser_cleanup() when finished with the returned 954 * data. 955 */ 956 int parse_mtd_partitions(struct mtd_info *master, const char *const *types, 957 struct mtd_partitions *pparts, 958 struct mtd_part_parser_data *data) 959 { 960 struct mtd_part_parser *parser; 961 int ret, err = 0; 962 963 if (!types) 964 types = default_mtd_part_types; 965 966 for ( ; *types; types++) { 967 /* 968 * ofpart is a special type that means OF partitioning info 969 * should be used. It requires a bit different logic so it is 970 * handled in a separated function. 971 */ 972 if (!strcmp(*types, "ofpart")) { 973 ret = mtd_part_of_parse(master, pparts); 974 } else { 975 pr_debug("%s: parsing partitions %s\n", master->name, 976 *types); 977 parser = mtd_part_parser_get(*types); 978 if (!parser && !request_module("%s", *types)) 979 parser = mtd_part_parser_get(*types); 980 pr_debug("%s: got parser %s\n", master->name, 981 parser ? parser->name : NULL); 982 if (!parser) 983 continue; 984 ret = mtd_part_do_parse(parser, master, pparts, data); 985 if (ret <= 0) 986 mtd_part_parser_put(parser); 987 } 988 /* Found partitions! */ 989 if (ret > 0) 990 return 0; 991 /* 992 * Stash the first error we see; only report it if no parser 993 * succeeds 994 */ 995 if (ret < 0 && !err) 996 err = ret; 997 } 998 return err; 999 } 1000 1001 void mtd_part_parser_cleanup(struct mtd_partitions *parts) 1002 { 1003 const struct mtd_part_parser *parser; 1004 1005 if (!parts) 1006 return; 1007 1008 parser = parts->parser; 1009 if (parser) { 1010 if (parser->cleanup) 1011 parser->cleanup(parts->parts, parts->nr_parts); 1012 1013 mtd_part_parser_put(parser); 1014 } 1015 } 1016 1017 int mtd_is_partition(const struct mtd_info *mtd) 1018 { 1019 struct mtd_part *part; 1020 int ispart = 0; 1021 1022 mutex_lock(&mtd_partitions_mutex); 1023 list_for_each_entry(part, &mtd_partitions, list) 1024 if (&part->mtd == mtd) { 1025 ispart = 1; 1026 break; 1027 } 1028 mutex_unlock(&mtd_partitions_mutex); 1029 1030 return ispart; 1031 } 1032 EXPORT_SYMBOL_GPL(mtd_is_partition); 1033 1034 /* Returns the size of the entire flash chip */ 1035 uint64_t mtd_get_device_size(const struct mtd_info *mtd) 1036 { 1037 if (!mtd_is_partition(mtd)) 1038 return mtd->size; 1039 1040 return mtd_get_device_size(mtd_to_part(mtd)->parent); 1041 } 1042 EXPORT_SYMBOL_GPL(mtd_get_device_size); 1043