1 /* 2 * Simple MTD partitioning layer 3 * 4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net> 5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de> 6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/list.h> 29 #include <linux/kmod.h> 30 #include <linux/mtd/mtd.h> 31 #include <linux/mtd/partitions.h> 32 #include <linux/err.h> 33 34 /* Our partition linked list */ 35 static LIST_HEAD(mtd_partitions); 36 static DEFINE_MUTEX(mtd_partitions_mutex); 37 38 /* Our partition node structure */ 39 struct mtd_part { 40 struct mtd_info mtd; 41 struct mtd_info *master; 42 uint64_t offset; 43 struct list_head list; 44 }; 45 46 /* 47 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve 48 * the pointer to that structure with this macro. 49 */ 50 #define PART(x) ((struct mtd_part *)(x)) 51 52 53 /* 54 * MTD methods which simply translate the effective address and pass through 55 * to the _real_ device. 56 */ 57 58 static int part_read(struct mtd_info *mtd, loff_t from, size_t len, 59 size_t *retlen, u_char *buf) 60 { 61 struct mtd_part *part = PART(mtd); 62 struct mtd_ecc_stats stats; 63 int res; 64 65 stats = part->master->ecc_stats; 66 67 if (from >= mtd->size) 68 len = 0; 69 else if (from + len > mtd->size) 70 len = mtd->size - from; 71 res = part->master->read(part->master, from + part->offset, 72 len, retlen, buf); 73 if (unlikely(res)) { 74 if (res == -EUCLEAN) 75 mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected; 76 if (res == -EBADMSG) 77 mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed; 78 } 79 return res; 80 } 81 82 static int part_point(struct mtd_info *mtd, loff_t from, size_t len, 83 size_t *retlen, void **virt, resource_size_t *phys) 84 { 85 struct mtd_part *part = PART(mtd); 86 if (from >= mtd->size) 87 len = 0; 88 else if (from + len > mtd->size) 89 len = mtd->size - from; 90 return part->master->point (part->master, from + part->offset, 91 len, retlen, virt, phys); 92 } 93 94 static void part_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 95 { 96 struct mtd_part *part = PART(mtd); 97 98 part->master->unpoint(part->master, from + part->offset, len); 99 } 100 101 static unsigned long part_get_unmapped_area(struct mtd_info *mtd, 102 unsigned long len, 103 unsigned long offset, 104 unsigned long flags) 105 { 106 struct mtd_part *part = PART(mtd); 107 108 offset += part->offset; 109 return part->master->get_unmapped_area(part->master, len, offset, 110 flags); 111 } 112 113 static int part_read_oob(struct mtd_info *mtd, loff_t from, 114 struct mtd_oob_ops *ops) 115 { 116 struct mtd_part *part = PART(mtd); 117 int res; 118 119 if (from >= mtd->size) 120 return -EINVAL; 121 if (ops->datbuf && from + ops->len > mtd->size) 122 return -EINVAL; 123 124 /* 125 * If OOB is also requested, make sure that we do not read past the end 126 * of this partition. 127 */ 128 if (ops->oobbuf) { 129 size_t len, pages; 130 131 if (ops->mode == MTD_OOB_AUTO) 132 len = mtd->oobavail; 133 else 134 len = mtd->oobsize; 135 pages = mtd_div_by_ws(mtd->size, mtd); 136 pages -= mtd_div_by_ws(from, mtd); 137 if (ops->ooboffs + ops->ooblen > pages * len) 138 return -EINVAL; 139 } 140 141 res = part->master->read_oob(part->master, from + part->offset, ops); 142 if (unlikely(res)) { 143 if (res == -EUCLEAN) 144 mtd->ecc_stats.corrected++; 145 if (res == -EBADMSG) 146 mtd->ecc_stats.failed++; 147 } 148 return res; 149 } 150 151 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from, 152 size_t len, size_t *retlen, u_char *buf) 153 { 154 struct mtd_part *part = PART(mtd); 155 return part->master->read_user_prot_reg(part->master, from, 156 len, retlen, buf); 157 } 158 159 static int part_get_user_prot_info(struct mtd_info *mtd, 160 struct otp_info *buf, size_t len) 161 { 162 struct mtd_part *part = PART(mtd); 163 return part->master->get_user_prot_info(part->master, buf, len); 164 } 165 166 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, 167 size_t len, size_t *retlen, u_char *buf) 168 { 169 struct mtd_part *part = PART(mtd); 170 return part->master->read_fact_prot_reg(part->master, from, 171 len, retlen, buf); 172 } 173 174 static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf, 175 size_t len) 176 { 177 struct mtd_part *part = PART(mtd); 178 return part->master->get_fact_prot_info(part->master, buf, len); 179 } 180 181 static int part_write(struct mtd_info *mtd, loff_t to, size_t len, 182 size_t *retlen, const u_char *buf) 183 { 184 struct mtd_part *part = PART(mtd); 185 if (!(mtd->flags & MTD_WRITEABLE)) 186 return -EROFS; 187 if (to >= mtd->size) 188 len = 0; 189 else if (to + len > mtd->size) 190 len = mtd->size - to; 191 return part->master->write(part->master, to + part->offset, 192 len, retlen, buf); 193 } 194 195 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len, 196 size_t *retlen, const u_char *buf) 197 { 198 struct mtd_part *part = PART(mtd); 199 if (!(mtd->flags & MTD_WRITEABLE)) 200 return -EROFS; 201 if (to >= mtd->size) 202 len = 0; 203 else if (to + len > mtd->size) 204 len = mtd->size - to; 205 return part->master->panic_write(part->master, to + part->offset, 206 len, retlen, buf); 207 } 208 209 static int part_write_oob(struct mtd_info *mtd, loff_t to, 210 struct mtd_oob_ops *ops) 211 { 212 struct mtd_part *part = PART(mtd); 213 214 if (!(mtd->flags & MTD_WRITEABLE)) 215 return -EROFS; 216 217 if (to >= mtd->size) 218 return -EINVAL; 219 if (ops->datbuf && to + ops->len > mtd->size) 220 return -EINVAL; 221 return part->master->write_oob(part->master, to + part->offset, ops); 222 } 223 224 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from, 225 size_t len, size_t *retlen, u_char *buf) 226 { 227 struct mtd_part *part = PART(mtd); 228 return part->master->write_user_prot_reg(part->master, from, 229 len, retlen, buf); 230 } 231 232 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, 233 size_t len) 234 { 235 struct mtd_part *part = PART(mtd); 236 return part->master->lock_user_prot_reg(part->master, from, len); 237 } 238 239 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs, 240 unsigned long count, loff_t to, size_t *retlen) 241 { 242 struct mtd_part *part = PART(mtd); 243 if (!(mtd->flags & MTD_WRITEABLE)) 244 return -EROFS; 245 return part->master->writev(part->master, vecs, count, 246 to + part->offset, retlen); 247 } 248 249 static int part_erase(struct mtd_info *mtd, struct erase_info *instr) 250 { 251 struct mtd_part *part = PART(mtd); 252 int ret; 253 if (!(mtd->flags & MTD_WRITEABLE)) 254 return -EROFS; 255 if (instr->addr >= mtd->size) 256 return -EINVAL; 257 instr->addr += part->offset; 258 ret = part->master->erase(part->master, instr); 259 if (ret) { 260 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 261 instr->fail_addr -= part->offset; 262 instr->addr -= part->offset; 263 } 264 return ret; 265 } 266 267 void mtd_erase_callback(struct erase_info *instr) 268 { 269 if (instr->mtd->erase == part_erase) { 270 struct mtd_part *part = PART(instr->mtd); 271 272 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 273 instr->fail_addr -= part->offset; 274 instr->addr -= part->offset; 275 } 276 if (instr->callback) 277 instr->callback(instr); 278 } 279 EXPORT_SYMBOL_GPL(mtd_erase_callback); 280 281 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 282 { 283 struct mtd_part *part = PART(mtd); 284 if ((len + ofs) > mtd->size) 285 return -EINVAL; 286 return part->master->lock(part->master, ofs + part->offset, len); 287 } 288 289 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 290 { 291 struct mtd_part *part = PART(mtd); 292 if ((len + ofs) > mtd->size) 293 return -EINVAL; 294 return part->master->unlock(part->master, ofs + part->offset, len); 295 } 296 297 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 298 { 299 struct mtd_part *part = PART(mtd); 300 if ((len + ofs) > mtd->size) 301 return -EINVAL; 302 return part->master->is_locked(part->master, ofs + part->offset, len); 303 } 304 305 static void part_sync(struct mtd_info *mtd) 306 { 307 struct mtd_part *part = PART(mtd); 308 part->master->sync(part->master); 309 } 310 311 static int part_suspend(struct mtd_info *mtd) 312 { 313 struct mtd_part *part = PART(mtd); 314 return part->master->suspend(part->master); 315 } 316 317 static void part_resume(struct mtd_info *mtd) 318 { 319 struct mtd_part *part = PART(mtd); 320 part->master->resume(part->master); 321 } 322 323 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs) 324 { 325 struct mtd_part *part = PART(mtd); 326 if (ofs >= mtd->size) 327 return -EINVAL; 328 ofs += part->offset; 329 return part->master->block_isbad(part->master, ofs); 330 } 331 332 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs) 333 { 334 struct mtd_part *part = PART(mtd); 335 int res; 336 337 if (!(mtd->flags & MTD_WRITEABLE)) 338 return -EROFS; 339 if (ofs >= mtd->size) 340 return -EINVAL; 341 ofs += part->offset; 342 res = part->master->block_markbad(part->master, ofs); 343 if (!res) 344 mtd->ecc_stats.badblocks++; 345 return res; 346 } 347 348 static inline void free_partition(struct mtd_part *p) 349 { 350 kfree(p->mtd.name); 351 kfree(p); 352 } 353 354 /* 355 * This function unregisters and destroy all slave MTD objects which are 356 * attached to the given master MTD object. 357 */ 358 359 int del_mtd_partitions(struct mtd_info *master) 360 { 361 struct mtd_part *slave, *next; 362 int ret, err = 0; 363 364 mutex_lock(&mtd_partitions_mutex); 365 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 366 if (slave->master == master) { 367 ret = del_mtd_device(&slave->mtd); 368 if (ret < 0) { 369 err = ret; 370 continue; 371 } 372 list_del(&slave->list); 373 free_partition(slave); 374 } 375 mutex_unlock(&mtd_partitions_mutex); 376 377 return err; 378 } 379 EXPORT_SYMBOL(del_mtd_partitions); 380 381 static struct mtd_part *allocate_partition(struct mtd_info *master, 382 const struct mtd_partition *part, int partno, 383 uint64_t cur_offset) 384 { 385 struct mtd_part *slave; 386 char *name; 387 388 /* allocate the partition structure */ 389 slave = kzalloc(sizeof(*slave), GFP_KERNEL); 390 name = kstrdup(part->name, GFP_KERNEL); 391 if (!name || !slave) { 392 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n", 393 master->name); 394 kfree(name); 395 kfree(slave); 396 return ERR_PTR(-ENOMEM); 397 } 398 399 /* set up the MTD object for this partition */ 400 slave->mtd.type = master->type; 401 slave->mtd.flags = master->flags & ~part->mask_flags; 402 slave->mtd.size = part->size; 403 slave->mtd.writesize = master->writesize; 404 slave->mtd.writebufsize = master->writebufsize; 405 slave->mtd.oobsize = master->oobsize; 406 slave->mtd.oobavail = master->oobavail; 407 slave->mtd.subpage_sft = master->subpage_sft; 408 409 slave->mtd.name = name; 410 slave->mtd.owner = master->owner; 411 slave->mtd.backing_dev_info = master->backing_dev_info; 412 413 /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone 414 * to have the same data be in two different partitions. 415 */ 416 slave->mtd.dev.parent = master->dev.parent; 417 418 slave->mtd.read = part_read; 419 slave->mtd.write = part_write; 420 421 if (master->panic_write) 422 slave->mtd.panic_write = part_panic_write; 423 424 if (master->point && master->unpoint) { 425 slave->mtd.point = part_point; 426 slave->mtd.unpoint = part_unpoint; 427 } 428 429 if (master->get_unmapped_area) 430 slave->mtd.get_unmapped_area = part_get_unmapped_area; 431 if (master->read_oob) 432 slave->mtd.read_oob = part_read_oob; 433 if (master->write_oob) 434 slave->mtd.write_oob = part_write_oob; 435 if (master->read_user_prot_reg) 436 slave->mtd.read_user_prot_reg = part_read_user_prot_reg; 437 if (master->read_fact_prot_reg) 438 slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg; 439 if (master->write_user_prot_reg) 440 slave->mtd.write_user_prot_reg = part_write_user_prot_reg; 441 if (master->lock_user_prot_reg) 442 slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg; 443 if (master->get_user_prot_info) 444 slave->mtd.get_user_prot_info = part_get_user_prot_info; 445 if (master->get_fact_prot_info) 446 slave->mtd.get_fact_prot_info = part_get_fact_prot_info; 447 if (master->sync) 448 slave->mtd.sync = part_sync; 449 if (!partno && !master->dev.class && master->suspend && master->resume) { 450 slave->mtd.suspend = part_suspend; 451 slave->mtd.resume = part_resume; 452 } 453 if (master->writev) 454 slave->mtd.writev = part_writev; 455 if (master->lock) 456 slave->mtd.lock = part_lock; 457 if (master->unlock) 458 slave->mtd.unlock = part_unlock; 459 if (master->is_locked) 460 slave->mtd.is_locked = part_is_locked; 461 if (master->block_isbad) 462 slave->mtd.block_isbad = part_block_isbad; 463 if (master->block_markbad) 464 slave->mtd.block_markbad = part_block_markbad; 465 slave->mtd.erase = part_erase; 466 slave->master = master; 467 slave->offset = part->offset; 468 469 if (slave->offset == MTDPART_OFS_APPEND) 470 slave->offset = cur_offset; 471 if (slave->offset == MTDPART_OFS_NXTBLK) { 472 slave->offset = cur_offset; 473 if (mtd_mod_by_eb(cur_offset, master) != 0) { 474 /* Round up to next erasesize */ 475 slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize; 476 printk(KERN_NOTICE "Moving partition %d: " 477 "0x%012llx -> 0x%012llx\n", partno, 478 (unsigned long long)cur_offset, (unsigned long long)slave->offset); 479 } 480 } 481 if (slave->mtd.size == MTDPART_SIZ_FULL) 482 slave->mtd.size = master->size - slave->offset; 483 484 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset, 485 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name); 486 487 /* let's do some sanity checks */ 488 if (slave->offset >= master->size) { 489 /* let's register it anyway to preserve ordering */ 490 slave->offset = 0; 491 slave->mtd.size = 0; 492 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n", 493 part->name); 494 goto out_register; 495 } 496 if (slave->offset + slave->mtd.size > master->size) { 497 slave->mtd.size = master->size - slave->offset; 498 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n", 499 part->name, master->name, (unsigned long long)slave->mtd.size); 500 } 501 if (master->numeraseregions > 1) { 502 /* Deal with variable erase size stuff */ 503 int i, max = master->numeraseregions; 504 u64 end = slave->offset + slave->mtd.size; 505 struct mtd_erase_region_info *regions = master->eraseregions; 506 507 /* Find the first erase regions which is part of this 508 * partition. */ 509 for (i = 0; i < max && regions[i].offset <= slave->offset; i++) 510 ; 511 /* The loop searched for the region _behind_ the first one */ 512 if (i > 0) 513 i--; 514 515 /* Pick biggest erasesize */ 516 for (; i < max && regions[i].offset < end; i++) { 517 if (slave->mtd.erasesize < regions[i].erasesize) { 518 slave->mtd.erasesize = regions[i].erasesize; 519 } 520 } 521 BUG_ON(slave->mtd.erasesize == 0); 522 } else { 523 /* Single erase size */ 524 slave->mtd.erasesize = master->erasesize; 525 } 526 527 if ((slave->mtd.flags & MTD_WRITEABLE) && 528 mtd_mod_by_eb(slave->offset, &slave->mtd)) { 529 /* Doesn't start on a boundary of major erase size */ 530 /* FIXME: Let it be writable if it is on a boundary of 531 * _minor_ erase size though */ 532 slave->mtd.flags &= ~MTD_WRITEABLE; 533 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n", 534 part->name); 535 } 536 if ((slave->mtd.flags & MTD_WRITEABLE) && 537 mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) { 538 slave->mtd.flags &= ~MTD_WRITEABLE; 539 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n", 540 part->name); 541 } 542 543 slave->mtd.ecclayout = master->ecclayout; 544 if (master->block_isbad) { 545 uint64_t offs = 0; 546 547 while (offs < slave->mtd.size) { 548 if (master->block_isbad(master, 549 offs + slave->offset)) 550 slave->mtd.ecc_stats.badblocks++; 551 offs += slave->mtd.erasesize; 552 } 553 } 554 555 out_register: 556 return slave; 557 } 558 559 int mtd_add_partition(struct mtd_info *master, char *name, 560 long long offset, long long length) 561 { 562 struct mtd_partition part; 563 struct mtd_part *p, *new; 564 uint64_t start, end; 565 int ret = 0; 566 567 /* the direct offset is expected */ 568 if (offset == MTDPART_OFS_APPEND || 569 offset == MTDPART_OFS_NXTBLK) 570 return -EINVAL; 571 572 if (length == MTDPART_SIZ_FULL) 573 length = master->size - offset; 574 575 if (length <= 0) 576 return -EINVAL; 577 578 part.name = name; 579 part.size = length; 580 part.offset = offset; 581 part.mask_flags = 0; 582 part.ecclayout = NULL; 583 584 new = allocate_partition(master, &part, -1, offset); 585 if (IS_ERR(new)) 586 return PTR_ERR(new); 587 588 start = offset; 589 end = offset + length; 590 591 mutex_lock(&mtd_partitions_mutex); 592 list_for_each_entry(p, &mtd_partitions, list) 593 if (p->master == master) { 594 if ((start >= p->offset) && 595 (start < (p->offset + p->mtd.size))) 596 goto err_inv; 597 598 if ((end >= p->offset) && 599 (end < (p->offset + p->mtd.size))) 600 goto err_inv; 601 } 602 603 list_add(&new->list, &mtd_partitions); 604 mutex_unlock(&mtd_partitions_mutex); 605 606 add_mtd_device(&new->mtd); 607 608 return ret; 609 err_inv: 610 mutex_unlock(&mtd_partitions_mutex); 611 free_partition(new); 612 return -EINVAL; 613 } 614 EXPORT_SYMBOL_GPL(mtd_add_partition); 615 616 int mtd_del_partition(struct mtd_info *master, int partno) 617 { 618 struct mtd_part *slave, *next; 619 int ret = -EINVAL; 620 621 mutex_lock(&mtd_partitions_mutex); 622 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 623 if ((slave->master == master) && 624 (slave->mtd.index == partno)) { 625 ret = del_mtd_device(&slave->mtd); 626 if (ret < 0) 627 break; 628 629 list_del(&slave->list); 630 free_partition(slave); 631 break; 632 } 633 mutex_unlock(&mtd_partitions_mutex); 634 635 return ret; 636 } 637 EXPORT_SYMBOL_GPL(mtd_del_partition); 638 639 /* 640 * This function, given a master MTD object and a partition table, creates 641 * and registers slave MTD objects which are bound to the master according to 642 * the partition definitions. 643 * 644 * We don't register the master, or expect the caller to have done so, 645 * for reasons of data integrity. 646 */ 647 648 int add_mtd_partitions(struct mtd_info *master, 649 const struct mtd_partition *parts, 650 int nbparts) 651 { 652 struct mtd_part *slave; 653 uint64_t cur_offset = 0; 654 int i; 655 656 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name); 657 658 for (i = 0; i < nbparts; i++) { 659 slave = allocate_partition(master, parts + i, i, cur_offset); 660 if (IS_ERR(slave)) 661 return PTR_ERR(slave); 662 663 mutex_lock(&mtd_partitions_mutex); 664 list_add(&slave->list, &mtd_partitions); 665 mutex_unlock(&mtd_partitions_mutex); 666 667 add_mtd_device(&slave->mtd); 668 669 cur_offset = slave->offset + slave->mtd.size; 670 } 671 672 return 0; 673 } 674 EXPORT_SYMBOL(add_mtd_partitions); 675 676 static DEFINE_SPINLOCK(part_parser_lock); 677 static LIST_HEAD(part_parsers); 678 679 static struct mtd_part_parser *get_partition_parser(const char *name) 680 { 681 struct mtd_part_parser *p, *ret = NULL; 682 683 spin_lock(&part_parser_lock); 684 685 list_for_each_entry(p, &part_parsers, list) 686 if (!strcmp(p->name, name) && try_module_get(p->owner)) { 687 ret = p; 688 break; 689 } 690 691 spin_unlock(&part_parser_lock); 692 693 return ret; 694 } 695 696 int register_mtd_parser(struct mtd_part_parser *p) 697 { 698 spin_lock(&part_parser_lock); 699 list_add(&p->list, &part_parsers); 700 spin_unlock(&part_parser_lock); 701 702 return 0; 703 } 704 EXPORT_SYMBOL_GPL(register_mtd_parser); 705 706 int deregister_mtd_parser(struct mtd_part_parser *p) 707 { 708 spin_lock(&part_parser_lock); 709 list_del(&p->list); 710 spin_unlock(&part_parser_lock); 711 return 0; 712 } 713 EXPORT_SYMBOL_GPL(deregister_mtd_parser); 714 715 int parse_mtd_partitions(struct mtd_info *master, const char **types, 716 struct mtd_partition **pparts, unsigned long origin) 717 { 718 struct mtd_part_parser *parser; 719 int ret = 0; 720 721 for ( ; ret <= 0 && *types; types++) { 722 parser = get_partition_parser(*types); 723 if (!parser && !request_module("%s", *types)) 724 parser = get_partition_parser(*types); 725 if (!parser) { 726 printk(KERN_NOTICE "%s partition parsing not available\n", 727 *types); 728 continue; 729 } 730 ret = (*parser->parse_fn)(master, pparts, origin); 731 if (ret > 0) { 732 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n", 733 ret, parser->name, master->name); 734 } 735 put_partition_parser(parser); 736 } 737 return ret; 738 } 739 EXPORT_SYMBOL_GPL(parse_mtd_partitions); 740 741 int mtd_is_partition(struct mtd_info *mtd) 742 { 743 struct mtd_part *part; 744 int ispart = 0; 745 746 mutex_lock(&mtd_partitions_mutex); 747 list_for_each_entry(part, &mtd_partitions, list) 748 if (&part->mtd == mtd) { 749 ispart = 1; 750 break; 751 } 752 mutex_unlock(&mtd_partitions_mutex); 753 754 return ispart; 755 } 756 EXPORT_SYMBOL_GPL(mtd_is_partition); 757