xref: /openbmc/linux/drivers/mtd/mtdcore.c (revision fefcd1c75bafa7c5d34e0a517de29f33688abf62)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/random.h>
27 #include <linux/slab.h>
28 #include <linux/reboot.h>
29 #include <linux/leds.h>
30 #include <linux/debugfs.h>
31 #include <linux/nvmem-provider.h>
32 #include <linux/root_dev.h>
33 
34 #include <linux/mtd/mtd.h>
35 #include <linux/mtd/partitions.h>
36 
37 #include "mtdcore.h"
38 
39 struct backing_dev_info *mtd_bdi;
40 
41 #ifdef CONFIG_PM_SLEEP
42 
43 static int mtd_cls_suspend(struct device *dev)
44 {
45 	struct mtd_info *mtd = dev_get_drvdata(dev);
46 
47 	return mtd ? mtd_suspend(mtd) : 0;
48 }
49 
50 static int mtd_cls_resume(struct device *dev)
51 {
52 	struct mtd_info *mtd = dev_get_drvdata(dev);
53 
54 	if (mtd)
55 		mtd_resume(mtd);
56 	return 0;
57 }
58 
59 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
60 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
61 #else
62 #define MTD_CLS_PM_OPS NULL
63 #endif
64 
65 static struct class mtd_class = {
66 	.name = "mtd",
67 	.pm = MTD_CLS_PM_OPS,
68 };
69 
70 static DEFINE_IDR(mtd_idr);
71 
72 /* These are exported solely for the purpose of mtd_blkdevs.c. You
73    should not use them for _anything_ else */
74 DEFINE_MUTEX(mtd_table_mutex);
75 EXPORT_SYMBOL_GPL(mtd_table_mutex);
76 
77 struct mtd_info *__mtd_next_device(int i)
78 {
79 	return idr_get_next(&mtd_idr, &i);
80 }
81 EXPORT_SYMBOL_GPL(__mtd_next_device);
82 
83 static LIST_HEAD(mtd_notifiers);
84 
85 
86 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
87 
88 /* REVISIT once MTD uses the driver model better, whoever allocates
89  * the mtd_info will probably want to use the release() hook...
90  */
91 static void mtd_release(struct device *dev)
92 {
93 	struct mtd_info *mtd = dev_get_drvdata(dev);
94 	dev_t index = MTD_DEVT(mtd->index);
95 
96 	idr_remove(&mtd_idr, mtd->index);
97 	of_node_put(mtd_get_of_node(mtd));
98 
99 	if (mtd_is_partition(mtd))
100 		release_mtd_partition(mtd);
101 
102 	/* remove /dev/mtdXro node */
103 	device_destroy(&mtd_class, index + 1);
104 }
105 
106 static void mtd_device_release(struct kref *kref)
107 {
108 	struct mtd_info *mtd = container_of(kref, struct mtd_info, refcnt);
109 	bool is_partition = mtd_is_partition(mtd);
110 
111 	debugfs_remove_recursive(mtd->dbg.dfs_dir);
112 
113 	/* Try to remove the NVMEM provider */
114 	nvmem_unregister(mtd->nvmem);
115 
116 	device_unregister(&mtd->dev);
117 
118 	/*
119 	 *  Clear dev so mtd can be safely re-registered later if desired.
120 	 *  Should not be done for partition,
121 	 *  as it was already destroyed in device_unregister().
122 	 */
123 	if (!is_partition)
124 		memset(&mtd->dev, 0, sizeof(mtd->dev));
125 
126 	module_put(THIS_MODULE);
127 }
128 
129 #define MTD_DEVICE_ATTR_RO(name) \
130 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
131 
132 #define MTD_DEVICE_ATTR_RW(name) \
133 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
134 
135 static ssize_t mtd_type_show(struct device *dev,
136 		struct device_attribute *attr, char *buf)
137 {
138 	struct mtd_info *mtd = dev_get_drvdata(dev);
139 	char *type;
140 
141 	switch (mtd->type) {
142 	case MTD_ABSENT:
143 		type = "absent";
144 		break;
145 	case MTD_RAM:
146 		type = "ram";
147 		break;
148 	case MTD_ROM:
149 		type = "rom";
150 		break;
151 	case MTD_NORFLASH:
152 		type = "nor";
153 		break;
154 	case MTD_NANDFLASH:
155 		type = "nand";
156 		break;
157 	case MTD_DATAFLASH:
158 		type = "dataflash";
159 		break;
160 	case MTD_UBIVOLUME:
161 		type = "ubi";
162 		break;
163 	case MTD_MLCNANDFLASH:
164 		type = "mlc-nand";
165 		break;
166 	default:
167 		type = "unknown";
168 	}
169 
170 	return sysfs_emit(buf, "%s\n", type);
171 }
172 MTD_DEVICE_ATTR_RO(type);
173 
174 static ssize_t mtd_flags_show(struct device *dev,
175 		struct device_attribute *attr, char *buf)
176 {
177 	struct mtd_info *mtd = dev_get_drvdata(dev);
178 
179 	return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
180 }
181 MTD_DEVICE_ATTR_RO(flags);
182 
183 static ssize_t mtd_size_show(struct device *dev,
184 		struct device_attribute *attr, char *buf)
185 {
186 	struct mtd_info *mtd = dev_get_drvdata(dev);
187 
188 	return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
189 }
190 MTD_DEVICE_ATTR_RO(size);
191 
192 static ssize_t mtd_erasesize_show(struct device *dev,
193 		struct device_attribute *attr, char *buf)
194 {
195 	struct mtd_info *mtd = dev_get_drvdata(dev);
196 
197 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
198 }
199 MTD_DEVICE_ATTR_RO(erasesize);
200 
201 static ssize_t mtd_writesize_show(struct device *dev,
202 		struct device_attribute *attr, char *buf)
203 {
204 	struct mtd_info *mtd = dev_get_drvdata(dev);
205 
206 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
207 }
208 MTD_DEVICE_ATTR_RO(writesize);
209 
210 static ssize_t mtd_subpagesize_show(struct device *dev,
211 		struct device_attribute *attr, char *buf)
212 {
213 	struct mtd_info *mtd = dev_get_drvdata(dev);
214 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
215 
216 	return sysfs_emit(buf, "%u\n", subpagesize);
217 }
218 MTD_DEVICE_ATTR_RO(subpagesize);
219 
220 static ssize_t mtd_oobsize_show(struct device *dev,
221 		struct device_attribute *attr, char *buf)
222 {
223 	struct mtd_info *mtd = dev_get_drvdata(dev);
224 
225 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
226 }
227 MTD_DEVICE_ATTR_RO(oobsize);
228 
229 static ssize_t mtd_oobavail_show(struct device *dev,
230 				 struct device_attribute *attr, char *buf)
231 {
232 	struct mtd_info *mtd = dev_get_drvdata(dev);
233 
234 	return sysfs_emit(buf, "%u\n", mtd->oobavail);
235 }
236 MTD_DEVICE_ATTR_RO(oobavail);
237 
238 static ssize_t mtd_numeraseregions_show(struct device *dev,
239 		struct device_attribute *attr, char *buf)
240 {
241 	struct mtd_info *mtd = dev_get_drvdata(dev);
242 
243 	return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
244 }
245 MTD_DEVICE_ATTR_RO(numeraseregions);
246 
247 static ssize_t mtd_name_show(struct device *dev,
248 		struct device_attribute *attr, char *buf)
249 {
250 	struct mtd_info *mtd = dev_get_drvdata(dev);
251 
252 	return sysfs_emit(buf, "%s\n", mtd->name);
253 }
254 MTD_DEVICE_ATTR_RO(name);
255 
256 static ssize_t mtd_ecc_strength_show(struct device *dev,
257 				     struct device_attribute *attr, char *buf)
258 {
259 	struct mtd_info *mtd = dev_get_drvdata(dev);
260 
261 	return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
262 }
263 MTD_DEVICE_ATTR_RO(ecc_strength);
264 
265 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
266 					  struct device_attribute *attr,
267 					  char *buf)
268 {
269 	struct mtd_info *mtd = dev_get_drvdata(dev);
270 
271 	return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
272 }
273 
274 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
275 					   struct device_attribute *attr,
276 					   const char *buf, size_t count)
277 {
278 	struct mtd_info *mtd = dev_get_drvdata(dev);
279 	unsigned int bitflip_threshold;
280 	int retval;
281 
282 	retval = kstrtouint(buf, 0, &bitflip_threshold);
283 	if (retval)
284 		return retval;
285 
286 	mtd->bitflip_threshold = bitflip_threshold;
287 	return count;
288 }
289 MTD_DEVICE_ATTR_RW(bitflip_threshold);
290 
291 static ssize_t mtd_ecc_step_size_show(struct device *dev,
292 		struct device_attribute *attr, char *buf)
293 {
294 	struct mtd_info *mtd = dev_get_drvdata(dev);
295 
296 	return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
297 
298 }
299 MTD_DEVICE_ATTR_RO(ecc_step_size);
300 
301 static ssize_t mtd_corrected_bits_show(struct device *dev,
302 		struct device_attribute *attr, char *buf)
303 {
304 	struct mtd_info *mtd = dev_get_drvdata(dev);
305 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306 
307 	return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
308 }
309 MTD_DEVICE_ATTR_RO(corrected_bits);	/* ecc stats corrected */
310 
311 static ssize_t mtd_ecc_failures_show(struct device *dev,
312 		struct device_attribute *attr, char *buf)
313 {
314 	struct mtd_info *mtd = dev_get_drvdata(dev);
315 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
316 
317 	return sysfs_emit(buf, "%u\n", ecc_stats->failed);
318 }
319 MTD_DEVICE_ATTR_RO(ecc_failures);	/* ecc stats errors */
320 
321 static ssize_t mtd_bad_blocks_show(struct device *dev,
322 		struct device_attribute *attr, char *buf)
323 {
324 	struct mtd_info *mtd = dev_get_drvdata(dev);
325 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
326 
327 	return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
328 }
329 MTD_DEVICE_ATTR_RO(bad_blocks);
330 
331 static ssize_t mtd_bbt_blocks_show(struct device *dev,
332 		struct device_attribute *attr, char *buf)
333 {
334 	struct mtd_info *mtd = dev_get_drvdata(dev);
335 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
336 
337 	return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
338 }
339 MTD_DEVICE_ATTR_RO(bbt_blocks);
340 
341 static struct attribute *mtd_attrs[] = {
342 	&dev_attr_type.attr,
343 	&dev_attr_flags.attr,
344 	&dev_attr_size.attr,
345 	&dev_attr_erasesize.attr,
346 	&dev_attr_writesize.attr,
347 	&dev_attr_subpagesize.attr,
348 	&dev_attr_oobsize.attr,
349 	&dev_attr_oobavail.attr,
350 	&dev_attr_numeraseregions.attr,
351 	&dev_attr_name.attr,
352 	&dev_attr_ecc_strength.attr,
353 	&dev_attr_ecc_step_size.attr,
354 	&dev_attr_corrected_bits.attr,
355 	&dev_attr_ecc_failures.attr,
356 	&dev_attr_bad_blocks.attr,
357 	&dev_attr_bbt_blocks.attr,
358 	&dev_attr_bitflip_threshold.attr,
359 	NULL,
360 };
361 ATTRIBUTE_GROUPS(mtd);
362 
363 static const struct device_type mtd_devtype = {
364 	.name		= "mtd",
365 	.groups		= mtd_groups,
366 	.release	= mtd_release,
367 };
368 
369 static bool mtd_expert_analysis_mode;
370 
371 #ifdef CONFIG_DEBUG_FS
372 bool mtd_check_expert_analysis_mode(void)
373 {
374 	const char *mtd_expert_analysis_warning =
375 		"Bad block checks have been entirely disabled.\n"
376 		"This is only reserved for post-mortem forensics and debug purposes.\n"
377 		"Never enable this mode if you do not know what you are doing!\n";
378 
379 	return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning);
380 }
381 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode);
382 #endif
383 
384 static struct dentry *dfs_dir_mtd;
385 
386 static void mtd_debugfs_populate(struct mtd_info *mtd)
387 {
388 	struct device *dev = &mtd->dev;
389 
390 	if (IS_ERR_OR_NULL(dfs_dir_mtd))
391 		return;
392 
393 	mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
394 }
395 
396 #ifndef CONFIG_MMU
397 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
398 {
399 	switch (mtd->type) {
400 	case MTD_RAM:
401 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
402 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
403 	case MTD_ROM:
404 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
405 			NOMMU_MAP_READ;
406 	default:
407 		return NOMMU_MAP_COPY;
408 	}
409 }
410 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
411 #endif
412 
413 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
414 			       void *cmd)
415 {
416 	struct mtd_info *mtd;
417 
418 	mtd = container_of(n, struct mtd_info, reboot_notifier);
419 	mtd->_reboot(mtd);
420 
421 	return NOTIFY_DONE;
422 }
423 
424 /**
425  * mtd_wunit_to_pairing_info - get pairing information of a wunit
426  * @mtd: pointer to new MTD device info structure
427  * @wunit: write unit we are interested in
428  * @info: returned pairing information
429  *
430  * Retrieve pairing information associated to the wunit.
431  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
432  * paired together, and where programming a page may influence the page it is
433  * paired with.
434  * The notion of page is replaced by the term wunit (write-unit) to stay
435  * consistent with the ->writesize field.
436  *
437  * The @wunit argument can be extracted from an absolute offset using
438  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
439  * to @wunit.
440  *
441  * From the pairing info the MTD user can find all the wunits paired with
442  * @wunit using the following loop:
443  *
444  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
445  *	info.pair = i;
446  *	mtd_pairing_info_to_wunit(mtd, &info);
447  *	...
448  * }
449  */
450 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
451 			      struct mtd_pairing_info *info)
452 {
453 	struct mtd_info *master = mtd_get_master(mtd);
454 	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
455 
456 	if (wunit < 0 || wunit >= npairs)
457 		return -EINVAL;
458 
459 	if (master->pairing && master->pairing->get_info)
460 		return master->pairing->get_info(master, wunit, info);
461 
462 	info->group = 0;
463 	info->pair = wunit;
464 
465 	return 0;
466 }
467 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
468 
469 /**
470  * mtd_pairing_info_to_wunit - get wunit from pairing information
471  * @mtd: pointer to new MTD device info structure
472  * @info: pairing information struct
473  *
474  * Returns a positive number representing the wunit associated to the info
475  * struct, or a negative error code.
476  *
477  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
478  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
479  * doc).
480  *
481  * It can also be used to only program the first page of each pair (i.e.
482  * page attached to group 0), which allows one to use an MLC NAND in
483  * software-emulated SLC mode:
484  *
485  * info.group = 0;
486  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
487  * for (info.pair = 0; info.pair < npairs; info.pair++) {
488  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
489  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
490  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
491  * }
492  */
493 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
494 			      const struct mtd_pairing_info *info)
495 {
496 	struct mtd_info *master = mtd_get_master(mtd);
497 	int ngroups = mtd_pairing_groups(master);
498 	int npairs = mtd_wunit_per_eb(master) / ngroups;
499 
500 	if (!info || info->pair < 0 || info->pair >= npairs ||
501 	    info->group < 0 || info->group >= ngroups)
502 		return -EINVAL;
503 
504 	if (master->pairing && master->pairing->get_wunit)
505 		return mtd->pairing->get_wunit(master, info);
506 
507 	return info->pair;
508 }
509 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
510 
511 /**
512  * mtd_pairing_groups - get the number of pairing groups
513  * @mtd: pointer to new MTD device info structure
514  *
515  * Returns the number of pairing groups.
516  *
517  * This number is usually equal to the number of bits exposed by a single
518  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
519  * to iterate over all pages of a given pair.
520  */
521 int mtd_pairing_groups(struct mtd_info *mtd)
522 {
523 	struct mtd_info *master = mtd_get_master(mtd);
524 
525 	if (!master->pairing || !master->pairing->ngroups)
526 		return 1;
527 
528 	return master->pairing->ngroups;
529 }
530 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
531 
532 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
533 			      void *val, size_t bytes)
534 {
535 	struct mtd_info *mtd = priv;
536 	size_t retlen;
537 	int err;
538 
539 	err = mtd_read(mtd, offset, bytes, &retlen, val);
540 	if (err && err != -EUCLEAN)
541 		return err;
542 
543 	return retlen == bytes ? 0 : -EIO;
544 }
545 
546 static int mtd_nvmem_add(struct mtd_info *mtd)
547 {
548 	struct device_node *node = mtd_get_of_node(mtd);
549 	struct nvmem_config config = {};
550 
551 	config.id = NVMEM_DEVID_NONE;
552 	config.dev = &mtd->dev;
553 	config.name = dev_name(&mtd->dev);
554 	config.owner = THIS_MODULE;
555 	config.add_legacy_fixed_of_cells = of_device_is_compatible(node, "nvmem-cells");
556 	config.reg_read = mtd_nvmem_reg_read;
557 	config.size = mtd->size;
558 	config.word_size = 1;
559 	config.stride = 1;
560 	config.read_only = true;
561 	config.root_only = true;
562 	config.ignore_wp = true;
563 	config.no_of_node = !of_device_is_compatible(node, "nvmem-cells");
564 	config.priv = mtd;
565 
566 	mtd->nvmem = nvmem_register(&config);
567 	if (IS_ERR(mtd->nvmem)) {
568 		/* Just ignore if there is no NVMEM support in the kernel */
569 		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP)
570 			mtd->nvmem = NULL;
571 		else
572 			return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem),
573 					     "Failed to register NVMEM device\n");
574 	}
575 
576 	return 0;
577 }
578 
579 static void mtd_check_of_node(struct mtd_info *mtd)
580 {
581 	struct device_node *partitions, *parent_dn, *mtd_dn = NULL;
582 	const char *pname, *prefix = "partition-";
583 	int plen, mtd_name_len, offset, prefix_len;
584 
585 	/* Check if MTD already has a device node */
586 	if (mtd_get_of_node(mtd))
587 		return;
588 
589 	if (!mtd_is_partition(mtd))
590 		return;
591 
592 	parent_dn = of_node_get(mtd_get_of_node(mtd->parent));
593 	if (!parent_dn)
594 		return;
595 
596 	if (mtd_is_partition(mtd->parent))
597 		partitions = of_node_get(parent_dn);
598 	else
599 		partitions = of_get_child_by_name(parent_dn, "partitions");
600 	if (!partitions)
601 		goto exit_parent;
602 
603 	prefix_len = strlen(prefix);
604 	mtd_name_len = strlen(mtd->name);
605 
606 	/* Search if a partition is defined with the same name */
607 	for_each_child_of_node(partitions, mtd_dn) {
608 		/* Skip partition with no/wrong prefix */
609 		if (!of_node_name_prefix(mtd_dn, prefix))
610 			continue;
611 
612 		/* Label have priority. Check that first */
613 		if (!of_property_read_string(mtd_dn, "label", &pname)) {
614 			offset = 0;
615 		} else {
616 			pname = mtd_dn->name;
617 			offset = prefix_len;
618 		}
619 
620 		plen = strlen(pname) - offset;
621 		if (plen == mtd_name_len &&
622 		    !strncmp(mtd->name, pname + offset, plen)) {
623 			mtd_set_of_node(mtd, mtd_dn);
624 			break;
625 		}
626 	}
627 
628 	of_node_put(partitions);
629 exit_parent:
630 	of_node_put(parent_dn);
631 }
632 
633 /**
634  *	add_mtd_device - register an MTD device
635  *	@mtd: pointer to new MTD device info structure
636  *
637  *	Add a device to the list of MTD devices present in the system, and
638  *	notify each currently active MTD 'user' of its arrival. Returns
639  *	zero on success or non-zero on failure.
640  */
641 
642 int add_mtd_device(struct mtd_info *mtd)
643 {
644 	struct device_node *np = mtd_get_of_node(mtd);
645 	struct mtd_info *master = mtd_get_master(mtd);
646 	struct mtd_notifier *not;
647 	int i, error, ofidx;
648 
649 	/*
650 	 * May occur, for instance, on buggy drivers which call
651 	 * mtd_device_parse_register() multiple times on the same master MTD,
652 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
653 	 */
654 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
655 		return -EEXIST;
656 
657 	BUG_ON(mtd->writesize == 0);
658 
659 	/*
660 	 * MTD drivers should implement ->_{write,read}() or
661 	 * ->_{write,read}_oob(), but not both.
662 	 */
663 	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
664 		    (mtd->_read && mtd->_read_oob)))
665 		return -EINVAL;
666 
667 	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
668 		    !(mtd->flags & MTD_NO_ERASE)))
669 		return -EINVAL;
670 
671 	/*
672 	 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
673 	 * master is an MLC NAND and has a proper pairing scheme defined.
674 	 * We also reject masters that implement ->_writev() for now, because
675 	 * NAND controller drivers don't implement this hook, and adding the
676 	 * SLC -> MLC address/length conversion to this path is useless if we
677 	 * don't have a user.
678 	 */
679 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
680 	    (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
681 	     !master->pairing || master->_writev))
682 		return -EINVAL;
683 
684 	mutex_lock(&mtd_table_mutex);
685 
686 	ofidx = -1;
687 	if (np)
688 		ofidx = of_alias_get_id(np, "mtd");
689 	if (ofidx >= 0)
690 		i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
691 	else
692 		i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
693 	if (i < 0) {
694 		error = i;
695 		goto fail_locked;
696 	}
697 
698 	mtd->index = i;
699 	kref_init(&mtd->refcnt);
700 
701 	/* default value if not set by driver */
702 	if (mtd->bitflip_threshold == 0)
703 		mtd->bitflip_threshold = mtd->ecc_strength;
704 
705 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
706 		int ngroups = mtd_pairing_groups(master);
707 
708 		mtd->erasesize /= ngroups;
709 		mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
710 			    mtd->erasesize;
711 	}
712 
713 	if (is_power_of_2(mtd->erasesize))
714 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
715 	else
716 		mtd->erasesize_shift = 0;
717 
718 	if (is_power_of_2(mtd->writesize))
719 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
720 	else
721 		mtd->writesize_shift = 0;
722 
723 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
724 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
725 
726 	/* Some chips always power up locked. Unlock them now */
727 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
728 		error = mtd_unlock(mtd, 0, mtd->size);
729 		if (error && error != -EOPNOTSUPP)
730 			printk(KERN_WARNING
731 			       "%s: unlock failed, writes may not work\n",
732 			       mtd->name);
733 		/* Ignore unlock failures? */
734 		error = 0;
735 	}
736 
737 	/* Caller should have set dev.parent to match the
738 	 * physical device, if appropriate.
739 	 */
740 	mtd->dev.type = &mtd_devtype;
741 	mtd->dev.class = &mtd_class;
742 	mtd->dev.devt = MTD_DEVT(i);
743 	dev_set_name(&mtd->dev, "mtd%d", i);
744 	dev_set_drvdata(&mtd->dev, mtd);
745 	mtd_check_of_node(mtd);
746 	of_node_get(mtd_get_of_node(mtd));
747 	error = device_register(&mtd->dev);
748 	if (error) {
749 		put_device(&mtd->dev);
750 		goto fail_added;
751 	}
752 
753 	/* Add the nvmem provider */
754 	error = mtd_nvmem_add(mtd);
755 	if (error)
756 		goto fail_nvmem_add;
757 
758 	mtd_debugfs_populate(mtd);
759 
760 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
761 		      "mtd%dro", i);
762 
763 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
764 	/* No need to get a refcount on the module containing
765 	   the notifier, since we hold the mtd_table_mutex */
766 	list_for_each_entry(not, &mtd_notifiers, list)
767 		not->add(mtd);
768 
769 	mutex_unlock(&mtd_table_mutex);
770 
771 	if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) {
772 		if (IS_BUILTIN(CONFIG_MTD)) {
773 			pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name);
774 			ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index);
775 		} else {
776 			pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n",
777 				mtd->index, mtd->name);
778 		}
779 	}
780 
781 	/* We _know_ we aren't being removed, because
782 	   our caller is still holding us here. So none
783 	   of this try_ nonsense, and no bitching about it
784 	   either. :) */
785 	__module_get(THIS_MODULE);
786 	return 0;
787 
788 fail_nvmem_add:
789 	device_unregister(&mtd->dev);
790 fail_added:
791 	of_node_put(mtd_get_of_node(mtd));
792 	idr_remove(&mtd_idr, i);
793 fail_locked:
794 	mutex_unlock(&mtd_table_mutex);
795 	return error;
796 }
797 
798 /**
799  *	del_mtd_device - unregister an MTD device
800  *	@mtd: pointer to MTD device info structure
801  *
802  *	Remove a device from the list of MTD devices present in the system,
803  *	and notify each currently active MTD 'user' of its departure.
804  *	Returns zero on success or 1 on failure, which currently will happen
805  *	if the requested device does not appear to be present in the list.
806  */
807 
808 int del_mtd_device(struct mtd_info *mtd)
809 {
810 	int ret;
811 	struct mtd_notifier *not;
812 
813 	mutex_lock(&mtd_table_mutex);
814 
815 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
816 		ret = -ENODEV;
817 		goto out_error;
818 	}
819 
820 	/* No need to get a refcount on the module containing
821 		the notifier, since we hold the mtd_table_mutex */
822 	list_for_each_entry(not, &mtd_notifiers, list)
823 		not->remove(mtd);
824 
825 	kref_put(&mtd->refcnt, mtd_device_release);
826 	ret = 0;
827 
828 out_error:
829 	mutex_unlock(&mtd_table_mutex);
830 	return ret;
831 }
832 
833 /*
834  * Set a few defaults based on the parent devices, if not provided by the
835  * driver
836  */
837 static void mtd_set_dev_defaults(struct mtd_info *mtd)
838 {
839 	if (mtd->dev.parent) {
840 		if (!mtd->owner && mtd->dev.parent->driver)
841 			mtd->owner = mtd->dev.parent->driver->owner;
842 		if (!mtd->name)
843 			mtd->name = dev_name(mtd->dev.parent);
844 	} else {
845 		pr_debug("mtd device won't show a device symlink in sysfs\n");
846 	}
847 
848 	INIT_LIST_HEAD(&mtd->partitions);
849 	mutex_init(&mtd->master.partitions_lock);
850 	mutex_init(&mtd->master.chrdev_lock);
851 }
852 
853 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
854 {
855 	struct otp_info *info;
856 	ssize_t size = 0;
857 	unsigned int i;
858 	size_t retlen;
859 	int ret;
860 
861 	info = kmalloc(PAGE_SIZE, GFP_KERNEL);
862 	if (!info)
863 		return -ENOMEM;
864 
865 	if (is_user)
866 		ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
867 	else
868 		ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
869 	if (ret)
870 		goto err;
871 
872 	for (i = 0; i < retlen / sizeof(*info); i++)
873 		size += info[i].length;
874 
875 	kfree(info);
876 	return size;
877 
878 err:
879 	kfree(info);
880 
881 	/* ENODATA means there is no OTP region. */
882 	return ret == -ENODATA ? 0 : ret;
883 }
884 
885 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
886 						   const char *compatible,
887 						   int size,
888 						   nvmem_reg_read_t reg_read)
889 {
890 	struct nvmem_device *nvmem = NULL;
891 	struct nvmem_config config = {};
892 	struct device_node *np;
893 
894 	/* DT binding is optional */
895 	np = of_get_compatible_child(mtd->dev.of_node, compatible);
896 
897 	/* OTP nvmem will be registered on the physical device */
898 	config.dev = mtd->dev.parent;
899 	config.name = compatible;
900 	config.id = NVMEM_DEVID_AUTO;
901 	config.owner = THIS_MODULE;
902 	config.add_legacy_fixed_of_cells = !mtd_type_is_nand(mtd);
903 	config.type = NVMEM_TYPE_OTP;
904 	config.root_only = true;
905 	config.ignore_wp = true;
906 	config.reg_read = reg_read;
907 	config.size = size;
908 	config.of_node = np;
909 	config.priv = mtd;
910 
911 	nvmem = nvmem_register(&config);
912 	/* Just ignore if there is no NVMEM support in the kernel */
913 	if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
914 		nvmem = NULL;
915 
916 	of_node_put(np);
917 
918 	return nvmem;
919 }
920 
921 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
922 				       void *val, size_t bytes)
923 {
924 	struct mtd_info *mtd = priv;
925 	size_t retlen;
926 	int ret;
927 
928 	ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
929 	if (ret)
930 		return ret;
931 
932 	return retlen == bytes ? 0 : -EIO;
933 }
934 
935 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
936 				       void *val, size_t bytes)
937 {
938 	struct mtd_info *mtd = priv;
939 	size_t retlen;
940 	int ret;
941 
942 	ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
943 	if (ret)
944 		return ret;
945 
946 	return retlen == bytes ? 0 : -EIO;
947 }
948 
949 static int mtd_otp_nvmem_add(struct mtd_info *mtd)
950 {
951 	struct device *dev = mtd->dev.parent;
952 	struct nvmem_device *nvmem;
953 	ssize_t size;
954 	int err;
955 
956 	if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
957 		size = mtd_otp_size(mtd, true);
958 		if (size < 0)
959 			return size;
960 
961 		if (size > 0) {
962 			nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
963 						       mtd_nvmem_user_otp_reg_read);
964 			if (IS_ERR(nvmem)) {
965 				err = PTR_ERR(nvmem);
966 				goto err;
967 			}
968 			mtd->otp_user_nvmem = nvmem;
969 		}
970 	}
971 
972 	if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
973 		size = mtd_otp_size(mtd, false);
974 		if (size < 0) {
975 			err = size;
976 			goto err;
977 		}
978 
979 		if (size > 0) {
980 			/*
981 			 * The factory OTP contains thing such as a unique serial
982 			 * number and is small, so let's read it out and put it
983 			 * into the entropy pool.
984 			 */
985 			void *otp;
986 
987 			otp = kmalloc(size, GFP_KERNEL);
988 			if (!otp) {
989 				err = -ENOMEM;
990 				goto err;
991 			}
992 			err = mtd_nvmem_fact_otp_reg_read(mtd, 0, otp, size);
993 			if (err < 0) {
994 				kfree(otp);
995 				goto err;
996 			}
997 			add_device_randomness(otp, err);
998 			kfree(otp);
999 
1000 			nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
1001 						       mtd_nvmem_fact_otp_reg_read);
1002 			if (IS_ERR(nvmem)) {
1003 				err = PTR_ERR(nvmem);
1004 				goto err;
1005 			}
1006 			mtd->otp_factory_nvmem = nvmem;
1007 		}
1008 	}
1009 
1010 	return 0;
1011 
1012 err:
1013 	nvmem_unregister(mtd->otp_user_nvmem);
1014 	return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n");
1015 }
1016 
1017 /**
1018  * mtd_device_parse_register - parse partitions and register an MTD device.
1019  *
1020  * @mtd: the MTD device to register
1021  * @types: the list of MTD partition probes to try, see
1022  *         'parse_mtd_partitions()' for more information
1023  * @parser_data: MTD partition parser-specific data
1024  * @parts: fallback partition information to register, if parsing fails;
1025  *         only valid if %nr_parts > %0
1026  * @nr_parts: the number of partitions in parts, if zero then the full
1027  *            MTD device is registered if no partition info is found
1028  *
1029  * This function aggregates MTD partitions parsing (done by
1030  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
1031  * basically follows the most common pattern found in many MTD drivers:
1032  *
1033  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
1034  *   registered first.
1035  * * Then It tries to probe partitions on MTD device @mtd using parsers
1036  *   specified in @types (if @types is %NULL, then the default list of parsers
1037  *   is used, see 'parse_mtd_partitions()' for more information). If none are
1038  *   found this functions tries to fallback to information specified in
1039  *   @parts/@nr_parts.
1040  * * If no partitions were found this function just registers the MTD device
1041  *   @mtd and exits.
1042  *
1043  * Returns zero in case of success and a negative error code in case of failure.
1044  */
1045 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
1046 			      struct mtd_part_parser_data *parser_data,
1047 			      const struct mtd_partition *parts,
1048 			      int nr_parts)
1049 {
1050 	int ret;
1051 
1052 	mtd_set_dev_defaults(mtd);
1053 
1054 	ret = mtd_otp_nvmem_add(mtd);
1055 	if (ret)
1056 		goto out;
1057 
1058 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
1059 		ret = add_mtd_device(mtd);
1060 		if (ret)
1061 			goto out;
1062 	}
1063 
1064 	/* Prefer parsed partitions over driver-provided fallback */
1065 	ret = parse_mtd_partitions(mtd, types, parser_data);
1066 	if (ret == -EPROBE_DEFER)
1067 		goto out;
1068 
1069 	if (ret > 0)
1070 		ret = 0;
1071 	else if (nr_parts)
1072 		ret = add_mtd_partitions(mtd, parts, nr_parts);
1073 	else if (!device_is_registered(&mtd->dev))
1074 		ret = add_mtd_device(mtd);
1075 	else
1076 		ret = 0;
1077 
1078 	if (ret)
1079 		goto out;
1080 
1081 	/*
1082 	 * FIXME: some drivers unfortunately call this function more than once.
1083 	 * So we have to check if we've already assigned the reboot notifier.
1084 	 *
1085 	 * Generally, we can make multiple calls work for most cases, but it
1086 	 * does cause problems with parse_mtd_partitions() above (e.g.,
1087 	 * cmdlineparts will register partitions more than once).
1088 	 */
1089 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
1090 		  "MTD already registered\n");
1091 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
1092 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1093 		register_reboot_notifier(&mtd->reboot_notifier);
1094 	}
1095 
1096 out:
1097 	if (ret) {
1098 		nvmem_unregister(mtd->otp_user_nvmem);
1099 		nvmem_unregister(mtd->otp_factory_nvmem);
1100 	}
1101 
1102 	if (ret && device_is_registered(&mtd->dev))
1103 		del_mtd_device(mtd);
1104 
1105 	return ret;
1106 }
1107 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1108 
1109 /**
1110  * mtd_device_unregister - unregister an existing MTD device.
1111  *
1112  * @master: the MTD device to unregister.  This will unregister both the master
1113  *          and any partitions if registered.
1114  */
1115 int mtd_device_unregister(struct mtd_info *master)
1116 {
1117 	int err;
1118 
1119 	if (master->_reboot) {
1120 		unregister_reboot_notifier(&master->reboot_notifier);
1121 		memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1122 	}
1123 
1124 	nvmem_unregister(master->otp_user_nvmem);
1125 	nvmem_unregister(master->otp_factory_nvmem);
1126 
1127 	err = del_mtd_partitions(master);
1128 	if (err)
1129 		return err;
1130 
1131 	if (!device_is_registered(&master->dev))
1132 		return 0;
1133 
1134 	return del_mtd_device(master);
1135 }
1136 EXPORT_SYMBOL_GPL(mtd_device_unregister);
1137 
1138 /**
1139  *	register_mtd_user - register a 'user' of MTD devices.
1140  *	@new: pointer to notifier info structure
1141  *
1142  *	Registers a pair of callbacks function to be called upon addition
1143  *	or removal of MTD devices. Causes the 'add' callback to be immediately
1144  *	invoked for each MTD device currently present in the system.
1145  */
1146 void register_mtd_user (struct mtd_notifier *new)
1147 {
1148 	struct mtd_info *mtd;
1149 
1150 	mutex_lock(&mtd_table_mutex);
1151 
1152 	list_add(&new->list, &mtd_notifiers);
1153 
1154 	__module_get(THIS_MODULE);
1155 
1156 	mtd_for_each_device(mtd)
1157 		new->add(mtd);
1158 
1159 	mutex_unlock(&mtd_table_mutex);
1160 }
1161 EXPORT_SYMBOL_GPL(register_mtd_user);
1162 
1163 /**
1164  *	unregister_mtd_user - unregister a 'user' of MTD devices.
1165  *	@old: pointer to notifier info structure
1166  *
1167  *	Removes a callback function pair from the list of 'users' to be
1168  *	notified upon addition or removal of MTD devices. Causes the
1169  *	'remove' callback to be immediately invoked for each MTD device
1170  *	currently present in the system.
1171  */
1172 int unregister_mtd_user (struct mtd_notifier *old)
1173 {
1174 	struct mtd_info *mtd;
1175 
1176 	mutex_lock(&mtd_table_mutex);
1177 
1178 	module_put(THIS_MODULE);
1179 
1180 	mtd_for_each_device(mtd)
1181 		old->remove(mtd);
1182 
1183 	list_del(&old->list);
1184 	mutex_unlock(&mtd_table_mutex);
1185 	return 0;
1186 }
1187 EXPORT_SYMBOL_GPL(unregister_mtd_user);
1188 
1189 /**
1190  *	get_mtd_device - obtain a validated handle for an MTD device
1191  *	@mtd: last known address of the required MTD device
1192  *	@num: internal device number of the required MTD device
1193  *
1194  *	Given a number and NULL address, return the num'th entry in the device
1195  *	table, if any.	Given an address and num == -1, search the device table
1196  *	for a device with that address and return if it's still present. Given
1197  *	both, return the num'th driver only if its address matches. Return
1198  *	error code if not.
1199  */
1200 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1201 {
1202 	struct mtd_info *ret = NULL, *other;
1203 	int err = -ENODEV;
1204 
1205 	mutex_lock(&mtd_table_mutex);
1206 
1207 	if (num == -1) {
1208 		mtd_for_each_device(other) {
1209 			if (other == mtd) {
1210 				ret = mtd;
1211 				break;
1212 			}
1213 		}
1214 	} else if (num >= 0) {
1215 		ret = idr_find(&mtd_idr, num);
1216 		if (mtd && mtd != ret)
1217 			ret = NULL;
1218 	}
1219 
1220 	if (!ret) {
1221 		ret = ERR_PTR(err);
1222 		goto out;
1223 	}
1224 
1225 	err = __get_mtd_device(ret);
1226 	if (err)
1227 		ret = ERR_PTR(err);
1228 out:
1229 	mutex_unlock(&mtd_table_mutex);
1230 	return ret;
1231 }
1232 EXPORT_SYMBOL_GPL(get_mtd_device);
1233 
1234 
1235 int __get_mtd_device(struct mtd_info *mtd)
1236 {
1237 	struct mtd_info *master = mtd_get_master(mtd);
1238 	int err;
1239 
1240 	if (master->_get_device) {
1241 		err = master->_get_device(mtd);
1242 		if (err)
1243 			return err;
1244 	}
1245 
1246 	if (!try_module_get(master->owner)) {
1247 		if (master->_put_device)
1248 			master->_put_device(master);
1249 		return -ENODEV;
1250 	}
1251 
1252 	while (mtd) {
1253 		if (mtd != master)
1254 			kref_get(&mtd->refcnt);
1255 		mtd = mtd->parent;
1256 	}
1257 
1258 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1259 		kref_get(&master->refcnt);
1260 
1261 	return 0;
1262 }
1263 EXPORT_SYMBOL_GPL(__get_mtd_device);
1264 
1265 /**
1266  * of_get_mtd_device_by_node - obtain an MTD device associated with a given node
1267  *
1268  * @np: device tree node
1269  */
1270 struct mtd_info *of_get_mtd_device_by_node(struct device_node *np)
1271 {
1272 	struct mtd_info *mtd = NULL;
1273 	struct mtd_info *tmp;
1274 	int err;
1275 
1276 	mutex_lock(&mtd_table_mutex);
1277 
1278 	err = -EPROBE_DEFER;
1279 	mtd_for_each_device(tmp) {
1280 		if (mtd_get_of_node(tmp) == np) {
1281 			mtd = tmp;
1282 			err = __get_mtd_device(mtd);
1283 			break;
1284 		}
1285 	}
1286 
1287 	mutex_unlock(&mtd_table_mutex);
1288 
1289 	return err ? ERR_PTR(err) : mtd;
1290 }
1291 EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node);
1292 
1293 /**
1294  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1295  *	device name
1296  *	@name: MTD device name to open
1297  *
1298  * 	This function returns MTD device description structure in case of
1299  * 	success and an error code in case of failure.
1300  */
1301 struct mtd_info *get_mtd_device_nm(const char *name)
1302 {
1303 	int err = -ENODEV;
1304 	struct mtd_info *mtd = NULL, *other;
1305 
1306 	mutex_lock(&mtd_table_mutex);
1307 
1308 	mtd_for_each_device(other) {
1309 		if (!strcmp(name, other->name)) {
1310 			mtd = other;
1311 			break;
1312 		}
1313 	}
1314 
1315 	if (!mtd)
1316 		goto out_unlock;
1317 
1318 	err = __get_mtd_device(mtd);
1319 	if (err)
1320 		goto out_unlock;
1321 
1322 	mutex_unlock(&mtd_table_mutex);
1323 	return mtd;
1324 
1325 out_unlock:
1326 	mutex_unlock(&mtd_table_mutex);
1327 	return ERR_PTR(err);
1328 }
1329 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1330 
1331 void put_mtd_device(struct mtd_info *mtd)
1332 {
1333 	mutex_lock(&mtd_table_mutex);
1334 	__put_mtd_device(mtd);
1335 	mutex_unlock(&mtd_table_mutex);
1336 
1337 }
1338 EXPORT_SYMBOL_GPL(put_mtd_device);
1339 
1340 void __put_mtd_device(struct mtd_info *mtd)
1341 {
1342 	struct mtd_info *master = mtd_get_master(mtd);
1343 
1344 	while (mtd) {
1345 		/* kref_put() can relese mtd, so keep a reference mtd->parent */
1346 		struct mtd_info *parent = mtd->parent;
1347 
1348 		if (mtd != master)
1349 			kref_put(&mtd->refcnt, mtd_device_release);
1350 		mtd = parent;
1351 	}
1352 
1353 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1354 		kref_put(&master->refcnt, mtd_device_release);
1355 
1356 	module_put(master->owner);
1357 
1358 	/* must be the last as master can be freed in the _put_device */
1359 	if (master->_put_device)
1360 		master->_put_device(master);
1361 }
1362 EXPORT_SYMBOL_GPL(__put_mtd_device);
1363 
1364 /*
1365  * Erase is an synchronous operation. Device drivers are epected to return a
1366  * negative error code if the operation failed and update instr->fail_addr
1367  * to point the portion that was not properly erased.
1368  */
1369 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1370 {
1371 	struct mtd_info *master = mtd_get_master(mtd);
1372 	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1373 	struct erase_info adjinstr;
1374 	int ret;
1375 
1376 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1377 	adjinstr = *instr;
1378 
1379 	if (!mtd->erasesize || !master->_erase)
1380 		return -ENOTSUPP;
1381 
1382 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1383 		return -EINVAL;
1384 	if (!(mtd->flags & MTD_WRITEABLE))
1385 		return -EROFS;
1386 
1387 	if (!instr->len)
1388 		return 0;
1389 
1390 	ledtrig_mtd_activity();
1391 
1392 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1393 		adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1394 				master->erasesize;
1395 		adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1396 				master->erasesize) -
1397 			       adjinstr.addr;
1398 	}
1399 
1400 	adjinstr.addr += mst_ofs;
1401 
1402 	ret = master->_erase(master, &adjinstr);
1403 
1404 	if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1405 		instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1406 		if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1407 			instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1408 							 master);
1409 			instr->fail_addr *= mtd->erasesize;
1410 		}
1411 	}
1412 
1413 	return ret;
1414 }
1415 EXPORT_SYMBOL_GPL(mtd_erase);
1416 
1417 /*
1418  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1419  */
1420 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1421 	      void **virt, resource_size_t *phys)
1422 {
1423 	struct mtd_info *master = mtd_get_master(mtd);
1424 
1425 	*retlen = 0;
1426 	*virt = NULL;
1427 	if (phys)
1428 		*phys = 0;
1429 	if (!master->_point)
1430 		return -EOPNOTSUPP;
1431 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1432 		return -EINVAL;
1433 	if (!len)
1434 		return 0;
1435 
1436 	from = mtd_get_master_ofs(mtd, from);
1437 	return master->_point(master, from, len, retlen, virt, phys);
1438 }
1439 EXPORT_SYMBOL_GPL(mtd_point);
1440 
1441 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1442 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1443 {
1444 	struct mtd_info *master = mtd_get_master(mtd);
1445 
1446 	if (!master->_unpoint)
1447 		return -EOPNOTSUPP;
1448 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1449 		return -EINVAL;
1450 	if (!len)
1451 		return 0;
1452 	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1453 }
1454 EXPORT_SYMBOL_GPL(mtd_unpoint);
1455 
1456 /*
1457  * Allow NOMMU mmap() to directly map the device (if not NULL)
1458  * - return the address to which the offset maps
1459  * - return -ENOSYS to indicate refusal to do the mapping
1460  */
1461 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1462 				    unsigned long offset, unsigned long flags)
1463 {
1464 	size_t retlen;
1465 	void *virt;
1466 	int ret;
1467 
1468 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1469 	if (ret)
1470 		return ret;
1471 	if (retlen != len) {
1472 		mtd_unpoint(mtd, offset, retlen);
1473 		return -ENOSYS;
1474 	}
1475 	return (unsigned long)virt;
1476 }
1477 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1478 
1479 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1480 				 const struct mtd_ecc_stats *old_stats)
1481 {
1482 	struct mtd_ecc_stats diff;
1483 
1484 	if (master == mtd)
1485 		return;
1486 
1487 	diff = master->ecc_stats;
1488 	diff.failed -= old_stats->failed;
1489 	diff.corrected -= old_stats->corrected;
1490 
1491 	while (mtd->parent) {
1492 		mtd->ecc_stats.failed += diff.failed;
1493 		mtd->ecc_stats.corrected += diff.corrected;
1494 		mtd = mtd->parent;
1495 	}
1496 }
1497 
1498 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1499 	     u_char *buf)
1500 {
1501 	struct mtd_oob_ops ops = {
1502 		.len = len,
1503 		.datbuf = buf,
1504 	};
1505 	int ret;
1506 
1507 	ret = mtd_read_oob(mtd, from, &ops);
1508 	*retlen = ops.retlen;
1509 
1510 	return ret;
1511 }
1512 EXPORT_SYMBOL_GPL(mtd_read);
1513 
1514 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1515 	      const u_char *buf)
1516 {
1517 	struct mtd_oob_ops ops = {
1518 		.len = len,
1519 		.datbuf = (u8 *)buf,
1520 	};
1521 	int ret;
1522 
1523 	ret = mtd_write_oob(mtd, to, &ops);
1524 	*retlen = ops.retlen;
1525 
1526 	return ret;
1527 }
1528 EXPORT_SYMBOL_GPL(mtd_write);
1529 
1530 /*
1531  * In blackbox flight recorder like scenarios we want to make successful writes
1532  * in interrupt context. panic_write() is only intended to be called when its
1533  * known the kernel is about to panic and we need the write to succeed. Since
1534  * the kernel is not going to be running for much longer, this function can
1535  * break locks and delay to ensure the write succeeds (but not sleep).
1536  */
1537 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1538 		    const u_char *buf)
1539 {
1540 	struct mtd_info *master = mtd_get_master(mtd);
1541 
1542 	*retlen = 0;
1543 	if (!master->_panic_write)
1544 		return -EOPNOTSUPP;
1545 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1546 		return -EINVAL;
1547 	if (!(mtd->flags & MTD_WRITEABLE))
1548 		return -EROFS;
1549 	if (!len)
1550 		return 0;
1551 	if (!master->oops_panic_write)
1552 		master->oops_panic_write = true;
1553 
1554 	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1555 				    retlen, buf);
1556 }
1557 EXPORT_SYMBOL_GPL(mtd_panic_write);
1558 
1559 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1560 			     struct mtd_oob_ops *ops)
1561 {
1562 	/*
1563 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1564 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1565 	 *  this case.
1566 	 */
1567 	if (!ops->datbuf)
1568 		ops->len = 0;
1569 
1570 	if (!ops->oobbuf)
1571 		ops->ooblen = 0;
1572 
1573 	if (offs < 0 || offs + ops->len > mtd->size)
1574 		return -EINVAL;
1575 
1576 	if (ops->ooblen) {
1577 		size_t maxooblen;
1578 
1579 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1580 			return -EINVAL;
1581 
1582 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1583 				      mtd_div_by_ws(offs, mtd)) *
1584 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1585 		if (ops->ooblen > maxooblen)
1586 			return -EINVAL;
1587 	}
1588 
1589 	return 0;
1590 }
1591 
1592 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1593 			    struct mtd_oob_ops *ops)
1594 {
1595 	struct mtd_info *master = mtd_get_master(mtd);
1596 	int ret;
1597 
1598 	from = mtd_get_master_ofs(mtd, from);
1599 	if (master->_read_oob)
1600 		ret = master->_read_oob(master, from, ops);
1601 	else
1602 		ret = master->_read(master, from, ops->len, &ops->retlen,
1603 				    ops->datbuf);
1604 
1605 	return ret;
1606 }
1607 
1608 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1609 			     struct mtd_oob_ops *ops)
1610 {
1611 	struct mtd_info *master = mtd_get_master(mtd);
1612 	int ret;
1613 
1614 	to = mtd_get_master_ofs(mtd, to);
1615 	if (master->_write_oob)
1616 		ret = master->_write_oob(master, to, ops);
1617 	else
1618 		ret = master->_write(master, to, ops->len, &ops->retlen,
1619 				     ops->datbuf);
1620 
1621 	return ret;
1622 }
1623 
1624 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1625 			       struct mtd_oob_ops *ops)
1626 {
1627 	struct mtd_info *master = mtd_get_master(mtd);
1628 	int ngroups = mtd_pairing_groups(master);
1629 	int npairs = mtd_wunit_per_eb(master) / ngroups;
1630 	struct mtd_oob_ops adjops = *ops;
1631 	unsigned int wunit, oobavail;
1632 	struct mtd_pairing_info info;
1633 	int max_bitflips = 0;
1634 	u32 ebofs, pageofs;
1635 	loff_t base, pos;
1636 
1637 	ebofs = mtd_mod_by_eb(start, mtd);
1638 	base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1639 	info.group = 0;
1640 	info.pair = mtd_div_by_ws(ebofs, mtd);
1641 	pageofs = mtd_mod_by_ws(ebofs, mtd);
1642 	oobavail = mtd_oobavail(mtd, ops);
1643 
1644 	while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1645 		int ret;
1646 
1647 		if (info.pair >= npairs) {
1648 			info.pair = 0;
1649 			base += master->erasesize;
1650 		}
1651 
1652 		wunit = mtd_pairing_info_to_wunit(master, &info);
1653 		pos = mtd_wunit_to_offset(mtd, base, wunit);
1654 
1655 		adjops.len = ops->len - ops->retlen;
1656 		if (adjops.len > mtd->writesize - pageofs)
1657 			adjops.len = mtd->writesize - pageofs;
1658 
1659 		adjops.ooblen = ops->ooblen - ops->oobretlen;
1660 		if (adjops.ooblen > oobavail - adjops.ooboffs)
1661 			adjops.ooblen = oobavail - adjops.ooboffs;
1662 
1663 		if (read) {
1664 			ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1665 			if (ret > 0)
1666 				max_bitflips = max(max_bitflips, ret);
1667 		} else {
1668 			ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1669 		}
1670 
1671 		if (ret < 0)
1672 			return ret;
1673 
1674 		max_bitflips = max(max_bitflips, ret);
1675 		ops->retlen += adjops.retlen;
1676 		ops->oobretlen += adjops.oobretlen;
1677 		adjops.datbuf += adjops.retlen;
1678 		adjops.oobbuf += adjops.oobretlen;
1679 		adjops.ooboffs = 0;
1680 		pageofs = 0;
1681 		info.pair++;
1682 	}
1683 
1684 	return max_bitflips;
1685 }
1686 
1687 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1688 {
1689 	struct mtd_info *master = mtd_get_master(mtd);
1690 	struct mtd_ecc_stats old_stats = master->ecc_stats;
1691 	int ret_code;
1692 
1693 	ops->retlen = ops->oobretlen = 0;
1694 
1695 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1696 	if (ret_code)
1697 		return ret_code;
1698 
1699 	ledtrig_mtd_activity();
1700 
1701 	/* Check the validity of a potential fallback on mtd->_read */
1702 	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1703 		return -EOPNOTSUPP;
1704 
1705 	if (ops->stats)
1706 		memset(ops->stats, 0, sizeof(*ops->stats));
1707 
1708 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1709 		ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1710 	else
1711 		ret_code = mtd_read_oob_std(mtd, from, ops);
1712 
1713 	mtd_update_ecc_stats(mtd, master, &old_stats);
1714 
1715 	/*
1716 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1717 	 * similar to mtd->_read(), returning a non-negative integer
1718 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1719 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1720 	 */
1721 	if (unlikely(ret_code < 0))
1722 		return ret_code;
1723 	if (mtd->ecc_strength == 0)
1724 		return 0;	/* device lacks ecc */
1725 	if (ops->stats)
1726 		ops->stats->max_bitflips = ret_code;
1727 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1728 }
1729 EXPORT_SYMBOL_GPL(mtd_read_oob);
1730 
1731 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1732 				struct mtd_oob_ops *ops)
1733 {
1734 	struct mtd_info *master = mtd_get_master(mtd);
1735 	int ret;
1736 
1737 	ops->retlen = ops->oobretlen = 0;
1738 
1739 	if (!(mtd->flags & MTD_WRITEABLE))
1740 		return -EROFS;
1741 
1742 	ret = mtd_check_oob_ops(mtd, to, ops);
1743 	if (ret)
1744 		return ret;
1745 
1746 	ledtrig_mtd_activity();
1747 
1748 	/* Check the validity of a potential fallback on mtd->_write */
1749 	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1750 		return -EOPNOTSUPP;
1751 
1752 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1753 		return mtd_io_emulated_slc(mtd, to, false, ops);
1754 
1755 	return mtd_write_oob_std(mtd, to, ops);
1756 }
1757 EXPORT_SYMBOL_GPL(mtd_write_oob);
1758 
1759 /**
1760  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1761  * @mtd: MTD device structure
1762  * @section: ECC section. Depending on the layout you may have all the ECC
1763  *	     bytes stored in a single contiguous section, or one section
1764  *	     per ECC chunk (and sometime several sections for a single ECC
1765  *	     ECC chunk)
1766  * @oobecc: OOB region struct filled with the appropriate ECC position
1767  *	    information
1768  *
1769  * This function returns ECC section information in the OOB area. If you want
1770  * to get all the ECC bytes information, then you should call
1771  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1772  *
1773  * Returns zero on success, a negative error code otherwise.
1774  */
1775 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1776 		      struct mtd_oob_region *oobecc)
1777 {
1778 	struct mtd_info *master = mtd_get_master(mtd);
1779 
1780 	memset(oobecc, 0, sizeof(*oobecc));
1781 
1782 	if (!master || section < 0)
1783 		return -EINVAL;
1784 
1785 	if (!master->ooblayout || !master->ooblayout->ecc)
1786 		return -ENOTSUPP;
1787 
1788 	return master->ooblayout->ecc(master, section, oobecc);
1789 }
1790 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1791 
1792 /**
1793  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1794  *			section
1795  * @mtd: MTD device structure
1796  * @section: Free section you are interested in. Depending on the layout
1797  *	     you may have all the free bytes stored in a single contiguous
1798  *	     section, or one section per ECC chunk plus an extra section
1799  *	     for the remaining bytes (or other funky layout).
1800  * @oobfree: OOB region struct filled with the appropriate free position
1801  *	     information
1802  *
1803  * This function returns free bytes position in the OOB area. If you want
1804  * to get all the free bytes information, then you should call
1805  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1806  *
1807  * Returns zero on success, a negative error code otherwise.
1808  */
1809 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1810 		       struct mtd_oob_region *oobfree)
1811 {
1812 	struct mtd_info *master = mtd_get_master(mtd);
1813 
1814 	memset(oobfree, 0, sizeof(*oobfree));
1815 
1816 	if (!master || section < 0)
1817 		return -EINVAL;
1818 
1819 	if (!master->ooblayout || !master->ooblayout->free)
1820 		return -ENOTSUPP;
1821 
1822 	return master->ooblayout->free(master, section, oobfree);
1823 }
1824 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1825 
1826 /**
1827  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1828  * @mtd: mtd info structure
1829  * @byte: the byte we are searching for
1830  * @sectionp: pointer where the section id will be stored
1831  * @oobregion: used to retrieve the ECC position
1832  * @iter: iterator function. Should be either mtd_ooblayout_free or
1833  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1834  *
1835  * This function returns the section id and oobregion information of a
1836  * specific byte. For example, say you want to know where the 4th ECC byte is
1837  * stored, you'll use:
1838  *
1839  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1840  *
1841  * Returns zero on success, a negative error code otherwise.
1842  */
1843 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1844 				int *sectionp, struct mtd_oob_region *oobregion,
1845 				int (*iter)(struct mtd_info *,
1846 					    int section,
1847 					    struct mtd_oob_region *oobregion))
1848 {
1849 	int pos = 0, ret, section = 0;
1850 
1851 	memset(oobregion, 0, sizeof(*oobregion));
1852 
1853 	while (1) {
1854 		ret = iter(mtd, section, oobregion);
1855 		if (ret)
1856 			return ret;
1857 
1858 		if (pos + oobregion->length > byte)
1859 			break;
1860 
1861 		pos += oobregion->length;
1862 		section++;
1863 	}
1864 
1865 	/*
1866 	 * Adjust region info to make it start at the beginning at the
1867 	 * 'start' ECC byte.
1868 	 */
1869 	oobregion->offset += byte - pos;
1870 	oobregion->length -= byte - pos;
1871 	*sectionp = section;
1872 
1873 	return 0;
1874 }
1875 
1876 /**
1877  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1878  *				  ECC byte
1879  * @mtd: mtd info structure
1880  * @eccbyte: the byte we are searching for
1881  * @section: pointer where the section id will be stored
1882  * @oobregion: OOB region information
1883  *
1884  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1885  * byte.
1886  *
1887  * Returns zero on success, a negative error code otherwise.
1888  */
1889 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1890 				 int *section,
1891 				 struct mtd_oob_region *oobregion)
1892 {
1893 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1894 					 mtd_ooblayout_ecc);
1895 }
1896 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1897 
1898 /**
1899  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1900  * @mtd: mtd info structure
1901  * @buf: destination buffer to store OOB bytes
1902  * @oobbuf: OOB buffer
1903  * @start: first byte to retrieve
1904  * @nbytes: number of bytes to retrieve
1905  * @iter: section iterator
1906  *
1907  * Extract bytes attached to a specific category (ECC or free)
1908  * from the OOB buffer and copy them into buf.
1909  *
1910  * Returns zero on success, a negative error code otherwise.
1911  */
1912 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1913 				const u8 *oobbuf, int start, int nbytes,
1914 				int (*iter)(struct mtd_info *,
1915 					    int section,
1916 					    struct mtd_oob_region *oobregion))
1917 {
1918 	struct mtd_oob_region oobregion;
1919 	int section, ret;
1920 
1921 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1922 					&oobregion, iter);
1923 
1924 	while (!ret) {
1925 		int cnt;
1926 
1927 		cnt = min_t(int, nbytes, oobregion.length);
1928 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1929 		buf += cnt;
1930 		nbytes -= cnt;
1931 
1932 		if (!nbytes)
1933 			break;
1934 
1935 		ret = iter(mtd, ++section, &oobregion);
1936 	}
1937 
1938 	return ret;
1939 }
1940 
1941 /**
1942  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1943  * @mtd: mtd info structure
1944  * @buf: source buffer to get OOB bytes from
1945  * @oobbuf: OOB buffer
1946  * @start: first OOB byte to set
1947  * @nbytes: number of OOB bytes to set
1948  * @iter: section iterator
1949  *
1950  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1951  * is selected by passing the appropriate iterator.
1952  *
1953  * Returns zero on success, a negative error code otherwise.
1954  */
1955 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1956 				u8 *oobbuf, int start, int nbytes,
1957 				int (*iter)(struct mtd_info *,
1958 					    int section,
1959 					    struct mtd_oob_region *oobregion))
1960 {
1961 	struct mtd_oob_region oobregion;
1962 	int section, ret;
1963 
1964 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1965 					&oobregion, iter);
1966 
1967 	while (!ret) {
1968 		int cnt;
1969 
1970 		cnt = min_t(int, nbytes, oobregion.length);
1971 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1972 		buf += cnt;
1973 		nbytes -= cnt;
1974 
1975 		if (!nbytes)
1976 			break;
1977 
1978 		ret = iter(mtd, ++section, &oobregion);
1979 	}
1980 
1981 	return ret;
1982 }
1983 
1984 /**
1985  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1986  * @mtd: mtd info structure
1987  * @iter: category iterator
1988  *
1989  * Count the number of bytes in a given category.
1990  *
1991  * Returns a positive value on success, a negative error code otherwise.
1992  */
1993 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1994 				int (*iter)(struct mtd_info *,
1995 					    int section,
1996 					    struct mtd_oob_region *oobregion))
1997 {
1998 	struct mtd_oob_region oobregion;
1999 	int section = 0, ret, nbytes = 0;
2000 
2001 	while (1) {
2002 		ret = iter(mtd, section++, &oobregion);
2003 		if (ret) {
2004 			if (ret == -ERANGE)
2005 				ret = nbytes;
2006 			break;
2007 		}
2008 
2009 		nbytes += oobregion.length;
2010 	}
2011 
2012 	return ret;
2013 }
2014 
2015 /**
2016  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
2017  * @mtd: mtd info structure
2018  * @eccbuf: destination buffer to store ECC bytes
2019  * @oobbuf: OOB buffer
2020  * @start: first ECC byte to retrieve
2021  * @nbytes: number of ECC bytes to retrieve
2022  *
2023  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
2024  *
2025  * Returns zero on success, a negative error code otherwise.
2026  */
2027 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
2028 			       const u8 *oobbuf, int start, int nbytes)
2029 {
2030 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2031 				       mtd_ooblayout_ecc);
2032 }
2033 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
2034 
2035 /**
2036  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
2037  * @mtd: mtd info structure
2038  * @eccbuf: source buffer to get ECC bytes from
2039  * @oobbuf: OOB buffer
2040  * @start: first ECC byte to set
2041  * @nbytes: number of ECC bytes to set
2042  *
2043  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
2044  *
2045  * Returns zero on success, a negative error code otherwise.
2046  */
2047 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
2048 			       u8 *oobbuf, int start, int nbytes)
2049 {
2050 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2051 				       mtd_ooblayout_ecc);
2052 }
2053 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
2054 
2055 /**
2056  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
2057  * @mtd: mtd info structure
2058  * @databuf: destination buffer to store ECC bytes
2059  * @oobbuf: OOB buffer
2060  * @start: first ECC byte to retrieve
2061  * @nbytes: number of ECC bytes to retrieve
2062  *
2063  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
2064  *
2065  * Returns zero on success, a negative error code otherwise.
2066  */
2067 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
2068 				const u8 *oobbuf, int start, int nbytes)
2069 {
2070 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
2071 				       mtd_ooblayout_free);
2072 }
2073 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
2074 
2075 /**
2076  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
2077  * @mtd: mtd info structure
2078  * @databuf: source buffer to get data bytes from
2079  * @oobbuf: OOB buffer
2080  * @start: first ECC byte to set
2081  * @nbytes: number of ECC bytes to set
2082  *
2083  * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
2084  *
2085  * Returns zero on success, a negative error code otherwise.
2086  */
2087 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
2088 				u8 *oobbuf, int start, int nbytes)
2089 {
2090 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
2091 				       mtd_ooblayout_free);
2092 }
2093 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
2094 
2095 /**
2096  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
2097  * @mtd: mtd info structure
2098  *
2099  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
2100  *
2101  * Returns zero on success, a negative error code otherwise.
2102  */
2103 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
2104 {
2105 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
2106 }
2107 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
2108 
2109 /**
2110  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
2111  * @mtd: mtd info structure
2112  *
2113  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
2114  *
2115  * Returns zero on success, a negative error code otherwise.
2116  */
2117 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
2118 {
2119 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
2120 }
2121 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
2122 
2123 /*
2124  * Method to access the protection register area, present in some flash
2125  * devices. The user data is one time programmable but the factory data is read
2126  * only.
2127  */
2128 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2129 			   struct otp_info *buf)
2130 {
2131 	struct mtd_info *master = mtd_get_master(mtd);
2132 
2133 	if (!master->_get_fact_prot_info)
2134 		return -EOPNOTSUPP;
2135 	if (!len)
2136 		return 0;
2137 	return master->_get_fact_prot_info(master, len, retlen, buf);
2138 }
2139 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2140 
2141 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2142 			   size_t *retlen, u_char *buf)
2143 {
2144 	struct mtd_info *master = mtd_get_master(mtd);
2145 
2146 	*retlen = 0;
2147 	if (!master->_read_fact_prot_reg)
2148 		return -EOPNOTSUPP;
2149 	if (!len)
2150 		return 0;
2151 	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2152 }
2153 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2154 
2155 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2156 			   struct otp_info *buf)
2157 {
2158 	struct mtd_info *master = mtd_get_master(mtd);
2159 
2160 	if (!master->_get_user_prot_info)
2161 		return -EOPNOTSUPP;
2162 	if (!len)
2163 		return 0;
2164 	return master->_get_user_prot_info(master, len, retlen, buf);
2165 }
2166 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2167 
2168 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2169 			   size_t *retlen, u_char *buf)
2170 {
2171 	struct mtd_info *master = mtd_get_master(mtd);
2172 
2173 	*retlen = 0;
2174 	if (!master->_read_user_prot_reg)
2175 		return -EOPNOTSUPP;
2176 	if (!len)
2177 		return 0;
2178 	return master->_read_user_prot_reg(master, from, len, retlen, buf);
2179 }
2180 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2181 
2182 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2183 			    size_t *retlen, const u_char *buf)
2184 {
2185 	struct mtd_info *master = mtd_get_master(mtd);
2186 	int ret;
2187 
2188 	*retlen = 0;
2189 	if (!master->_write_user_prot_reg)
2190 		return -EOPNOTSUPP;
2191 	if (!len)
2192 		return 0;
2193 	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2194 	if (ret)
2195 		return ret;
2196 
2197 	/*
2198 	 * If no data could be written at all, we are out of memory and
2199 	 * must return -ENOSPC.
2200 	 */
2201 	return (*retlen) ? 0 : -ENOSPC;
2202 }
2203 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2204 
2205 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2206 {
2207 	struct mtd_info *master = mtd_get_master(mtd);
2208 
2209 	if (!master->_lock_user_prot_reg)
2210 		return -EOPNOTSUPP;
2211 	if (!len)
2212 		return 0;
2213 	return master->_lock_user_prot_reg(master, from, len);
2214 }
2215 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2216 
2217 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2218 {
2219 	struct mtd_info *master = mtd_get_master(mtd);
2220 
2221 	if (!master->_erase_user_prot_reg)
2222 		return -EOPNOTSUPP;
2223 	if (!len)
2224 		return 0;
2225 	return master->_erase_user_prot_reg(master, from, len);
2226 }
2227 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2228 
2229 /* Chip-supported device locking */
2230 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2231 {
2232 	struct mtd_info *master = mtd_get_master(mtd);
2233 
2234 	if (!master->_lock)
2235 		return -EOPNOTSUPP;
2236 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2237 		return -EINVAL;
2238 	if (!len)
2239 		return 0;
2240 
2241 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2242 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2243 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2244 	}
2245 
2246 	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2247 }
2248 EXPORT_SYMBOL_GPL(mtd_lock);
2249 
2250 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2251 {
2252 	struct mtd_info *master = mtd_get_master(mtd);
2253 
2254 	if (!master->_unlock)
2255 		return -EOPNOTSUPP;
2256 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2257 		return -EINVAL;
2258 	if (!len)
2259 		return 0;
2260 
2261 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2262 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2263 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2264 	}
2265 
2266 	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2267 }
2268 EXPORT_SYMBOL_GPL(mtd_unlock);
2269 
2270 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2271 {
2272 	struct mtd_info *master = mtd_get_master(mtd);
2273 
2274 	if (!master->_is_locked)
2275 		return -EOPNOTSUPP;
2276 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2277 		return -EINVAL;
2278 	if (!len)
2279 		return 0;
2280 
2281 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2282 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2283 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2284 	}
2285 
2286 	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2287 }
2288 EXPORT_SYMBOL_GPL(mtd_is_locked);
2289 
2290 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2291 {
2292 	struct mtd_info *master = mtd_get_master(mtd);
2293 
2294 	if (ofs < 0 || ofs >= mtd->size)
2295 		return -EINVAL;
2296 	if (!master->_block_isreserved)
2297 		return 0;
2298 
2299 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2300 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2301 
2302 	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2303 }
2304 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2305 
2306 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2307 {
2308 	struct mtd_info *master = mtd_get_master(mtd);
2309 
2310 	if (ofs < 0 || ofs >= mtd->size)
2311 		return -EINVAL;
2312 	if (!master->_block_isbad)
2313 		return 0;
2314 
2315 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2316 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2317 
2318 	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2319 }
2320 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2321 
2322 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2323 {
2324 	struct mtd_info *master = mtd_get_master(mtd);
2325 	int ret;
2326 
2327 	if (!master->_block_markbad)
2328 		return -EOPNOTSUPP;
2329 	if (ofs < 0 || ofs >= mtd->size)
2330 		return -EINVAL;
2331 	if (!(mtd->flags & MTD_WRITEABLE))
2332 		return -EROFS;
2333 
2334 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2335 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2336 
2337 	ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2338 	if (ret)
2339 		return ret;
2340 
2341 	while (mtd->parent) {
2342 		mtd->ecc_stats.badblocks++;
2343 		mtd = mtd->parent;
2344 	}
2345 
2346 	return 0;
2347 }
2348 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2349 
2350 /*
2351  * default_mtd_writev - the default writev method
2352  * @mtd: mtd device description object pointer
2353  * @vecs: the vectors to write
2354  * @count: count of vectors in @vecs
2355  * @to: the MTD device offset to write to
2356  * @retlen: on exit contains the count of bytes written to the MTD device.
2357  *
2358  * This function returns zero in case of success and a negative error code in
2359  * case of failure.
2360  */
2361 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2362 			      unsigned long count, loff_t to, size_t *retlen)
2363 {
2364 	unsigned long i;
2365 	size_t totlen = 0, thislen;
2366 	int ret = 0;
2367 
2368 	for (i = 0; i < count; i++) {
2369 		if (!vecs[i].iov_len)
2370 			continue;
2371 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2372 				vecs[i].iov_base);
2373 		totlen += thislen;
2374 		if (ret || thislen != vecs[i].iov_len)
2375 			break;
2376 		to += vecs[i].iov_len;
2377 	}
2378 	*retlen = totlen;
2379 	return ret;
2380 }
2381 
2382 /*
2383  * mtd_writev - the vector-based MTD write method
2384  * @mtd: mtd device description object pointer
2385  * @vecs: the vectors to write
2386  * @count: count of vectors in @vecs
2387  * @to: the MTD device offset to write to
2388  * @retlen: on exit contains the count of bytes written to the MTD device.
2389  *
2390  * This function returns zero in case of success and a negative error code in
2391  * case of failure.
2392  */
2393 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2394 	       unsigned long count, loff_t to, size_t *retlen)
2395 {
2396 	struct mtd_info *master = mtd_get_master(mtd);
2397 
2398 	*retlen = 0;
2399 	if (!(mtd->flags & MTD_WRITEABLE))
2400 		return -EROFS;
2401 
2402 	if (!master->_writev)
2403 		return default_mtd_writev(mtd, vecs, count, to, retlen);
2404 
2405 	return master->_writev(master, vecs, count,
2406 			       mtd_get_master_ofs(mtd, to), retlen);
2407 }
2408 EXPORT_SYMBOL_GPL(mtd_writev);
2409 
2410 /**
2411  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2412  * @mtd: mtd device description object pointer
2413  * @size: a pointer to the ideal or maximum size of the allocation, points
2414  *        to the actual allocation size on success.
2415  *
2416  * This routine attempts to allocate a contiguous kernel buffer up to
2417  * the specified size, backing off the size of the request exponentially
2418  * until the request succeeds or until the allocation size falls below
2419  * the system page size. This attempts to make sure it does not adversely
2420  * impact system performance, so when allocating more than one page, we
2421  * ask the memory allocator to avoid re-trying, swapping, writing back
2422  * or performing I/O.
2423  *
2424  * Note, this function also makes sure that the allocated buffer is aligned to
2425  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2426  *
2427  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2428  * to handle smaller (i.e. degraded) buffer allocations under low- or
2429  * fragmented-memory situations where such reduced allocations, from a
2430  * requested ideal, are allowed.
2431  *
2432  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2433  */
2434 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2435 {
2436 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2437 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2438 	void *kbuf;
2439 
2440 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2441 
2442 	while (*size > min_alloc) {
2443 		kbuf = kmalloc(*size, flags);
2444 		if (kbuf)
2445 			return kbuf;
2446 
2447 		*size >>= 1;
2448 		*size = ALIGN(*size, mtd->writesize);
2449 	}
2450 
2451 	/*
2452 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2453 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2454 	 */
2455 	return kmalloc(*size, GFP_KERNEL);
2456 }
2457 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2458 
2459 #ifdef CONFIG_PROC_FS
2460 
2461 /*====================================================================*/
2462 /* Support for /proc/mtd */
2463 
2464 static int mtd_proc_show(struct seq_file *m, void *v)
2465 {
2466 	struct mtd_info *mtd;
2467 
2468 	seq_puts(m, "dev:    size   erasesize  name\n");
2469 	mutex_lock(&mtd_table_mutex);
2470 	mtd_for_each_device(mtd) {
2471 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2472 			   mtd->index, (unsigned long long)mtd->size,
2473 			   mtd->erasesize, mtd->name);
2474 	}
2475 	mutex_unlock(&mtd_table_mutex);
2476 	return 0;
2477 }
2478 #endif /* CONFIG_PROC_FS */
2479 
2480 /*====================================================================*/
2481 /* Init code */
2482 
2483 static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2484 {
2485 	struct backing_dev_info *bdi;
2486 	int ret;
2487 
2488 	bdi = bdi_alloc(NUMA_NO_NODE);
2489 	if (!bdi)
2490 		return ERR_PTR(-ENOMEM);
2491 	bdi->ra_pages = 0;
2492 	bdi->io_pages = 0;
2493 
2494 	/*
2495 	 * We put '-0' suffix to the name to get the same name format as we
2496 	 * used to get. Since this is called only once, we get a unique name.
2497 	 */
2498 	ret = bdi_register(bdi, "%.28s-0", name);
2499 	if (ret)
2500 		bdi_put(bdi);
2501 
2502 	return ret ? ERR_PTR(ret) : bdi;
2503 }
2504 
2505 static struct proc_dir_entry *proc_mtd;
2506 
2507 static int __init init_mtd(void)
2508 {
2509 	int ret;
2510 
2511 	ret = class_register(&mtd_class);
2512 	if (ret)
2513 		goto err_reg;
2514 
2515 	mtd_bdi = mtd_bdi_init("mtd");
2516 	if (IS_ERR(mtd_bdi)) {
2517 		ret = PTR_ERR(mtd_bdi);
2518 		goto err_bdi;
2519 	}
2520 
2521 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2522 
2523 	ret = init_mtdchar();
2524 	if (ret)
2525 		goto out_procfs;
2526 
2527 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2528 	debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2529 			    &mtd_expert_analysis_mode);
2530 
2531 	return 0;
2532 
2533 out_procfs:
2534 	if (proc_mtd)
2535 		remove_proc_entry("mtd", NULL);
2536 	bdi_unregister(mtd_bdi);
2537 	bdi_put(mtd_bdi);
2538 err_bdi:
2539 	class_unregister(&mtd_class);
2540 err_reg:
2541 	pr_err("Error registering mtd class or bdi: %d\n", ret);
2542 	return ret;
2543 }
2544 
2545 static void __exit cleanup_mtd(void)
2546 {
2547 	debugfs_remove_recursive(dfs_dir_mtd);
2548 	cleanup_mtdchar();
2549 	if (proc_mtd)
2550 		remove_proc_entry("mtd", NULL);
2551 	class_unregister(&mtd_class);
2552 	bdi_unregister(mtd_bdi);
2553 	bdi_put(mtd_bdi);
2554 	idr_destroy(&mtd_idr);
2555 }
2556 
2557 module_init(init_mtd);
2558 module_exit(cleanup_mtd);
2559 
2560 MODULE_LICENSE("GPL");
2561 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2562 MODULE_DESCRIPTION("Core MTD registration and access routines");
2563