xref: /openbmc/linux/drivers/mtd/mtdcore.c (revision fa538f7cf05aab61cd91e01c160d4a09c81b8ffe)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/slab.h>
27 #include <linux/reboot.h>
28 #include <linux/leds.h>
29 #include <linux/debugfs.h>
30 #include <linux/nvmem-provider.h>
31 
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/partitions.h>
34 
35 #include "mtdcore.h"
36 
37 struct backing_dev_info *mtd_bdi;
38 
39 #ifdef CONFIG_PM_SLEEP
40 
41 static int mtd_cls_suspend(struct device *dev)
42 {
43 	struct mtd_info *mtd = dev_get_drvdata(dev);
44 
45 	return mtd ? mtd_suspend(mtd) : 0;
46 }
47 
48 static int mtd_cls_resume(struct device *dev)
49 {
50 	struct mtd_info *mtd = dev_get_drvdata(dev);
51 
52 	if (mtd)
53 		mtd_resume(mtd);
54 	return 0;
55 }
56 
57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59 #else
60 #define MTD_CLS_PM_OPS NULL
61 #endif
62 
63 static struct class mtd_class = {
64 	.name = "mtd",
65 	.owner = THIS_MODULE,
66 	.pm = MTD_CLS_PM_OPS,
67 };
68 
69 static DEFINE_IDR(mtd_idr);
70 
71 /* These are exported solely for the purpose of mtd_blkdevs.c. You
72    should not use them for _anything_ else */
73 DEFINE_MUTEX(mtd_table_mutex);
74 EXPORT_SYMBOL_GPL(mtd_table_mutex);
75 
76 struct mtd_info *__mtd_next_device(int i)
77 {
78 	return idr_get_next(&mtd_idr, &i);
79 }
80 EXPORT_SYMBOL_GPL(__mtd_next_device);
81 
82 static LIST_HEAD(mtd_notifiers);
83 
84 
85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
86 
87 /* REVISIT once MTD uses the driver model better, whoever allocates
88  * the mtd_info will probably want to use the release() hook...
89  */
90 static void mtd_release(struct device *dev)
91 {
92 	struct mtd_info *mtd = dev_get_drvdata(dev);
93 	dev_t index = MTD_DEVT(mtd->index);
94 
95 	/* remove /dev/mtdXro node */
96 	device_destroy(&mtd_class, index + 1);
97 }
98 
99 static ssize_t mtd_type_show(struct device *dev,
100 		struct device_attribute *attr, char *buf)
101 {
102 	struct mtd_info *mtd = dev_get_drvdata(dev);
103 	char *type;
104 
105 	switch (mtd->type) {
106 	case MTD_ABSENT:
107 		type = "absent";
108 		break;
109 	case MTD_RAM:
110 		type = "ram";
111 		break;
112 	case MTD_ROM:
113 		type = "rom";
114 		break;
115 	case MTD_NORFLASH:
116 		type = "nor";
117 		break;
118 	case MTD_NANDFLASH:
119 		type = "nand";
120 		break;
121 	case MTD_DATAFLASH:
122 		type = "dataflash";
123 		break;
124 	case MTD_UBIVOLUME:
125 		type = "ubi";
126 		break;
127 	case MTD_MLCNANDFLASH:
128 		type = "mlc-nand";
129 		break;
130 	default:
131 		type = "unknown";
132 	}
133 
134 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
135 }
136 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
137 
138 static ssize_t mtd_flags_show(struct device *dev,
139 		struct device_attribute *attr, char *buf)
140 {
141 	struct mtd_info *mtd = dev_get_drvdata(dev);
142 
143 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
144 }
145 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
146 
147 static ssize_t mtd_size_show(struct device *dev,
148 		struct device_attribute *attr, char *buf)
149 {
150 	struct mtd_info *mtd = dev_get_drvdata(dev);
151 
152 	return snprintf(buf, PAGE_SIZE, "%llu\n",
153 		(unsigned long long)mtd->size);
154 }
155 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
156 
157 static ssize_t mtd_erasesize_show(struct device *dev,
158 		struct device_attribute *attr, char *buf)
159 {
160 	struct mtd_info *mtd = dev_get_drvdata(dev);
161 
162 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
163 }
164 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
165 
166 static ssize_t mtd_writesize_show(struct device *dev,
167 		struct device_attribute *attr, char *buf)
168 {
169 	struct mtd_info *mtd = dev_get_drvdata(dev);
170 
171 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
172 }
173 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
174 
175 static ssize_t mtd_subpagesize_show(struct device *dev,
176 		struct device_attribute *attr, char *buf)
177 {
178 	struct mtd_info *mtd = dev_get_drvdata(dev);
179 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
180 
181 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
182 }
183 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
184 
185 static ssize_t mtd_oobsize_show(struct device *dev,
186 		struct device_attribute *attr, char *buf)
187 {
188 	struct mtd_info *mtd = dev_get_drvdata(dev);
189 
190 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
191 }
192 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
193 
194 static ssize_t mtd_oobavail_show(struct device *dev,
195 				 struct device_attribute *attr, char *buf)
196 {
197 	struct mtd_info *mtd = dev_get_drvdata(dev);
198 
199 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
200 }
201 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
202 
203 static ssize_t mtd_numeraseregions_show(struct device *dev,
204 		struct device_attribute *attr, char *buf)
205 {
206 	struct mtd_info *mtd = dev_get_drvdata(dev);
207 
208 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
209 }
210 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
211 	NULL);
212 
213 static ssize_t mtd_name_show(struct device *dev,
214 		struct device_attribute *attr, char *buf)
215 {
216 	struct mtd_info *mtd = dev_get_drvdata(dev);
217 
218 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
219 }
220 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
221 
222 static ssize_t mtd_ecc_strength_show(struct device *dev,
223 				     struct device_attribute *attr, char *buf)
224 {
225 	struct mtd_info *mtd = dev_get_drvdata(dev);
226 
227 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
228 }
229 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
230 
231 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
232 					  struct device_attribute *attr,
233 					  char *buf)
234 {
235 	struct mtd_info *mtd = dev_get_drvdata(dev);
236 
237 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
238 }
239 
240 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
241 					   struct device_attribute *attr,
242 					   const char *buf, size_t count)
243 {
244 	struct mtd_info *mtd = dev_get_drvdata(dev);
245 	unsigned int bitflip_threshold;
246 	int retval;
247 
248 	retval = kstrtouint(buf, 0, &bitflip_threshold);
249 	if (retval)
250 		return retval;
251 
252 	mtd->bitflip_threshold = bitflip_threshold;
253 	return count;
254 }
255 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
256 		   mtd_bitflip_threshold_show,
257 		   mtd_bitflip_threshold_store);
258 
259 static ssize_t mtd_ecc_step_size_show(struct device *dev,
260 		struct device_attribute *attr, char *buf)
261 {
262 	struct mtd_info *mtd = dev_get_drvdata(dev);
263 
264 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
265 
266 }
267 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
268 
269 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
270 		struct device_attribute *attr, char *buf)
271 {
272 	struct mtd_info *mtd = dev_get_drvdata(dev);
273 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
274 
275 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
276 }
277 static DEVICE_ATTR(corrected_bits, S_IRUGO,
278 		   mtd_ecc_stats_corrected_show, NULL);
279 
280 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
281 		struct device_attribute *attr, char *buf)
282 {
283 	struct mtd_info *mtd = dev_get_drvdata(dev);
284 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
285 
286 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
287 }
288 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
289 
290 static ssize_t mtd_badblocks_show(struct device *dev,
291 		struct device_attribute *attr, char *buf)
292 {
293 	struct mtd_info *mtd = dev_get_drvdata(dev);
294 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
295 
296 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
297 }
298 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
299 
300 static ssize_t mtd_bbtblocks_show(struct device *dev,
301 		struct device_attribute *attr, char *buf)
302 {
303 	struct mtd_info *mtd = dev_get_drvdata(dev);
304 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
305 
306 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
307 }
308 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
309 
310 static struct attribute *mtd_attrs[] = {
311 	&dev_attr_type.attr,
312 	&dev_attr_flags.attr,
313 	&dev_attr_size.attr,
314 	&dev_attr_erasesize.attr,
315 	&dev_attr_writesize.attr,
316 	&dev_attr_subpagesize.attr,
317 	&dev_attr_oobsize.attr,
318 	&dev_attr_oobavail.attr,
319 	&dev_attr_numeraseregions.attr,
320 	&dev_attr_name.attr,
321 	&dev_attr_ecc_strength.attr,
322 	&dev_attr_ecc_step_size.attr,
323 	&dev_attr_corrected_bits.attr,
324 	&dev_attr_ecc_failures.attr,
325 	&dev_attr_bad_blocks.attr,
326 	&dev_attr_bbt_blocks.attr,
327 	&dev_attr_bitflip_threshold.attr,
328 	NULL,
329 };
330 ATTRIBUTE_GROUPS(mtd);
331 
332 static const struct device_type mtd_devtype = {
333 	.name		= "mtd",
334 	.groups		= mtd_groups,
335 	.release	= mtd_release,
336 };
337 
338 static int mtd_partid_debug_show(struct seq_file *s, void *p)
339 {
340 	struct mtd_info *mtd = s->private;
341 
342 	seq_printf(s, "%s\n", mtd->dbg.partid);
343 
344 	return 0;
345 }
346 
347 DEFINE_SHOW_ATTRIBUTE(mtd_partid_debug);
348 
349 static int mtd_partname_debug_show(struct seq_file *s, void *p)
350 {
351 	struct mtd_info *mtd = s->private;
352 
353 	seq_printf(s, "%s\n", mtd->dbg.partname);
354 
355 	return 0;
356 }
357 
358 DEFINE_SHOW_ATTRIBUTE(mtd_partname_debug);
359 
360 static struct dentry *dfs_dir_mtd;
361 
362 static void mtd_debugfs_populate(struct mtd_info *mtd)
363 {
364 	struct device *dev = &mtd->dev;
365 	struct dentry *root;
366 
367 	if (IS_ERR_OR_NULL(dfs_dir_mtd))
368 		return;
369 
370 	root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
371 	mtd->dbg.dfs_dir = root;
372 
373 	if (mtd->dbg.partid)
374 		debugfs_create_file("partid", 0400, root, mtd,
375 				    &mtd_partid_debug_fops);
376 
377 	if (mtd->dbg.partname)
378 		debugfs_create_file("partname", 0400, root, mtd,
379 				    &mtd_partname_debug_fops);
380 }
381 
382 #ifndef CONFIG_MMU
383 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
384 {
385 	switch (mtd->type) {
386 	case MTD_RAM:
387 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
388 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
389 	case MTD_ROM:
390 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
391 			NOMMU_MAP_READ;
392 	default:
393 		return NOMMU_MAP_COPY;
394 	}
395 }
396 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
397 #endif
398 
399 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
400 			       void *cmd)
401 {
402 	struct mtd_info *mtd;
403 
404 	mtd = container_of(n, struct mtd_info, reboot_notifier);
405 	mtd->_reboot(mtd);
406 
407 	return NOTIFY_DONE;
408 }
409 
410 /**
411  * mtd_wunit_to_pairing_info - get pairing information of a wunit
412  * @mtd: pointer to new MTD device info structure
413  * @wunit: write unit we are interested in
414  * @info: returned pairing information
415  *
416  * Retrieve pairing information associated to the wunit.
417  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
418  * paired together, and where programming a page may influence the page it is
419  * paired with.
420  * The notion of page is replaced by the term wunit (write-unit) to stay
421  * consistent with the ->writesize field.
422  *
423  * The @wunit argument can be extracted from an absolute offset using
424  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
425  * to @wunit.
426  *
427  * From the pairing info the MTD user can find all the wunits paired with
428  * @wunit using the following loop:
429  *
430  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
431  *	info.pair = i;
432  *	mtd_pairing_info_to_wunit(mtd, &info);
433  *	...
434  * }
435  */
436 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
437 			      struct mtd_pairing_info *info)
438 {
439 	struct mtd_info *master = mtd_get_master(mtd);
440 	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
441 
442 	if (wunit < 0 || wunit >= npairs)
443 		return -EINVAL;
444 
445 	if (master->pairing && master->pairing->get_info)
446 		return master->pairing->get_info(master, wunit, info);
447 
448 	info->group = 0;
449 	info->pair = wunit;
450 
451 	return 0;
452 }
453 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
454 
455 /**
456  * mtd_pairing_info_to_wunit - get wunit from pairing information
457  * @mtd: pointer to new MTD device info structure
458  * @info: pairing information struct
459  *
460  * Returns a positive number representing the wunit associated to the info
461  * struct, or a negative error code.
462  *
463  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
464  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
465  * doc).
466  *
467  * It can also be used to only program the first page of each pair (i.e.
468  * page attached to group 0), which allows one to use an MLC NAND in
469  * software-emulated SLC mode:
470  *
471  * info.group = 0;
472  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
473  * for (info.pair = 0; info.pair < npairs; info.pair++) {
474  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
475  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
476  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
477  * }
478  */
479 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
480 			      const struct mtd_pairing_info *info)
481 {
482 	struct mtd_info *master = mtd_get_master(mtd);
483 	int ngroups = mtd_pairing_groups(master);
484 	int npairs = mtd_wunit_per_eb(master) / ngroups;
485 
486 	if (!info || info->pair < 0 || info->pair >= npairs ||
487 	    info->group < 0 || info->group >= ngroups)
488 		return -EINVAL;
489 
490 	if (master->pairing && master->pairing->get_wunit)
491 		return mtd->pairing->get_wunit(master, info);
492 
493 	return info->pair;
494 }
495 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
496 
497 /**
498  * mtd_pairing_groups - get the number of pairing groups
499  * @mtd: pointer to new MTD device info structure
500  *
501  * Returns the number of pairing groups.
502  *
503  * This number is usually equal to the number of bits exposed by a single
504  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
505  * to iterate over all pages of a given pair.
506  */
507 int mtd_pairing_groups(struct mtd_info *mtd)
508 {
509 	struct mtd_info *master = mtd_get_master(mtd);
510 
511 	if (!master->pairing || !master->pairing->ngroups)
512 		return 1;
513 
514 	return master->pairing->ngroups;
515 }
516 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
517 
518 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
519 			      void *val, size_t bytes)
520 {
521 	struct mtd_info *mtd = priv;
522 	size_t retlen;
523 	int err;
524 
525 	err = mtd_read(mtd, offset, bytes, &retlen, val);
526 	if (err && err != -EUCLEAN)
527 		return err;
528 
529 	return retlen == bytes ? 0 : -EIO;
530 }
531 
532 static int mtd_nvmem_add(struct mtd_info *mtd)
533 {
534 	struct nvmem_config config = {};
535 
536 	config.id = -1;
537 	config.dev = &mtd->dev;
538 	config.name = dev_name(&mtd->dev);
539 	config.owner = THIS_MODULE;
540 	config.reg_read = mtd_nvmem_reg_read;
541 	config.size = mtd->size;
542 	config.word_size = 1;
543 	config.stride = 1;
544 	config.read_only = true;
545 	config.root_only = true;
546 	config.no_of_node = true;
547 	config.priv = mtd;
548 
549 	mtd->nvmem = nvmem_register(&config);
550 	if (IS_ERR(mtd->nvmem)) {
551 		/* Just ignore if there is no NVMEM support in the kernel */
552 		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
553 			mtd->nvmem = NULL;
554 		} else {
555 			dev_err(&mtd->dev, "Failed to register NVMEM device\n");
556 			return PTR_ERR(mtd->nvmem);
557 		}
558 	}
559 
560 	return 0;
561 }
562 
563 /**
564  *	add_mtd_device - register an MTD device
565  *	@mtd: pointer to new MTD device info structure
566  *
567  *	Add a device to the list of MTD devices present in the system, and
568  *	notify each currently active MTD 'user' of its arrival. Returns
569  *	zero on success or non-zero on failure.
570  */
571 
572 int add_mtd_device(struct mtd_info *mtd)
573 {
574 	struct mtd_info *master = mtd_get_master(mtd);
575 	struct mtd_notifier *not;
576 	int i, error;
577 
578 	/*
579 	 * May occur, for instance, on buggy drivers which call
580 	 * mtd_device_parse_register() multiple times on the same master MTD,
581 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
582 	 */
583 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
584 		return -EEXIST;
585 
586 	BUG_ON(mtd->writesize == 0);
587 
588 	/*
589 	 * MTD drivers should implement ->_{write,read}() or
590 	 * ->_{write,read}_oob(), but not both.
591 	 */
592 	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
593 		    (mtd->_read && mtd->_read_oob)))
594 		return -EINVAL;
595 
596 	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
597 		    !(mtd->flags & MTD_NO_ERASE)))
598 		return -EINVAL;
599 
600 	/*
601 	 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
602 	 * master is an MLC NAND and has a proper pairing scheme defined.
603 	 * We also reject masters that implement ->_writev() for now, because
604 	 * NAND controller drivers don't implement this hook, and adding the
605 	 * SLC -> MLC address/length conversion to this path is useless if we
606 	 * don't have a user.
607 	 */
608 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
609 	    (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
610 	     !master->pairing || master->_writev))
611 		return -EINVAL;
612 
613 	mutex_lock(&mtd_table_mutex);
614 
615 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
616 	if (i < 0) {
617 		error = i;
618 		goto fail_locked;
619 	}
620 
621 	mtd->index = i;
622 	mtd->usecount = 0;
623 
624 	/* default value if not set by driver */
625 	if (mtd->bitflip_threshold == 0)
626 		mtd->bitflip_threshold = mtd->ecc_strength;
627 
628 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
629 		int ngroups = mtd_pairing_groups(master);
630 
631 		mtd->erasesize /= ngroups;
632 		mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
633 			    mtd->erasesize;
634 	}
635 
636 	if (is_power_of_2(mtd->erasesize))
637 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
638 	else
639 		mtd->erasesize_shift = 0;
640 
641 	if (is_power_of_2(mtd->writesize))
642 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
643 	else
644 		mtd->writesize_shift = 0;
645 
646 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
647 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
648 
649 	/* Some chips always power up locked. Unlock them now */
650 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
651 		error = mtd_unlock(mtd, 0, mtd->size);
652 		if (error && error != -EOPNOTSUPP)
653 			printk(KERN_WARNING
654 			       "%s: unlock failed, writes may not work\n",
655 			       mtd->name);
656 		/* Ignore unlock failures? */
657 		error = 0;
658 	}
659 
660 	/* Caller should have set dev.parent to match the
661 	 * physical device, if appropriate.
662 	 */
663 	mtd->dev.type = &mtd_devtype;
664 	mtd->dev.class = &mtd_class;
665 	mtd->dev.devt = MTD_DEVT(i);
666 	dev_set_name(&mtd->dev, "mtd%d", i);
667 	dev_set_drvdata(&mtd->dev, mtd);
668 	of_node_get(mtd_get_of_node(mtd));
669 	error = device_register(&mtd->dev);
670 	if (error)
671 		goto fail_added;
672 
673 	/* Add the nvmem provider */
674 	error = mtd_nvmem_add(mtd);
675 	if (error)
676 		goto fail_nvmem_add;
677 
678 	mtd_debugfs_populate(mtd);
679 
680 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
681 		      "mtd%dro", i);
682 
683 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
684 	/* No need to get a refcount on the module containing
685 	   the notifier, since we hold the mtd_table_mutex */
686 	list_for_each_entry(not, &mtd_notifiers, list)
687 		not->add(mtd);
688 
689 	mutex_unlock(&mtd_table_mutex);
690 	/* We _know_ we aren't being removed, because
691 	   our caller is still holding us here. So none
692 	   of this try_ nonsense, and no bitching about it
693 	   either. :) */
694 	__module_get(THIS_MODULE);
695 	return 0;
696 
697 fail_nvmem_add:
698 	device_unregister(&mtd->dev);
699 fail_added:
700 	of_node_put(mtd_get_of_node(mtd));
701 	idr_remove(&mtd_idr, i);
702 fail_locked:
703 	mutex_unlock(&mtd_table_mutex);
704 	return error;
705 }
706 
707 /**
708  *	del_mtd_device - unregister an MTD device
709  *	@mtd: pointer to MTD device info structure
710  *
711  *	Remove a device from the list of MTD devices present in the system,
712  *	and notify each currently active MTD 'user' of its departure.
713  *	Returns zero on success or 1 on failure, which currently will happen
714  *	if the requested device does not appear to be present in the list.
715  */
716 
717 int del_mtd_device(struct mtd_info *mtd)
718 {
719 	int ret;
720 	struct mtd_notifier *not;
721 
722 	mutex_lock(&mtd_table_mutex);
723 
724 	debugfs_remove_recursive(mtd->dbg.dfs_dir);
725 
726 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
727 		ret = -ENODEV;
728 		goto out_error;
729 	}
730 
731 	/* No need to get a refcount on the module containing
732 		the notifier, since we hold the mtd_table_mutex */
733 	list_for_each_entry(not, &mtd_notifiers, list)
734 		not->remove(mtd);
735 
736 	if (mtd->usecount) {
737 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
738 		       mtd->index, mtd->name, mtd->usecount);
739 		ret = -EBUSY;
740 	} else {
741 		/* Try to remove the NVMEM provider */
742 		if (mtd->nvmem)
743 			nvmem_unregister(mtd->nvmem);
744 
745 		device_unregister(&mtd->dev);
746 
747 		idr_remove(&mtd_idr, mtd->index);
748 		of_node_put(mtd_get_of_node(mtd));
749 
750 		module_put(THIS_MODULE);
751 		ret = 0;
752 	}
753 
754 out_error:
755 	mutex_unlock(&mtd_table_mutex);
756 	return ret;
757 }
758 
759 /*
760  * Set a few defaults based on the parent devices, if not provided by the
761  * driver
762  */
763 static void mtd_set_dev_defaults(struct mtd_info *mtd)
764 {
765 	if (mtd->dev.parent) {
766 		if (!mtd->owner && mtd->dev.parent->driver)
767 			mtd->owner = mtd->dev.parent->driver->owner;
768 		if (!mtd->name)
769 			mtd->name = dev_name(mtd->dev.parent);
770 	} else {
771 		pr_debug("mtd device won't show a device symlink in sysfs\n");
772 	}
773 
774 	INIT_LIST_HEAD(&mtd->partitions);
775 	mutex_init(&mtd->master.partitions_lock);
776 }
777 
778 /**
779  * mtd_device_parse_register - parse partitions and register an MTD device.
780  *
781  * @mtd: the MTD device to register
782  * @types: the list of MTD partition probes to try, see
783  *         'parse_mtd_partitions()' for more information
784  * @parser_data: MTD partition parser-specific data
785  * @parts: fallback partition information to register, if parsing fails;
786  *         only valid if %nr_parts > %0
787  * @nr_parts: the number of partitions in parts, if zero then the full
788  *            MTD device is registered if no partition info is found
789  *
790  * This function aggregates MTD partitions parsing (done by
791  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
792  * basically follows the most common pattern found in many MTD drivers:
793  *
794  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
795  *   registered first.
796  * * Then It tries to probe partitions on MTD device @mtd using parsers
797  *   specified in @types (if @types is %NULL, then the default list of parsers
798  *   is used, see 'parse_mtd_partitions()' for more information). If none are
799  *   found this functions tries to fallback to information specified in
800  *   @parts/@nr_parts.
801  * * If no partitions were found this function just registers the MTD device
802  *   @mtd and exits.
803  *
804  * Returns zero in case of success and a negative error code in case of failure.
805  */
806 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
807 			      struct mtd_part_parser_data *parser_data,
808 			      const struct mtd_partition *parts,
809 			      int nr_parts)
810 {
811 	int ret;
812 
813 	mtd_set_dev_defaults(mtd);
814 
815 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
816 		ret = add_mtd_device(mtd);
817 		if (ret)
818 			return ret;
819 	}
820 
821 	/* Prefer parsed partitions over driver-provided fallback */
822 	ret = parse_mtd_partitions(mtd, types, parser_data);
823 	if (ret > 0)
824 		ret = 0;
825 	else if (nr_parts)
826 		ret = add_mtd_partitions(mtd, parts, nr_parts);
827 	else if (!device_is_registered(&mtd->dev))
828 		ret = add_mtd_device(mtd);
829 	else
830 		ret = 0;
831 
832 	if (ret)
833 		goto out;
834 
835 	/*
836 	 * FIXME: some drivers unfortunately call this function more than once.
837 	 * So we have to check if we've already assigned the reboot notifier.
838 	 *
839 	 * Generally, we can make multiple calls work for most cases, but it
840 	 * does cause problems with parse_mtd_partitions() above (e.g.,
841 	 * cmdlineparts will register partitions more than once).
842 	 */
843 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
844 		  "MTD already registered\n");
845 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
846 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
847 		register_reboot_notifier(&mtd->reboot_notifier);
848 	}
849 
850 out:
851 	if (ret && device_is_registered(&mtd->dev))
852 		del_mtd_device(mtd);
853 
854 	return ret;
855 }
856 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
857 
858 /**
859  * mtd_device_unregister - unregister an existing MTD device.
860  *
861  * @master: the MTD device to unregister.  This will unregister both the master
862  *          and any partitions if registered.
863  */
864 int mtd_device_unregister(struct mtd_info *master)
865 {
866 	int err;
867 
868 	if (master->_reboot)
869 		unregister_reboot_notifier(&master->reboot_notifier);
870 
871 	err = del_mtd_partitions(master);
872 	if (err)
873 		return err;
874 
875 	if (!device_is_registered(&master->dev))
876 		return 0;
877 
878 	return del_mtd_device(master);
879 }
880 EXPORT_SYMBOL_GPL(mtd_device_unregister);
881 
882 /**
883  *	register_mtd_user - register a 'user' of MTD devices.
884  *	@new: pointer to notifier info structure
885  *
886  *	Registers a pair of callbacks function to be called upon addition
887  *	or removal of MTD devices. Causes the 'add' callback to be immediately
888  *	invoked for each MTD device currently present in the system.
889  */
890 void register_mtd_user (struct mtd_notifier *new)
891 {
892 	struct mtd_info *mtd;
893 
894 	mutex_lock(&mtd_table_mutex);
895 
896 	list_add(&new->list, &mtd_notifiers);
897 
898 	__module_get(THIS_MODULE);
899 
900 	mtd_for_each_device(mtd)
901 		new->add(mtd);
902 
903 	mutex_unlock(&mtd_table_mutex);
904 }
905 EXPORT_SYMBOL_GPL(register_mtd_user);
906 
907 /**
908  *	unregister_mtd_user - unregister a 'user' of MTD devices.
909  *	@old: pointer to notifier info structure
910  *
911  *	Removes a callback function pair from the list of 'users' to be
912  *	notified upon addition or removal of MTD devices. Causes the
913  *	'remove' callback to be immediately invoked for each MTD device
914  *	currently present in the system.
915  */
916 int unregister_mtd_user (struct mtd_notifier *old)
917 {
918 	struct mtd_info *mtd;
919 
920 	mutex_lock(&mtd_table_mutex);
921 
922 	module_put(THIS_MODULE);
923 
924 	mtd_for_each_device(mtd)
925 		old->remove(mtd);
926 
927 	list_del(&old->list);
928 	mutex_unlock(&mtd_table_mutex);
929 	return 0;
930 }
931 EXPORT_SYMBOL_GPL(unregister_mtd_user);
932 
933 /**
934  *	get_mtd_device - obtain a validated handle for an MTD device
935  *	@mtd: last known address of the required MTD device
936  *	@num: internal device number of the required MTD device
937  *
938  *	Given a number and NULL address, return the num'th entry in the device
939  *	table, if any.	Given an address and num == -1, search the device table
940  *	for a device with that address and return if it's still present. Given
941  *	both, return the num'th driver only if its address matches. Return
942  *	error code if not.
943  */
944 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
945 {
946 	struct mtd_info *ret = NULL, *other;
947 	int err = -ENODEV;
948 
949 	mutex_lock(&mtd_table_mutex);
950 
951 	if (num == -1) {
952 		mtd_for_each_device(other) {
953 			if (other == mtd) {
954 				ret = mtd;
955 				break;
956 			}
957 		}
958 	} else if (num >= 0) {
959 		ret = idr_find(&mtd_idr, num);
960 		if (mtd && mtd != ret)
961 			ret = NULL;
962 	}
963 
964 	if (!ret) {
965 		ret = ERR_PTR(err);
966 		goto out;
967 	}
968 
969 	err = __get_mtd_device(ret);
970 	if (err)
971 		ret = ERR_PTR(err);
972 out:
973 	mutex_unlock(&mtd_table_mutex);
974 	return ret;
975 }
976 EXPORT_SYMBOL_GPL(get_mtd_device);
977 
978 
979 int __get_mtd_device(struct mtd_info *mtd)
980 {
981 	struct mtd_info *master = mtd_get_master(mtd);
982 	int err;
983 
984 	if (!try_module_get(master->owner))
985 		return -ENODEV;
986 
987 	if (master->_get_device) {
988 		err = master->_get_device(mtd);
989 
990 		if (err) {
991 			module_put(master->owner);
992 			return err;
993 		}
994 	}
995 
996 	while (mtd->parent) {
997 		mtd->usecount++;
998 		mtd = mtd->parent;
999 	}
1000 
1001 	return 0;
1002 }
1003 EXPORT_SYMBOL_GPL(__get_mtd_device);
1004 
1005 /**
1006  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1007  *	device name
1008  *	@name: MTD device name to open
1009  *
1010  * 	This function returns MTD device description structure in case of
1011  * 	success and an error code in case of failure.
1012  */
1013 struct mtd_info *get_mtd_device_nm(const char *name)
1014 {
1015 	int err = -ENODEV;
1016 	struct mtd_info *mtd = NULL, *other;
1017 
1018 	mutex_lock(&mtd_table_mutex);
1019 
1020 	mtd_for_each_device(other) {
1021 		if (!strcmp(name, other->name)) {
1022 			mtd = other;
1023 			break;
1024 		}
1025 	}
1026 
1027 	if (!mtd)
1028 		goto out_unlock;
1029 
1030 	err = __get_mtd_device(mtd);
1031 	if (err)
1032 		goto out_unlock;
1033 
1034 	mutex_unlock(&mtd_table_mutex);
1035 	return mtd;
1036 
1037 out_unlock:
1038 	mutex_unlock(&mtd_table_mutex);
1039 	return ERR_PTR(err);
1040 }
1041 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1042 
1043 void put_mtd_device(struct mtd_info *mtd)
1044 {
1045 	mutex_lock(&mtd_table_mutex);
1046 	__put_mtd_device(mtd);
1047 	mutex_unlock(&mtd_table_mutex);
1048 
1049 }
1050 EXPORT_SYMBOL_GPL(put_mtd_device);
1051 
1052 void __put_mtd_device(struct mtd_info *mtd)
1053 {
1054 	struct mtd_info *master = mtd_get_master(mtd);
1055 
1056 	while (mtd->parent) {
1057 		--mtd->usecount;
1058 		BUG_ON(mtd->usecount < 0);
1059 		mtd = mtd->parent;
1060 	}
1061 
1062 	if (master->_put_device)
1063 		master->_put_device(master);
1064 
1065 	module_put(master->owner);
1066 }
1067 EXPORT_SYMBOL_GPL(__put_mtd_device);
1068 
1069 /*
1070  * Erase is an synchronous operation. Device drivers are epected to return a
1071  * negative error code if the operation failed and update instr->fail_addr
1072  * to point the portion that was not properly erased.
1073  */
1074 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1075 {
1076 	struct mtd_info *master = mtd_get_master(mtd);
1077 	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1078 	struct erase_info adjinstr;
1079 	int ret;
1080 
1081 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1082 	adjinstr = *instr;
1083 
1084 	if (!mtd->erasesize || !master->_erase)
1085 		return -ENOTSUPP;
1086 
1087 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1088 		return -EINVAL;
1089 	if (!(mtd->flags & MTD_WRITEABLE))
1090 		return -EROFS;
1091 
1092 	if (!instr->len)
1093 		return 0;
1094 
1095 	ledtrig_mtd_activity();
1096 
1097 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1098 		adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1099 				master->erasesize;
1100 		adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1101 				master->erasesize) -
1102 			       adjinstr.addr;
1103 	}
1104 
1105 	adjinstr.addr += mst_ofs;
1106 
1107 	ret = master->_erase(master, &adjinstr);
1108 
1109 	if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1110 		instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1111 		if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1112 			instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1113 							 master);
1114 			instr->fail_addr *= mtd->erasesize;
1115 		}
1116 	}
1117 
1118 	return ret;
1119 }
1120 EXPORT_SYMBOL_GPL(mtd_erase);
1121 
1122 /*
1123  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1124  */
1125 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1126 	      void **virt, resource_size_t *phys)
1127 {
1128 	struct mtd_info *master = mtd_get_master(mtd);
1129 
1130 	*retlen = 0;
1131 	*virt = NULL;
1132 	if (phys)
1133 		*phys = 0;
1134 	if (!master->_point)
1135 		return -EOPNOTSUPP;
1136 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1137 		return -EINVAL;
1138 	if (!len)
1139 		return 0;
1140 
1141 	from = mtd_get_master_ofs(mtd, from);
1142 	return master->_point(master, from, len, retlen, virt, phys);
1143 }
1144 EXPORT_SYMBOL_GPL(mtd_point);
1145 
1146 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1147 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1148 {
1149 	struct mtd_info *master = mtd_get_master(mtd);
1150 
1151 	if (!master->_unpoint)
1152 		return -EOPNOTSUPP;
1153 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1154 		return -EINVAL;
1155 	if (!len)
1156 		return 0;
1157 	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1158 }
1159 EXPORT_SYMBOL_GPL(mtd_unpoint);
1160 
1161 /*
1162  * Allow NOMMU mmap() to directly map the device (if not NULL)
1163  * - return the address to which the offset maps
1164  * - return -ENOSYS to indicate refusal to do the mapping
1165  */
1166 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1167 				    unsigned long offset, unsigned long flags)
1168 {
1169 	size_t retlen;
1170 	void *virt;
1171 	int ret;
1172 
1173 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1174 	if (ret)
1175 		return ret;
1176 	if (retlen != len) {
1177 		mtd_unpoint(mtd, offset, retlen);
1178 		return -ENOSYS;
1179 	}
1180 	return (unsigned long)virt;
1181 }
1182 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1183 
1184 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1185 				 const struct mtd_ecc_stats *old_stats)
1186 {
1187 	struct mtd_ecc_stats diff;
1188 
1189 	if (master == mtd)
1190 		return;
1191 
1192 	diff = master->ecc_stats;
1193 	diff.failed -= old_stats->failed;
1194 	diff.corrected -= old_stats->corrected;
1195 
1196 	while (mtd->parent) {
1197 		mtd->ecc_stats.failed += diff.failed;
1198 		mtd->ecc_stats.corrected += diff.corrected;
1199 		mtd = mtd->parent;
1200 	}
1201 }
1202 
1203 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1204 	     u_char *buf)
1205 {
1206 	struct mtd_oob_ops ops = {
1207 		.len = len,
1208 		.datbuf = buf,
1209 	};
1210 	int ret;
1211 
1212 	ret = mtd_read_oob(mtd, from, &ops);
1213 	*retlen = ops.retlen;
1214 
1215 	return ret;
1216 }
1217 EXPORT_SYMBOL_GPL(mtd_read);
1218 
1219 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1220 	      const u_char *buf)
1221 {
1222 	struct mtd_oob_ops ops = {
1223 		.len = len,
1224 		.datbuf = (u8 *)buf,
1225 	};
1226 	int ret;
1227 
1228 	ret = mtd_write_oob(mtd, to, &ops);
1229 	*retlen = ops.retlen;
1230 
1231 	return ret;
1232 }
1233 EXPORT_SYMBOL_GPL(mtd_write);
1234 
1235 /*
1236  * In blackbox flight recorder like scenarios we want to make successful writes
1237  * in interrupt context. panic_write() is only intended to be called when its
1238  * known the kernel is about to panic and we need the write to succeed. Since
1239  * the kernel is not going to be running for much longer, this function can
1240  * break locks and delay to ensure the write succeeds (but not sleep).
1241  */
1242 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1243 		    const u_char *buf)
1244 {
1245 	struct mtd_info *master = mtd_get_master(mtd);
1246 
1247 	*retlen = 0;
1248 	if (!master->_panic_write)
1249 		return -EOPNOTSUPP;
1250 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1251 		return -EINVAL;
1252 	if (!(mtd->flags & MTD_WRITEABLE))
1253 		return -EROFS;
1254 	if (!len)
1255 		return 0;
1256 	if (!master->oops_panic_write)
1257 		master->oops_panic_write = true;
1258 
1259 	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1260 				    retlen, buf);
1261 }
1262 EXPORT_SYMBOL_GPL(mtd_panic_write);
1263 
1264 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1265 			     struct mtd_oob_ops *ops)
1266 {
1267 	/*
1268 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1269 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1270 	 *  this case.
1271 	 */
1272 	if (!ops->datbuf)
1273 		ops->len = 0;
1274 
1275 	if (!ops->oobbuf)
1276 		ops->ooblen = 0;
1277 
1278 	if (offs < 0 || offs + ops->len > mtd->size)
1279 		return -EINVAL;
1280 
1281 	if (ops->ooblen) {
1282 		size_t maxooblen;
1283 
1284 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1285 			return -EINVAL;
1286 
1287 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1288 				      mtd_div_by_ws(offs, mtd)) *
1289 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1290 		if (ops->ooblen > maxooblen)
1291 			return -EINVAL;
1292 	}
1293 
1294 	return 0;
1295 }
1296 
1297 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1298 			    struct mtd_oob_ops *ops)
1299 {
1300 	struct mtd_info *master = mtd_get_master(mtd);
1301 	int ret;
1302 
1303 	from = mtd_get_master_ofs(mtd, from);
1304 	if (master->_read_oob)
1305 		ret = master->_read_oob(master, from, ops);
1306 	else
1307 		ret = master->_read(master, from, ops->len, &ops->retlen,
1308 				    ops->datbuf);
1309 
1310 	return ret;
1311 }
1312 
1313 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1314 			     struct mtd_oob_ops *ops)
1315 {
1316 	struct mtd_info *master = mtd_get_master(mtd);
1317 	int ret;
1318 
1319 	to = mtd_get_master_ofs(mtd, to);
1320 	if (master->_write_oob)
1321 		ret = master->_write_oob(master, to, ops);
1322 	else
1323 		ret = master->_write(master, to, ops->len, &ops->retlen,
1324 				     ops->datbuf);
1325 
1326 	return ret;
1327 }
1328 
1329 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1330 			       struct mtd_oob_ops *ops)
1331 {
1332 	struct mtd_info *master = mtd_get_master(mtd);
1333 	int ngroups = mtd_pairing_groups(master);
1334 	int npairs = mtd_wunit_per_eb(master) / ngroups;
1335 	struct mtd_oob_ops adjops = *ops;
1336 	unsigned int wunit, oobavail;
1337 	struct mtd_pairing_info info;
1338 	int max_bitflips = 0;
1339 	u32 ebofs, pageofs;
1340 	loff_t base, pos;
1341 
1342 	ebofs = mtd_mod_by_eb(start, mtd);
1343 	base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1344 	info.group = 0;
1345 	info.pair = mtd_div_by_ws(ebofs, mtd);
1346 	pageofs = mtd_mod_by_ws(ebofs, mtd);
1347 	oobavail = mtd_oobavail(mtd, ops);
1348 
1349 	while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1350 		int ret;
1351 
1352 		if (info.pair >= npairs) {
1353 			info.pair = 0;
1354 			base += master->erasesize;
1355 		}
1356 
1357 		wunit = mtd_pairing_info_to_wunit(master, &info);
1358 		pos = mtd_wunit_to_offset(mtd, base, wunit);
1359 
1360 		adjops.len = ops->len - ops->retlen;
1361 		if (adjops.len > mtd->writesize - pageofs)
1362 			adjops.len = mtd->writesize - pageofs;
1363 
1364 		adjops.ooblen = ops->ooblen - ops->oobretlen;
1365 		if (adjops.ooblen > oobavail - adjops.ooboffs)
1366 			adjops.ooblen = oobavail - adjops.ooboffs;
1367 
1368 		if (read) {
1369 			ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1370 			if (ret > 0)
1371 				max_bitflips = max(max_bitflips, ret);
1372 		} else {
1373 			ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1374 		}
1375 
1376 		if (ret < 0)
1377 			return ret;
1378 
1379 		max_bitflips = max(max_bitflips, ret);
1380 		ops->retlen += adjops.retlen;
1381 		ops->oobretlen += adjops.oobretlen;
1382 		adjops.datbuf += adjops.retlen;
1383 		adjops.oobbuf += adjops.oobretlen;
1384 		adjops.ooboffs = 0;
1385 		pageofs = 0;
1386 		info.pair++;
1387 	}
1388 
1389 	return max_bitflips;
1390 }
1391 
1392 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1393 {
1394 	struct mtd_info *master = mtd_get_master(mtd);
1395 	struct mtd_ecc_stats old_stats = master->ecc_stats;
1396 	int ret_code;
1397 
1398 	ops->retlen = ops->oobretlen = 0;
1399 
1400 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1401 	if (ret_code)
1402 		return ret_code;
1403 
1404 	ledtrig_mtd_activity();
1405 
1406 	/* Check the validity of a potential fallback on mtd->_read */
1407 	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1408 		return -EOPNOTSUPP;
1409 
1410 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1411 		ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1412 	else
1413 		ret_code = mtd_read_oob_std(mtd, from, ops);
1414 
1415 	mtd_update_ecc_stats(mtd, master, &old_stats);
1416 
1417 	/*
1418 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1419 	 * similar to mtd->_read(), returning a non-negative integer
1420 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1421 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1422 	 */
1423 	if (unlikely(ret_code < 0))
1424 		return ret_code;
1425 	if (mtd->ecc_strength == 0)
1426 		return 0;	/* device lacks ecc */
1427 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1428 }
1429 EXPORT_SYMBOL_GPL(mtd_read_oob);
1430 
1431 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1432 				struct mtd_oob_ops *ops)
1433 {
1434 	struct mtd_info *master = mtd_get_master(mtd);
1435 	int ret;
1436 
1437 	ops->retlen = ops->oobretlen = 0;
1438 
1439 	if (!(mtd->flags & MTD_WRITEABLE))
1440 		return -EROFS;
1441 
1442 	ret = mtd_check_oob_ops(mtd, to, ops);
1443 	if (ret)
1444 		return ret;
1445 
1446 	ledtrig_mtd_activity();
1447 
1448 	/* Check the validity of a potential fallback on mtd->_write */
1449 	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1450 		return -EOPNOTSUPP;
1451 
1452 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1453 		return mtd_io_emulated_slc(mtd, to, false, ops);
1454 
1455 	return mtd_write_oob_std(mtd, to, ops);
1456 }
1457 EXPORT_SYMBOL_GPL(mtd_write_oob);
1458 
1459 /**
1460  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1461  * @mtd: MTD device structure
1462  * @section: ECC section. Depending on the layout you may have all the ECC
1463  *	     bytes stored in a single contiguous section, or one section
1464  *	     per ECC chunk (and sometime several sections for a single ECC
1465  *	     ECC chunk)
1466  * @oobecc: OOB region struct filled with the appropriate ECC position
1467  *	    information
1468  *
1469  * This function returns ECC section information in the OOB area. If you want
1470  * to get all the ECC bytes information, then you should call
1471  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1472  *
1473  * Returns zero on success, a negative error code otherwise.
1474  */
1475 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1476 		      struct mtd_oob_region *oobecc)
1477 {
1478 	struct mtd_info *master = mtd_get_master(mtd);
1479 
1480 	memset(oobecc, 0, sizeof(*oobecc));
1481 
1482 	if (!master || section < 0)
1483 		return -EINVAL;
1484 
1485 	if (!master->ooblayout || !master->ooblayout->ecc)
1486 		return -ENOTSUPP;
1487 
1488 	return master->ooblayout->ecc(master, section, oobecc);
1489 }
1490 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1491 
1492 /**
1493  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1494  *			section
1495  * @mtd: MTD device structure
1496  * @section: Free section you are interested in. Depending on the layout
1497  *	     you may have all the free bytes stored in a single contiguous
1498  *	     section, or one section per ECC chunk plus an extra section
1499  *	     for the remaining bytes (or other funky layout).
1500  * @oobfree: OOB region struct filled with the appropriate free position
1501  *	     information
1502  *
1503  * This function returns free bytes position in the OOB area. If you want
1504  * to get all the free bytes information, then you should call
1505  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1506  *
1507  * Returns zero on success, a negative error code otherwise.
1508  */
1509 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1510 		       struct mtd_oob_region *oobfree)
1511 {
1512 	struct mtd_info *master = mtd_get_master(mtd);
1513 
1514 	memset(oobfree, 0, sizeof(*oobfree));
1515 
1516 	if (!master || section < 0)
1517 		return -EINVAL;
1518 
1519 	if (!master->ooblayout || !master->ooblayout->free)
1520 		return -ENOTSUPP;
1521 
1522 	return master->ooblayout->free(master, section, oobfree);
1523 }
1524 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1525 
1526 /**
1527  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1528  * @mtd: mtd info structure
1529  * @byte: the byte we are searching for
1530  * @sectionp: pointer where the section id will be stored
1531  * @oobregion: used to retrieve the ECC position
1532  * @iter: iterator function. Should be either mtd_ooblayout_free or
1533  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1534  *
1535  * This function returns the section id and oobregion information of a
1536  * specific byte. For example, say you want to know where the 4th ECC byte is
1537  * stored, you'll use:
1538  *
1539  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1540  *
1541  * Returns zero on success, a negative error code otherwise.
1542  */
1543 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1544 				int *sectionp, struct mtd_oob_region *oobregion,
1545 				int (*iter)(struct mtd_info *,
1546 					    int section,
1547 					    struct mtd_oob_region *oobregion))
1548 {
1549 	int pos = 0, ret, section = 0;
1550 
1551 	memset(oobregion, 0, sizeof(*oobregion));
1552 
1553 	while (1) {
1554 		ret = iter(mtd, section, oobregion);
1555 		if (ret)
1556 			return ret;
1557 
1558 		if (pos + oobregion->length > byte)
1559 			break;
1560 
1561 		pos += oobregion->length;
1562 		section++;
1563 	}
1564 
1565 	/*
1566 	 * Adjust region info to make it start at the beginning at the
1567 	 * 'start' ECC byte.
1568 	 */
1569 	oobregion->offset += byte - pos;
1570 	oobregion->length -= byte - pos;
1571 	*sectionp = section;
1572 
1573 	return 0;
1574 }
1575 
1576 /**
1577  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1578  *				  ECC byte
1579  * @mtd: mtd info structure
1580  * @eccbyte: the byte we are searching for
1581  * @sectionp: pointer where the section id will be stored
1582  * @oobregion: OOB region information
1583  *
1584  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1585  * byte.
1586  *
1587  * Returns zero on success, a negative error code otherwise.
1588  */
1589 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1590 				 int *section,
1591 				 struct mtd_oob_region *oobregion)
1592 {
1593 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1594 					 mtd_ooblayout_ecc);
1595 }
1596 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1597 
1598 /**
1599  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1600  * @mtd: mtd info structure
1601  * @buf: destination buffer to store OOB bytes
1602  * @oobbuf: OOB buffer
1603  * @start: first byte to retrieve
1604  * @nbytes: number of bytes to retrieve
1605  * @iter: section iterator
1606  *
1607  * Extract bytes attached to a specific category (ECC or free)
1608  * from the OOB buffer and copy them into buf.
1609  *
1610  * Returns zero on success, a negative error code otherwise.
1611  */
1612 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1613 				const u8 *oobbuf, int start, int nbytes,
1614 				int (*iter)(struct mtd_info *,
1615 					    int section,
1616 					    struct mtd_oob_region *oobregion))
1617 {
1618 	struct mtd_oob_region oobregion;
1619 	int section, ret;
1620 
1621 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1622 					&oobregion, iter);
1623 
1624 	while (!ret) {
1625 		int cnt;
1626 
1627 		cnt = min_t(int, nbytes, oobregion.length);
1628 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1629 		buf += cnt;
1630 		nbytes -= cnt;
1631 
1632 		if (!nbytes)
1633 			break;
1634 
1635 		ret = iter(mtd, ++section, &oobregion);
1636 	}
1637 
1638 	return ret;
1639 }
1640 
1641 /**
1642  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1643  * @mtd: mtd info structure
1644  * @buf: source buffer to get OOB bytes from
1645  * @oobbuf: OOB buffer
1646  * @start: first OOB byte to set
1647  * @nbytes: number of OOB bytes to set
1648  * @iter: section iterator
1649  *
1650  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1651  * is selected by passing the appropriate iterator.
1652  *
1653  * Returns zero on success, a negative error code otherwise.
1654  */
1655 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1656 				u8 *oobbuf, int start, int nbytes,
1657 				int (*iter)(struct mtd_info *,
1658 					    int section,
1659 					    struct mtd_oob_region *oobregion))
1660 {
1661 	struct mtd_oob_region oobregion;
1662 	int section, ret;
1663 
1664 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1665 					&oobregion, iter);
1666 
1667 	while (!ret) {
1668 		int cnt;
1669 
1670 		cnt = min_t(int, nbytes, oobregion.length);
1671 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1672 		buf += cnt;
1673 		nbytes -= cnt;
1674 
1675 		if (!nbytes)
1676 			break;
1677 
1678 		ret = iter(mtd, ++section, &oobregion);
1679 	}
1680 
1681 	return ret;
1682 }
1683 
1684 /**
1685  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1686  * @mtd: mtd info structure
1687  * @iter: category iterator
1688  *
1689  * Count the number of bytes in a given category.
1690  *
1691  * Returns a positive value on success, a negative error code otherwise.
1692  */
1693 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1694 				int (*iter)(struct mtd_info *,
1695 					    int section,
1696 					    struct mtd_oob_region *oobregion))
1697 {
1698 	struct mtd_oob_region oobregion;
1699 	int section = 0, ret, nbytes = 0;
1700 
1701 	while (1) {
1702 		ret = iter(mtd, section++, &oobregion);
1703 		if (ret) {
1704 			if (ret == -ERANGE)
1705 				ret = nbytes;
1706 			break;
1707 		}
1708 
1709 		nbytes += oobregion.length;
1710 	}
1711 
1712 	return ret;
1713 }
1714 
1715 /**
1716  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1717  * @mtd: mtd info structure
1718  * @eccbuf: destination buffer to store ECC bytes
1719  * @oobbuf: OOB buffer
1720  * @start: first ECC byte to retrieve
1721  * @nbytes: number of ECC bytes to retrieve
1722  *
1723  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1724  *
1725  * Returns zero on success, a negative error code otherwise.
1726  */
1727 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1728 			       const u8 *oobbuf, int start, int nbytes)
1729 {
1730 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1731 				       mtd_ooblayout_ecc);
1732 }
1733 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1734 
1735 /**
1736  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1737  * @mtd: mtd info structure
1738  * @eccbuf: source buffer to get ECC bytes from
1739  * @oobbuf: OOB buffer
1740  * @start: first ECC byte to set
1741  * @nbytes: number of ECC bytes to set
1742  *
1743  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1744  *
1745  * Returns zero on success, a negative error code otherwise.
1746  */
1747 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1748 			       u8 *oobbuf, int start, int nbytes)
1749 {
1750 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1751 				       mtd_ooblayout_ecc);
1752 }
1753 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1754 
1755 /**
1756  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1757  * @mtd: mtd info structure
1758  * @databuf: destination buffer to store ECC bytes
1759  * @oobbuf: OOB buffer
1760  * @start: first ECC byte to retrieve
1761  * @nbytes: number of ECC bytes to retrieve
1762  *
1763  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1764  *
1765  * Returns zero on success, a negative error code otherwise.
1766  */
1767 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1768 				const u8 *oobbuf, int start, int nbytes)
1769 {
1770 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1771 				       mtd_ooblayout_free);
1772 }
1773 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1774 
1775 /**
1776  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1777  * @mtd: mtd info structure
1778  * @databuf: source buffer to get data bytes from
1779  * @oobbuf: OOB buffer
1780  * @start: first ECC byte to set
1781  * @nbytes: number of ECC bytes to set
1782  *
1783  * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
1784  *
1785  * Returns zero on success, a negative error code otherwise.
1786  */
1787 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1788 				u8 *oobbuf, int start, int nbytes)
1789 {
1790 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1791 				       mtd_ooblayout_free);
1792 }
1793 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1794 
1795 /**
1796  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1797  * @mtd: mtd info structure
1798  *
1799  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1800  *
1801  * Returns zero on success, a negative error code otherwise.
1802  */
1803 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1804 {
1805 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1806 }
1807 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1808 
1809 /**
1810  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1811  * @mtd: mtd info structure
1812  *
1813  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1814  *
1815  * Returns zero on success, a negative error code otherwise.
1816  */
1817 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1818 {
1819 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1820 }
1821 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1822 
1823 /*
1824  * Method to access the protection register area, present in some flash
1825  * devices. The user data is one time programmable but the factory data is read
1826  * only.
1827  */
1828 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1829 			   struct otp_info *buf)
1830 {
1831 	struct mtd_info *master = mtd_get_master(mtd);
1832 
1833 	if (!master->_get_fact_prot_info)
1834 		return -EOPNOTSUPP;
1835 	if (!len)
1836 		return 0;
1837 	return master->_get_fact_prot_info(master, len, retlen, buf);
1838 }
1839 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1840 
1841 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1842 			   size_t *retlen, u_char *buf)
1843 {
1844 	struct mtd_info *master = mtd_get_master(mtd);
1845 
1846 	*retlen = 0;
1847 	if (!master->_read_fact_prot_reg)
1848 		return -EOPNOTSUPP;
1849 	if (!len)
1850 		return 0;
1851 	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
1852 }
1853 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1854 
1855 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1856 			   struct otp_info *buf)
1857 {
1858 	struct mtd_info *master = mtd_get_master(mtd);
1859 
1860 	if (!master->_get_user_prot_info)
1861 		return -EOPNOTSUPP;
1862 	if (!len)
1863 		return 0;
1864 	return master->_get_user_prot_info(master, len, retlen, buf);
1865 }
1866 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1867 
1868 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1869 			   size_t *retlen, u_char *buf)
1870 {
1871 	struct mtd_info *master = mtd_get_master(mtd);
1872 
1873 	*retlen = 0;
1874 	if (!master->_read_user_prot_reg)
1875 		return -EOPNOTSUPP;
1876 	if (!len)
1877 		return 0;
1878 	return master->_read_user_prot_reg(master, from, len, retlen, buf);
1879 }
1880 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1881 
1882 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1883 			    size_t *retlen, u_char *buf)
1884 {
1885 	struct mtd_info *master = mtd_get_master(mtd);
1886 	int ret;
1887 
1888 	*retlen = 0;
1889 	if (!master->_write_user_prot_reg)
1890 		return -EOPNOTSUPP;
1891 	if (!len)
1892 		return 0;
1893 	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
1894 	if (ret)
1895 		return ret;
1896 
1897 	/*
1898 	 * If no data could be written at all, we are out of memory and
1899 	 * must return -ENOSPC.
1900 	 */
1901 	return (*retlen) ? 0 : -ENOSPC;
1902 }
1903 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1904 
1905 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1906 {
1907 	struct mtd_info *master = mtd_get_master(mtd);
1908 
1909 	if (!master->_lock_user_prot_reg)
1910 		return -EOPNOTSUPP;
1911 	if (!len)
1912 		return 0;
1913 	return master->_lock_user_prot_reg(master, from, len);
1914 }
1915 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1916 
1917 /* Chip-supported device locking */
1918 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1919 {
1920 	struct mtd_info *master = mtd_get_master(mtd);
1921 
1922 	if (!master->_lock)
1923 		return -EOPNOTSUPP;
1924 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1925 		return -EINVAL;
1926 	if (!len)
1927 		return 0;
1928 
1929 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1930 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1931 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1932 	}
1933 
1934 	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
1935 }
1936 EXPORT_SYMBOL_GPL(mtd_lock);
1937 
1938 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1939 {
1940 	struct mtd_info *master = mtd_get_master(mtd);
1941 
1942 	if (!master->_unlock)
1943 		return -EOPNOTSUPP;
1944 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1945 		return -EINVAL;
1946 	if (!len)
1947 		return 0;
1948 
1949 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1950 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1951 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1952 	}
1953 
1954 	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
1955 }
1956 EXPORT_SYMBOL_GPL(mtd_unlock);
1957 
1958 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1959 {
1960 	struct mtd_info *master = mtd_get_master(mtd);
1961 
1962 	if (!master->_is_locked)
1963 		return -EOPNOTSUPP;
1964 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1965 		return -EINVAL;
1966 	if (!len)
1967 		return 0;
1968 
1969 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1970 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1971 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1972 	}
1973 
1974 	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
1975 }
1976 EXPORT_SYMBOL_GPL(mtd_is_locked);
1977 
1978 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1979 {
1980 	struct mtd_info *master = mtd_get_master(mtd);
1981 
1982 	if (ofs < 0 || ofs >= mtd->size)
1983 		return -EINVAL;
1984 	if (!master->_block_isreserved)
1985 		return 0;
1986 
1987 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1988 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1989 
1990 	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
1991 }
1992 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1993 
1994 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1995 {
1996 	struct mtd_info *master = mtd_get_master(mtd);
1997 
1998 	if (ofs < 0 || ofs >= mtd->size)
1999 		return -EINVAL;
2000 	if (!master->_block_isbad)
2001 		return 0;
2002 
2003 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2004 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2005 
2006 	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2007 }
2008 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2009 
2010 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2011 {
2012 	struct mtd_info *master = mtd_get_master(mtd);
2013 	int ret;
2014 
2015 	if (!master->_block_markbad)
2016 		return -EOPNOTSUPP;
2017 	if (ofs < 0 || ofs >= mtd->size)
2018 		return -EINVAL;
2019 	if (!(mtd->flags & MTD_WRITEABLE))
2020 		return -EROFS;
2021 
2022 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2023 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2024 
2025 	ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2026 	if (ret)
2027 		return ret;
2028 
2029 	while (mtd->parent) {
2030 		mtd->ecc_stats.badblocks++;
2031 		mtd = mtd->parent;
2032 	}
2033 
2034 	return 0;
2035 }
2036 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2037 
2038 /*
2039  * default_mtd_writev - the default writev method
2040  * @mtd: mtd device description object pointer
2041  * @vecs: the vectors to write
2042  * @count: count of vectors in @vecs
2043  * @to: the MTD device offset to write to
2044  * @retlen: on exit contains the count of bytes written to the MTD device.
2045  *
2046  * This function returns zero in case of success and a negative error code in
2047  * case of failure.
2048  */
2049 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2050 			      unsigned long count, loff_t to, size_t *retlen)
2051 {
2052 	unsigned long i;
2053 	size_t totlen = 0, thislen;
2054 	int ret = 0;
2055 
2056 	for (i = 0; i < count; i++) {
2057 		if (!vecs[i].iov_len)
2058 			continue;
2059 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2060 				vecs[i].iov_base);
2061 		totlen += thislen;
2062 		if (ret || thislen != vecs[i].iov_len)
2063 			break;
2064 		to += vecs[i].iov_len;
2065 	}
2066 	*retlen = totlen;
2067 	return ret;
2068 }
2069 
2070 /*
2071  * mtd_writev - the vector-based MTD write method
2072  * @mtd: mtd device description object pointer
2073  * @vecs: the vectors to write
2074  * @count: count of vectors in @vecs
2075  * @to: the MTD device offset to write to
2076  * @retlen: on exit contains the count of bytes written to the MTD device.
2077  *
2078  * This function returns zero in case of success and a negative error code in
2079  * case of failure.
2080  */
2081 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2082 	       unsigned long count, loff_t to, size_t *retlen)
2083 {
2084 	struct mtd_info *master = mtd_get_master(mtd);
2085 
2086 	*retlen = 0;
2087 	if (!(mtd->flags & MTD_WRITEABLE))
2088 		return -EROFS;
2089 
2090 	if (!master->_writev)
2091 		return default_mtd_writev(mtd, vecs, count, to, retlen);
2092 
2093 	return master->_writev(master, vecs, count,
2094 			       mtd_get_master_ofs(mtd, to), retlen);
2095 }
2096 EXPORT_SYMBOL_GPL(mtd_writev);
2097 
2098 /**
2099  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2100  * @mtd: mtd device description object pointer
2101  * @size: a pointer to the ideal or maximum size of the allocation, points
2102  *        to the actual allocation size on success.
2103  *
2104  * This routine attempts to allocate a contiguous kernel buffer up to
2105  * the specified size, backing off the size of the request exponentially
2106  * until the request succeeds or until the allocation size falls below
2107  * the system page size. This attempts to make sure it does not adversely
2108  * impact system performance, so when allocating more than one page, we
2109  * ask the memory allocator to avoid re-trying, swapping, writing back
2110  * or performing I/O.
2111  *
2112  * Note, this function also makes sure that the allocated buffer is aligned to
2113  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2114  *
2115  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2116  * to handle smaller (i.e. degraded) buffer allocations under low- or
2117  * fragmented-memory situations where such reduced allocations, from a
2118  * requested ideal, are allowed.
2119  *
2120  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2121  */
2122 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2123 {
2124 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2125 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2126 	void *kbuf;
2127 
2128 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2129 
2130 	while (*size > min_alloc) {
2131 		kbuf = kmalloc(*size, flags);
2132 		if (kbuf)
2133 			return kbuf;
2134 
2135 		*size >>= 1;
2136 		*size = ALIGN(*size, mtd->writesize);
2137 	}
2138 
2139 	/*
2140 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2141 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2142 	 */
2143 	return kmalloc(*size, GFP_KERNEL);
2144 }
2145 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2146 
2147 #ifdef CONFIG_PROC_FS
2148 
2149 /*====================================================================*/
2150 /* Support for /proc/mtd */
2151 
2152 static int mtd_proc_show(struct seq_file *m, void *v)
2153 {
2154 	struct mtd_info *mtd;
2155 
2156 	seq_puts(m, "dev:    size   erasesize  name\n");
2157 	mutex_lock(&mtd_table_mutex);
2158 	mtd_for_each_device(mtd) {
2159 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2160 			   mtd->index, (unsigned long long)mtd->size,
2161 			   mtd->erasesize, mtd->name);
2162 	}
2163 	mutex_unlock(&mtd_table_mutex);
2164 	return 0;
2165 }
2166 #endif /* CONFIG_PROC_FS */
2167 
2168 /*====================================================================*/
2169 /* Init code */
2170 
2171 static struct backing_dev_info * __init mtd_bdi_init(char *name)
2172 {
2173 	struct backing_dev_info *bdi;
2174 	int ret;
2175 
2176 	bdi = bdi_alloc(NUMA_NO_NODE);
2177 	if (!bdi)
2178 		return ERR_PTR(-ENOMEM);
2179 	bdi->ra_pages = 0;
2180 	bdi->io_pages = 0;
2181 
2182 	/*
2183 	 * We put '-0' suffix to the name to get the same name format as we
2184 	 * used to get. Since this is called only once, we get a unique name.
2185 	 */
2186 	ret = bdi_register(bdi, "%.28s-0", name);
2187 	if (ret)
2188 		bdi_put(bdi);
2189 
2190 	return ret ? ERR_PTR(ret) : bdi;
2191 }
2192 
2193 static struct proc_dir_entry *proc_mtd;
2194 
2195 static int __init init_mtd(void)
2196 {
2197 	int ret;
2198 
2199 	ret = class_register(&mtd_class);
2200 	if (ret)
2201 		goto err_reg;
2202 
2203 	mtd_bdi = mtd_bdi_init("mtd");
2204 	if (IS_ERR(mtd_bdi)) {
2205 		ret = PTR_ERR(mtd_bdi);
2206 		goto err_bdi;
2207 	}
2208 
2209 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2210 
2211 	ret = init_mtdchar();
2212 	if (ret)
2213 		goto out_procfs;
2214 
2215 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2216 
2217 	return 0;
2218 
2219 out_procfs:
2220 	if (proc_mtd)
2221 		remove_proc_entry("mtd", NULL);
2222 	bdi_put(mtd_bdi);
2223 err_bdi:
2224 	class_unregister(&mtd_class);
2225 err_reg:
2226 	pr_err("Error registering mtd class or bdi: %d\n", ret);
2227 	return ret;
2228 }
2229 
2230 static void __exit cleanup_mtd(void)
2231 {
2232 	debugfs_remove_recursive(dfs_dir_mtd);
2233 	cleanup_mtdchar();
2234 	if (proc_mtd)
2235 		remove_proc_entry("mtd", NULL);
2236 	class_unregister(&mtd_class);
2237 	bdi_put(mtd_bdi);
2238 	idr_destroy(&mtd_idr);
2239 }
2240 
2241 module_init(init_mtd);
2242 module_exit(cleanup_mtd);
2243 
2244 MODULE_LICENSE("GPL");
2245 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2246 MODULE_DESCRIPTION("Core MTD registration and access routines");
2247