1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Core registration and callback routines for MTD 4 * drivers and users. 5 * 6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 7 * Copyright © 2006 Red Hat UK Limited 8 */ 9 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/ptrace.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/timer.h> 16 #include <linux/major.h> 17 #include <linux/fs.h> 18 #include <linux/err.h> 19 #include <linux/ioctl.h> 20 #include <linux/init.h> 21 #include <linux/of.h> 22 #include <linux/proc_fs.h> 23 #include <linux/idr.h> 24 #include <linux/backing-dev.h> 25 #include <linux/gfp.h> 26 #include <linux/slab.h> 27 #include <linux/reboot.h> 28 #include <linux/leds.h> 29 #include <linux/debugfs.h> 30 #include <linux/nvmem-provider.h> 31 32 #include <linux/mtd/mtd.h> 33 #include <linux/mtd/partitions.h> 34 35 #include "mtdcore.h" 36 37 struct backing_dev_info *mtd_bdi; 38 39 #ifdef CONFIG_PM_SLEEP 40 41 static int mtd_cls_suspend(struct device *dev) 42 { 43 struct mtd_info *mtd = dev_get_drvdata(dev); 44 45 return mtd ? mtd_suspend(mtd) : 0; 46 } 47 48 static int mtd_cls_resume(struct device *dev) 49 { 50 struct mtd_info *mtd = dev_get_drvdata(dev); 51 52 if (mtd) 53 mtd_resume(mtd); 54 return 0; 55 } 56 57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 59 #else 60 #define MTD_CLS_PM_OPS NULL 61 #endif 62 63 static struct class mtd_class = { 64 .name = "mtd", 65 .owner = THIS_MODULE, 66 .pm = MTD_CLS_PM_OPS, 67 }; 68 69 static DEFINE_IDR(mtd_idr); 70 71 /* These are exported solely for the purpose of mtd_blkdevs.c. You 72 should not use them for _anything_ else */ 73 DEFINE_MUTEX(mtd_table_mutex); 74 EXPORT_SYMBOL_GPL(mtd_table_mutex); 75 76 struct mtd_info *__mtd_next_device(int i) 77 { 78 return idr_get_next(&mtd_idr, &i); 79 } 80 EXPORT_SYMBOL_GPL(__mtd_next_device); 81 82 static LIST_HEAD(mtd_notifiers); 83 84 85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 86 87 /* REVISIT once MTD uses the driver model better, whoever allocates 88 * the mtd_info will probably want to use the release() hook... 89 */ 90 static void mtd_release(struct device *dev) 91 { 92 struct mtd_info *mtd = dev_get_drvdata(dev); 93 dev_t index = MTD_DEVT(mtd->index); 94 95 /* remove /dev/mtdXro node */ 96 device_destroy(&mtd_class, index + 1); 97 } 98 99 static ssize_t mtd_type_show(struct device *dev, 100 struct device_attribute *attr, char *buf) 101 { 102 struct mtd_info *mtd = dev_get_drvdata(dev); 103 char *type; 104 105 switch (mtd->type) { 106 case MTD_ABSENT: 107 type = "absent"; 108 break; 109 case MTD_RAM: 110 type = "ram"; 111 break; 112 case MTD_ROM: 113 type = "rom"; 114 break; 115 case MTD_NORFLASH: 116 type = "nor"; 117 break; 118 case MTD_NANDFLASH: 119 type = "nand"; 120 break; 121 case MTD_DATAFLASH: 122 type = "dataflash"; 123 break; 124 case MTD_UBIVOLUME: 125 type = "ubi"; 126 break; 127 case MTD_MLCNANDFLASH: 128 type = "mlc-nand"; 129 break; 130 default: 131 type = "unknown"; 132 } 133 134 return snprintf(buf, PAGE_SIZE, "%s\n", type); 135 } 136 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 137 138 static ssize_t mtd_flags_show(struct device *dev, 139 struct device_attribute *attr, char *buf) 140 { 141 struct mtd_info *mtd = dev_get_drvdata(dev); 142 143 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 144 } 145 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 146 147 static ssize_t mtd_size_show(struct device *dev, 148 struct device_attribute *attr, char *buf) 149 { 150 struct mtd_info *mtd = dev_get_drvdata(dev); 151 152 return snprintf(buf, PAGE_SIZE, "%llu\n", 153 (unsigned long long)mtd->size); 154 } 155 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 156 157 static ssize_t mtd_erasesize_show(struct device *dev, 158 struct device_attribute *attr, char *buf) 159 { 160 struct mtd_info *mtd = dev_get_drvdata(dev); 161 162 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 163 } 164 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 165 166 static ssize_t mtd_writesize_show(struct device *dev, 167 struct device_attribute *attr, char *buf) 168 { 169 struct mtd_info *mtd = dev_get_drvdata(dev); 170 171 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 172 } 173 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 174 175 static ssize_t mtd_subpagesize_show(struct device *dev, 176 struct device_attribute *attr, char *buf) 177 { 178 struct mtd_info *mtd = dev_get_drvdata(dev); 179 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 180 181 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 182 } 183 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 184 185 static ssize_t mtd_oobsize_show(struct device *dev, 186 struct device_attribute *attr, char *buf) 187 { 188 struct mtd_info *mtd = dev_get_drvdata(dev); 189 190 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 191 } 192 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 193 194 static ssize_t mtd_oobavail_show(struct device *dev, 195 struct device_attribute *attr, char *buf) 196 { 197 struct mtd_info *mtd = dev_get_drvdata(dev); 198 199 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail); 200 } 201 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL); 202 203 static ssize_t mtd_numeraseregions_show(struct device *dev, 204 struct device_attribute *attr, char *buf) 205 { 206 struct mtd_info *mtd = dev_get_drvdata(dev); 207 208 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 209 } 210 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 211 NULL); 212 213 static ssize_t mtd_name_show(struct device *dev, 214 struct device_attribute *attr, char *buf) 215 { 216 struct mtd_info *mtd = dev_get_drvdata(dev); 217 218 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 219 } 220 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 221 222 static ssize_t mtd_ecc_strength_show(struct device *dev, 223 struct device_attribute *attr, char *buf) 224 { 225 struct mtd_info *mtd = dev_get_drvdata(dev); 226 227 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 228 } 229 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 230 231 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 232 struct device_attribute *attr, 233 char *buf) 234 { 235 struct mtd_info *mtd = dev_get_drvdata(dev); 236 237 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 238 } 239 240 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 241 struct device_attribute *attr, 242 const char *buf, size_t count) 243 { 244 struct mtd_info *mtd = dev_get_drvdata(dev); 245 unsigned int bitflip_threshold; 246 int retval; 247 248 retval = kstrtouint(buf, 0, &bitflip_threshold); 249 if (retval) 250 return retval; 251 252 mtd->bitflip_threshold = bitflip_threshold; 253 return count; 254 } 255 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 256 mtd_bitflip_threshold_show, 257 mtd_bitflip_threshold_store); 258 259 static ssize_t mtd_ecc_step_size_show(struct device *dev, 260 struct device_attribute *attr, char *buf) 261 { 262 struct mtd_info *mtd = dev_get_drvdata(dev); 263 264 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 265 266 } 267 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 268 269 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev, 270 struct device_attribute *attr, char *buf) 271 { 272 struct mtd_info *mtd = dev_get_drvdata(dev); 273 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 274 275 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected); 276 } 277 static DEVICE_ATTR(corrected_bits, S_IRUGO, 278 mtd_ecc_stats_corrected_show, NULL); 279 280 static ssize_t mtd_ecc_stats_errors_show(struct device *dev, 281 struct device_attribute *attr, char *buf) 282 { 283 struct mtd_info *mtd = dev_get_drvdata(dev); 284 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 285 286 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed); 287 } 288 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL); 289 290 static ssize_t mtd_badblocks_show(struct device *dev, 291 struct device_attribute *attr, char *buf) 292 { 293 struct mtd_info *mtd = dev_get_drvdata(dev); 294 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 295 296 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks); 297 } 298 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL); 299 300 static ssize_t mtd_bbtblocks_show(struct device *dev, 301 struct device_attribute *attr, char *buf) 302 { 303 struct mtd_info *mtd = dev_get_drvdata(dev); 304 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 305 306 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks); 307 } 308 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL); 309 310 static struct attribute *mtd_attrs[] = { 311 &dev_attr_type.attr, 312 &dev_attr_flags.attr, 313 &dev_attr_size.attr, 314 &dev_attr_erasesize.attr, 315 &dev_attr_writesize.attr, 316 &dev_attr_subpagesize.attr, 317 &dev_attr_oobsize.attr, 318 &dev_attr_oobavail.attr, 319 &dev_attr_numeraseregions.attr, 320 &dev_attr_name.attr, 321 &dev_attr_ecc_strength.attr, 322 &dev_attr_ecc_step_size.attr, 323 &dev_attr_corrected_bits.attr, 324 &dev_attr_ecc_failures.attr, 325 &dev_attr_bad_blocks.attr, 326 &dev_attr_bbt_blocks.attr, 327 &dev_attr_bitflip_threshold.attr, 328 NULL, 329 }; 330 ATTRIBUTE_GROUPS(mtd); 331 332 static const struct device_type mtd_devtype = { 333 .name = "mtd", 334 .groups = mtd_groups, 335 .release = mtd_release, 336 }; 337 338 static int mtd_partid_show(struct seq_file *s, void *p) 339 { 340 struct mtd_info *mtd = s->private; 341 342 seq_printf(s, "%s\n", mtd->dbg.partid); 343 344 return 0; 345 } 346 347 static int mtd_partid_debugfs_open(struct inode *inode, struct file *file) 348 { 349 return single_open(file, mtd_partid_show, inode->i_private); 350 } 351 352 static const struct file_operations mtd_partid_debug_fops = { 353 .open = mtd_partid_debugfs_open, 354 .read = seq_read, 355 .llseek = seq_lseek, 356 .release = single_release, 357 }; 358 359 static int mtd_partname_show(struct seq_file *s, void *p) 360 { 361 struct mtd_info *mtd = s->private; 362 363 seq_printf(s, "%s\n", mtd->dbg.partname); 364 365 return 0; 366 } 367 368 static int mtd_partname_debugfs_open(struct inode *inode, struct file *file) 369 { 370 return single_open(file, mtd_partname_show, inode->i_private); 371 } 372 373 static const struct file_operations mtd_partname_debug_fops = { 374 .open = mtd_partname_debugfs_open, 375 .read = seq_read, 376 .llseek = seq_lseek, 377 .release = single_release, 378 }; 379 380 static struct dentry *dfs_dir_mtd; 381 382 static void mtd_debugfs_populate(struct mtd_info *mtd) 383 { 384 struct device *dev = &mtd->dev; 385 struct dentry *root; 386 387 if (IS_ERR_OR_NULL(dfs_dir_mtd)) 388 return; 389 390 root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd); 391 mtd->dbg.dfs_dir = root; 392 393 if (mtd->dbg.partid) 394 debugfs_create_file("partid", 0400, root, mtd, 395 &mtd_partid_debug_fops); 396 397 if (mtd->dbg.partname) 398 debugfs_create_file("partname", 0400, root, mtd, 399 &mtd_partname_debug_fops); 400 } 401 402 #ifndef CONFIG_MMU 403 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 404 { 405 switch (mtd->type) { 406 case MTD_RAM: 407 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 408 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 409 case MTD_ROM: 410 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 411 NOMMU_MAP_READ; 412 default: 413 return NOMMU_MAP_COPY; 414 } 415 } 416 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 417 #endif 418 419 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 420 void *cmd) 421 { 422 struct mtd_info *mtd; 423 424 mtd = container_of(n, struct mtd_info, reboot_notifier); 425 mtd->_reboot(mtd); 426 427 return NOTIFY_DONE; 428 } 429 430 /** 431 * mtd_wunit_to_pairing_info - get pairing information of a wunit 432 * @mtd: pointer to new MTD device info structure 433 * @wunit: write unit we are interested in 434 * @info: returned pairing information 435 * 436 * Retrieve pairing information associated to the wunit. 437 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 438 * paired together, and where programming a page may influence the page it is 439 * paired with. 440 * The notion of page is replaced by the term wunit (write-unit) to stay 441 * consistent with the ->writesize field. 442 * 443 * The @wunit argument can be extracted from an absolute offset using 444 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 445 * to @wunit. 446 * 447 * From the pairing info the MTD user can find all the wunits paired with 448 * @wunit using the following loop: 449 * 450 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 451 * info.pair = i; 452 * mtd_pairing_info_to_wunit(mtd, &info); 453 * ... 454 * } 455 */ 456 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 457 struct mtd_pairing_info *info) 458 { 459 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 460 461 if (wunit < 0 || wunit >= npairs) 462 return -EINVAL; 463 464 if (mtd->pairing && mtd->pairing->get_info) 465 return mtd->pairing->get_info(mtd, wunit, info); 466 467 info->group = 0; 468 info->pair = wunit; 469 470 return 0; 471 } 472 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 473 474 /** 475 * mtd_pairing_info_to_wunit - get wunit from pairing information 476 * @mtd: pointer to new MTD device info structure 477 * @info: pairing information struct 478 * 479 * Returns a positive number representing the wunit associated to the info 480 * struct, or a negative error code. 481 * 482 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 483 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 484 * doc). 485 * 486 * It can also be used to only program the first page of each pair (i.e. 487 * page attached to group 0), which allows one to use an MLC NAND in 488 * software-emulated SLC mode: 489 * 490 * info.group = 0; 491 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 492 * for (info.pair = 0; info.pair < npairs; info.pair++) { 493 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 494 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 495 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 496 * } 497 */ 498 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 499 const struct mtd_pairing_info *info) 500 { 501 int ngroups = mtd_pairing_groups(mtd); 502 int npairs = mtd_wunit_per_eb(mtd) / ngroups; 503 504 if (!info || info->pair < 0 || info->pair >= npairs || 505 info->group < 0 || info->group >= ngroups) 506 return -EINVAL; 507 508 if (mtd->pairing && mtd->pairing->get_wunit) 509 return mtd->pairing->get_wunit(mtd, info); 510 511 return info->pair; 512 } 513 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 514 515 /** 516 * mtd_pairing_groups - get the number of pairing groups 517 * @mtd: pointer to new MTD device info structure 518 * 519 * Returns the number of pairing groups. 520 * 521 * This number is usually equal to the number of bits exposed by a single 522 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 523 * to iterate over all pages of a given pair. 524 */ 525 int mtd_pairing_groups(struct mtd_info *mtd) 526 { 527 if (!mtd->pairing || !mtd->pairing->ngroups) 528 return 1; 529 530 return mtd->pairing->ngroups; 531 } 532 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 533 534 static int mtd_nvmem_reg_read(void *priv, unsigned int offset, 535 void *val, size_t bytes) 536 { 537 struct mtd_info *mtd = priv; 538 size_t retlen; 539 int err; 540 541 err = mtd_read(mtd, offset, bytes, &retlen, val); 542 if (err && err != -EUCLEAN) 543 return err; 544 545 return retlen == bytes ? 0 : -EIO; 546 } 547 548 static int mtd_nvmem_add(struct mtd_info *mtd) 549 { 550 struct nvmem_config config = {}; 551 552 config.id = -1; 553 config.dev = &mtd->dev; 554 config.name = mtd->name; 555 config.owner = THIS_MODULE; 556 config.reg_read = mtd_nvmem_reg_read; 557 config.size = mtd->size; 558 config.word_size = 1; 559 config.stride = 1; 560 config.read_only = true; 561 config.root_only = true; 562 config.no_of_node = true; 563 config.priv = mtd; 564 565 mtd->nvmem = nvmem_register(&config); 566 if (IS_ERR(mtd->nvmem)) { 567 /* Just ignore if there is no NVMEM support in the kernel */ 568 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) { 569 mtd->nvmem = NULL; 570 } else { 571 dev_err(&mtd->dev, "Failed to register NVMEM device\n"); 572 return PTR_ERR(mtd->nvmem); 573 } 574 } 575 576 return 0; 577 } 578 579 /** 580 * add_mtd_device - register an MTD device 581 * @mtd: pointer to new MTD device info structure 582 * 583 * Add a device to the list of MTD devices present in the system, and 584 * notify each currently active MTD 'user' of its arrival. Returns 585 * zero on success or non-zero on failure. 586 */ 587 588 int add_mtd_device(struct mtd_info *mtd) 589 { 590 struct mtd_notifier *not; 591 int i, error; 592 593 /* 594 * May occur, for instance, on buggy drivers which call 595 * mtd_device_parse_register() multiple times on the same master MTD, 596 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 597 */ 598 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 599 return -EEXIST; 600 601 BUG_ON(mtd->writesize == 0); 602 603 /* 604 * MTD drivers should implement ->_{write,read}() or 605 * ->_{write,read}_oob(), but not both. 606 */ 607 if (WARN_ON((mtd->_write && mtd->_write_oob) || 608 (mtd->_read && mtd->_read_oob))) 609 return -EINVAL; 610 611 if (WARN_ON((!mtd->erasesize || !mtd->_erase) && 612 !(mtd->flags & MTD_NO_ERASE))) 613 return -EINVAL; 614 615 mutex_lock(&mtd_table_mutex); 616 617 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 618 if (i < 0) { 619 error = i; 620 goto fail_locked; 621 } 622 623 mtd->index = i; 624 mtd->usecount = 0; 625 626 /* default value if not set by driver */ 627 if (mtd->bitflip_threshold == 0) 628 mtd->bitflip_threshold = mtd->ecc_strength; 629 630 if (is_power_of_2(mtd->erasesize)) 631 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 632 else 633 mtd->erasesize_shift = 0; 634 635 if (is_power_of_2(mtd->writesize)) 636 mtd->writesize_shift = ffs(mtd->writesize) - 1; 637 else 638 mtd->writesize_shift = 0; 639 640 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 641 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 642 643 /* Some chips always power up locked. Unlock them now */ 644 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 645 error = mtd_unlock(mtd, 0, mtd->size); 646 if (error && error != -EOPNOTSUPP) 647 printk(KERN_WARNING 648 "%s: unlock failed, writes may not work\n", 649 mtd->name); 650 /* Ignore unlock failures? */ 651 error = 0; 652 } 653 654 /* Caller should have set dev.parent to match the 655 * physical device, if appropriate. 656 */ 657 mtd->dev.type = &mtd_devtype; 658 mtd->dev.class = &mtd_class; 659 mtd->dev.devt = MTD_DEVT(i); 660 dev_set_name(&mtd->dev, "mtd%d", i); 661 dev_set_drvdata(&mtd->dev, mtd); 662 of_node_get(mtd_get_of_node(mtd)); 663 error = device_register(&mtd->dev); 664 if (error) 665 goto fail_added; 666 667 /* Add the nvmem provider */ 668 error = mtd_nvmem_add(mtd); 669 if (error) 670 goto fail_nvmem_add; 671 672 mtd_debugfs_populate(mtd); 673 674 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 675 "mtd%dro", i); 676 677 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 678 /* No need to get a refcount on the module containing 679 the notifier, since we hold the mtd_table_mutex */ 680 list_for_each_entry(not, &mtd_notifiers, list) 681 not->add(mtd); 682 683 mutex_unlock(&mtd_table_mutex); 684 /* We _know_ we aren't being removed, because 685 our caller is still holding us here. So none 686 of this try_ nonsense, and no bitching about it 687 either. :) */ 688 __module_get(THIS_MODULE); 689 return 0; 690 691 fail_nvmem_add: 692 device_unregister(&mtd->dev); 693 fail_added: 694 of_node_put(mtd_get_of_node(mtd)); 695 idr_remove(&mtd_idr, i); 696 fail_locked: 697 mutex_unlock(&mtd_table_mutex); 698 return error; 699 } 700 701 /** 702 * del_mtd_device - unregister an MTD device 703 * @mtd: pointer to MTD device info structure 704 * 705 * Remove a device from the list of MTD devices present in the system, 706 * and notify each currently active MTD 'user' of its departure. 707 * Returns zero on success or 1 on failure, which currently will happen 708 * if the requested device does not appear to be present in the list. 709 */ 710 711 int del_mtd_device(struct mtd_info *mtd) 712 { 713 int ret; 714 struct mtd_notifier *not; 715 716 mutex_lock(&mtd_table_mutex); 717 718 debugfs_remove_recursive(mtd->dbg.dfs_dir); 719 720 if (idr_find(&mtd_idr, mtd->index) != mtd) { 721 ret = -ENODEV; 722 goto out_error; 723 } 724 725 /* No need to get a refcount on the module containing 726 the notifier, since we hold the mtd_table_mutex */ 727 list_for_each_entry(not, &mtd_notifiers, list) 728 not->remove(mtd); 729 730 if (mtd->usecount) { 731 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 732 mtd->index, mtd->name, mtd->usecount); 733 ret = -EBUSY; 734 } else { 735 /* Try to remove the NVMEM provider */ 736 if (mtd->nvmem) 737 nvmem_unregister(mtd->nvmem); 738 739 device_unregister(&mtd->dev); 740 741 idr_remove(&mtd_idr, mtd->index); 742 of_node_put(mtd_get_of_node(mtd)); 743 744 module_put(THIS_MODULE); 745 ret = 0; 746 } 747 748 out_error: 749 mutex_unlock(&mtd_table_mutex); 750 return ret; 751 } 752 753 /* 754 * Set a few defaults based on the parent devices, if not provided by the 755 * driver 756 */ 757 static void mtd_set_dev_defaults(struct mtd_info *mtd) 758 { 759 if (mtd->dev.parent) { 760 if (!mtd->owner && mtd->dev.parent->driver) 761 mtd->owner = mtd->dev.parent->driver->owner; 762 if (!mtd->name) 763 mtd->name = dev_name(mtd->dev.parent); 764 } else { 765 pr_debug("mtd device won't show a device symlink in sysfs\n"); 766 } 767 768 mtd->orig_flags = mtd->flags; 769 } 770 771 /** 772 * mtd_device_parse_register - parse partitions and register an MTD device. 773 * 774 * @mtd: the MTD device to register 775 * @types: the list of MTD partition probes to try, see 776 * 'parse_mtd_partitions()' for more information 777 * @parser_data: MTD partition parser-specific data 778 * @parts: fallback partition information to register, if parsing fails; 779 * only valid if %nr_parts > %0 780 * @nr_parts: the number of partitions in parts, if zero then the full 781 * MTD device is registered if no partition info is found 782 * 783 * This function aggregates MTD partitions parsing (done by 784 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 785 * basically follows the most common pattern found in many MTD drivers: 786 * 787 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is 788 * registered first. 789 * * Then It tries to probe partitions on MTD device @mtd using parsers 790 * specified in @types (if @types is %NULL, then the default list of parsers 791 * is used, see 'parse_mtd_partitions()' for more information). If none are 792 * found this functions tries to fallback to information specified in 793 * @parts/@nr_parts. 794 * * If no partitions were found this function just registers the MTD device 795 * @mtd and exits. 796 * 797 * Returns zero in case of success and a negative error code in case of failure. 798 */ 799 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 800 struct mtd_part_parser_data *parser_data, 801 const struct mtd_partition *parts, 802 int nr_parts) 803 { 804 int ret; 805 806 mtd_set_dev_defaults(mtd); 807 808 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 809 ret = add_mtd_device(mtd); 810 if (ret) 811 return ret; 812 } 813 814 /* Prefer parsed partitions over driver-provided fallback */ 815 ret = parse_mtd_partitions(mtd, types, parser_data); 816 if (ret > 0) 817 ret = 0; 818 else if (nr_parts) 819 ret = add_mtd_partitions(mtd, parts, nr_parts); 820 else if (!device_is_registered(&mtd->dev)) 821 ret = add_mtd_device(mtd); 822 else 823 ret = 0; 824 825 if (ret) 826 goto out; 827 828 /* 829 * FIXME: some drivers unfortunately call this function more than once. 830 * So we have to check if we've already assigned the reboot notifier. 831 * 832 * Generally, we can make multiple calls work for most cases, but it 833 * does cause problems with parse_mtd_partitions() above (e.g., 834 * cmdlineparts will register partitions more than once). 835 */ 836 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 837 "MTD already registered\n"); 838 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 839 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 840 register_reboot_notifier(&mtd->reboot_notifier); 841 } 842 843 out: 844 if (ret && device_is_registered(&mtd->dev)) 845 del_mtd_device(mtd); 846 847 return ret; 848 } 849 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 850 851 /** 852 * mtd_device_unregister - unregister an existing MTD device. 853 * 854 * @master: the MTD device to unregister. This will unregister both the master 855 * and any partitions if registered. 856 */ 857 int mtd_device_unregister(struct mtd_info *master) 858 { 859 int err; 860 861 if (master->_reboot) 862 unregister_reboot_notifier(&master->reboot_notifier); 863 864 err = del_mtd_partitions(master); 865 if (err) 866 return err; 867 868 if (!device_is_registered(&master->dev)) 869 return 0; 870 871 return del_mtd_device(master); 872 } 873 EXPORT_SYMBOL_GPL(mtd_device_unregister); 874 875 /** 876 * register_mtd_user - register a 'user' of MTD devices. 877 * @new: pointer to notifier info structure 878 * 879 * Registers a pair of callbacks function to be called upon addition 880 * or removal of MTD devices. Causes the 'add' callback to be immediately 881 * invoked for each MTD device currently present in the system. 882 */ 883 void register_mtd_user (struct mtd_notifier *new) 884 { 885 struct mtd_info *mtd; 886 887 mutex_lock(&mtd_table_mutex); 888 889 list_add(&new->list, &mtd_notifiers); 890 891 __module_get(THIS_MODULE); 892 893 mtd_for_each_device(mtd) 894 new->add(mtd); 895 896 mutex_unlock(&mtd_table_mutex); 897 } 898 EXPORT_SYMBOL_GPL(register_mtd_user); 899 900 /** 901 * unregister_mtd_user - unregister a 'user' of MTD devices. 902 * @old: pointer to notifier info structure 903 * 904 * Removes a callback function pair from the list of 'users' to be 905 * notified upon addition or removal of MTD devices. Causes the 906 * 'remove' callback to be immediately invoked for each MTD device 907 * currently present in the system. 908 */ 909 int unregister_mtd_user (struct mtd_notifier *old) 910 { 911 struct mtd_info *mtd; 912 913 mutex_lock(&mtd_table_mutex); 914 915 module_put(THIS_MODULE); 916 917 mtd_for_each_device(mtd) 918 old->remove(mtd); 919 920 list_del(&old->list); 921 mutex_unlock(&mtd_table_mutex); 922 return 0; 923 } 924 EXPORT_SYMBOL_GPL(unregister_mtd_user); 925 926 /** 927 * get_mtd_device - obtain a validated handle for an MTD device 928 * @mtd: last known address of the required MTD device 929 * @num: internal device number of the required MTD device 930 * 931 * Given a number and NULL address, return the num'th entry in the device 932 * table, if any. Given an address and num == -1, search the device table 933 * for a device with that address and return if it's still present. Given 934 * both, return the num'th driver only if its address matches. Return 935 * error code if not. 936 */ 937 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 938 { 939 struct mtd_info *ret = NULL, *other; 940 int err = -ENODEV; 941 942 mutex_lock(&mtd_table_mutex); 943 944 if (num == -1) { 945 mtd_for_each_device(other) { 946 if (other == mtd) { 947 ret = mtd; 948 break; 949 } 950 } 951 } else if (num >= 0) { 952 ret = idr_find(&mtd_idr, num); 953 if (mtd && mtd != ret) 954 ret = NULL; 955 } 956 957 if (!ret) { 958 ret = ERR_PTR(err); 959 goto out; 960 } 961 962 err = __get_mtd_device(ret); 963 if (err) 964 ret = ERR_PTR(err); 965 out: 966 mutex_unlock(&mtd_table_mutex); 967 return ret; 968 } 969 EXPORT_SYMBOL_GPL(get_mtd_device); 970 971 972 int __get_mtd_device(struct mtd_info *mtd) 973 { 974 int err; 975 976 if (!try_module_get(mtd->owner)) 977 return -ENODEV; 978 979 if (mtd->_get_device) { 980 err = mtd->_get_device(mtd); 981 982 if (err) { 983 module_put(mtd->owner); 984 return err; 985 } 986 } 987 mtd->usecount++; 988 return 0; 989 } 990 EXPORT_SYMBOL_GPL(__get_mtd_device); 991 992 /** 993 * get_mtd_device_nm - obtain a validated handle for an MTD device by 994 * device name 995 * @name: MTD device name to open 996 * 997 * This function returns MTD device description structure in case of 998 * success and an error code in case of failure. 999 */ 1000 struct mtd_info *get_mtd_device_nm(const char *name) 1001 { 1002 int err = -ENODEV; 1003 struct mtd_info *mtd = NULL, *other; 1004 1005 mutex_lock(&mtd_table_mutex); 1006 1007 mtd_for_each_device(other) { 1008 if (!strcmp(name, other->name)) { 1009 mtd = other; 1010 break; 1011 } 1012 } 1013 1014 if (!mtd) 1015 goto out_unlock; 1016 1017 err = __get_mtd_device(mtd); 1018 if (err) 1019 goto out_unlock; 1020 1021 mutex_unlock(&mtd_table_mutex); 1022 return mtd; 1023 1024 out_unlock: 1025 mutex_unlock(&mtd_table_mutex); 1026 return ERR_PTR(err); 1027 } 1028 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 1029 1030 void put_mtd_device(struct mtd_info *mtd) 1031 { 1032 mutex_lock(&mtd_table_mutex); 1033 __put_mtd_device(mtd); 1034 mutex_unlock(&mtd_table_mutex); 1035 1036 } 1037 EXPORT_SYMBOL_GPL(put_mtd_device); 1038 1039 void __put_mtd_device(struct mtd_info *mtd) 1040 { 1041 --mtd->usecount; 1042 BUG_ON(mtd->usecount < 0); 1043 1044 if (mtd->_put_device) 1045 mtd->_put_device(mtd); 1046 1047 module_put(mtd->owner); 1048 } 1049 EXPORT_SYMBOL_GPL(__put_mtd_device); 1050 1051 /* 1052 * Erase is an synchronous operation. Device drivers are epected to return a 1053 * negative error code if the operation failed and update instr->fail_addr 1054 * to point the portion that was not properly erased. 1055 */ 1056 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 1057 { 1058 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 1059 1060 if (!mtd->erasesize || !mtd->_erase) 1061 return -ENOTSUPP; 1062 1063 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 1064 return -EINVAL; 1065 if (!(mtd->flags & MTD_WRITEABLE)) 1066 return -EROFS; 1067 1068 if (!instr->len) 1069 return 0; 1070 1071 ledtrig_mtd_activity(); 1072 return mtd->_erase(mtd, instr); 1073 } 1074 EXPORT_SYMBOL_GPL(mtd_erase); 1075 1076 /* 1077 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 1078 */ 1079 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1080 void **virt, resource_size_t *phys) 1081 { 1082 *retlen = 0; 1083 *virt = NULL; 1084 if (phys) 1085 *phys = 0; 1086 if (!mtd->_point) 1087 return -EOPNOTSUPP; 1088 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1089 return -EINVAL; 1090 if (!len) 1091 return 0; 1092 return mtd->_point(mtd, from, len, retlen, virt, phys); 1093 } 1094 EXPORT_SYMBOL_GPL(mtd_point); 1095 1096 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 1097 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1098 { 1099 if (!mtd->_unpoint) 1100 return -EOPNOTSUPP; 1101 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1102 return -EINVAL; 1103 if (!len) 1104 return 0; 1105 return mtd->_unpoint(mtd, from, len); 1106 } 1107 EXPORT_SYMBOL_GPL(mtd_unpoint); 1108 1109 /* 1110 * Allow NOMMU mmap() to directly map the device (if not NULL) 1111 * - return the address to which the offset maps 1112 * - return -ENOSYS to indicate refusal to do the mapping 1113 */ 1114 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1115 unsigned long offset, unsigned long flags) 1116 { 1117 size_t retlen; 1118 void *virt; 1119 int ret; 1120 1121 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); 1122 if (ret) 1123 return ret; 1124 if (retlen != len) { 1125 mtd_unpoint(mtd, offset, retlen); 1126 return -ENOSYS; 1127 } 1128 return (unsigned long)virt; 1129 } 1130 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1131 1132 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1133 u_char *buf) 1134 { 1135 struct mtd_oob_ops ops = { 1136 .len = len, 1137 .datbuf = buf, 1138 }; 1139 int ret; 1140 1141 ret = mtd_read_oob(mtd, from, &ops); 1142 *retlen = ops.retlen; 1143 1144 return ret; 1145 } 1146 EXPORT_SYMBOL_GPL(mtd_read); 1147 1148 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1149 const u_char *buf) 1150 { 1151 struct mtd_oob_ops ops = { 1152 .len = len, 1153 .datbuf = (u8 *)buf, 1154 }; 1155 int ret; 1156 1157 ret = mtd_write_oob(mtd, to, &ops); 1158 *retlen = ops.retlen; 1159 1160 return ret; 1161 } 1162 EXPORT_SYMBOL_GPL(mtd_write); 1163 1164 /* 1165 * In blackbox flight recorder like scenarios we want to make successful writes 1166 * in interrupt context. panic_write() is only intended to be called when its 1167 * known the kernel is about to panic and we need the write to succeed. Since 1168 * the kernel is not going to be running for much longer, this function can 1169 * break locks and delay to ensure the write succeeds (but not sleep). 1170 */ 1171 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1172 const u_char *buf) 1173 { 1174 *retlen = 0; 1175 if (!mtd->_panic_write) 1176 return -EOPNOTSUPP; 1177 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1178 return -EINVAL; 1179 if (!(mtd->flags & MTD_WRITEABLE)) 1180 return -EROFS; 1181 if (!len) 1182 return 0; 1183 if (!mtd->oops_panic_write) 1184 mtd->oops_panic_write = true; 1185 1186 return mtd->_panic_write(mtd, to, len, retlen, buf); 1187 } 1188 EXPORT_SYMBOL_GPL(mtd_panic_write); 1189 1190 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1191 struct mtd_oob_ops *ops) 1192 { 1193 /* 1194 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1195 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1196 * this case. 1197 */ 1198 if (!ops->datbuf) 1199 ops->len = 0; 1200 1201 if (!ops->oobbuf) 1202 ops->ooblen = 0; 1203 1204 if (offs < 0 || offs + ops->len > mtd->size) 1205 return -EINVAL; 1206 1207 if (ops->ooblen) { 1208 size_t maxooblen; 1209 1210 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1211 return -EINVAL; 1212 1213 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) - 1214 mtd_div_by_ws(offs, mtd)) * 1215 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1216 if (ops->ooblen > maxooblen) 1217 return -EINVAL; 1218 } 1219 1220 return 0; 1221 } 1222 1223 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1224 { 1225 int ret_code; 1226 ops->retlen = ops->oobretlen = 0; 1227 1228 ret_code = mtd_check_oob_ops(mtd, from, ops); 1229 if (ret_code) 1230 return ret_code; 1231 1232 ledtrig_mtd_activity(); 1233 1234 /* Check the validity of a potential fallback on mtd->_read */ 1235 if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf)) 1236 return -EOPNOTSUPP; 1237 1238 if (mtd->_read_oob) 1239 ret_code = mtd->_read_oob(mtd, from, ops); 1240 else 1241 ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen, 1242 ops->datbuf); 1243 1244 /* 1245 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1246 * similar to mtd->_read(), returning a non-negative integer 1247 * representing max bitflips. In other cases, mtd->_read_oob() may 1248 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1249 */ 1250 if (unlikely(ret_code < 0)) 1251 return ret_code; 1252 if (mtd->ecc_strength == 0) 1253 return 0; /* device lacks ecc */ 1254 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1255 } 1256 EXPORT_SYMBOL_GPL(mtd_read_oob); 1257 1258 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1259 struct mtd_oob_ops *ops) 1260 { 1261 int ret; 1262 1263 ops->retlen = ops->oobretlen = 0; 1264 1265 if (!(mtd->flags & MTD_WRITEABLE)) 1266 return -EROFS; 1267 1268 ret = mtd_check_oob_ops(mtd, to, ops); 1269 if (ret) 1270 return ret; 1271 1272 ledtrig_mtd_activity(); 1273 1274 /* Check the validity of a potential fallback on mtd->_write */ 1275 if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf)) 1276 return -EOPNOTSUPP; 1277 1278 if (mtd->_write_oob) 1279 return mtd->_write_oob(mtd, to, ops); 1280 else 1281 return mtd->_write(mtd, to, ops->len, &ops->retlen, 1282 ops->datbuf); 1283 } 1284 EXPORT_SYMBOL_GPL(mtd_write_oob); 1285 1286 /** 1287 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1288 * @mtd: MTD device structure 1289 * @section: ECC section. Depending on the layout you may have all the ECC 1290 * bytes stored in a single contiguous section, or one section 1291 * per ECC chunk (and sometime several sections for a single ECC 1292 * ECC chunk) 1293 * @oobecc: OOB region struct filled with the appropriate ECC position 1294 * information 1295 * 1296 * This function returns ECC section information in the OOB area. If you want 1297 * to get all the ECC bytes information, then you should call 1298 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1299 * 1300 * Returns zero on success, a negative error code otherwise. 1301 */ 1302 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1303 struct mtd_oob_region *oobecc) 1304 { 1305 memset(oobecc, 0, sizeof(*oobecc)); 1306 1307 if (!mtd || section < 0) 1308 return -EINVAL; 1309 1310 if (!mtd->ooblayout || !mtd->ooblayout->ecc) 1311 return -ENOTSUPP; 1312 1313 return mtd->ooblayout->ecc(mtd, section, oobecc); 1314 } 1315 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1316 1317 /** 1318 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1319 * section 1320 * @mtd: MTD device structure 1321 * @section: Free section you are interested in. Depending on the layout 1322 * you may have all the free bytes stored in a single contiguous 1323 * section, or one section per ECC chunk plus an extra section 1324 * for the remaining bytes (or other funky layout). 1325 * @oobfree: OOB region struct filled with the appropriate free position 1326 * information 1327 * 1328 * This function returns free bytes position in the OOB area. If you want 1329 * to get all the free bytes information, then you should call 1330 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1331 * 1332 * Returns zero on success, a negative error code otherwise. 1333 */ 1334 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1335 struct mtd_oob_region *oobfree) 1336 { 1337 memset(oobfree, 0, sizeof(*oobfree)); 1338 1339 if (!mtd || section < 0) 1340 return -EINVAL; 1341 1342 if (!mtd->ooblayout || !mtd->ooblayout->free) 1343 return -ENOTSUPP; 1344 1345 return mtd->ooblayout->free(mtd, section, oobfree); 1346 } 1347 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1348 1349 /** 1350 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1351 * @mtd: mtd info structure 1352 * @byte: the byte we are searching for 1353 * @sectionp: pointer where the section id will be stored 1354 * @oobregion: used to retrieve the ECC position 1355 * @iter: iterator function. Should be either mtd_ooblayout_free or 1356 * mtd_ooblayout_ecc depending on the region type you're searching for 1357 * 1358 * This function returns the section id and oobregion information of a 1359 * specific byte. For example, say you want to know where the 4th ECC byte is 1360 * stored, you'll use: 1361 * 1362 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1363 * 1364 * Returns zero on success, a negative error code otherwise. 1365 */ 1366 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1367 int *sectionp, struct mtd_oob_region *oobregion, 1368 int (*iter)(struct mtd_info *, 1369 int section, 1370 struct mtd_oob_region *oobregion)) 1371 { 1372 int pos = 0, ret, section = 0; 1373 1374 memset(oobregion, 0, sizeof(*oobregion)); 1375 1376 while (1) { 1377 ret = iter(mtd, section, oobregion); 1378 if (ret) 1379 return ret; 1380 1381 if (pos + oobregion->length > byte) 1382 break; 1383 1384 pos += oobregion->length; 1385 section++; 1386 } 1387 1388 /* 1389 * Adjust region info to make it start at the beginning at the 1390 * 'start' ECC byte. 1391 */ 1392 oobregion->offset += byte - pos; 1393 oobregion->length -= byte - pos; 1394 *sectionp = section; 1395 1396 return 0; 1397 } 1398 1399 /** 1400 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1401 * ECC byte 1402 * @mtd: mtd info structure 1403 * @eccbyte: the byte we are searching for 1404 * @sectionp: pointer where the section id will be stored 1405 * @oobregion: OOB region information 1406 * 1407 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1408 * byte. 1409 * 1410 * Returns zero on success, a negative error code otherwise. 1411 */ 1412 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1413 int *section, 1414 struct mtd_oob_region *oobregion) 1415 { 1416 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1417 mtd_ooblayout_ecc); 1418 } 1419 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1420 1421 /** 1422 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1423 * @mtd: mtd info structure 1424 * @buf: destination buffer to store OOB bytes 1425 * @oobbuf: OOB buffer 1426 * @start: first byte to retrieve 1427 * @nbytes: number of bytes to retrieve 1428 * @iter: section iterator 1429 * 1430 * Extract bytes attached to a specific category (ECC or free) 1431 * from the OOB buffer and copy them into buf. 1432 * 1433 * Returns zero on success, a negative error code otherwise. 1434 */ 1435 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1436 const u8 *oobbuf, int start, int nbytes, 1437 int (*iter)(struct mtd_info *, 1438 int section, 1439 struct mtd_oob_region *oobregion)) 1440 { 1441 struct mtd_oob_region oobregion; 1442 int section, ret; 1443 1444 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1445 &oobregion, iter); 1446 1447 while (!ret) { 1448 int cnt; 1449 1450 cnt = min_t(int, nbytes, oobregion.length); 1451 memcpy(buf, oobbuf + oobregion.offset, cnt); 1452 buf += cnt; 1453 nbytes -= cnt; 1454 1455 if (!nbytes) 1456 break; 1457 1458 ret = iter(mtd, ++section, &oobregion); 1459 } 1460 1461 return ret; 1462 } 1463 1464 /** 1465 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1466 * @mtd: mtd info structure 1467 * @buf: source buffer to get OOB bytes from 1468 * @oobbuf: OOB buffer 1469 * @start: first OOB byte to set 1470 * @nbytes: number of OOB bytes to set 1471 * @iter: section iterator 1472 * 1473 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1474 * is selected by passing the appropriate iterator. 1475 * 1476 * Returns zero on success, a negative error code otherwise. 1477 */ 1478 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1479 u8 *oobbuf, int start, int nbytes, 1480 int (*iter)(struct mtd_info *, 1481 int section, 1482 struct mtd_oob_region *oobregion)) 1483 { 1484 struct mtd_oob_region oobregion; 1485 int section, ret; 1486 1487 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1488 &oobregion, iter); 1489 1490 while (!ret) { 1491 int cnt; 1492 1493 cnt = min_t(int, nbytes, oobregion.length); 1494 memcpy(oobbuf + oobregion.offset, buf, cnt); 1495 buf += cnt; 1496 nbytes -= cnt; 1497 1498 if (!nbytes) 1499 break; 1500 1501 ret = iter(mtd, ++section, &oobregion); 1502 } 1503 1504 return ret; 1505 } 1506 1507 /** 1508 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1509 * @mtd: mtd info structure 1510 * @iter: category iterator 1511 * 1512 * Count the number of bytes in a given category. 1513 * 1514 * Returns a positive value on success, a negative error code otherwise. 1515 */ 1516 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1517 int (*iter)(struct mtd_info *, 1518 int section, 1519 struct mtd_oob_region *oobregion)) 1520 { 1521 struct mtd_oob_region oobregion; 1522 int section = 0, ret, nbytes = 0; 1523 1524 while (1) { 1525 ret = iter(mtd, section++, &oobregion); 1526 if (ret) { 1527 if (ret == -ERANGE) 1528 ret = nbytes; 1529 break; 1530 } 1531 1532 nbytes += oobregion.length; 1533 } 1534 1535 return ret; 1536 } 1537 1538 /** 1539 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1540 * @mtd: mtd info structure 1541 * @eccbuf: destination buffer to store ECC bytes 1542 * @oobbuf: OOB buffer 1543 * @start: first ECC byte to retrieve 1544 * @nbytes: number of ECC bytes to retrieve 1545 * 1546 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1547 * 1548 * Returns zero on success, a negative error code otherwise. 1549 */ 1550 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1551 const u8 *oobbuf, int start, int nbytes) 1552 { 1553 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1554 mtd_ooblayout_ecc); 1555 } 1556 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1557 1558 /** 1559 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1560 * @mtd: mtd info structure 1561 * @eccbuf: source buffer to get ECC bytes from 1562 * @oobbuf: OOB buffer 1563 * @start: first ECC byte to set 1564 * @nbytes: number of ECC bytes to set 1565 * 1566 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 1567 * 1568 * Returns zero on success, a negative error code otherwise. 1569 */ 1570 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 1571 u8 *oobbuf, int start, int nbytes) 1572 { 1573 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1574 mtd_ooblayout_ecc); 1575 } 1576 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 1577 1578 /** 1579 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 1580 * @mtd: mtd info structure 1581 * @databuf: destination buffer to store ECC bytes 1582 * @oobbuf: OOB buffer 1583 * @start: first ECC byte to retrieve 1584 * @nbytes: number of ECC bytes to retrieve 1585 * 1586 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1587 * 1588 * Returns zero on success, a negative error code otherwise. 1589 */ 1590 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 1591 const u8 *oobbuf, int start, int nbytes) 1592 { 1593 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 1594 mtd_ooblayout_free); 1595 } 1596 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 1597 1598 /** 1599 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer 1600 * @mtd: mtd info structure 1601 * @databuf: source buffer to get data bytes from 1602 * @oobbuf: OOB buffer 1603 * @start: first ECC byte to set 1604 * @nbytes: number of ECC bytes to set 1605 * 1606 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1607 * 1608 * Returns zero on success, a negative error code otherwise. 1609 */ 1610 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 1611 u8 *oobbuf, int start, int nbytes) 1612 { 1613 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 1614 mtd_ooblayout_free); 1615 } 1616 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 1617 1618 /** 1619 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 1620 * @mtd: mtd info structure 1621 * 1622 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 1623 * 1624 * Returns zero on success, a negative error code otherwise. 1625 */ 1626 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 1627 { 1628 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 1629 } 1630 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 1631 1632 /** 1633 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB 1634 * @mtd: mtd info structure 1635 * 1636 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 1637 * 1638 * Returns zero on success, a negative error code otherwise. 1639 */ 1640 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 1641 { 1642 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 1643 } 1644 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 1645 1646 /* 1647 * Method to access the protection register area, present in some flash 1648 * devices. The user data is one time programmable but the factory data is read 1649 * only. 1650 */ 1651 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1652 struct otp_info *buf) 1653 { 1654 if (!mtd->_get_fact_prot_info) 1655 return -EOPNOTSUPP; 1656 if (!len) 1657 return 0; 1658 return mtd->_get_fact_prot_info(mtd, len, retlen, buf); 1659 } 1660 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 1661 1662 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1663 size_t *retlen, u_char *buf) 1664 { 1665 *retlen = 0; 1666 if (!mtd->_read_fact_prot_reg) 1667 return -EOPNOTSUPP; 1668 if (!len) 1669 return 0; 1670 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); 1671 } 1672 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 1673 1674 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1675 struct otp_info *buf) 1676 { 1677 if (!mtd->_get_user_prot_info) 1678 return -EOPNOTSUPP; 1679 if (!len) 1680 return 0; 1681 return mtd->_get_user_prot_info(mtd, len, retlen, buf); 1682 } 1683 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 1684 1685 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1686 size_t *retlen, u_char *buf) 1687 { 1688 *retlen = 0; 1689 if (!mtd->_read_user_prot_reg) 1690 return -EOPNOTSUPP; 1691 if (!len) 1692 return 0; 1693 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); 1694 } 1695 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 1696 1697 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 1698 size_t *retlen, u_char *buf) 1699 { 1700 int ret; 1701 1702 *retlen = 0; 1703 if (!mtd->_write_user_prot_reg) 1704 return -EOPNOTSUPP; 1705 if (!len) 1706 return 0; 1707 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); 1708 if (ret) 1709 return ret; 1710 1711 /* 1712 * If no data could be written at all, we are out of memory and 1713 * must return -ENOSPC. 1714 */ 1715 return (*retlen) ? 0 : -ENOSPC; 1716 } 1717 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1718 1719 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1720 { 1721 if (!mtd->_lock_user_prot_reg) 1722 return -EOPNOTSUPP; 1723 if (!len) 1724 return 0; 1725 return mtd->_lock_user_prot_reg(mtd, from, len); 1726 } 1727 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1728 1729 /* Chip-supported device locking */ 1730 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1731 { 1732 if (!mtd->_lock) 1733 return -EOPNOTSUPP; 1734 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1735 return -EINVAL; 1736 if (!len) 1737 return 0; 1738 return mtd->_lock(mtd, ofs, len); 1739 } 1740 EXPORT_SYMBOL_GPL(mtd_lock); 1741 1742 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1743 { 1744 if (!mtd->_unlock) 1745 return -EOPNOTSUPP; 1746 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1747 return -EINVAL; 1748 if (!len) 1749 return 0; 1750 return mtd->_unlock(mtd, ofs, len); 1751 } 1752 EXPORT_SYMBOL_GPL(mtd_unlock); 1753 1754 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1755 { 1756 if (!mtd->_is_locked) 1757 return -EOPNOTSUPP; 1758 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1759 return -EINVAL; 1760 if (!len) 1761 return 0; 1762 return mtd->_is_locked(mtd, ofs, len); 1763 } 1764 EXPORT_SYMBOL_GPL(mtd_is_locked); 1765 1766 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 1767 { 1768 if (ofs < 0 || ofs >= mtd->size) 1769 return -EINVAL; 1770 if (!mtd->_block_isreserved) 1771 return 0; 1772 return mtd->_block_isreserved(mtd, ofs); 1773 } 1774 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 1775 1776 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 1777 { 1778 if (ofs < 0 || ofs >= mtd->size) 1779 return -EINVAL; 1780 if (!mtd->_block_isbad) 1781 return 0; 1782 return mtd->_block_isbad(mtd, ofs); 1783 } 1784 EXPORT_SYMBOL_GPL(mtd_block_isbad); 1785 1786 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 1787 { 1788 if (!mtd->_block_markbad) 1789 return -EOPNOTSUPP; 1790 if (ofs < 0 || ofs >= mtd->size) 1791 return -EINVAL; 1792 if (!(mtd->flags & MTD_WRITEABLE)) 1793 return -EROFS; 1794 return mtd->_block_markbad(mtd, ofs); 1795 } 1796 EXPORT_SYMBOL_GPL(mtd_block_markbad); 1797 1798 /* 1799 * default_mtd_writev - the default writev method 1800 * @mtd: mtd device description object pointer 1801 * @vecs: the vectors to write 1802 * @count: count of vectors in @vecs 1803 * @to: the MTD device offset to write to 1804 * @retlen: on exit contains the count of bytes written to the MTD device. 1805 * 1806 * This function returns zero in case of success and a negative error code in 1807 * case of failure. 1808 */ 1809 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1810 unsigned long count, loff_t to, size_t *retlen) 1811 { 1812 unsigned long i; 1813 size_t totlen = 0, thislen; 1814 int ret = 0; 1815 1816 for (i = 0; i < count; i++) { 1817 if (!vecs[i].iov_len) 1818 continue; 1819 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1820 vecs[i].iov_base); 1821 totlen += thislen; 1822 if (ret || thislen != vecs[i].iov_len) 1823 break; 1824 to += vecs[i].iov_len; 1825 } 1826 *retlen = totlen; 1827 return ret; 1828 } 1829 1830 /* 1831 * mtd_writev - the vector-based MTD write method 1832 * @mtd: mtd device description object pointer 1833 * @vecs: the vectors to write 1834 * @count: count of vectors in @vecs 1835 * @to: the MTD device offset to write to 1836 * @retlen: on exit contains the count of bytes written to the MTD device. 1837 * 1838 * This function returns zero in case of success and a negative error code in 1839 * case of failure. 1840 */ 1841 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1842 unsigned long count, loff_t to, size_t *retlen) 1843 { 1844 *retlen = 0; 1845 if (!(mtd->flags & MTD_WRITEABLE)) 1846 return -EROFS; 1847 if (!mtd->_writev) 1848 return default_mtd_writev(mtd, vecs, count, to, retlen); 1849 return mtd->_writev(mtd, vecs, count, to, retlen); 1850 } 1851 EXPORT_SYMBOL_GPL(mtd_writev); 1852 1853 /** 1854 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1855 * @mtd: mtd device description object pointer 1856 * @size: a pointer to the ideal or maximum size of the allocation, points 1857 * to the actual allocation size on success. 1858 * 1859 * This routine attempts to allocate a contiguous kernel buffer up to 1860 * the specified size, backing off the size of the request exponentially 1861 * until the request succeeds or until the allocation size falls below 1862 * the system page size. This attempts to make sure it does not adversely 1863 * impact system performance, so when allocating more than one page, we 1864 * ask the memory allocator to avoid re-trying, swapping, writing back 1865 * or performing I/O. 1866 * 1867 * Note, this function also makes sure that the allocated buffer is aligned to 1868 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1869 * 1870 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1871 * to handle smaller (i.e. degraded) buffer allocations under low- or 1872 * fragmented-memory situations where such reduced allocations, from a 1873 * requested ideal, are allowed. 1874 * 1875 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1876 */ 1877 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1878 { 1879 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 1880 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1881 void *kbuf; 1882 1883 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1884 1885 while (*size > min_alloc) { 1886 kbuf = kmalloc(*size, flags); 1887 if (kbuf) 1888 return kbuf; 1889 1890 *size >>= 1; 1891 *size = ALIGN(*size, mtd->writesize); 1892 } 1893 1894 /* 1895 * For the last resort allocation allow 'kmalloc()' to do all sorts of 1896 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 1897 */ 1898 return kmalloc(*size, GFP_KERNEL); 1899 } 1900 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 1901 1902 #ifdef CONFIG_PROC_FS 1903 1904 /*====================================================================*/ 1905 /* Support for /proc/mtd */ 1906 1907 static int mtd_proc_show(struct seq_file *m, void *v) 1908 { 1909 struct mtd_info *mtd; 1910 1911 seq_puts(m, "dev: size erasesize name\n"); 1912 mutex_lock(&mtd_table_mutex); 1913 mtd_for_each_device(mtd) { 1914 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 1915 mtd->index, (unsigned long long)mtd->size, 1916 mtd->erasesize, mtd->name); 1917 } 1918 mutex_unlock(&mtd_table_mutex); 1919 return 0; 1920 } 1921 #endif /* CONFIG_PROC_FS */ 1922 1923 /*====================================================================*/ 1924 /* Init code */ 1925 1926 static struct backing_dev_info * __init mtd_bdi_init(char *name) 1927 { 1928 struct backing_dev_info *bdi; 1929 int ret; 1930 1931 bdi = bdi_alloc(GFP_KERNEL); 1932 if (!bdi) 1933 return ERR_PTR(-ENOMEM); 1934 1935 bdi->name = name; 1936 /* 1937 * We put '-0' suffix to the name to get the same name format as we 1938 * used to get. Since this is called only once, we get a unique name. 1939 */ 1940 ret = bdi_register(bdi, "%.28s-0", name); 1941 if (ret) 1942 bdi_put(bdi); 1943 1944 return ret ? ERR_PTR(ret) : bdi; 1945 } 1946 1947 static struct proc_dir_entry *proc_mtd; 1948 1949 static int __init init_mtd(void) 1950 { 1951 int ret; 1952 1953 ret = class_register(&mtd_class); 1954 if (ret) 1955 goto err_reg; 1956 1957 mtd_bdi = mtd_bdi_init("mtd"); 1958 if (IS_ERR(mtd_bdi)) { 1959 ret = PTR_ERR(mtd_bdi); 1960 goto err_bdi; 1961 } 1962 1963 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show); 1964 1965 ret = init_mtdchar(); 1966 if (ret) 1967 goto out_procfs; 1968 1969 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 1970 1971 return 0; 1972 1973 out_procfs: 1974 if (proc_mtd) 1975 remove_proc_entry("mtd", NULL); 1976 bdi_put(mtd_bdi); 1977 err_bdi: 1978 class_unregister(&mtd_class); 1979 err_reg: 1980 pr_err("Error registering mtd class or bdi: %d\n", ret); 1981 return ret; 1982 } 1983 1984 static void __exit cleanup_mtd(void) 1985 { 1986 debugfs_remove_recursive(dfs_dir_mtd); 1987 cleanup_mtdchar(); 1988 if (proc_mtd) 1989 remove_proc_entry("mtd", NULL); 1990 class_unregister(&mtd_class); 1991 bdi_put(mtd_bdi); 1992 idr_destroy(&mtd_idr); 1993 } 1994 1995 module_init(init_mtd); 1996 module_exit(cleanup_mtd); 1997 1998 MODULE_LICENSE("GPL"); 1999 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 2000 MODULE_DESCRIPTION("Core MTD registration and access routines"); 2001