1 /* 2 * Core registration and callback routines for MTD 3 * drivers and users. 4 * 5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 6 * Copyright © 2006 Red Hat UK Limited 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/kernel.h> 26 #include <linux/ptrace.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/major.h> 31 #include <linux/fs.h> 32 #include <linux/err.h> 33 #include <linux/ioctl.h> 34 #include <linux/init.h> 35 #include <linux/of.h> 36 #include <linux/proc_fs.h> 37 #include <linux/idr.h> 38 #include <linux/backing-dev.h> 39 #include <linux/gfp.h> 40 #include <linux/slab.h> 41 #include <linux/reboot.h> 42 #include <linux/leds.h> 43 44 #include <linux/mtd/mtd.h> 45 #include <linux/mtd/partitions.h> 46 47 #include "mtdcore.h" 48 49 struct backing_dev_info *mtd_bdi; 50 51 #ifdef CONFIG_PM_SLEEP 52 53 static int mtd_cls_suspend(struct device *dev) 54 { 55 struct mtd_info *mtd = dev_get_drvdata(dev); 56 57 return mtd ? mtd_suspend(mtd) : 0; 58 } 59 60 static int mtd_cls_resume(struct device *dev) 61 { 62 struct mtd_info *mtd = dev_get_drvdata(dev); 63 64 if (mtd) 65 mtd_resume(mtd); 66 return 0; 67 } 68 69 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 70 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 71 #else 72 #define MTD_CLS_PM_OPS NULL 73 #endif 74 75 static struct class mtd_class = { 76 .name = "mtd", 77 .owner = THIS_MODULE, 78 .pm = MTD_CLS_PM_OPS, 79 }; 80 81 static DEFINE_IDR(mtd_idr); 82 83 /* These are exported solely for the purpose of mtd_blkdevs.c. You 84 should not use them for _anything_ else */ 85 DEFINE_MUTEX(mtd_table_mutex); 86 EXPORT_SYMBOL_GPL(mtd_table_mutex); 87 88 struct mtd_info *__mtd_next_device(int i) 89 { 90 return idr_get_next(&mtd_idr, &i); 91 } 92 EXPORT_SYMBOL_GPL(__mtd_next_device); 93 94 static LIST_HEAD(mtd_notifiers); 95 96 97 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 98 99 /* REVISIT once MTD uses the driver model better, whoever allocates 100 * the mtd_info will probably want to use the release() hook... 101 */ 102 static void mtd_release(struct device *dev) 103 { 104 struct mtd_info *mtd = dev_get_drvdata(dev); 105 dev_t index = MTD_DEVT(mtd->index); 106 107 /* remove /dev/mtdXro node */ 108 device_destroy(&mtd_class, index + 1); 109 } 110 111 static ssize_t mtd_type_show(struct device *dev, 112 struct device_attribute *attr, char *buf) 113 { 114 struct mtd_info *mtd = dev_get_drvdata(dev); 115 char *type; 116 117 switch (mtd->type) { 118 case MTD_ABSENT: 119 type = "absent"; 120 break; 121 case MTD_RAM: 122 type = "ram"; 123 break; 124 case MTD_ROM: 125 type = "rom"; 126 break; 127 case MTD_NORFLASH: 128 type = "nor"; 129 break; 130 case MTD_NANDFLASH: 131 type = "nand"; 132 break; 133 case MTD_DATAFLASH: 134 type = "dataflash"; 135 break; 136 case MTD_UBIVOLUME: 137 type = "ubi"; 138 break; 139 case MTD_MLCNANDFLASH: 140 type = "mlc-nand"; 141 break; 142 default: 143 type = "unknown"; 144 } 145 146 return snprintf(buf, PAGE_SIZE, "%s\n", type); 147 } 148 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 149 150 static ssize_t mtd_flags_show(struct device *dev, 151 struct device_attribute *attr, char *buf) 152 { 153 struct mtd_info *mtd = dev_get_drvdata(dev); 154 155 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 156 157 } 158 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 159 160 static ssize_t mtd_size_show(struct device *dev, 161 struct device_attribute *attr, char *buf) 162 { 163 struct mtd_info *mtd = dev_get_drvdata(dev); 164 165 return snprintf(buf, PAGE_SIZE, "%llu\n", 166 (unsigned long long)mtd->size); 167 168 } 169 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 170 171 static ssize_t mtd_erasesize_show(struct device *dev, 172 struct device_attribute *attr, char *buf) 173 { 174 struct mtd_info *mtd = dev_get_drvdata(dev); 175 176 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 177 178 } 179 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 180 181 static ssize_t mtd_writesize_show(struct device *dev, 182 struct device_attribute *attr, char *buf) 183 { 184 struct mtd_info *mtd = dev_get_drvdata(dev); 185 186 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 187 188 } 189 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 190 191 static ssize_t mtd_subpagesize_show(struct device *dev, 192 struct device_attribute *attr, char *buf) 193 { 194 struct mtd_info *mtd = dev_get_drvdata(dev); 195 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 196 197 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 198 199 } 200 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 201 202 static ssize_t mtd_oobsize_show(struct device *dev, 203 struct device_attribute *attr, char *buf) 204 { 205 struct mtd_info *mtd = dev_get_drvdata(dev); 206 207 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 208 209 } 210 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 211 212 static ssize_t mtd_numeraseregions_show(struct device *dev, 213 struct device_attribute *attr, char *buf) 214 { 215 struct mtd_info *mtd = dev_get_drvdata(dev); 216 217 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 218 219 } 220 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 221 NULL); 222 223 static ssize_t mtd_name_show(struct device *dev, 224 struct device_attribute *attr, char *buf) 225 { 226 struct mtd_info *mtd = dev_get_drvdata(dev); 227 228 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 229 230 } 231 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 232 233 static ssize_t mtd_ecc_strength_show(struct device *dev, 234 struct device_attribute *attr, char *buf) 235 { 236 struct mtd_info *mtd = dev_get_drvdata(dev); 237 238 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 239 } 240 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 241 242 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 243 struct device_attribute *attr, 244 char *buf) 245 { 246 struct mtd_info *mtd = dev_get_drvdata(dev); 247 248 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 249 } 250 251 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 252 struct device_attribute *attr, 253 const char *buf, size_t count) 254 { 255 struct mtd_info *mtd = dev_get_drvdata(dev); 256 unsigned int bitflip_threshold; 257 int retval; 258 259 retval = kstrtouint(buf, 0, &bitflip_threshold); 260 if (retval) 261 return retval; 262 263 mtd->bitflip_threshold = bitflip_threshold; 264 return count; 265 } 266 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 267 mtd_bitflip_threshold_show, 268 mtd_bitflip_threshold_store); 269 270 static ssize_t mtd_ecc_step_size_show(struct device *dev, 271 struct device_attribute *attr, char *buf) 272 { 273 struct mtd_info *mtd = dev_get_drvdata(dev); 274 275 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 276 277 } 278 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 279 280 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev, 281 struct device_attribute *attr, char *buf) 282 { 283 struct mtd_info *mtd = dev_get_drvdata(dev); 284 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 285 286 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected); 287 } 288 static DEVICE_ATTR(corrected_bits, S_IRUGO, 289 mtd_ecc_stats_corrected_show, NULL); 290 291 static ssize_t mtd_ecc_stats_errors_show(struct device *dev, 292 struct device_attribute *attr, char *buf) 293 { 294 struct mtd_info *mtd = dev_get_drvdata(dev); 295 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 296 297 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed); 298 } 299 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL); 300 301 static ssize_t mtd_badblocks_show(struct device *dev, 302 struct device_attribute *attr, char *buf) 303 { 304 struct mtd_info *mtd = dev_get_drvdata(dev); 305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 306 307 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks); 308 } 309 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL); 310 311 static ssize_t mtd_bbtblocks_show(struct device *dev, 312 struct device_attribute *attr, char *buf) 313 { 314 struct mtd_info *mtd = dev_get_drvdata(dev); 315 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 316 317 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks); 318 } 319 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL); 320 321 static struct attribute *mtd_attrs[] = { 322 &dev_attr_type.attr, 323 &dev_attr_flags.attr, 324 &dev_attr_size.attr, 325 &dev_attr_erasesize.attr, 326 &dev_attr_writesize.attr, 327 &dev_attr_subpagesize.attr, 328 &dev_attr_oobsize.attr, 329 &dev_attr_numeraseregions.attr, 330 &dev_attr_name.attr, 331 &dev_attr_ecc_strength.attr, 332 &dev_attr_ecc_step_size.attr, 333 &dev_attr_corrected_bits.attr, 334 &dev_attr_ecc_failures.attr, 335 &dev_attr_bad_blocks.attr, 336 &dev_attr_bbt_blocks.attr, 337 &dev_attr_bitflip_threshold.attr, 338 NULL, 339 }; 340 ATTRIBUTE_GROUPS(mtd); 341 342 static struct device_type mtd_devtype = { 343 .name = "mtd", 344 .groups = mtd_groups, 345 .release = mtd_release, 346 }; 347 348 #ifndef CONFIG_MMU 349 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 350 { 351 switch (mtd->type) { 352 case MTD_RAM: 353 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 354 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 355 case MTD_ROM: 356 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 357 NOMMU_MAP_READ; 358 default: 359 return NOMMU_MAP_COPY; 360 } 361 } 362 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 363 #endif 364 365 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 366 void *cmd) 367 { 368 struct mtd_info *mtd; 369 370 mtd = container_of(n, struct mtd_info, reboot_notifier); 371 mtd->_reboot(mtd); 372 373 return NOTIFY_DONE; 374 } 375 376 /** 377 * mtd_wunit_to_pairing_info - get pairing information of a wunit 378 * @mtd: pointer to new MTD device info structure 379 * @wunit: write unit we are interested in 380 * @info: returned pairing information 381 * 382 * Retrieve pairing information associated to the wunit. 383 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 384 * paired together, and where programming a page may influence the page it is 385 * paired with. 386 * The notion of page is replaced by the term wunit (write-unit) to stay 387 * consistent with the ->writesize field. 388 * 389 * The @wunit argument can be extracted from an absolute offset using 390 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 391 * to @wunit. 392 * 393 * From the pairing info the MTD user can find all the wunits paired with 394 * @wunit using the following loop: 395 * 396 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 397 * info.pair = i; 398 * mtd_pairing_info_to_wunit(mtd, &info); 399 * ... 400 * } 401 */ 402 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 403 struct mtd_pairing_info *info) 404 { 405 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 406 407 if (wunit < 0 || wunit >= npairs) 408 return -EINVAL; 409 410 if (mtd->pairing && mtd->pairing->get_info) 411 return mtd->pairing->get_info(mtd, wunit, info); 412 413 info->group = 0; 414 info->pair = wunit; 415 416 return 0; 417 } 418 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 419 420 /** 421 * mtd_wunit_to_pairing_info - get wunit from pairing information 422 * @mtd: pointer to new MTD device info structure 423 * @info: pairing information struct 424 * 425 * Returns a positive number representing the wunit associated to the info 426 * struct, or a negative error code. 427 * 428 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 429 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 430 * doc). 431 * 432 * It can also be used to only program the first page of each pair (i.e. 433 * page attached to group 0), which allows one to use an MLC NAND in 434 * software-emulated SLC mode: 435 * 436 * info.group = 0; 437 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 438 * for (info.pair = 0; info.pair < npairs; info.pair++) { 439 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 440 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 441 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 442 * } 443 */ 444 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 445 const struct mtd_pairing_info *info) 446 { 447 int ngroups = mtd_pairing_groups(mtd); 448 int npairs = mtd_wunit_per_eb(mtd) / ngroups; 449 450 if (!info || info->pair < 0 || info->pair >= npairs || 451 info->group < 0 || info->group >= ngroups) 452 return -EINVAL; 453 454 if (mtd->pairing && mtd->pairing->get_wunit) 455 return mtd->pairing->get_wunit(mtd, info); 456 457 return info->pair; 458 } 459 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 460 461 /** 462 * mtd_pairing_groups - get the number of pairing groups 463 * @mtd: pointer to new MTD device info structure 464 * 465 * Returns the number of pairing groups. 466 * 467 * This number is usually equal to the number of bits exposed by a single 468 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 469 * to iterate over all pages of a given pair. 470 */ 471 int mtd_pairing_groups(struct mtd_info *mtd) 472 { 473 if (!mtd->pairing || !mtd->pairing->ngroups) 474 return 1; 475 476 return mtd->pairing->ngroups; 477 } 478 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 479 480 /** 481 * add_mtd_device - register an MTD device 482 * @mtd: pointer to new MTD device info structure 483 * 484 * Add a device to the list of MTD devices present in the system, and 485 * notify each currently active MTD 'user' of its arrival. Returns 486 * zero on success or non-zero on failure. 487 */ 488 489 int add_mtd_device(struct mtd_info *mtd) 490 { 491 struct mtd_notifier *not; 492 int i, error; 493 494 /* 495 * May occur, for instance, on buggy drivers which call 496 * mtd_device_parse_register() multiple times on the same master MTD, 497 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 498 */ 499 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 500 return -EEXIST; 501 502 BUG_ON(mtd->writesize == 0); 503 mutex_lock(&mtd_table_mutex); 504 505 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 506 if (i < 0) { 507 error = i; 508 goto fail_locked; 509 } 510 511 mtd->index = i; 512 mtd->usecount = 0; 513 514 /* default value if not set by driver */ 515 if (mtd->bitflip_threshold == 0) 516 mtd->bitflip_threshold = mtd->ecc_strength; 517 518 if (is_power_of_2(mtd->erasesize)) 519 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 520 else 521 mtd->erasesize_shift = 0; 522 523 if (is_power_of_2(mtd->writesize)) 524 mtd->writesize_shift = ffs(mtd->writesize) - 1; 525 else 526 mtd->writesize_shift = 0; 527 528 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 529 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 530 531 /* Some chips always power up locked. Unlock them now */ 532 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 533 error = mtd_unlock(mtd, 0, mtd->size); 534 if (error && error != -EOPNOTSUPP) 535 printk(KERN_WARNING 536 "%s: unlock failed, writes may not work\n", 537 mtd->name); 538 /* Ignore unlock failures? */ 539 error = 0; 540 } 541 542 /* Caller should have set dev.parent to match the 543 * physical device, if appropriate. 544 */ 545 mtd->dev.type = &mtd_devtype; 546 mtd->dev.class = &mtd_class; 547 mtd->dev.devt = MTD_DEVT(i); 548 dev_set_name(&mtd->dev, "mtd%d", i); 549 dev_set_drvdata(&mtd->dev, mtd); 550 of_node_get(mtd_get_of_node(mtd)); 551 error = device_register(&mtd->dev); 552 if (error) 553 goto fail_added; 554 555 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 556 "mtd%dro", i); 557 558 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 559 /* No need to get a refcount on the module containing 560 the notifier, since we hold the mtd_table_mutex */ 561 list_for_each_entry(not, &mtd_notifiers, list) 562 not->add(mtd); 563 564 mutex_unlock(&mtd_table_mutex); 565 /* We _know_ we aren't being removed, because 566 our caller is still holding us here. So none 567 of this try_ nonsense, and no bitching about it 568 either. :) */ 569 __module_get(THIS_MODULE); 570 return 0; 571 572 fail_added: 573 of_node_put(mtd_get_of_node(mtd)); 574 idr_remove(&mtd_idr, i); 575 fail_locked: 576 mutex_unlock(&mtd_table_mutex); 577 return error; 578 } 579 580 /** 581 * del_mtd_device - unregister an MTD device 582 * @mtd: pointer to MTD device info structure 583 * 584 * Remove a device from the list of MTD devices present in the system, 585 * and notify each currently active MTD 'user' of its departure. 586 * Returns zero on success or 1 on failure, which currently will happen 587 * if the requested device does not appear to be present in the list. 588 */ 589 590 int del_mtd_device(struct mtd_info *mtd) 591 { 592 int ret; 593 struct mtd_notifier *not; 594 595 mutex_lock(&mtd_table_mutex); 596 597 if (idr_find(&mtd_idr, mtd->index) != mtd) { 598 ret = -ENODEV; 599 goto out_error; 600 } 601 602 /* No need to get a refcount on the module containing 603 the notifier, since we hold the mtd_table_mutex */ 604 list_for_each_entry(not, &mtd_notifiers, list) 605 not->remove(mtd); 606 607 if (mtd->usecount) { 608 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 609 mtd->index, mtd->name, mtd->usecount); 610 ret = -EBUSY; 611 } else { 612 device_unregister(&mtd->dev); 613 614 idr_remove(&mtd_idr, mtd->index); 615 of_node_put(mtd_get_of_node(mtd)); 616 617 module_put(THIS_MODULE); 618 ret = 0; 619 } 620 621 out_error: 622 mutex_unlock(&mtd_table_mutex); 623 return ret; 624 } 625 626 static int mtd_add_device_partitions(struct mtd_info *mtd, 627 struct mtd_partitions *parts) 628 { 629 const struct mtd_partition *real_parts = parts->parts; 630 int nbparts = parts->nr_parts; 631 int ret; 632 633 if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 634 ret = add_mtd_device(mtd); 635 if (ret) 636 return ret; 637 } 638 639 if (nbparts > 0) { 640 ret = add_mtd_partitions(mtd, real_parts, nbparts); 641 if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) 642 del_mtd_device(mtd); 643 return ret; 644 } 645 646 return 0; 647 } 648 649 /* 650 * Set a few defaults based on the parent devices, if not provided by the 651 * driver 652 */ 653 static void mtd_set_dev_defaults(struct mtd_info *mtd) 654 { 655 if (mtd->dev.parent) { 656 if (!mtd->owner && mtd->dev.parent->driver) 657 mtd->owner = mtd->dev.parent->driver->owner; 658 if (!mtd->name) 659 mtd->name = dev_name(mtd->dev.parent); 660 } else { 661 pr_debug("mtd device won't show a device symlink in sysfs\n"); 662 } 663 } 664 665 /** 666 * mtd_device_parse_register - parse partitions and register an MTD device. 667 * 668 * @mtd: the MTD device to register 669 * @types: the list of MTD partition probes to try, see 670 * 'parse_mtd_partitions()' for more information 671 * @parser_data: MTD partition parser-specific data 672 * @parts: fallback partition information to register, if parsing fails; 673 * only valid if %nr_parts > %0 674 * @nr_parts: the number of partitions in parts, if zero then the full 675 * MTD device is registered if no partition info is found 676 * 677 * This function aggregates MTD partitions parsing (done by 678 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 679 * basically follows the most common pattern found in many MTD drivers: 680 * 681 * * It first tries to probe partitions on MTD device @mtd using parsers 682 * specified in @types (if @types is %NULL, then the default list of parsers 683 * is used, see 'parse_mtd_partitions()' for more information). If none are 684 * found this functions tries to fallback to information specified in 685 * @parts/@nr_parts. 686 * * If any partitioning info was found, this function registers the found 687 * partitions. If the MTD_PARTITIONED_MASTER option is set, then the device 688 * as a whole is registered first. 689 * * If no partitions were found this function just registers the MTD device 690 * @mtd and exits. 691 * 692 * Returns zero in case of success and a negative error code in case of failure. 693 */ 694 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 695 struct mtd_part_parser_data *parser_data, 696 const struct mtd_partition *parts, 697 int nr_parts) 698 { 699 struct mtd_partitions parsed; 700 int ret; 701 702 mtd_set_dev_defaults(mtd); 703 704 memset(&parsed, 0, sizeof(parsed)); 705 706 ret = parse_mtd_partitions(mtd, types, &parsed, parser_data); 707 if ((ret < 0 || parsed.nr_parts == 0) && parts && nr_parts) { 708 /* Fall back to driver-provided partitions */ 709 parsed = (struct mtd_partitions){ 710 .parts = parts, 711 .nr_parts = nr_parts, 712 }; 713 } else if (ret < 0) { 714 /* Didn't come up with parsed OR fallback partitions */ 715 pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n", 716 ret); 717 /* Don't abort on errors; we can still use unpartitioned MTD */ 718 memset(&parsed, 0, sizeof(parsed)); 719 } 720 721 ret = mtd_add_device_partitions(mtd, &parsed); 722 if (ret) 723 goto out; 724 725 /* 726 * FIXME: some drivers unfortunately call this function more than once. 727 * So we have to check if we've already assigned the reboot notifier. 728 * 729 * Generally, we can make multiple calls work for most cases, but it 730 * does cause problems with parse_mtd_partitions() above (e.g., 731 * cmdlineparts will register partitions more than once). 732 */ 733 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 734 "MTD already registered\n"); 735 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 736 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 737 register_reboot_notifier(&mtd->reboot_notifier); 738 } 739 740 out: 741 /* Cleanup any parsed partitions */ 742 mtd_part_parser_cleanup(&parsed); 743 return ret; 744 } 745 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 746 747 /** 748 * mtd_device_unregister - unregister an existing MTD device. 749 * 750 * @master: the MTD device to unregister. This will unregister both the master 751 * and any partitions if registered. 752 */ 753 int mtd_device_unregister(struct mtd_info *master) 754 { 755 int err; 756 757 if (master->_reboot) 758 unregister_reboot_notifier(&master->reboot_notifier); 759 760 err = del_mtd_partitions(master); 761 if (err) 762 return err; 763 764 if (!device_is_registered(&master->dev)) 765 return 0; 766 767 return del_mtd_device(master); 768 } 769 EXPORT_SYMBOL_GPL(mtd_device_unregister); 770 771 /** 772 * register_mtd_user - register a 'user' of MTD devices. 773 * @new: pointer to notifier info structure 774 * 775 * Registers a pair of callbacks function to be called upon addition 776 * or removal of MTD devices. Causes the 'add' callback to be immediately 777 * invoked for each MTD device currently present in the system. 778 */ 779 void register_mtd_user (struct mtd_notifier *new) 780 { 781 struct mtd_info *mtd; 782 783 mutex_lock(&mtd_table_mutex); 784 785 list_add(&new->list, &mtd_notifiers); 786 787 __module_get(THIS_MODULE); 788 789 mtd_for_each_device(mtd) 790 new->add(mtd); 791 792 mutex_unlock(&mtd_table_mutex); 793 } 794 EXPORT_SYMBOL_GPL(register_mtd_user); 795 796 /** 797 * unregister_mtd_user - unregister a 'user' of MTD devices. 798 * @old: pointer to notifier info structure 799 * 800 * Removes a callback function pair from the list of 'users' to be 801 * notified upon addition or removal of MTD devices. Causes the 802 * 'remove' callback to be immediately invoked for each MTD device 803 * currently present in the system. 804 */ 805 int unregister_mtd_user (struct mtd_notifier *old) 806 { 807 struct mtd_info *mtd; 808 809 mutex_lock(&mtd_table_mutex); 810 811 module_put(THIS_MODULE); 812 813 mtd_for_each_device(mtd) 814 old->remove(mtd); 815 816 list_del(&old->list); 817 mutex_unlock(&mtd_table_mutex); 818 return 0; 819 } 820 EXPORT_SYMBOL_GPL(unregister_mtd_user); 821 822 /** 823 * get_mtd_device - obtain a validated handle for an MTD device 824 * @mtd: last known address of the required MTD device 825 * @num: internal device number of the required MTD device 826 * 827 * Given a number and NULL address, return the num'th entry in the device 828 * table, if any. Given an address and num == -1, search the device table 829 * for a device with that address and return if it's still present. Given 830 * both, return the num'th driver only if its address matches. Return 831 * error code if not. 832 */ 833 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 834 { 835 struct mtd_info *ret = NULL, *other; 836 int err = -ENODEV; 837 838 mutex_lock(&mtd_table_mutex); 839 840 if (num == -1) { 841 mtd_for_each_device(other) { 842 if (other == mtd) { 843 ret = mtd; 844 break; 845 } 846 } 847 } else if (num >= 0) { 848 ret = idr_find(&mtd_idr, num); 849 if (mtd && mtd != ret) 850 ret = NULL; 851 } 852 853 if (!ret) { 854 ret = ERR_PTR(err); 855 goto out; 856 } 857 858 err = __get_mtd_device(ret); 859 if (err) 860 ret = ERR_PTR(err); 861 out: 862 mutex_unlock(&mtd_table_mutex); 863 return ret; 864 } 865 EXPORT_SYMBOL_GPL(get_mtd_device); 866 867 868 int __get_mtd_device(struct mtd_info *mtd) 869 { 870 int err; 871 872 if (!try_module_get(mtd->owner)) 873 return -ENODEV; 874 875 if (mtd->_get_device) { 876 err = mtd->_get_device(mtd); 877 878 if (err) { 879 module_put(mtd->owner); 880 return err; 881 } 882 } 883 mtd->usecount++; 884 return 0; 885 } 886 EXPORT_SYMBOL_GPL(__get_mtd_device); 887 888 /** 889 * get_mtd_device_nm - obtain a validated handle for an MTD device by 890 * device name 891 * @name: MTD device name to open 892 * 893 * This function returns MTD device description structure in case of 894 * success and an error code in case of failure. 895 */ 896 struct mtd_info *get_mtd_device_nm(const char *name) 897 { 898 int err = -ENODEV; 899 struct mtd_info *mtd = NULL, *other; 900 901 mutex_lock(&mtd_table_mutex); 902 903 mtd_for_each_device(other) { 904 if (!strcmp(name, other->name)) { 905 mtd = other; 906 break; 907 } 908 } 909 910 if (!mtd) 911 goto out_unlock; 912 913 err = __get_mtd_device(mtd); 914 if (err) 915 goto out_unlock; 916 917 mutex_unlock(&mtd_table_mutex); 918 return mtd; 919 920 out_unlock: 921 mutex_unlock(&mtd_table_mutex); 922 return ERR_PTR(err); 923 } 924 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 925 926 void put_mtd_device(struct mtd_info *mtd) 927 { 928 mutex_lock(&mtd_table_mutex); 929 __put_mtd_device(mtd); 930 mutex_unlock(&mtd_table_mutex); 931 932 } 933 EXPORT_SYMBOL_GPL(put_mtd_device); 934 935 void __put_mtd_device(struct mtd_info *mtd) 936 { 937 --mtd->usecount; 938 BUG_ON(mtd->usecount < 0); 939 940 if (mtd->_put_device) 941 mtd->_put_device(mtd); 942 943 module_put(mtd->owner); 944 } 945 EXPORT_SYMBOL_GPL(__put_mtd_device); 946 947 /* 948 * Erase is an asynchronous operation. Device drivers are supposed 949 * to call instr->callback() whenever the operation completes, even 950 * if it completes with a failure. 951 * Callers are supposed to pass a callback function and wait for it 952 * to be called before writing to the block. 953 */ 954 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 955 { 956 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 957 return -EINVAL; 958 if (!(mtd->flags & MTD_WRITEABLE)) 959 return -EROFS; 960 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 961 if (!instr->len) { 962 instr->state = MTD_ERASE_DONE; 963 mtd_erase_callback(instr); 964 return 0; 965 } 966 ledtrig_mtd_activity(); 967 return mtd->_erase(mtd, instr); 968 } 969 EXPORT_SYMBOL_GPL(mtd_erase); 970 971 /* 972 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 973 */ 974 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 975 void **virt, resource_size_t *phys) 976 { 977 *retlen = 0; 978 *virt = NULL; 979 if (phys) 980 *phys = 0; 981 if (!mtd->_point) 982 return -EOPNOTSUPP; 983 if (from < 0 || from >= mtd->size || len > mtd->size - from) 984 return -EINVAL; 985 if (!len) 986 return 0; 987 return mtd->_point(mtd, from, len, retlen, virt, phys); 988 } 989 EXPORT_SYMBOL_GPL(mtd_point); 990 991 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 992 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 993 { 994 if (!mtd->_point) 995 return -EOPNOTSUPP; 996 if (from < 0 || from >= mtd->size || len > mtd->size - from) 997 return -EINVAL; 998 if (!len) 999 return 0; 1000 return mtd->_unpoint(mtd, from, len); 1001 } 1002 EXPORT_SYMBOL_GPL(mtd_unpoint); 1003 1004 /* 1005 * Allow NOMMU mmap() to directly map the device (if not NULL) 1006 * - return the address to which the offset maps 1007 * - return -ENOSYS to indicate refusal to do the mapping 1008 */ 1009 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1010 unsigned long offset, unsigned long flags) 1011 { 1012 if (!mtd->_get_unmapped_area) 1013 return -EOPNOTSUPP; 1014 if (offset >= mtd->size || len > mtd->size - offset) 1015 return -EINVAL; 1016 return mtd->_get_unmapped_area(mtd, len, offset, flags); 1017 } 1018 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1019 1020 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1021 u_char *buf) 1022 { 1023 int ret_code; 1024 *retlen = 0; 1025 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1026 return -EINVAL; 1027 if (!len) 1028 return 0; 1029 1030 ledtrig_mtd_activity(); 1031 /* 1032 * In the absence of an error, drivers return a non-negative integer 1033 * representing the maximum number of bitflips that were corrected on 1034 * any one ecc region (if applicable; zero otherwise). 1035 */ 1036 ret_code = mtd->_read(mtd, from, len, retlen, buf); 1037 if (unlikely(ret_code < 0)) 1038 return ret_code; 1039 if (mtd->ecc_strength == 0) 1040 return 0; /* device lacks ecc */ 1041 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1042 } 1043 EXPORT_SYMBOL_GPL(mtd_read); 1044 1045 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1046 const u_char *buf) 1047 { 1048 *retlen = 0; 1049 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1050 return -EINVAL; 1051 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE)) 1052 return -EROFS; 1053 if (!len) 1054 return 0; 1055 ledtrig_mtd_activity(); 1056 return mtd->_write(mtd, to, len, retlen, buf); 1057 } 1058 EXPORT_SYMBOL_GPL(mtd_write); 1059 1060 /* 1061 * In blackbox flight recorder like scenarios we want to make successful writes 1062 * in interrupt context. panic_write() is only intended to be called when its 1063 * known the kernel is about to panic and we need the write to succeed. Since 1064 * the kernel is not going to be running for much longer, this function can 1065 * break locks and delay to ensure the write succeeds (but not sleep). 1066 */ 1067 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1068 const u_char *buf) 1069 { 1070 *retlen = 0; 1071 if (!mtd->_panic_write) 1072 return -EOPNOTSUPP; 1073 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1074 return -EINVAL; 1075 if (!(mtd->flags & MTD_WRITEABLE)) 1076 return -EROFS; 1077 if (!len) 1078 return 0; 1079 return mtd->_panic_write(mtd, to, len, retlen, buf); 1080 } 1081 EXPORT_SYMBOL_GPL(mtd_panic_write); 1082 1083 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1084 { 1085 int ret_code; 1086 ops->retlen = ops->oobretlen = 0; 1087 if (!mtd->_read_oob) 1088 return -EOPNOTSUPP; 1089 1090 ledtrig_mtd_activity(); 1091 /* 1092 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1093 * similar to mtd->_read(), returning a non-negative integer 1094 * representing max bitflips. In other cases, mtd->_read_oob() may 1095 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1096 */ 1097 ret_code = mtd->_read_oob(mtd, from, ops); 1098 if (unlikely(ret_code < 0)) 1099 return ret_code; 1100 if (mtd->ecc_strength == 0) 1101 return 0; /* device lacks ecc */ 1102 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1103 } 1104 EXPORT_SYMBOL_GPL(mtd_read_oob); 1105 1106 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1107 struct mtd_oob_ops *ops) 1108 { 1109 ops->retlen = ops->oobretlen = 0; 1110 if (!mtd->_write_oob) 1111 return -EOPNOTSUPP; 1112 if (!(mtd->flags & MTD_WRITEABLE)) 1113 return -EROFS; 1114 ledtrig_mtd_activity(); 1115 return mtd->_write_oob(mtd, to, ops); 1116 } 1117 EXPORT_SYMBOL_GPL(mtd_write_oob); 1118 1119 /** 1120 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1121 * @mtd: MTD device structure 1122 * @section: ECC section. Depending on the layout you may have all the ECC 1123 * bytes stored in a single contiguous section, or one section 1124 * per ECC chunk (and sometime several sections for a single ECC 1125 * ECC chunk) 1126 * @oobecc: OOB region struct filled with the appropriate ECC position 1127 * information 1128 * 1129 * This function returns ECC section information in the OOB area. If you want 1130 * to get all the ECC bytes information, then you should call 1131 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1132 * 1133 * Returns zero on success, a negative error code otherwise. 1134 */ 1135 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1136 struct mtd_oob_region *oobecc) 1137 { 1138 memset(oobecc, 0, sizeof(*oobecc)); 1139 1140 if (!mtd || section < 0) 1141 return -EINVAL; 1142 1143 if (!mtd->ooblayout || !mtd->ooblayout->ecc) 1144 return -ENOTSUPP; 1145 1146 return mtd->ooblayout->ecc(mtd, section, oobecc); 1147 } 1148 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1149 1150 /** 1151 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1152 * section 1153 * @mtd: MTD device structure 1154 * @section: Free section you are interested in. Depending on the layout 1155 * you may have all the free bytes stored in a single contiguous 1156 * section, or one section per ECC chunk plus an extra section 1157 * for the remaining bytes (or other funky layout). 1158 * @oobfree: OOB region struct filled with the appropriate free position 1159 * information 1160 * 1161 * This function returns free bytes position in the OOB area. If you want 1162 * to get all the free bytes information, then you should call 1163 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1164 * 1165 * Returns zero on success, a negative error code otherwise. 1166 */ 1167 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1168 struct mtd_oob_region *oobfree) 1169 { 1170 memset(oobfree, 0, sizeof(*oobfree)); 1171 1172 if (!mtd || section < 0) 1173 return -EINVAL; 1174 1175 if (!mtd->ooblayout || !mtd->ooblayout->free) 1176 return -ENOTSUPP; 1177 1178 return mtd->ooblayout->free(mtd, section, oobfree); 1179 } 1180 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1181 1182 /** 1183 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1184 * @mtd: mtd info structure 1185 * @byte: the byte we are searching for 1186 * @sectionp: pointer where the section id will be stored 1187 * @oobregion: used to retrieve the ECC position 1188 * @iter: iterator function. Should be either mtd_ooblayout_free or 1189 * mtd_ooblayout_ecc depending on the region type you're searching for 1190 * 1191 * This function returns the section id and oobregion information of a 1192 * specific byte. For example, say you want to know where the 4th ECC byte is 1193 * stored, you'll use: 1194 * 1195 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1196 * 1197 * Returns zero on success, a negative error code otherwise. 1198 */ 1199 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1200 int *sectionp, struct mtd_oob_region *oobregion, 1201 int (*iter)(struct mtd_info *, 1202 int section, 1203 struct mtd_oob_region *oobregion)) 1204 { 1205 int pos = 0, ret, section = 0; 1206 1207 memset(oobregion, 0, sizeof(*oobregion)); 1208 1209 while (1) { 1210 ret = iter(mtd, section, oobregion); 1211 if (ret) 1212 return ret; 1213 1214 if (pos + oobregion->length > byte) 1215 break; 1216 1217 pos += oobregion->length; 1218 section++; 1219 } 1220 1221 /* 1222 * Adjust region info to make it start at the beginning at the 1223 * 'start' ECC byte. 1224 */ 1225 oobregion->offset += byte - pos; 1226 oobregion->length -= byte - pos; 1227 *sectionp = section; 1228 1229 return 0; 1230 } 1231 1232 /** 1233 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1234 * ECC byte 1235 * @mtd: mtd info structure 1236 * @eccbyte: the byte we are searching for 1237 * @sectionp: pointer where the section id will be stored 1238 * @oobregion: OOB region information 1239 * 1240 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1241 * byte. 1242 * 1243 * Returns zero on success, a negative error code otherwise. 1244 */ 1245 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1246 int *section, 1247 struct mtd_oob_region *oobregion) 1248 { 1249 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1250 mtd_ooblayout_ecc); 1251 } 1252 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1253 1254 /** 1255 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1256 * @mtd: mtd info structure 1257 * @buf: destination buffer to store OOB bytes 1258 * @oobbuf: OOB buffer 1259 * @start: first byte to retrieve 1260 * @nbytes: number of bytes to retrieve 1261 * @iter: section iterator 1262 * 1263 * Extract bytes attached to a specific category (ECC or free) 1264 * from the OOB buffer and copy them into buf. 1265 * 1266 * Returns zero on success, a negative error code otherwise. 1267 */ 1268 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1269 const u8 *oobbuf, int start, int nbytes, 1270 int (*iter)(struct mtd_info *, 1271 int section, 1272 struct mtd_oob_region *oobregion)) 1273 { 1274 struct mtd_oob_region oobregion; 1275 int section, ret; 1276 1277 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1278 &oobregion, iter); 1279 1280 while (!ret) { 1281 int cnt; 1282 1283 cnt = min_t(int, nbytes, oobregion.length); 1284 memcpy(buf, oobbuf + oobregion.offset, cnt); 1285 buf += cnt; 1286 nbytes -= cnt; 1287 1288 if (!nbytes) 1289 break; 1290 1291 ret = iter(mtd, ++section, &oobregion); 1292 } 1293 1294 return ret; 1295 } 1296 1297 /** 1298 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1299 * @mtd: mtd info structure 1300 * @buf: source buffer to get OOB bytes from 1301 * @oobbuf: OOB buffer 1302 * @start: first OOB byte to set 1303 * @nbytes: number of OOB bytes to set 1304 * @iter: section iterator 1305 * 1306 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1307 * is selected by passing the appropriate iterator. 1308 * 1309 * Returns zero on success, a negative error code otherwise. 1310 */ 1311 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1312 u8 *oobbuf, int start, int nbytes, 1313 int (*iter)(struct mtd_info *, 1314 int section, 1315 struct mtd_oob_region *oobregion)) 1316 { 1317 struct mtd_oob_region oobregion; 1318 int section, ret; 1319 1320 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1321 &oobregion, iter); 1322 1323 while (!ret) { 1324 int cnt; 1325 1326 cnt = min_t(int, nbytes, oobregion.length); 1327 memcpy(oobbuf + oobregion.offset, buf, cnt); 1328 buf += cnt; 1329 nbytes -= cnt; 1330 1331 if (!nbytes) 1332 break; 1333 1334 ret = iter(mtd, ++section, &oobregion); 1335 } 1336 1337 return ret; 1338 } 1339 1340 /** 1341 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1342 * @mtd: mtd info structure 1343 * @iter: category iterator 1344 * 1345 * Count the number of bytes in a given category. 1346 * 1347 * Returns a positive value on success, a negative error code otherwise. 1348 */ 1349 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1350 int (*iter)(struct mtd_info *, 1351 int section, 1352 struct mtd_oob_region *oobregion)) 1353 { 1354 struct mtd_oob_region oobregion; 1355 int section = 0, ret, nbytes = 0; 1356 1357 while (1) { 1358 ret = iter(mtd, section++, &oobregion); 1359 if (ret) { 1360 if (ret == -ERANGE) 1361 ret = nbytes; 1362 break; 1363 } 1364 1365 nbytes += oobregion.length; 1366 } 1367 1368 return ret; 1369 } 1370 1371 /** 1372 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1373 * @mtd: mtd info structure 1374 * @eccbuf: destination buffer to store ECC bytes 1375 * @oobbuf: OOB buffer 1376 * @start: first ECC byte to retrieve 1377 * @nbytes: number of ECC bytes to retrieve 1378 * 1379 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1380 * 1381 * Returns zero on success, a negative error code otherwise. 1382 */ 1383 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1384 const u8 *oobbuf, int start, int nbytes) 1385 { 1386 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1387 mtd_ooblayout_ecc); 1388 } 1389 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1390 1391 /** 1392 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1393 * @mtd: mtd info structure 1394 * @eccbuf: source buffer to get ECC bytes from 1395 * @oobbuf: OOB buffer 1396 * @start: first ECC byte to set 1397 * @nbytes: number of ECC bytes to set 1398 * 1399 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 1400 * 1401 * Returns zero on success, a negative error code otherwise. 1402 */ 1403 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 1404 u8 *oobbuf, int start, int nbytes) 1405 { 1406 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1407 mtd_ooblayout_ecc); 1408 } 1409 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 1410 1411 /** 1412 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 1413 * @mtd: mtd info structure 1414 * @databuf: destination buffer to store ECC bytes 1415 * @oobbuf: OOB buffer 1416 * @start: first ECC byte to retrieve 1417 * @nbytes: number of ECC bytes to retrieve 1418 * 1419 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1420 * 1421 * Returns zero on success, a negative error code otherwise. 1422 */ 1423 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 1424 const u8 *oobbuf, int start, int nbytes) 1425 { 1426 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 1427 mtd_ooblayout_free); 1428 } 1429 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 1430 1431 /** 1432 * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer 1433 * @mtd: mtd info structure 1434 * @eccbuf: source buffer to get data bytes from 1435 * @oobbuf: OOB buffer 1436 * @start: first ECC byte to set 1437 * @nbytes: number of ECC bytes to set 1438 * 1439 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1440 * 1441 * Returns zero on success, a negative error code otherwise. 1442 */ 1443 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 1444 u8 *oobbuf, int start, int nbytes) 1445 { 1446 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 1447 mtd_ooblayout_free); 1448 } 1449 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 1450 1451 /** 1452 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 1453 * @mtd: mtd info structure 1454 * 1455 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 1456 * 1457 * Returns zero on success, a negative error code otherwise. 1458 */ 1459 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 1460 { 1461 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 1462 } 1463 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 1464 1465 /** 1466 * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB 1467 * @mtd: mtd info structure 1468 * 1469 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 1470 * 1471 * Returns zero on success, a negative error code otherwise. 1472 */ 1473 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 1474 { 1475 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 1476 } 1477 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 1478 1479 /* 1480 * Method to access the protection register area, present in some flash 1481 * devices. The user data is one time programmable but the factory data is read 1482 * only. 1483 */ 1484 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1485 struct otp_info *buf) 1486 { 1487 if (!mtd->_get_fact_prot_info) 1488 return -EOPNOTSUPP; 1489 if (!len) 1490 return 0; 1491 return mtd->_get_fact_prot_info(mtd, len, retlen, buf); 1492 } 1493 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 1494 1495 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1496 size_t *retlen, u_char *buf) 1497 { 1498 *retlen = 0; 1499 if (!mtd->_read_fact_prot_reg) 1500 return -EOPNOTSUPP; 1501 if (!len) 1502 return 0; 1503 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); 1504 } 1505 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 1506 1507 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1508 struct otp_info *buf) 1509 { 1510 if (!mtd->_get_user_prot_info) 1511 return -EOPNOTSUPP; 1512 if (!len) 1513 return 0; 1514 return mtd->_get_user_prot_info(mtd, len, retlen, buf); 1515 } 1516 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 1517 1518 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1519 size_t *retlen, u_char *buf) 1520 { 1521 *retlen = 0; 1522 if (!mtd->_read_user_prot_reg) 1523 return -EOPNOTSUPP; 1524 if (!len) 1525 return 0; 1526 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); 1527 } 1528 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 1529 1530 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 1531 size_t *retlen, u_char *buf) 1532 { 1533 int ret; 1534 1535 *retlen = 0; 1536 if (!mtd->_write_user_prot_reg) 1537 return -EOPNOTSUPP; 1538 if (!len) 1539 return 0; 1540 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); 1541 if (ret) 1542 return ret; 1543 1544 /* 1545 * If no data could be written at all, we are out of memory and 1546 * must return -ENOSPC. 1547 */ 1548 return (*retlen) ? 0 : -ENOSPC; 1549 } 1550 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1551 1552 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1553 { 1554 if (!mtd->_lock_user_prot_reg) 1555 return -EOPNOTSUPP; 1556 if (!len) 1557 return 0; 1558 return mtd->_lock_user_prot_reg(mtd, from, len); 1559 } 1560 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1561 1562 /* Chip-supported device locking */ 1563 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1564 { 1565 if (!mtd->_lock) 1566 return -EOPNOTSUPP; 1567 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1568 return -EINVAL; 1569 if (!len) 1570 return 0; 1571 return mtd->_lock(mtd, ofs, len); 1572 } 1573 EXPORT_SYMBOL_GPL(mtd_lock); 1574 1575 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1576 { 1577 if (!mtd->_unlock) 1578 return -EOPNOTSUPP; 1579 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1580 return -EINVAL; 1581 if (!len) 1582 return 0; 1583 return mtd->_unlock(mtd, ofs, len); 1584 } 1585 EXPORT_SYMBOL_GPL(mtd_unlock); 1586 1587 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1588 { 1589 if (!mtd->_is_locked) 1590 return -EOPNOTSUPP; 1591 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1592 return -EINVAL; 1593 if (!len) 1594 return 0; 1595 return mtd->_is_locked(mtd, ofs, len); 1596 } 1597 EXPORT_SYMBOL_GPL(mtd_is_locked); 1598 1599 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 1600 { 1601 if (ofs < 0 || ofs >= mtd->size) 1602 return -EINVAL; 1603 if (!mtd->_block_isreserved) 1604 return 0; 1605 return mtd->_block_isreserved(mtd, ofs); 1606 } 1607 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 1608 1609 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 1610 { 1611 if (ofs < 0 || ofs >= mtd->size) 1612 return -EINVAL; 1613 if (!mtd->_block_isbad) 1614 return 0; 1615 return mtd->_block_isbad(mtd, ofs); 1616 } 1617 EXPORT_SYMBOL_GPL(mtd_block_isbad); 1618 1619 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 1620 { 1621 if (!mtd->_block_markbad) 1622 return -EOPNOTSUPP; 1623 if (ofs < 0 || ofs >= mtd->size) 1624 return -EINVAL; 1625 if (!(mtd->flags & MTD_WRITEABLE)) 1626 return -EROFS; 1627 return mtd->_block_markbad(mtd, ofs); 1628 } 1629 EXPORT_SYMBOL_GPL(mtd_block_markbad); 1630 1631 /* 1632 * default_mtd_writev - the default writev method 1633 * @mtd: mtd device description object pointer 1634 * @vecs: the vectors to write 1635 * @count: count of vectors in @vecs 1636 * @to: the MTD device offset to write to 1637 * @retlen: on exit contains the count of bytes written to the MTD device. 1638 * 1639 * This function returns zero in case of success and a negative error code in 1640 * case of failure. 1641 */ 1642 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1643 unsigned long count, loff_t to, size_t *retlen) 1644 { 1645 unsigned long i; 1646 size_t totlen = 0, thislen; 1647 int ret = 0; 1648 1649 for (i = 0; i < count; i++) { 1650 if (!vecs[i].iov_len) 1651 continue; 1652 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1653 vecs[i].iov_base); 1654 totlen += thislen; 1655 if (ret || thislen != vecs[i].iov_len) 1656 break; 1657 to += vecs[i].iov_len; 1658 } 1659 *retlen = totlen; 1660 return ret; 1661 } 1662 1663 /* 1664 * mtd_writev - the vector-based MTD write method 1665 * @mtd: mtd device description object pointer 1666 * @vecs: the vectors to write 1667 * @count: count of vectors in @vecs 1668 * @to: the MTD device offset to write to 1669 * @retlen: on exit contains the count of bytes written to the MTD device. 1670 * 1671 * This function returns zero in case of success and a negative error code in 1672 * case of failure. 1673 */ 1674 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1675 unsigned long count, loff_t to, size_t *retlen) 1676 { 1677 *retlen = 0; 1678 if (!(mtd->flags & MTD_WRITEABLE)) 1679 return -EROFS; 1680 if (!mtd->_writev) 1681 return default_mtd_writev(mtd, vecs, count, to, retlen); 1682 return mtd->_writev(mtd, vecs, count, to, retlen); 1683 } 1684 EXPORT_SYMBOL_GPL(mtd_writev); 1685 1686 /** 1687 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1688 * @mtd: mtd device description object pointer 1689 * @size: a pointer to the ideal or maximum size of the allocation, points 1690 * to the actual allocation size on success. 1691 * 1692 * This routine attempts to allocate a contiguous kernel buffer up to 1693 * the specified size, backing off the size of the request exponentially 1694 * until the request succeeds or until the allocation size falls below 1695 * the system page size. This attempts to make sure it does not adversely 1696 * impact system performance, so when allocating more than one page, we 1697 * ask the memory allocator to avoid re-trying, swapping, writing back 1698 * or performing I/O. 1699 * 1700 * Note, this function also makes sure that the allocated buffer is aligned to 1701 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1702 * 1703 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1704 * to handle smaller (i.e. degraded) buffer allocations under low- or 1705 * fragmented-memory situations where such reduced allocations, from a 1706 * requested ideal, are allowed. 1707 * 1708 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1709 */ 1710 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1711 { 1712 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 1713 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1714 void *kbuf; 1715 1716 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1717 1718 while (*size > min_alloc) { 1719 kbuf = kmalloc(*size, flags); 1720 if (kbuf) 1721 return kbuf; 1722 1723 *size >>= 1; 1724 *size = ALIGN(*size, mtd->writesize); 1725 } 1726 1727 /* 1728 * For the last resort allocation allow 'kmalloc()' to do all sorts of 1729 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 1730 */ 1731 return kmalloc(*size, GFP_KERNEL); 1732 } 1733 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 1734 1735 #ifdef CONFIG_PROC_FS 1736 1737 /*====================================================================*/ 1738 /* Support for /proc/mtd */ 1739 1740 static int mtd_proc_show(struct seq_file *m, void *v) 1741 { 1742 struct mtd_info *mtd; 1743 1744 seq_puts(m, "dev: size erasesize name\n"); 1745 mutex_lock(&mtd_table_mutex); 1746 mtd_for_each_device(mtd) { 1747 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 1748 mtd->index, (unsigned long long)mtd->size, 1749 mtd->erasesize, mtd->name); 1750 } 1751 mutex_unlock(&mtd_table_mutex); 1752 return 0; 1753 } 1754 1755 static int mtd_proc_open(struct inode *inode, struct file *file) 1756 { 1757 return single_open(file, mtd_proc_show, NULL); 1758 } 1759 1760 static const struct file_operations mtd_proc_ops = { 1761 .open = mtd_proc_open, 1762 .read = seq_read, 1763 .llseek = seq_lseek, 1764 .release = single_release, 1765 }; 1766 #endif /* CONFIG_PROC_FS */ 1767 1768 /*====================================================================*/ 1769 /* Init code */ 1770 1771 static struct backing_dev_info * __init mtd_bdi_init(char *name) 1772 { 1773 struct backing_dev_info *bdi; 1774 int ret; 1775 1776 bdi = bdi_alloc(GFP_KERNEL); 1777 if (!bdi) 1778 return ERR_PTR(-ENOMEM); 1779 1780 bdi->name = name; 1781 /* 1782 * We put '-0' suffix to the name to get the same name format as we 1783 * used to get. Since this is called only once, we get a unique name. 1784 */ 1785 ret = bdi_register(bdi, "%.28s-0", name); 1786 if (ret) 1787 bdi_put(bdi); 1788 1789 return ret ? ERR_PTR(ret) : bdi; 1790 } 1791 1792 static struct proc_dir_entry *proc_mtd; 1793 1794 static int __init init_mtd(void) 1795 { 1796 int ret; 1797 1798 ret = class_register(&mtd_class); 1799 if (ret) 1800 goto err_reg; 1801 1802 mtd_bdi = mtd_bdi_init("mtd"); 1803 if (IS_ERR(mtd_bdi)) { 1804 ret = PTR_ERR(mtd_bdi); 1805 goto err_bdi; 1806 } 1807 1808 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops); 1809 1810 ret = init_mtdchar(); 1811 if (ret) 1812 goto out_procfs; 1813 1814 return 0; 1815 1816 out_procfs: 1817 if (proc_mtd) 1818 remove_proc_entry("mtd", NULL); 1819 bdi_put(mtd_bdi); 1820 err_bdi: 1821 class_unregister(&mtd_class); 1822 err_reg: 1823 pr_err("Error registering mtd class or bdi: %d\n", ret); 1824 return ret; 1825 } 1826 1827 static void __exit cleanup_mtd(void) 1828 { 1829 cleanup_mtdchar(); 1830 if (proc_mtd) 1831 remove_proc_entry("mtd", NULL); 1832 class_unregister(&mtd_class); 1833 bdi_put(mtd_bdi); 1834 idr_destroy(&mtd_idr); 1835 } 1836 1837 module_init(init_mtd); 1838 module_exit(cleanup_mtd); 1839 1840 MODULE_LICENSE("GPL"); 1841 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1842 MODULE_DESCRIPTION("Core MTD registration and access routines"); 1843