1 /* 2 * Core registration and callback routines for MTD 3 * drivers and users. 4 * 5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 6 * Copyright © 2006 Red Hat UK Limited 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/kernel.h> 26 #include <linux/ptrace.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/major.h> 31 #include <linux/fs.h> 32 #include <linux/err.h> 33 #include <linux/ioctl.h> 34 #include <linux/init.h> 35 #include <linux/of.h> 36 #include <linux/proc_fs.h> 37 #include <linux/idr.h> 38 #include <linux/backing-dev.h> 39 #include <linux/gfp.h> 40 #include <linux/slab.h> 41 #include <linux/reboot.h> 42 #include <linux/kconfig.h> 43 #include <linux/leds.h> 44 45 #include <linux/mtd/mtd.h> 46 #include <linux/mtd/partitions.h> 47 48 #include "mtdcore.h" 49 50 static struct backing_dev_info mtd_bdi = { 51 }; 52 53 #ifdef CONFIG_PM_SLEEP 54 55 static int mtd_cls_suspend(struct device *dev) 56 { 57 struct mtd_info *mtd = dev_get_drvdata(dev); 58 59 return mtd ? mtd_suspend(mtd) : 0; 60 } 61 62 static int mtd_cls_resume(struct device *dev) 63 { 64 struct mtd_info *mtd = dev_get_drvdata(dev); 65 66 if (mtd) 67 mtd_resume(mtd); 68 return 0; 69 } 70 71 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 72 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 73 #else 74 #define MTD_CLS_PM_OPS NULL 75 #endif 76 77 static struct class mtd_class = { 78 .name = "mtd", 79 .owner = THIS_MODULE, 80 .pm = MTD_CLS_PM_OPS, 81 }; 82 83 static DEFINE_IDR(mtd_idr); 84 85 /* These are exported solely for the purpose of mtd_blkdevs.c. You 86 should not use them for _anything_ else */ 87 DEFINE_MUTEX(mtd_table_mutex); 88 EXPORT_SYMBOL_GPL(mtd_table_mutex); 89 90 struct mtd_info *__mtd_next_device(int i) 91 { 92 return idr_get_next(&mtd_idr, &i); 93 } 94 EXPORT_SYMBOL_GPL(__mtd_next_device); 95 96 static LIST_HEAD(mtd_notifiers); 97 98 99 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 100 101 /* REVISIT once MTD uses the driver model better, whoever allocates 102 * the mtd_info will probably want to use the release() hook... 103 */ 104 static void mtd_release(struct device *dev) 105 { 106 struct mtd_info *mtd = dev_get_drvdata(dev); 107 dev_t index = MTD_DEVT(mtd->index); 108 109 /* remove /dev/mtdXro node */ 110 device_destroy(&mtd_class, index + 1); 111 } 112 113 static ssize_t mtd_type_show(struct device *dev, 114 struct device_attribute *attr, char *buf) 115 { 116 struct mtd_info *mtd = dev_get_drvdata(dev); 117 char *type; 118 119 switch (mtd->type) { 120 case MTD_ABSENT: 121 type = "absent"; 122 break; 123 case MTD_RAM: 124 type = "ram"; 125 break; 126 case MTD_ROM: 127 type = "rom"; 128 break; 129 case MTD_NORFLASH: 130 type = "nor"; 131 break; 132 case MTD_NANDFLASH: 133 type = "nand"; 134 break; 135 case MTD_DATAFLASH: 136 type = "dataflash"; 137 break; 138 case MTD_UBIVOLUME: 139 type = "ubi"; 140 break; 141 case MTD_MLCNANDFLASH: 142 type = "mlc-nand"; 143 break; 144 default: 145 type = "unknown"; 146 } 147 148 return snprintf(buf, PAGE_SIZE, "%s\n", type); 149 } 150 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 151 152 static ssize_t mtd_flags_show(struct device *dev, 153 struct device_attribute *attr, char *buf) 154 { 155 struct mtd_info *mtd = dev_get_drvdata(dev); 156 157 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 158 159 } 160 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 161 162 static ssize_t mtd_size_show(struct device *dev, 163 struct device_attribute *attr, char *buf) 164 { 165 struct mtd_info *mtd = dev_get_drvdata(dev); 166 167 return snprintf(buf, PAGE_SIZE, "%llu\n", 168 (unsigned long long)mtd->size); 169 170 } 171 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 172 173 static ssize_t mtd_erasesize_show(struct device *dev, 174 struct device_attribute *attr, char *buf) 175 { 176 struct mtd_info *mtd = dev_get_drvdata(dev); 177 178 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 179 180 } 181 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 182 183 static ssize_t mtd_writesize_show(struct device *dev, 184 struct device_attribute *attr, char *buf) 185 { 186 struct mtd_info *mtd = dev_get_drvdata(dev); 187 188 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 189 190 } 191 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 192 193 static ssize_t mtd_subpagesize_show(struct device *dev, 194 struct device_attribute *attr, char *buf) 195 { 196 struct mtd_info *mtd = dev_get_drvdata(dev); 197 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 198 199 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 200 201 } 202 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 203 204 static ssize_t mtd_oobsize_show(struct device *dev, 205 struct device_attribute *attr, char *buf) 206 { 207 struct mtd_info *mtd = dev_get_drvdata(dev); 208 209 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 210 211 } 212 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 213 214 static ssize_t mtd_numeraseregions_show(struct device *dev, 215 struct device_attribute *attr, char *buf) 216 { 217 struct mtd_info *mtd = dev_get_drvdata(dev); 218 219 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 220 221 } 222 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 223 NULL); 224 225 static ssize_t mtd_name_show(struct device *dev, 226 struct device_attribute *attr, char *buf) 227 { 228 struct mtd_info *mtd = dev_get_drvdata(dev); 229 230 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 231 232 } 233 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 234 235 static ssize_t mtd_ecc_strength_show(struct device *dev, 236 struct device_attribute *attr, char *buf) 237 { 238 struct mtd_info *mtd = dev_get_drvdata(dev); 239 240 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 241 } 242 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 243 244 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 245 struct device_attribute *attr, 246 char *buf) 247 { 248 struct mtd_info *mtd = dev_get_drvdata(dev); 249 250 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 251 } 252 253 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 254 struct device_attribute *attr, 255 const char *buf, size_t count) 256 { 257 struct mtd_info *mtd = dev_get_drvdata(dev); 258 unsigned int bitflip_threshold; 259 int retval; 260 261 retval = kstrtouint(buf, 0, &bitflip_threshold); 262 if (retval) 263 return retval; 264 265 mtd->bitflip_threshold = bitflip_threshold; 266 return count; 267 } 268 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 269 mtd_bitflip_threshold_show, 270 mtd_bitflip_threshold_store); 271 272 static ssize_t mtd_ecc_step_size_show(struct device *dev, 273 struct device_attribute *attr, char *buf) 274 { 275 struct mtd_info *mtd = dev_get_drvdata(dev); 276 277 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 278 279 } 280 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 281 282 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev, 283 struct device_attribute *attr, char *buf) 284 { 285 struct mtd_info *mtd = dev_get_drvdata(dev); 286 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 287 288 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected); 289 } 290 static DEVICE_ATTR(corrected_bits, S_IRUGO, 291 mtd_ecc_stats_corrected_show, NULL); 292 293 static ssize_t mtd_ecc_stats_errors_show(struct device *dev, 294 struct device_attribute *attr, char *buf) 295 { 296 struct mtd_info *mtd = dev_get_drvdata(dev); 297 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 298 299 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed); 300 } 301 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL); 302 303 static ssize_t mtd_badblocks_show(struct device *dev, 304 struct device_attribute *attr, char *buf) 305 { 306 struct mtd_info *mtd = dev_get_drvdata(dev); 307 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 308 309 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks); 310 } 311 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL); 312 313 static ssize_t mtd_bbtblocks_show(struct device *dev, 314 struct device_attribute *attr, char *buf) 315 { 316 struct mtd_info *mtd = dev_get_drvdata(dev); 317 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 318 319 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks); 320 } 321 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL); 322 323 static struct attribute *mtd_attrs[] = { 324 &dev_attr_type.attr, 325 &dev_attr_flags.attr, 326 &dev_attr_size.attr, 327 &dev_attr_erasesize.attr, 328 &dev_attr_writesize.attr, 329 &dev_attr_subpagesize.attr, 330 &dev_attr_oobsize.attr, 331 &dev_attr_numeraseregions.attr, 332 &dev_attr_name.attr, 333 &dev_attr_ecc_strength.attr, 334 &dev_attr_ecc_step_size.attr, 335 &dev_attr_corrected_bits.attr, 336 &dev_attr_ecc_failures.attr, 337 &dev_attr_bad_blocks.attr, 338 &dev_attr_bbt_blocks.attr, 339 &dev_attr_bitflip_threshold.attr, 340 NULL, 341 }; 342 ATTRIBUTE_GROUPS(mtd); 343 344 static struct device_type mtd_devtype = { 345 .name = "mtd", 346 .groups = mtd_groups, 347 .release = mtd_release, 348 }; 349 350 #ifndef CONFIG_MMU 351 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 352 { 353 switch (mtd->type) { 354 case MTD_RAM: 355 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 356 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 357 case MTD_ROM: 358 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 359 NOMMU_MAP_READ; 360 default: 361 return NOMMU_MAP_COPY; 362 } 363 } 364 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 365 #endif 366 367 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 368 void *cmd) 369 { 370 struct mtd_info *mtd; 371 372 mtd = container_of(n, struct mtd_info, reboot_notifier); 373 mtd->_reboot(mtd); 374 375 return NOTIFY_DONE; 376 } 377 378 /** 379 * add_mtd_device - register an MTD device 380 * @mtd: pointer to new MTD device info structure 381 * 382 * Add a device to the list of MTD devices present in the system, and 383 * notify each currently active MTD 'user' of its arrival. Returns 384 * zero on success or non-zero on failure. 385 */ 386 387 int add_mtd_device(struct mtd_info *mtd) 388 { 389 struct mtd_notifier *not; 390 int i, error; 391 392 /* 393 * May occur, for instance, on buggy drivers which call 394 * mtd_device_parse_register() multiple times on the same master MTD, 395 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 396 */ 397 if (WARN_ONCE(mtd->backing_dev_info, "MTD already registered\n")) 398 return -EEXIST; 399 400 mtd->backing_dev_info = &mtd_bdi; 401 402 BUG_ON(mtd->writesize == 0); 403 mutex_lock(&mtd_table_mutex); 404 405 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 406 if (i < 0) { 407 error = i; 408 goto fail_locked; 409 } 410 411 mtd->index = i; 412 mtd->usecount = 0; 413 414 /* default value if not set by driver */ 415 if (mtd->bitflip_threshold == 0) 416 mtd->bitflip_threshold = mtd->ecc_strength; 417 418 if (is_power_of_2(mtd->erasesize)) 419 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 420 else 421 mtd->erasesize_shift = 0; 422 423 if (is_power_of_2(mtd->writesize)) 424 mtd->writesize_shift = ffs(mtd->writesize) - 1; 425 else 426 mtd->writesize_shift = 0; 427 428 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 429 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 430 431 /* Some chips always power up locked. Unlock them now */ 432 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 433 error = mtd_unlock(mtd, 0, mtd->size); 434 if (error && error != -EOPNOTSUPP) 435 printk(KERN_WARNING 436 "%s: unlock failed, writes may not work\n", 437 mtd->name); 438 /* Ignore unlock failures? */ 439 error = 0; 440 } 441 442 /* Caller should have set dev.parent to match the 443 * physical device, if appropriate. 444 */ 445 mtd->dev.type = &mtd_devtype; 446 mtd->dev.class = &mtd_class; 447 mtd->dev.devt = MTD_DEVT(i); 448 dev_set_name(&mtd->dev, "mtd%d", i); 449 dev_set_drvdata(&mtd->dev, mtd); 450 of_node_get(mtd_get_of_node(mtd)); 451 error = device_register(&mtd->dev); 452 if (error) 453 goto fail_added; 454 455 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 456 "mtd%dro", i); 457 458 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 459 /* No need to get a refcount on the module containing 460 the notifier, since we hold the mtd_table_mutex */ 461 list_for_each_entry(not, &mtd_notifiers, list) 462 not->add(mtd); 463 464 mutex_unlock(&mtd_table_mutex); 465 /* We _know_ we aren't being removed, because 466 our caller is still holding us here. So none 467 of this try_ nonsense, and no bitching about it 468 either. :) */ 469 __module_get(THIS_MODULE); 470 return 0; 471 472 fail_added: 473 of_node_put(mtd_get_of_node(mtd)); 474 idr_remove(&mtd_idr, i); 475 fail_locked: 476 mutex_unlock(&mtd_table_mutex); 477 return error; 478 } 479 480 /** 481 * del_mtd_device - unregister an MTD device 482 * @mtd: pointer to MTD device info structure 483 * 484 * Remove a device from the list of MTD devices present in the system, 485 * and notify each currently active MTD 'user' of its departure. 486 * Returns zero on success or 1 on failure, which currently will happen 487 * if the requested device does not appear to be present in the list. 488 */ 489 490 int del_mtd_device(struct mtd_info *mtd) 491 { 492 int ret; 493 struct mtd_notifier *not; 494 495 mutex_lock(&mtd_table_mutex); 496 497 if (idr_find(&mtd_idr, mtd->index) != mtd) { 498 ret = -ENODEV; 499 goto out_error; 500 } 501 502 /* No need to get a refcount on the module containing 503 the notifier, since we hold the mtd_table_mutex */ 504 list_for_each_entry(not, &mtd_notifiers, list) 505 not->remove(mtd); 506 507 if (mtd->usecount) { 508 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 509 mtd->index, mtd->name, mtd->usecount); 510 ret = -EBUSY; 511 } else { 512 device_unregister(&mtd->dev); 513 514 idr_remove(&mtd_idr, mtd->index); 515 of_node_put(mtd_get_of_node(mtd)); 516 517 module_put(THIS_MODULE); 518 ret = 0; 519 } 520 521 out_error: 522 mutex_unlock(&mtd_table_mutex); 523 return ret; 524 } 525 526 static int mtd_add_device_partitions(struct mtd_info *mtd, 527 struct mtd_partitions *parts) 528 { 529 const struct mtd_partition *real_parts = parts->parts; 530 int nbparts = parts->nr_parts; 531 int ret; 532 533 if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 534 ret = add_mtd_device(mtd); 535 if (ret) 536 return ret; 537 } 538 539 if (nbparts > 0) { 540 ret = add_mtd_partitions(mtd, real_parts, nbparts); 541 if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) 542 del_mtd_device(mtd); 543 return ret; 544 } 545 546 return 0; 547 } 548 549 /* 550 * Set a few defaults based on the parent devices, if not provided by the 551 * driver 552 */ 553 static void mtd_set_dev_defaults(struct mtd_info *mtd) 554 { 555 if (mtd->dev.parent) { 556 if (!mtd->owner && mtd->dev.parent->driver) 557 mtd->owner = mtd->dev.parent->driver->owner; 558 if (!mtd->name) 559 mtd->name = dev_name(mtd->dev.parent); 560 } else { 561 pr_debug("mtd device won't show a device symlink in sysfs\n"); 562 } 563 } 564 565 /** 566 * mtd_device_parse_register - parse partitions and register an MTD device. 567 * 568 * @mtd: the MTD device to register 569 * @types: the list of MTD partition probes to try, see 570 * 'parse_mtd_partitions()' for more information 571 * @parser_data: MTD partition parser-specific data 572 * @parts: fallback partition information to register, if parsing fails; 573 * only valid if %nr_parts > %0 574 * @nr_parts: the number of partitions in parts, if zero then the full 575 * MTD device is registered if no partition info is found 576 * 577 * This function aggregates MTD partitions parsing (done by 578 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 579 * basically follows the most common pattern found in many MTD drivers: 580 * 581 * * It first tries to probe partitions on MTD device @mtd using parsers 582 * specified in @types (if @types is %NULL, then the default list of parsers 583 * is used, see 'parse_mtd_partitions()' for more information). If none are 584 * found this functions tries to fallback to information specified in 585 * @parts/@nr_parts. 586 * * If any partitioning info was found, this function registers the found 587 * partitions. If the MTD_PARTITIONED_MASTER option is set, then the device 588 * as a whole is registered first. 589 * * If no partitions were found this function just registers the MTD device 590 * @mtd and exits. 591 * 592 * Returns zero in case of success and a negative error code in case of failure. 593 */ 594 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 595 struct mtd_part_parser_data *parser_data, 596 const struct mtd_partition *parts, 597 int nr_parts) 598 { 599 struct mtd_partitions parsed; 600 int ret; 601 602 mtd_set_dev_defaults(mtd); 603 604 memset(&parsed, 0, sizeof(parsed)); 605 606 ret = parse_mtd_partitions(mtd, types, &parsed, parser_data); 607 if ((ret < 0 || parsed.nr_parts == 0) && parts && nr_parts) { 608 /* Fall back to driver-provided partitions */ 609 parsed = (struct mtd_partitions){ 610 .parts = parts, 611 .nr_parts = nr_parts, 612 }; 613 } else if (ret < 0) { 614 /* Didn't come up with parsed OR fallback partitions */ 615 pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n", 616 ret); 617 /* Don't abort on errors; we can still use unpartitioned MTD */ 618 memset(&parsed, 0, sizeof(parsed)); 619 } 620 621 ret = mtd_add_device_partitions(mtd, &parsed); 622 if (ret) 623 goto out; 624 625 /* 626 * FIXME: some drivers unfortunately call this function more than once. 627 * So we have to check if we've already assigned the reboot notifier. 628 * 629 * Generally, we can make multiple calls work for most cases, but it 630 * does cause problems with parse_mtd_partitions() above (e.g., 631 * cmdlineparts will register partitions more than once). 632 */ 633 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 634 "MTD already registered\n"); 635 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 636 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 637 register_reboot_notifier(&mtd->reboot_notifier); 638 } 639 640 out: 641 /* Cleanup any parsed partitions */ 642 mtd_part_parser_cleanup(&parsed); 643 return ret; 644 } 645 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 646 647 /** 648 * mtd_device_unregister - unregister an existing MTD device. 649 * 650 * @master: the MTD device to unregister. This will unregister both the master 651 * and any partitions if registered. 652 */ 653 int mtd_device_unregister(struct mtd_info *master) 654 { 655 int err; 656 657 if (master->_reboot) 658 unregister_reboot_notifier(&master->reboot_notifier); 659 660 err = del_mtd_partitions(master); 661 if (err) 662 return err; 663 664 if (!device_is_registered(&master->dev)) 665 return 0; 666 667 return del_mtd_device(master); 668 } 669 EXPORT_SYMBOL_GPL(mtd_device_unregister); 670 671 /** 672 * register_mtd_user - register a 'user' of MTD devices. 673 * @new: pointer to notifier info structure 674 * 675 * Registers a pair of callbacks function to be called upon addition 676 * or removal of MTD devices. Causes the 'add' callback to be immediately 677 * invoked for each MTD device currently present in the system. 678 */ 679 void register_mtd_user (struct mtd_notifier *new) 680 { 681 struct mtd_info *mtd; 682 683 mutex_lock(&mtd_table_mutex); 684 685 list_add(&new->list, &mtd_notifiers); 686 687 __module_get(THIS_MODULE); 688 689 mtd_for_each_device(mtd) 690 new->add(mtd); 691 692 mutex_unlock(&mtd_table_mutex); 693 } 694 EXPORT_SYMBOL_GPL(register_mtd_user); 695 696 /** 697 * unregister_mtd_user - unregister a 'user' of MTD devices. 698 * @old: pointer to notifier info structure 699 * 700 * Removes a callback function pair from the list of 'users' to be 701 * notified upon addition or removal of MTD devices. Causes the 702 * 'remove' callback to be immediately invoked for each MTD device 703 * currently present in the system. 704 */ 705 int unregister_mtd_user (struct mtd_notifier *old) 706 { 707 struct mtd_info *mtd; 708 709 mutex_lock(&mtd_table_mutex); 710 711 module_put(THIS_MODULE); 712 713 mtd_for_each_device(mtd) 714 old->remove(mtd); 715 716 list_del(&old->list); 717 mutex_unlock(&mtd_table_mutex); 718 return 0; 719 } 720 EXPORT_SYMBOL_GPL(unregister_mtd_user); 721 722 /** 723 * get_mtd_device - obtain a validated handle for an MTD device 724 * @mtd: last known address of the required MTD device 725 * @num: internal device number of the required MTD device 726 * 727 * Given a number and NULL address, return the num'th entry in the device 728 * table, if any. Given an address and num == -1, search the device table 729 * for a device with that address and return if it's still present. Given 730 * both, return the num'th driver only if its address matches. Return 731 * error code if not. 732 */ 733 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 734 { 735 struct mtd_info *ret = NULL, *other; 736 int err = -ENODEV; 737 738 mutex_lock(&mtd_table_mutex); 739 740 if (num == -1) { 741 mtd_for_each_device(other) { 742 if (other == mtd) { 743 ret = mtd; 744 break; 745 } 746 } 747 } else if (num >= 0) { 748 ret = idr_find(&mtd_idr, num); 749 if (mtd && mtd != ret) 750 ret = NULL; 751 } 752 753 if (!ret) { 754 ret = ERR_PTR(err); 755 goto out; 756 } 757 758 err = __get_mtd_device(ret); 759 if (err) 760 ret = ERR_PTR(err); 761 out: 762 mutex_unlock(&mtd_table_mutex); 763 return ret; 764 } 765 EXPORT_SYMBOL_GPL(get_mtd_device); 766 767 768 int __get_mtd_device(struct mtd_info *mtd) 769 { 770 int err; 771 772 if (!try_module_get(mtd->owner)) 773 return -ENODEV; 774 775 if (mtd->_get_device) { 776 err = mtd->_get_device(mtd); 777 778 if (err) { 779 module_put(mtd->owner); 780 return err; 781 } 782 } 783 mtd->usecount++; 784 return 0; 785 } 786 EXPORT_SYMBOL_GPL(__get_mtd_device); 787 788 /** 789 * get_mtd_device_nm - obtain a validated handle for an MTD device by 790 * device name 791 * @name: MTD device name to open 792 * 793 * This function returns MTD device description structure in case of 794 * success and an error code in case of failure. 795 */ 796 struct mtd_info *get_mtd_device_nm(const char *name) 797 { 798 int err = -ENODEV; 799 struct mtd_info *mtd = NULL, *other; 800 801 mutex_lock(&mtd_table_mutex); 802 803 mtd_for_each_device(other) { 804 if (!strcmp(name, other->name)) { 805 mtd = other; 806 break; 807 } 808 } 809 810 if (!mtd) 811 goto out_unlock; 812 813 err = __get_mtd_device(mtd); 814 if (err) 815 goto out_unlock; 816 817 mutex_unlock(&mtd_table_mutex); 818 return mtd; 819 820 out_unlock: 821 mutex_unlock(&mtd_table_mutex); 822 return ERR_PTR(err); 823 } 824 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 825 826 void put_mtd_device(struct mtd_info *mtd) 827 { 828 mutex_lock(&mtd_table_mutex); 829 __put_mtd_device(mtd); 830 mutex_unlock(&mtd_table_mutex); 831 832 } 833 EXPORT_SYMBOL_GPL(put_mtd_device); 834 835 void __put_mtd_device(struct mtd_info *mtd) 836 { 837 --mtd->usecount; 838 BUG_ON(mtd->usecount < 0); 839 840 if (mtd->_put_device) 841 mtd->_put_device(mtd); 842 843 module_put(mtd->owner); 844 } 845 EXPORT_SYMBOL_GPL(__put_mtd_device); 846 847 /* 848 * Erase is an asynchronous operation. Device drivers are supposed 849 * to call instr->callback() whenever the operation completes, even 850 * if it completes with a failure. 851 * Callers are supposed to pass a callback function and wait for it 852 * to be called before writing to the block. 853 */ 854 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 855 { 856 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 857 return -EINVAL; 858 if (!(mtd->flags & MTD_WRITEABLE)) 859 return -EROFS; 860 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 861 if (!instr->len) { 862 instr->state = MTD_ERASE_DONE; 863 mtd_erase_callback(instr); 864 return 0; 865 } 866 ledtrig_mtd_activity(); 867 return mtd->_erase(mtd, instr); 868 } 869 EXPORT_SYMBOL_GPL(mtd_erase); 870 871 /* 872 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 873 */ 874 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 875 void **virt, resource_size_t *phys) 876 { 877 *retlen = 0; 878 *virt = NULL; 879 if (phys) 880 *phys = 0; 881 if (!mtd->_point) 882 return -EOPNOTSUPP; 883 if (from < 0 || from >= mtd->size || len > mtd->size - from) 884 return -EINVAL; 885 if (!len) 886 return 0; 887 return mtd->_point(mtd, from, len, retlen, virt, phys); 888 } 889 EXPORT_SYMBOL_GPL(mtd_point); 890 891 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 892 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 893 { 894 if (!mtd->_point) 895 return -EOPNOTSUPP; 896 if (from < 0 || from >= mtd->size || len > mtd->size - from) 897 return -EINVAL; 898 if (!len) 899 return 0; 900 return mtd->_unpoint(mtd, from, len); 901 } 902 EXPORT_SYMBOL_GPL(mtd_unpoint); 903 904 /* 905 * Allow NOMMU mmap() to directly map the device (if not NULL) 906 * - return the address to which the offset maps 907 * - return -ENOSYS to indicate refusal to do the mapping 908 */ 909 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 910 unsigned long offset, unsigned long flags) 911 { 912 if (!mtd->_get_unmapped_area) 913 return -EOPNOTSUPP; 914 if (offset >= mtd->size || len > mtd->size - offset) 915 return -EINVAL; 916 return mtd->_get_unmapped_area(mtd, len, offset, flags); 917 } 918 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 919 920 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 921 u_char *buf) 922 { 923 int ret_code; 924 *retlen = 0; 925 if (from < 0 || from >= mtd->size || len > mtd->size - from) 926 return -EINVAL; 927 if (!len) 928 return 0; 929 930 ledtrig_mtd_activity(); 931 /* 932 * In the absence of an error, drivers return a non-negative integer 933 * representing the maximum number of bitflips that were corrected on 934 * any one ecc region (if applicable; zero otherwise). 935 */ 936 ret_code = mtd->_read(mtd, from, len, retlen, buf); 937 if (unlikely(ret_code < 0)) 938 return ret_code; 939 if (mtd->ecc_strength == 0) 940 return 0; /* device lacks ecc */ 941 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 942 } 943 EXPORT_SYMBOL_GPL(mtd_read); 944 945 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 946 const u_char *buf) 947 { 948 *retlen = 0; 949 if (to < 0 || to >= mtd->size || len > mtd->size - to) 950 return -EINVAL; 951 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE)) 952 return -EROFS; 953 if (!len) 954 return 0; 955 ledtrig_mtd_activity(); 956 return mtd->_write(mtd, to, len, retlen, buf); 957 } 958 EXPORT_SYMBOL_GPL(mtd_write); 959 960 /* 961 * In blackbox flight recorder like scenarios we want to make successful writes 962 * in interrupt context. panic_write() is only intended to be called when its 963 * known the kernel is about to panic and we need the write to succeed. Since 964 * the kernel is not going to be running for much longer, this function can 965 * break locks and delay to ensure the write succeeds (but not sleep). 966 */ 967 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 968 const u_char *buf) 969 { 970 *retlen = 0; 971 if (!mtd->_panic_write) 972 return -EOPNOTSUPP; 973 if (to < 0 || to >= mtd->size || len > mtd->size - to) 974 return -EINVAL; 975 if (!(mtd->flags & MTD_WRITEABLE)) 976 return -EROFS; 977 if (!len) 978 return 0; 979 return mtd->_panic_write(mtd, to, len, retlen, buf); 980 } 981 EXPORT_SYMBOL_GPL(mtd_panic_write); 982 983 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 984 { 985 int ret_code; 986 ops->retlen = ops->oobretlen = 0; 987 if (!mtd->_read_oob) 988 return -EOPNOTSUPP; 989 990 ledtrig_mtd_activity(); 991 /* 992 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 993 * similar to mtd->_read(), returning a non-negative integer 994 * representing max bitflips. In other cases, mtd->_read_oob() may 995 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 996 */ 997 ret_code = mtd->_read_oob(mtd, from, ops); 998 if (unlikely(ret_code < 0)) 999 return ret_code; 1000 if (mtd->ecc_strength == 0) 1001 return 0; /* device lacks ecc */ 1002 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1003 } 1004 EXPORT_SYMBOL_GPL(mtd_read_oob); 1005 1006 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1007 struct mtd_oob_ops *ops) 1008 { 1009 ops->retlen = ops->oobretlen = 0; 1010 if (!mtd->_write_oob) 1011 return -EOPNOTSUPP; 1012 if (!(mtd->flags & MTD_WRITEABLE)) 1013 return -EROFS; 1014 ledtrig_mtd_activity(); 1015 return mtd->_write_oob(mtd, to, ops); 1016 } 1017 EXPORT_SYMBOL_GPL(mtd_write_oob); 1018 1019 /** 1020 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1021 * @mtd: MTD device structure 1022 * @section: ECC section. Depending on the layout you may have all the ECC 1023 * bytes stored in a single contiguous section, or one section 1024 * per ECC chunk (and sometime several sections for a single ECC 1025 * ECC chunk) 1026 * @oobecc: OOB region struct filled with the appropriate ECC position 1027 * information 1028 * 1029 * This functions return ECC section information in the OOB area. I you want 1030 * to get all the ECC bytes information, then you should call 1031 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1032 * 1033 * Returns zero on success, a negative error code otherwise. 1034 */ 1035 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1036 struct mtd_oob_region *oobecc) 1037 { 1038 memset(oobecc, 0, sizeof(*oobecc)); 1039 1040 if (!mtd || section < 0) 1041 return -EINVAL; 1042 1043 if (!mtd->ooblayout || !mtd->ooblayout->ecc) 1044 return -ENOTSUPP; 1045 1046 return mtd->ooblayout->ecc(mtd, section, oobecc); 1047 } 1048 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1049 1050 /** 1051 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1052 * section 1053 * @mtd: MTD device structure 1054 * @section: Free section you are interested in. Depending on the layout 1055 * you may have all the free bytes stored in a single contiguous 1056 * section, or one section per ECC chunk plus an extra section 1057 * for the remaining bytes (or other funky layout). 1058 * @oobfree: OOB region struct filled with the appropriate free position 1059 * information 1060 * 1061 * This functions return free bytes position in the OOB area. I you want 1062 * to get all the free bytes information, then you should call 1063 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1064 * 1065 * Returns zero on success, a negative error code otherwise. 1066 */ 1067 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1068 struct mtd_oob_region *oobfree) 1069 { 1070 memset(oobfree, 0, sizeof(*oobfree)); 1071 1072 if (!mtd || section < 0) 1073 return -EINVAL; 1074 1075 if (!mtd->ooblayout || !mtd->ooblayout->free) 1076 return -ENOTSUPP; 1077 1078 return mtd->ooblayout->free(mtd, section, oobfree); 1079 } 1080 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1081 1082 /** 1083 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1084 * @mtd: mtd info structure 1085 * @byte: the byte we are searching for 1086 * @sectionp: pointer where the section id will be stored 1087 * @oobregion: used to retrieve the ECC position 1088 * @iter: iterator function. Should be either mtd_ooblayout_free or 1089 * mtd_ooblayout_ecc depending on the region type you're searching for 1090 * 1091 * This functions returns the section id and oobregion information of a 1092 * specific byte. For example, say you want to know where the 4th ECC byte is 1093 * stored, you'll use: 1094 * 1095 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1096 * 1097 * Returns zero on success, a negative error code otherwise. 1098 */ 1099 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1100 int *sectionp, struct mtd_oob_region *oobregion, 1101 int (*iter)(struct mtd_info *, 1102 int section, 1103 struct mtd_oob_region *oobregion)) 1104 { 1105 int pos = 0, ret, section = 0; 1106 1107 memset(oobregion, 0, sizeof(*oobregion)); 1108 1109 while (1) { 1110 ret = iter(mtd, section, oobregion); 1111 if (ret) 1112 return ret; 1113 1114 if (pos + oobregion->length > byte) 1115 break; 1116 1117 pos += oobregion->length; 1118 section++; 1119 } 1120 1121 /* 1122 * Adjust region info to make it start at the beginning at the 1123 * 'start' ECC byte. 1124 */ 1125 oobregion->offset += byte - pos; 1126 oobregion->length -= byte - pos; 1127 *sectionp = section; 1128 1129 return 0; 1130 } 1131 1132 /** 1133 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1134 * ECC byte 1135 * @mtd: mtd info structure 1136 * @eccbyte: the byte we are searching for 1137 * @sectionp: pointer where the section id will be stored 1138 * @oobregion: OOB region information 1139 * 1140 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1141 * byte. 1142 * 1143 * Returns zero on success, a negative error code otherwise. 1144 */ 1145 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1146 int *section, 1147 struct mtd_oob_region *oobregion) 1148 { 1149 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1150 mtd_ooblayout_ecc); 1151 } 1152 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1153 1154 /** 1155 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1156 * @mtd: mtd info structure 1157 * @buf: destination buffer to store OOB bytes 1158 * @oobbuf: OOB buffer 1159 * @start: first byte to retrieve 1160 * @nbytes: number of bytes to retrieve 1161 * @iter: section iterator 1162 * 1163 * Extract bytes attached to a specific category (ECC or free) 1164 * from the OOB buffer and copy them into buf. 1165 * 1166 * Returns zero on success, a negative error code otherwise. 1167 */ 1168 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1169 const u8 *oobbuf, int start, int nbytes, 1170 int (*iter)(struct mtd_info *, 1171 int section, 1172 struct mtd_oob_region *oobregion)) 1173 { 1174 struct mtd_oob_region oobregion = { }; 1175 int section = 0, ret; 1176 1177 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1178 &oobregion, iter); 1179 1180 while (!ret) { 1181 int cnt; 1182 1183 cnt = oobregion.length > nbytes ? nbytes : oobregion.length; 1184 memcpy(buf, oobbuf + oobregion.offset, cnt); 1185 buf += cnt; 1186 nbytes -= cnt; 1187 1188 if (!nbytes) 1189 break; 1190 1191 ret = iter(mtd, ++section, &oobregion); 1192 } 1193 1194 return ret; 1195 } 1196 1197 /** 1198 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1199 * @mtd: mtd info structure 1200 * @buf: source buffer to get OOB bytes from 1201 * @oobbuf: OOB buffer 1202 * @start: first OOB byte to set 1203 * @nbytes: number of OOB bytes to set 1204 * @iter: section iterator 1205 * 1206 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1207 * is selected by passing the appropriate iterator. 1208 * 1209 * Returns zero on success, a negative error code otherwise. 1210 */ 1211 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1212 u8 *oobbuf, int start, int nbytes, 1213 int (*iter)(struct mtd_info *, 1214 int section, 1215 struct mtd_oob_region *oobregion)) 1216 { 1217 struct mtd_oob_region oobregion = { }; 1218 int section = 0, ret; 1219 1220 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1221 &oobregion, iter); 1222 1223 while (!ret) { 1224 int cnt; 1225 1226 cnt = oobregion.length > nbytes ? nbytes : oobregion.length; 1227 memcpy(oobbuf + oobregion.offset, buf, cnt); 1228 buf += cnt; 1229 nbytes -= cnt; 1230 1231 if (!nbytes) 1232 break; 1233 1234 ret = iter(mtd, ++section, &oobregion); 1235 } 1236 1237 return ret; 1238 } 1239 1240 /** 1241 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1242 * @mtd: mtd info structure 1243 * @iter: category iterator 1244 * 1245 * Count the number of bytes in a given category. 1246 * 1247 * Returns a positive value on success, a negative error code otherwise. 1248 */ 1249 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1250 int (*iter)(struct mtd_info *, 1251 int section, 1252 struct mtd_oob_region *oobregion)) 1253 { 1254 struct mtd_oob_region oobregion = { }; 1255 int section = 0, ret, nbytes = 0; 1256 1257 while (1) { 1258 ret = iter(mtd, section++, &oobregion); 1259 if (ret) { 1260 if (ret == -ERANGE) 1261 ret = nbytes; 1262 break; 1263 } 1264 1265 nbytes += oobregion.length; 1266 } 1267 1268 return ret; 1269 } 1270 1271 /** 1272 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1273 * @mtd: mtd info structure 1274 * @eccbuf: destination buffer to store ECC bytes 1275 * @oobbuf: OOB buffer 1276 * @start: first ECC byte to retrieve 1277 * @nbytes: number of ECC bytes to retrieve 1278 * 1279 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1280 * 1281 * Returns zero on success, a negative error code otherwise. 1282 */ 1283 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1284 const u8 *oobbuf, int start, int nbytes) 1285 { 1286 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1287 mtd_ooblayout_ecc); 1288 } 1289 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1290 1291 /** 1292 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1293 * @mtd: mtd info structure 1294 * @eccbuf: source buffer to get ECC bytes from 1295 * @oobbuf: OOB buffer 1296 * @start: first ECC byte to set 1297 * @nbytes: number of ECC bytes to set 1298 * 1299 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 1300 * 1301 * Returns zero on success, a negative error code otherwise. 1302 */ 1303 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 1304 u8 *oobbuf, int start, int nbytes) 1305 { 1306 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1307 mtd_ooblayout_ecc); 1308 } 1309 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 1310 1311 /** 1312 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 1313 * @mtd: mtd info structure 1314 * @databuf: destination buffer to store ECC bytes 1315 * @oobbuf: OOB buffer 1316 * @start: first ECC byte to retrieve 1317 * @nbytes: number of ECC bytes to retrieve 1318 * 1319 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1320 * 1321 * Returns zero on success, a negative error code otherwise. 1322 */ 1323 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 1324 const u8 *oobbuf, int start, int nbytes) 1325 { 1326 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 1327 mtd_ooblayout_free); 1328 } 1329 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 1330 1331 /** 1332 * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer 1333 * @mtd: mtd info structure 1334 * @eccbuf: source buffer to get data bytes from 1335 * @oobbuf: OOB buffer 1336 * @start: first ECC byte to set 1337 * @nbytes: number of ECC bytes to set 1338 * 1339 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1340 * 1341 * Returns zero on success, a negative error code otherwise. 1342 */ 1343 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 1344 u8 *oobbuf, int start, int nbytes) 1345 { 1346 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 1347 mtd_ooblayout_free); 1348 } 1349 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 1350 1351 /** 1352 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 1353 * @mtd: mtd info structure 1354 * 1355 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 1356 * 1357 * Returns zero on success, a negative error code otherwise. 1358 */ 1359 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 1360 { 1361 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 1362 } 1363 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 1364 1365 /** 1366 * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB 1367 * @mtd: mtd info structure 1368 * 1369 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 1370 * 1371 * Returns zero on success, a negative error code otherwise. 1372 */ 1373 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 1374 { 1375 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 1376 } 1377 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 1378 1379 /* 1380 * Method to access the protection register area, present in some flash 1381 * devices. The user data is one time programmable but the factory data is read 1382 * only. 1383 */ 1384 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1385 struct otp_info *buf) 1386 { 1387 if (!mtd->_get_fact_prot_info) 1388 return -EOPNOTSUPP; 1389 if (!len) 1390 return 0; 1391 return mtd->_get_fact_prot_info(mtd, len, retlen, buf); 1392 } 1393 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 1394 1395 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1396 size_t *retlen, u_char *buf) 1397 { 1398 *retlen = 0; 1399 if (!mtd->_read_fact_prot_reg) 1400 return -EOPNOTSUPP; 1401 if (!len) 1402 return 0; 1403 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); 1404 } 1405 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 1406 1407 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1408 struct otp_info *buf) 1409 { 1410 if (!mtd->_get_user_prot_info) 1411 return -EOPNOTSUPP; 1412 if (!len) 1413 return 0; 1414 return mtd->_get_user_prot_info(mtd, len, retlen, buf); 1415 } 1416 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 1417 1418 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1419 size_t *retlen, u_char *buf) 1420 { 1421 *retlen = 0; 1422 if (!mtd->_read_user_prot_reg) 1423 return -EOPNOTSUPP; 1424 if (!len) 1425 return 0; 1426 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); 1427 } 1428 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 1429 1430 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 1431 size_t *retlen, u_char *buf) 1432 { 1433 int ret; 1434 1435 *retlen = 0; 1436 if (!mtd->_write_user_prot_reg) 1437 return -EOPNOTSUPP; 1438 if (!len) 1439 return 0; 1440 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); 1441 if (ret) 1442 return ret; 1443 1444 /* 1445 * If no data could be written at all, we are out of memory and 1446 * must return -ENOSPC. 1447 */ 1448 return (*retlen) ? 0 : -ENOSPC; 1449 } 1450 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1451 1452 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1453 { 1454 if (!mtd->_lock_user_prot_reg) 1455 return -EOPNOTSUPP; 1456 if (!len) 1457 return 0; 1458 return mtd->_lock_user_prot_reg(mtd, from, len); 1459 } 1460 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1461 1462 /* Chip-supported device locking */ 1463 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1464 { 1465 if (!mtd->_lock) 1466 return -EOPNOTSUPP; 1467 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1468 return -EINVAL; 1469 if (!len) 1470 return 0; 1471 return mtd->_lock(mtd, ofs, len); 1472 } 1473 EXPORT_SYMBOL_GPL(mtd_lock); 1474 1475 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1476 { 1477 if (!mtd->_unlock) 1478 return -EOPNOTSUPP; 1479 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1480 return -EINVAL; 1481 if (!len) 1482 return 0; 1483 return mtd->_unlock(mtd, ofs, len); 1484 } 1485 EXPORT_SYMBOL_GPL(mtd_unlock); 1486 1487 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1488 { 1489 if (!mtd->_is_locked) 1490 return -EOPNOTSUPP; 1491 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1492 return -EINVAL; 1493 if (!len) 1494 return 0; 1495 return mtd->_is_locked(mtd, ofs, len); 1496 } 1497 EXPORT_SYMBOL_GPL(mtd_is_locked); 1498 1499 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 1500 { 1501 if (ofs < 0 || ofs >= mtd->size) 1502 return -EINVAL; 1503 if (!mtd->_block_isreserved) 1504 return 0; 1505 return mtd->_block_isreserved(mtd, ofs); 1506 } 1507 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 1508 1509 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 1510 { 1511 if (ofs < 0 || ofs >= mtd->size) 1512 return -EINVAL; 1513 if (!mtd->_block_isbad) 1514 return 0; 1515 return mtd->_block_isbad(mtd, ofs); 1516 } 1517 EXPORT_SYMBOL_GPL(mtd_block_isbad); 1518 1519 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 1520 { 1521 if (!mtd->_block_markbad) 1522 return -EOPNOTSUPP; 1523 if (ofs < 0 || ofs >= mtd->size) 1524 return -EINVAL; 1525 if (!(mtd->flags & MTD_WRITEABLE)) 1526 return -EROFS; 1527 return mtd->_block_markbad(mtd, ofs); 1528 } 1529 EXPORT_SYMBOL_GPL(mtd_block_markbad); 1530 1531 /* 1532 * default_mtd_writev - the default writev method 1533 * @mtd: mtd device description object pointer 1534 * @vecs: the vectors to write 1535 * @count: count of vectors in @vecs 1536 * @to: the MTD device offset to write to 1537 * @retlen: on exit contains the count of bytes written to the MTD device. 1538 * 1539 * This function returns zero in case of success and a negative error code in 1540 * case of failure. 1541 */ 1542 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1543 unsigned long count, loff_t to, size_t *retlen) 1544 { 1545 unsigned long i; 1546 size_t totlen = 0, thislen; 1547 int ret = 0; 1548 1549 for (i = 0; i < count; i++) { 1550 if (!vecs[i].iov_len) 1551 continue; 1552 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1553 vecs[i].iov_base); 1554 totlen += thislen; 1555 if (ret || thislen != vecs[i].iov_len) 1556 break; 1557 to += vecs[i].iov_len; 1558 } 1559 *retlen = totlen; 1560 return ret; 1561 } 1562 1563 /* 1564 * mtd_writev - the vector-based MTD write method 1565 * @mtd: mtd device description object pointer 1566 * @vecs: the vectors to write 1567 * @count: count of vectors in @vecs 1568 * @to: the MTD device offset to write to 1569 * @retlen: on exit contains the count of bytes written to the MTD device. 1570 * 1571 * This function returns zero in case of success and a negative error code in 1572 * case of failure. 1573 */ 1574 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1575 unsigned long count, loff_t to, size_t *retlen) 1576 { 1577 *retlen = 0; 1578 if (!(mtd->flags & MTD_WRITEABLE)) 1579 return -EROFS; 1580 if (!mtd->_writev) 1581 return default_mtd_writev(mtd, vecs, count, to, retlen); 1582 return mtd->_writev(mtd, vecs, count, to, retlen); 1583 } 1584 EXPORT_SYMBOL_GPL(mtd_writev); 1585 1586 /** 1587 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1588 * @mtd: mtd device description object pointer 1589 * @size: a pointer to the ideal or maximum size of the allocation, points 1590 * to the actual allocation size on success. 1591 * 1592 * This routine attempts to allocate a contiguous kernel buffer up to 1593 * the specified size, backing off the size of the request exponentially 1594 * until the request succeeds or until the allocation size falls below 1595 * the system page size. This attempts to make sure it does not adversely 1596 * impact system performance, so when allocating more than one page, we 1597 * ask the memory allocator to avoid re-trying, swapping, writing back 1598 * or performing I/O. 1599 * 1600 * Note, this function also makes sure that the allocated buffer is aligned to 1601 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1602 * 1603 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1604 * to handle smaller (i.e. degraded) buffer allocations under low- or 1605 * fragmented-memory situations where such reduced allocations, from a 1606 * requested ideal, are allowed. 1607 * 1608 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1609 */ 1610 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1611 { 1612 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 1613 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1614 void *kbuf; 1615 1616 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1617 1618 while (*size > min_alloc) { 1619 kbuf = kmalloc(*size, flags); 1620 if (kbuf) 1621 return kbuf; 1622 1623 *size >>= 1; 1624 *size = ALIGN(*size, mtd->writesize); 1625 } 1626 1627 /* 1628 * For the last resort allocation allow 'kmalloc()' to do all sorts of 1629 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 1630 */ 1631 return kmalloc(*size, GFP_KERNEL); 1632 } 1633 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 1634 1635 #ifdef CONFIG_PROC_FS 1636 1637 /*====================================================================*/ 1638 /* Support for /proc/mtd */ 1639 1640 static int mtd_proc_show(struct seq_file *m, void *v) 1641 { 1642 struct mtd_info *mtd; 1643 1644 seq_puts(m, "dev: size erasesize name\n"); 1645 mutex_lock(&mtd_table_mutex); 1646 mtd_for_each_device(mtd) { 1647 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 1648 mtd->index, (unsigned long long)mtd->size, 1649 mtd->erasesize, mtd->name); 1650 } 1651 mutex_unlock(&mtd_table_mutex); 1652 return 0; 1653 } 1654 1655 static int mtd_proc_open(struct inode *inode, struct file *file) 1656 { 1657 return single_open(file, mtd_proc_show, NULL); 1658 } 1659 1660 static const struct file_operations mtd_proc_ops = { 1661 .open = mtd_proc_open, 1662 .read = seq_read, 1663 .llseek = seq_lseek, 1664 .release = single_release, 1665 }; 1666 #endif /* CONFIG_PROC_FS */ 1667 1668 /*====================================================================*/ 1669 /* Init code */ 1670 1671 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name) 1672 { 1673 int ret; 1674 1675 ret = bdi_init(bdi); 1676 if (!ret) 1677 ret = bdi_register(bdi, NULL, "%s", name); 1678 1679 if (ret) 1680 bdi_destroy(bdi); 1681 1682 return ret; 1683 } 1684 1685 static struct proc_dir_entry *proc_mtd; 1686 1687 static int __init init_mtd(void) 1688 { 1689 int ret; 1690 1691 ret = class_register(&mtd_class); 1692 if (ret) 1693 goto err_reg; 1694 1695 ret = mtd_bdi_init(&mtd_bdi, "mtd"); 1696 if (ret) 1697 goto err_bdi; 1698 1699 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops); 1700 1701 ret = init_mtdchar(); 1702 if (ret) 1703 goto out_procfs; 1704 1705 return 0; 1706 1707 out_procfs: 1708 if (proc_mtd) 1709 remove_proc_entry("mtd", NULL); 1710 err_bdi: 1711 class_unregister(&mtd_class); 1712 err_reg: 1713 pr_err("Error registering mtd class or bdi: %d\n", ret); 1714 return ret; 1715 } 1716 1717 static void __exit cleanup_mtd(void) 1718 { 1719 cleanup_mtdchar(); 1720 if (proc_mtd) 1721 remove_proc_entry("mtd", NULL); 1722 class_unregister(&mtd_class); 1723 bdi_destroy(&mtd_bdi); 1724 idr_destroy(&mtd_idr); 1725 } 1726 1727 module_init(init_mtd); 1728 module_exit(cleanup_mtd); 1729 1730 MODULE_LICENSE("GPL"); 1731 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1732 MODULE_DESCRIPTION("Core MTD registration and access routines"); 1733