1 /* 2 * Core registration and callback routines for MTD 3 * drivers and users. 4 * 5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 6 * Copyright © 2006 Red Hat UK Limited 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/kernel.h> 26 #include <linux/ptrace.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/major.h> 31 #include <linux/fs.h> 32 #include <linux/err.h> 33 #include <linux/ioctl.h> 34 #include <linux/init.h> 35 #include <linux/of.h> 36 #include <linux/proc_fs.h> 37 #include <linux/idr.h> 38 #include <linux/backing-dev.h> 39 #include <linux/gfp.h> 40 #include <linux/slab.h> 41 #include <linux/reboot.h> 42 #include <linux/leds.h> 43 #include <linux/debugfs.h> 44 45 #include <linux/mtd/mtd.h> 46 #include <linux/mtd/partitions.h> 47 48 #include "mtdcore.h" 49 50 struct backing_dev_info *mtd_bdi; 51 52 #ifdef CONFIG_PM_SLEEP 53 54 static int mtd_cls_suspend(struct device *dev) 55 { 56 struct mtd_info *mtd = dev_get_drvdata(dev); 57 58 return mtd ? mtd_suspend(mtd) : 0; 59 } 60 61 static int mtd_cls_resume(struct device *dev) 62 { 63 struct mtd_info *mtd = dev_get_drvdata(dev); 64 65 if (mtd) 66 mtd_resume(mtd); 67 return 0; 68 } 69 70 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 71 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 72 #else 73 #define MTD_CLS_PM_OPS NULL 74 #endif 75 76 static struct class mtd_class = { 77 .name = "mtd", 78 .owner = THIS_MODULE, 79 .pm = MTD_CLS_PM_OPS, 80 }; 81 82 static DEFINE_IDR(mtd_idr); 83 84 /* These are exported solely for the purpose of mtd_blkdevs.c. You 85 should not use them for _anything_ else */ 86 DEFINE_MUTEX(mtd_table_mutex); 87 EXPORT_SYMBOL_GPL(mtd_table_mutex); 88 89 struct mtd_info *__mtd_next_device(int i) 90 { 91 return idr_get_next(&mtd_idr, &i); 92 } 93 EXPORT_SYMBOL_GPL(__mtd_next_device); 94 95 static LIST_HEAD(mtd_notifiers); 96 97 98 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 99 100 /* REVISIT once MTD uses the driver model better, whoever allocates 101 * the mtd_info will probably want to use the release() hook... 102 */ 103 static void mtd_release(struct device *dev) 104 { 105 struct mtd_info *mtd = dev_get_drvdata(dev); 106 dev_t index = MTD_DEVT(mtd->index); 107 108 /* remove /dev/mtdXro node */ 109 device_destroy(&mtd_class, index + 1); 110 } 111 112 static ssize_t mtd_type_show(struct device *dev, 113 struct device_attribute *attr, char *buf) 114 { 115 struct mtd_info *mtd = dev_get_drvdata(dev); 116 char *type; 117 118 switch (mtd->type) { 119 case MTD_ABSENT: 120 type = "absent"; 121 break; 122 case MTD_RAM: 123 type = "ram"; 124 break; 125 case MTD_ROM: 126 type = "rom"; 127 break; 128 case MTD_NORFLASH: 129 type = "nor"; 130 break; 131 case MTD_NANDFLASH: 132 type = "nand"; 133 break; 134 case MTD_DATAFLASH: 135 type = "dataflash"; 136 break; 137 case MTD_UBIVOLUME: 138 type = "ubi"; 139 break; 140 case MTD_MLCNANDFLASH: 141 type = "mlc-nand"; 142 break; 143 default: 144 type = "unknown"; 145 } 146 147 return snprintf(buf, PAGE_SIZE, "%s\n", type); 148 } 149 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 150 151 static ssize_t mtd_flags_show(struct device *dev, 152 struct device_attribute *attr, char *buf) 153 { 154 struct mtd_info *mtd = dev_get_drvdata(dev); 155 156 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 157 158 } 159 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 160 161 static ssize_t mtd_size_show(struct device *dev, 162 struct device_attribute *attr, char *buf) 163 { 164 struct mtd_info *mtd = dev_get_drvdata(dev); 165 166 return snprintf(buf, PAGE_SIZE, "%llu\n", 167 (unsigned long long)mtd->size); 168 169 } 170 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 171 172 static ssize_t mtd_erasesize_show(struct device *dev, 173 struct device_attribute *attr, char *buf) 174 { 175 struct mtd_info *mtd = dev_get_drvdata(dev); 176 177 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 178 179 } 180 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 181 182 static ssize_t mtd_writesize_show(struct device *dev, 183 struct device_attribute *attr, char *buf) 184 { 185 struct mtd_info *mtd = dev_get_drvdata(dev); 186 187 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 188 189 } 190 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 191 192 static ssize_t mtd_subpagesize_show(struct device *dev, 193 struct device_attribute *attr, char *buf) 194 { 195 struct mtd_info *mtd = dev_get_drvdata(dev); 196 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 197 198 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 199 200 } 201 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 202 203 static ssize_t mtd_oobsize_show(struct device *dev, 204 struct device_attribute *attr, char *buf) 205 { 206 struct mtd_info *mtd = dev_get_drvdata(dev); 207 208 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 209 210 } 211 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 212 213 static ssize_t mtd_oobavail_show(struct device *dev, 214 struct device_attribute *attr, char *buf) 215 { 216 struct mtd_info *mtd = dev_get_drvdata(dev); 217 218 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail); 219 } 220 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL); 221 222 static ssize_t mtd_numeraseregions_show(struct device *dev, 223 struct device_attribute *attr, char *buf) 224 { 225 struct mtd_info *mtd = dev_get_drvdata(dev); 226 227 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 228 229 } 230 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 231 NULL); 232 233 static ssize_t mtd_name_show(struct device *dev, 234 struct device_attribute *attr, char *buf) 235 { 236 struct mtd_info *mtd = dev_get_drvdata(dev); 237 238 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 239 240 } 241 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 242 243 static ssize_t mtd_ecc_strength_show(struct device *dev, 244 struct device_attribute *attr, char *buf) 245 { 246 struct mtd_info *mtd = dev_get_drvdata(dev); 247 248 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 249 } 250 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 251 252 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 253 struct device_attribute *attr, 254 char *buf) 255 { 256 struct mtd_info *mtd = dev_get_drvdata(dev); 257 258 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 259 } 260 261 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 262 struct device_attribute *attr, 263 const char *buf, size_t count) 264 { 265 struct mtd_info *mtd = dev_get_drvdata(dev); 266 unsigned int bitflip_threshold; 267 int retval; 268 269 retval = kstrtouint(buf, 0, &bitflip_threshold); 270 if (retval) 271 return retval; 272 273 mtd->bitflip_threshold = bitflip_threshold; 274 return count; 275 } 276 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 277 mtd_bitflip_threshold_show, 278 mtd_bitflip_threshold_store); 279 280 static ssize_t mtd_ecc_step_size_show(struct device *dev, 281 struct device_attribute *attr, char *buf) 282 { 283 struct mtd_info *mtd = dev_get_drvdata(dev); 284 285 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 286 287 } 288 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 289 290 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev, 291 struct device_attribute *attr, char *buf) 292 { 293 struct mtd_info *mtd = dev_get_drvdata(dev); 294 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 295 296 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected); 297 } 298 static DEVICE_ATTR(corrected_bits, S_IRUGO, 299 mtd_ecc_stats_corrected_show, NULL); 300 301 static ssize_t mtd_ecc_stats_errors_show(struct device *dev, 302 struct device_attribute *attr, char *buf) 303 { 304 struct mtd_info *mtd = dev_get_drvdata(dev); 305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 306 307 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed); 308 } 309 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL); 310 311 static ssize_t mtd_badblocks_show(struct device *dev, 312 struct device_attribute *attr, char *buf) 313 { 314 struct mtd_info *mtd = dev_get_drvdata(dev); 315 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 316 317 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks); 318 } 319 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL); 320 321 static ssize_t mtd_bbtblocks_show(struct device *dev, 322 struct device_attribute *attr, char *buf) 323 { 324 struct mtd_info *mtd = dev_get_drvdata(dev); 325 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 326 327 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks); 328 } 329 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL); 330 331 static struct attribute *mtd_attrs[] = { 332 &dev_attr_type.attr, 333 &dev_attr_flags.attr, 334 &dev_attr_size.attr, 335 &dev_attr_erasesize.attr, 336 &dev_attr_writesize.attr, 337 &dev_attr_subpagesize.attr, 338 &dev_attr_oobsize.attr, 339 &dev_attr_oobavail.attr, 340 &dev_attr_numeraseregions.attr, 341 &dev_attr_name.attr, 342 &dev_attr_ecc_strength.attr, 343 &dev_attr_ecc_step_size.attr, 344 &dev_attr_corrected_bits.attr, 345 &dev_attr_ecc_failures.attr, 346 &dev_attr_bad_blocks.attr, 347 &dev_attr_bbt_blocks.attr, 348 &dev_attr_bitflip_threshold.attr, 349 NULL, 350 }; 351 ATTRIBUTE_GROUPS(mtd); 352 353 static const struct device_type mtd_devtype = { 354 .name = "mtd", 355 .groups = mtd_groups, 356 .release = mtd_release, 357 }; 358 359 #ifndef CONFIG_MMU 360 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 361 { 362 switch (mtd->type) { 363 case MTD_RAM: 364 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 365 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 366 case MTD_ROM: 367 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 368 NOMMU_MAP_READ; 369 default: 370 return NOMMU_MAP_COPY; 371 } 372 } 373 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 374 #endif 375 376 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 377 void *cmd) 378 { 379 struct mtd_info *mtd; 380 381 mtd = container_of(n, struct mtd_info, reboot_notifier); 382 mtd->_reboot(mtd); 383 384 return NOTIFY_DONE; 385 } 386 387 /** 388 * mtd_wunit_to_pairing_info - get pairing information of a wunit 389 * @mtd: pointer to new MTD device info structure 390 * @wunit: write unit we are interested in 391 * @info: returned pairing information 392 * 393 * Retrieve pairing information associated to the wunit. 394 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 395 * paired together, and where programming a page may influence the page it is 396 * paired with. 397 * The notion of page is replaced by the term wunit (write-unit) to stay 398 * consistent with the ->writesize field. 399 * 400 * The @wunit argument can be extracted from an absolute offset using 401 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 402 * to @wunit. 403 * 404 * From the pairing info the MTD user can find all the wunits paired with 405 * @wunit using the following loop: 406 * 407 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 408 * info.pair = i; 409 * mtd_pairing_info_to_wunit(mtd, &info); 410 * ... 411 * } 412 */ 413 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 414 struct mtd_pairing_info *info) 415 { 416 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 417 418 if (wunit < 0 || wunit >= npairs) 419 return -EINVAL; 420 421 if (mtd->pairing && mtd->pairing->get_info) 422 return mtd->pairing->get_info(mtd, wunit, info); 423 424 info->group = 0; 425 info->pair = wunit; 426 427 return 0; 428 } 429 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 430 431 /** 432 * mtd_pairing_info_to_wunit - get wunit from pairing information 433 * @mtd: pointer to new MTD device info structure 434 * @info: pairing information struct 435 * 436 * Returns a positive number representing the wunit associated to the info 437 * struct, or a negative error code. 438 * 439 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 440 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 441 * doc). 442 * 443 * It can also be used to only program the first page of each pair (i.e. 444 * page attached to group 0), which allows one to use an MLC NAND in 445 * software-emulated SLC mode: 446 * 447 * info.group = 0; 448 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 449 * for (info.pair = 0; info.pair < npairs; info.pair++) { 450 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 451 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 452 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 453 * } 454 */ 455 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 456 const struct mtd_pairing_info *info) 457 { 458 int ngroups = mtd_pairing_groups(mtd); 459 int npairs = mtd_wunit_per_eb(mtd) / ngroups; 460 461 if (!info || info->pair < 0 || info->pair >= npairs || 462 info->group < 0 || info->group >= ngroups) 463 return -EINVAL; 464 465 if (mtd->pairing && mtd->pairing->get_wunit) 466 return mtd->pairing->get_wunit(mtd, info); 467 468 return info->pair; 469 } 470 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 471 472 /** 473 * mtd_pairing_groups - get the number of pairing groups 474 * @mtd: pointer to new MTD device info structure 475 * 476 * Returns the number of pairing groups. 477 * 478 * This number is usually equal to the number of bits exposed by a single 479 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 480 * to iterate over all pages of a given pair. 481 */ 482 int mtd_pairing_groups(struct mtd_info *mtd) 483 { 484 if (!mtd->pairing || !mtd->pairing->ngroups) 485 return 1; 486 487 return mtd->pairing->ngroups; 488 } 489 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 490 491 static struct dentry *dfs_dir_mtd; 492 493 /** 494 * add_mtd_device - register an MTD device 495 * @mtd: pointer to new MTD device info structure 496 * 497 * Add a device to the list of MTD devices present in the system, and 498 * notify each currently active MTD 'user' of its arrival. Returns 499 * zero on success or non-zero on failure. 500 */ 501 502 int add_mtd_device(struct mtd_info *mtd) 503 { 504 struct mtd_notifier *not; 505 int i, error; 506 507 /* 508 * May occur, for instance, on buggy drivers which call 509 * mtd_device_parse_register() multiple times on the same master MTD, 510 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 511 */ 512 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 513 return -EEXIST; 514 515 BUG_ON(mtd->writesize == 0); 516 517 if (WARN_ON((!mtd->erasesize || !mtd->_erase) && 518 !(mtd->flags & MTD_NO_ERASE))) 519 return -EINVAL; 520 521 mutex_lock(&mtd_table_mutex); 522 523 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 524 if (i < 0) { 525 error = i; 526 goto fail_locked; 527 } 528 529 mtd->index = i; 530 mtd->usecount = 0; 531 532 /* default value if not set by driver */ 533 if (mtd->bitflip_threshold == 0) 534 mtd->bitflip_threshold = mtd->ecc_strength; 535 536 if (is_power_of_2(mtd->erasesize)) 537 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 538 else 539 mtd->erasesize_shift = 0; 540 541 if (is_power_of_2(mtd->writesize)) 542 mtd->writesize_shift = ffs(mtd->writesize) - 1; 543 else 544 mtd->writesize_shift = 0; 545 546 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 547 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 548 549 /* Some chips always power up locked. Unlock them now */ 550 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 551 error = mtd_unlock(mtd, 0, mtd->size); 552 if (error && error != -EOPNOTSUPP) 553 printk(KERN_WARNING 554 "%s: unlock failed, writes may not work\n", 555 mtd->name); 556 /* Ignore unlock failures? */ 557 error = 0; 558 } 559 560 /* Caller should have set dev.parent to match the 561 * physical device, if appropriate. 562 */ 563 mtd->dev.type = &mtd_devtype; 564 mtd->dev.class = &mtd_class; 565 mtd->dev.devt = MTD_DEVT(i); 566 dev_set_name(&mtd->dev, "mtd%d", i); 567 dev_set_drvdata(&mtd->dev, mtd); 568 of_node_get(mtd_get_of_node(mtd)); 569 error = device_register(&mtd->dev); 570 if (error) 571 goto fail_added; 572 573 if (!IS_ERR_OR_NULL(dfs_dir_mtd)) { 574 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd); 575 if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) { 576 pr_debug("mtd device %s won't show data in debugfs\n", 577 dev_name(&mtd->dev)); 578 } 579 } 580 581 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 582 "mtd%dro", i); 583 584 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 585 /* No need to get a refcount on the module containing 586 the notifier, since we hold the mtd_table_mutex */ 587 list_for_each_entry(not, &mtd_notifiers, list) 588 not->add(mtd); 589 590 mutex_unlock(&mtd_table_mutex); 591 /* We _know_ we aren't being removed, because 592 our caller is still holding us here. So none 593 of this try_ nonsense, and no bitching about it 594 either. :) */ 595 __module_get(THIS_MODULE); 596 return 0; 597 598 fail_added: 599 of_node_put(mtd_get_of_node(mtd)); 600 idr_remove(&mtd_idr, i); 601 fail_locked: 602 mutex_unlock(&mtd_table_mutex); 603 return error; 604 } 605 606 /** 607 * del_mtd_device - unregister an MTD device 608 * @mtd: pointer to MTD device info structure 609 * 610 * Remove a device from the list of MTD devices present in the system, 611 * and notify each currently active MTD 'user' of its departure. 612 * Returns zero on success or 1 on failure, which currently will happen 613 * if the requested device does not appear to be present in the list. 614 */ 615 616 int del_mtd_device(struct mtd_info *mtd) 617 { 618 int ret; 619 struct mtd_notifier *not; 620 621 mutex_lock(&mtd_table_mutex); 622 623 debugfs_remove_recursive(mtd->dbg.dfs_dir); 624 625 if (idr_find(&mtd_idr, mtd->index) != mtd) { 626 ret = -ENODEV; 627 goto out_error; 628 } 629 630 /* No need to get a refcount on the module containing 631 the notifier, since we hold the mtd_table_mutex */ 632 list_for_each_entry(not, &mtd_notifiers, list) 633 not->remove(mtd); 634 635 if (mtd->usecount) { 636 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 637 mtd->index, mtd->name, mtd->usecount); 638 ret = -EBUSY; 639 } else { 640 device_unregister(&mtd->dev); 641 642 idr_remove(&mtd_idr, mtd->index); 643 of_node_put(mtd_get_of_node(mtd)); 644 645 module_put(THIS_MODULE); 646 ret = 0; 647 } 648 649 out_error: 650 mutex_unlock(&mtd_table_mutex); 651 return ret; 652 } 653 654 /* 655 * Set a few defaults based on the parent devices, if not provided by the 656 * driver 657 */ 658 static void mtd_set_dev_defaults(struct mtd_info *mtd) 659 { 660 if (mtd->dev.parent) { 661 if (!mtd->owner && mtd->dev.parent->driver) 662 mtd->owner = mtd->dev.parent->driver->owner; 663 if (!mtd->name) 664 mtd->name = dev_name(mtd->dev.parent); 665 } else { 666 pr_debug("mtd device won't show a device symlink in sysfs\n"); 667 } 668 } 669 670 /** 671 * mtd_device_parse_register - parse partitions and register an MTD device. 672 * 673 * @mtd: the MTD device to register 674 * @types: the list of MTD partition probes to try, see 675 * 'parse_mtd_partitions()' for more information 676 * @parser_data: MTD partition parser-specific data 677 * @parts: fallback partition information to register, if parsing fails; 678 * only valid if %nr_parts > %0 679 * @nr_parts: the number of partitions in parts, if zero then the full 680 * MTD device is registered if no partition info is found 681 * 682 * This function aggregates MTD partitions parsing (done by 683 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 684 * basically follows the most common pattern found in many MTD drivers: 685 * 686 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is 687 * registered first. 688 * * Then It tries to probe partitions on MTD device @mtd using parsers 689 * specified in @types (if @types is %NULL, then the default list of parsers 690 * is used, see 'parse_mtd_partitions()' for more information). If none are 691 * found this functions tries to fallback to information specified in 692 * @parts/@nr_parts. 693 * * If no partitions were found this function just registers the MTD device 694 * @mtd and exits. 695 * 696 * Returns zero in case of success and a negative error code in case of failure. 697 */ 698 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 699 struct mtd_part_parser_data *parser_data, 700 const struct mtd_partition *parts, 701 int nr_parts) 702 { 703 int ret; 704 705 mtd_set_dev_defaults(mtd); 706 707 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 708 ret = add_mtd_device(mtd); 709 if (ret) 710 return ret; 711 } 712 713 /* Prefer parsed partitions over driver-provided fallback */ 714 ret = parse_mtd_partitions(mtd, types, parser_data); 715 if (ret > 0) 716 ret = 0; 717 else if (nr_parts) 718 ret = add_mtd_partitions(mtd, parts, nr_parts); 719 else if (!device_is_registered(&mtd->dev)) 720 ret = add_mtd_device(mtd); 721 else 722 ret = 0; 723 724 if (ret) 725 goto out; 726 727 /* 728 * FIXME: some drivers unfortunately call this function more than once. 729 * So we have to check if we've already assigned the reboot notifier. 730 * 731 * Generally, we can make multiple calls work for most cases, but it 732 * does cause problems with parse_mtd_partitions() above (e.g., 733 * cmdlineparts will register partitions more than once). 734 */ 735 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 736 "MTD already registered\n"); 737 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 738 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 739 register_reboot_notifier(&mtd->reboot_notifier); 740 } 741 742 out: 743 if (ret && device_is_registered(&mtd->dev)) 744 del_mtd_device(mtd); 745 746 return ret; 747 } 748 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 749 750 /** 751 * mtd_device_unregister - unregister an existing MTD device. 752 * 753 * @master: the MTD device to unregister. This will unregister both the master 754 * and any partitions if registered. 755 */ 756 int mtd_device_unregister(struct mtd_info *master) 757 { 758 int err; 759 760 if (master->_reboot) 761 unregister_reboot_notifier(&master->reboot_notifier); 762 763 err = del_mtd_partitions(master); 764 if (err) 765 return err; 766 767 if (!device_is_registered(&master->dev)) 768 return 0; 769 770 return del_mtd_device(master); 771 } 772 EXPORT_SYMBOL_GPL(mtd_device_unregister); 773 774 /** 775 * register_mtd_user - register a 'user' of MTD devices. 776 * @new: pointer to notifier info structure 777 * 778 * Registers a pair of callbacks function to be called upon addition 779 * or removal of MTD devices. Causes the 'add' callback to be immediately 780 * invoked for each MTD device currently present in the system. 781 */ 782 void register_mtd_user (struct mtd_notifier *new) 783 { 784 struct mtd_info *mtd; 785 786 mutex_lock(&mtd_table_mutex); 787 788 list_add(&new->list, &mtd_notifiers); 789 790 __module_get(THIS_MODULE); 791 792 mtd_for_each_device(mtd) 793 new->add(mtd); 794 795 mutex_unlock(&mtd_table_mutex); 796 } 797 EXPORT_SYMBOL_GPL(register_mtd_user); 798 799 /** 800 * unregister_mtd_user - unregister a 'user' of MTD devices. 801 * @old: pointer to notifier info structure 802 * 803 * Removes a callback function pair from the list of 'users' to be 804 * notified upon addition or removal of MTD devices. Causes the 805 * 'remove' callback to be immediately invoked for each MTD device 806 * currently present in the system. 807 */ 808 int unregister_mtd_user (struct mtd_notifier *old) 809 { 810 struct mtd_info *mtd; 811 812 mutex_lock(&mtd_table_mutex); 813 814 module_put(THIS_MODULE); 815 816 mtd_for_each_device(mtd) 817 old->remove(mtd); 818 819 list_del(&old->list); 820 mutex_unlock(&mtd_table_mutex); 821 return 0; 822 } 823 EXPORT_SYMBOL_GPL(unregister_mtd_user); 824 825 /** 826 * get_mtd_device - obtain a validated handle for an MTD device 827 * @mtd: last known address of the required MTD device 828 * @num: internal device number of the required MTD device 829 * 830 * Given a number and NULL address, return the num'th entry in the device 831 * table, if any. Given an address and num == -1, search the device table 832 * for a device with that address and return if it's still present. Given 833 * both, return the num'th driver only if its address matches. Return 834 * error code if not. 835 */ 836 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 837 { 838 struct mtd_info *ret = NULL, *other; 839 int err = -ENODEV; 840 841 mutex_lock(&mtd_table_mutex); 842 843 if (num == -1) { 844 mtd_for_each_device(other) { 845 if (other == mtd) { 846 ret = mtd; 847 break; 848 } 849 } 850 } else if (num >= 0) { 851 ret = idr_find(&mtd_idr, num); 852 if (mtd && mtd != ret) 853 ret = NULL; 854 } 855 856 if (!ret) { 857 ret = ERR_PTR(err); 858 goto out; 859 } 860 861 err = __get_mtd_device(ret); 862 if (err) 863 ret = ERR_PTR(err); 864 out: 865 mutex_unlock(&mtd_table_mutex); 866 return ret; 867 } 868 EXPORT_SYMBOL_GPL(get_mtd_device); 869 870 871 int __get_mtd_device(struct mtd_info *mtd) 872 { 873 int err; 874 875 if (!try_module_get(mtd->owner)) 876 return -ENODEV; 877 878 if (mtd->_get_device) { 879 err = mtd->_get_device(mtd); 880 881 if (err) { 882 module_put(mtd->owner); 883 return err; 884 } 885 } 886 mtd->usecount++; 887 return 0; 888 } 889 EXPORT_SYMBOL_GPL(__get_mtd_device); 890 891 /** 892 * get_mtd_device_nm - obtain a validated handle for an MTD device by 893 * device name 894 * @name: MTD device name to open 895 * 896 * This function returns MTD device description structure in case of 897 * success and an error code in case of failure. 898 */ 899 struct mtd_info *get_mtd_device_nm(const char *name) 900 { 901 int err = -ENODEV; 902 struct mtd_info *mtd = NULL, *other; 903 904 mutex_lock(&mtd_table_mutex); 905 906 mtd_for_each_device(other) { 907 if (!strcmp(name, other->name)) { 908 mtd = other; 909 break; 910 } 911 } 912 913 if (!mtd) 914 goto out_unlock; 915 916 err = __get_mtd_device(mtd); 917 if (err) 918 goto out_unlock; 919 920 mutex_unlock(&mtd_table_mutex); 921 return mtd; 922 923 out_unlock: 924 mutex_unlock(&mtd_table_mutex); 925 return ERR_PTR(err); 926 } 927 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 928 929 void put_mtd_device(struct mtd_info *mtd) 930 { 931 mutex_lock(&mtd_table_mutex); 932 __put_mtd_device(mtd); 933 mutex_unlock(&mtd_table_mutex); 934 935 } 936 EXPORT_SYMBOL_GPL(put_mtd_device); 937 938 void __put_mtd_device(struct mtd_info *mtd) 939 { 940 --mtd->usecount; 941 BUG_ON(mtd->usecount < 0); 942 943 if (mtd->_put_device) 944 mtd->_put_device(mtd); 945 946 module_put(mtd->owner); 947 } 948 EXPORT_SYMBOL_GPL(__put_mtd_device); 949 950 /* 951 * Erase is an synchronous operation. Device drivers are epected to return a 952 * negative error code if the operation failed and update instr->fail_addr 953 * to point the portion that was not properly erased. 954 */ 955 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 956 { 957 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 958 959 if (!mtd->erasesize || !mtd->_erase) 960 return -ENOTSUPP; 961 962 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 963 return -EINVAL; 964 if (!(mtd->flags & MTD_WRITEABLE)) 965 return -EROFS; 966 967 if (!instr->len) 968 return 0; 969 970 ledtrig_mtd_activity(); 971 return mtd->_erase(mtd, instr); 972 } 973 EXPORT_SYMBOL_GPL(mtd_erase); 974 975 /* 976 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 977 */ 978 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 979 void **virt, resource_size_t *phys) 980 { 981 *retlen = 0; 982 *virt = NULL; 983 if (phys) 984 *phys = 0; 985 if (!mtd->_point) 986 return -EOPNOTSUPP; 987 if (from < 0 || from >= mtd->size || len > mtd->size - from) 988 return -EINVAL; 989 if (!len) 990 return 0; 991 return mtd->_point(mtd, from, len, retlen, virt, phys); 992 } 993 EXPORT_SYMBOL_GPL(mtd_point); 994 995 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 996 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 997 { 998 if (!mtd->_unpoint) 999 return -EOPNOTSUPP; 1000 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1001 return -EINVAL; 1002 if (!len) 1003 return 0; 1004 return mtd->_unpoint(mtd, from, len); 1005 } 1006 EXPORT_SYMBOL_GPL(mtd_unpoint); 1007 1008 /* 1009 * Allow NOMMU mmap() to directly map the device (if not NULL) 1010 * - return the address to which the offset maps 1011 * - return -ENOSYS to indicate refusal to do the mapping 1012 */ 1013 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1014 unsigned long offset, unsigned long flags) 1015 { 1016 size_t retlen; 1017 void *virt; 1018 int ret; 1019 1020 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); 1021 if (ret) 1022 return ret; 1023 if (retlen != len) { 1024 mtd_unpoint(mtd, offset, retlen); 1025 return -ENOSYS; 1026 } 1027 return (unsigned long)virt; 1028 } 1029 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1030 1031 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1032 u_char *buf) 1033 { 1034 int ret_code; 1035 *retlen = 0; 1036 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1037 return -EINVAL; 1038 if (!len) 1039 return 0; 1040 1041 ledtrig_mtd_activity(); 1042 /* 1043 * In the absence of an error, drivers return a non-negative integer 1044 * representing the maximum number of bitflips that were corrected on 1045 * any one ecc region (if applicable; zero otherwise). 1046 */ 1047 if (mtd->_read) { 1048 ret_code = mtd->_read(mtd, from, len, retlen, buf); 1049 } else if (mtd->_read_oob) { 1050 struct mtd_oob_ops ops = { 1051 .len = len, 1052 .datbuf = buf, 1053 }; 1054 1055 ret_code = mtd->_read_oob(mtd, from, &ops); 1056 *retlen = ops.retlen; 1057 } else { 1058 return -ENOTSUPP; 1059 } 1060 1061 if (unlikely(ret_code < 0)) 1062 return ret_code; 1063 if (mtd->ecc_strength == 0) 1064 return 0; /* device lacks ecc */ 1065 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1066 } 1067 EXPORT_SYMBOL_GPL(mtd_read); 1068 1069 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1070 const u_char *buf) 1071 { 1072 *retlen = 0; 1073 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1074 return -EINVAL; 1075 if ((!mtd->_write && !mtd->_write_oob) || 1076 !(mtd->flags & MTD_WRITEABLE)) 1077 return -EROFS; 1078 if (!len) 1079 return 0; 1080 ledtrig_mtd_activity(); 1081 1082 if (!mtd->_write) { 1083 struct mtd_oob_ops ops = { 1084 .len = len, 1085 .datbuf = (u8 *)buf, 1086 }; 1087 int ret; 1088 1089 ret = mtd->_write_oob(mtd, to, &ops); 1090 *retlen = ops.retlen; 1091 return ret; 1092 } 1093 1094 return mtd->_write(mtd, to, len, retlen, buf); 1095 } 1096 EXPORT_SYMBOL_GPL(mtd_write); 1097 1098 /* 1099 * In blackbox flight recorder like scenarios we want to make successful writes 1100 * in interrupt context. panic_write() is only intended to be called when its 1101 * known the kernel is about to panic and we need the write to succeed. Since 1102 * the kernel is not going to be running for much longer, this function can 1103 * break locks and delay to ensure the write succeeds (but not sleep). 1104 */ 1105 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1106 const u_char *buf) 1107 { 1108 *retlen = 0; 1109 if (!mtd->_panic_write) 1110 return -EOPNOTSUPP; 1111 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1112 return -EINVAL; 1113 if (!(mtd->flags & MTD_WRITEABLE)) 1114 return -EROFS; 1115 if (!len) 1116 return 0; 1117 return mtd->_panic_write(mtd, to, len, retlen, buf); 1118 } 1119 EXPORT_SYMBOL_GPL(mtd_panic_write); 1120 1121 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1122 struct mtd_oob_ops *ops) 1123 { 1124 /* 1125 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1126 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1127 * this case. 1128 */ 1129 if (!ops->datbuf) 1130 ops->len = 0; 1131 1132 if (!ops->oobbuf) 1133 ops->ooblen = 0; 1134 1135 if (offs < 0 || offs + ops->len > mtd->size) 1136 return -EINVAL; 1137 1138 if (ops->ooblen) { 1139 u64 maxooblen; 1140 1141 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1142 return -EINVAL; 1143 1144 maxooblen = ((mtd_div_by_ws(mtd->size, mtd) - 1145 mtd_div_by_ws(offs, mtd)) * 1146 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1147 if (ops->ooblen > maxooblen) 1148 return -EINVAL; 1149 } 1150 1151 return 0; 1152 } 1153 1154 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1155 { 1156 int ret_code; 1157 ops->retlen = ops->oobretlen = 0; 1158 1159 ret_code = mtd_check_oob_ops(mtd, from, ops); 1160 if (ret_code) 1161 return ret_code; 1162 1163 ledtrig_mtd_activity(); 1164 1165 /* Check the validity of a potential fallback on mtd->_read */ 1166 if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf)) 1167 return -EOPNOTSUPP; 1168 1169 if (mtd->_read_oob) 1170 ret_code = mtd->_read_oob(mtd, from, ops); 1171 else 1172 ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen, 1173 ops->datbuf); 1174 1175 /* 1176 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1177 * similar to mtd->_read(), returning a non-negative integer 1178 * representing max bitflips. In other cases, mtd->_read_oob() may 1179 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1180 */ 1181 if (unlikely(ret_code < 0)) 1182 return ret_code; 1183 if (mtd->ecc_strength == 0) 1184 return 0; /* device lacks ecc */ 1185 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1186 } 1187 EXPORT_SYMBOL_GPL(mtd_read_oob); 1188 1189 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1190 struct mtd_oob_ops *ops) 1191 { 1192 int ret; 1193 1194 ops->retlen = ops->oobretlen = 0; 1195 1196 if (!(mtd->flags & MTD_WRITEABLE)) 1197 return -EROFS; 1198 1199 ret = mtd_check_oob_ops(mtd, to, ops); 1200 if (ret) 1201 return ret; 1202 1203 ledtrig_mtd_activity(); 1204 1205 /* Check the validity of a potential fallback on mtd->_write */ 1206 if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf)) 1207 return -EOPNOTSUPP; 1208 1209 if (mtd->_write_oob) 1210 return mtd->_write_oob(mtd, to, ops); 1211 else 1212 return mtd->_write(mtd, to, ops->len, &ops->retlen, 1213 ops->datbuf); 1214 } 1215 EXPORT_SYMBOL_GPL(mtd_write_oob); 1216 1217 /** 1218 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1219 * @mtd: MTD device structure 1220 * @section: ECC section. Depending on the layout you may have all the ECC 1221 * bytes stored in a single contiguous section, or one section 1222 * per ECC chunk (and sometime several sections for a single ECC 1223 * ECC chunk) 1224 * @oobecc: OOB region struct filled with the appropriate ECC position 1225 * information 1226 * 1227 * This function returns ECC section information in the OOB area. If you want 1228 * to get all the ECC bytes information, then you should call 1229 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1230 * 1231 * Returns zero on success, a negative error code otherwise. 1232 */ 1233 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1234 struct mtd_oob_region *oobecc) 1235 { 1236 memset(oobecc, 0, sizeof(*oobecc)); 1237 1238 if (!mtd || section < 0) 1239 return -EINVAL; 1240 1241 if (!mtd->ooblayout || !mtd->ooblayout->ecc) 1242 return -ENOTSUPP; 1243 1244 return mtd->ooblayout->ecc(mtd, section, oobecc); 1245 } 1246 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1247 1248 /** 1249 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1250 * section 1251 * @mtd: MTD device structure 1252 * @section: Free section you are interested in. Depending on the layout 1253 * you may have all the free bytes stored in a single contiguous 1254 * section, or one section per ECC chunk plus an extra section 1255 * for the remaining bytes (or other funky layout). 1256 * @oobfree: OOB region struct filled with the appropriate free position 1257 * information 1258 * 1259 * This function returns free bytes position in the OOB area. If you want 1260 * to get all the free bytes information, then you should call 1261 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1262 * 1263 * Returns zero on success, a negative error code otherwise. 1264 */ 1265 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1266 struct mtd_oob_region *oobfree) 1267 { 1268 memset(oobfree, 0, sizeof(*oobfree)); 1269 1270 if (!mtd || section < 0) 1271 return -EINVAL; 1272 1273 if (!mtd->ooblayout || !mtd->ooblayout->free) 1274 return -ENOTSUPP; 1275 1276 return mtd->ooblayout->free(mtd, section, oobfree); 1277 } 1278 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1279 1280 /** 1281 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1282 * @mtd: mtd info structure 1283 * @byte: the byte we are searching for 1284 * @sectionp: pointer where the section id will be stored 1285 * @oobregion: used to retrieve the ECC position 1286 * @iter: iterator function. Should be either mtd_ooblayout_free or 1287 * mtd_ooblayout_ecc depending on the region type you're searching for 1288 * 1289 * This function returns the section id and oobregion information of a 1290 * specific byte. For example, say you want to know where the 4th ECC byte is 1291 * stored, you'll use: 1292 * 1293 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1294 * 1295 * Returns zero on success, a negative error code otherwise. 1296 */ 1297 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1298 int *sectionp, struct mtd_oob_region *oobregion, 1299 int (*iter)(struct mtd_info *, 1300 int section, 1301 struct mtd_oob_region *oobregion)) 1302 { 1303 int pos = 0, ret, section = 0; 1304 1305 memset(oobregion, 0, sizeof(*oobregion)); 1306 1307 while (1) { 1308 ret = iter(mtd, section, oobregion); 1309 if (ret) 1310 return ret; 1311 1312 if (pos + oobregion->length > byte) 1313 break; 1314 1315 pos += oobregion->length; 1316 section++; 1317 } 1318 1319 /* 1320 * Adjust region info to make it start at the beginning at the 1321 * 'start' ECC byte. 1322 */ 1323 oobregion->offset += byte - pos; 1324 oobregion->length -= byte - pos; 1325 *sectionp = section; 1326 1327 return 0; 1328 } 1329 1330 /** 1331 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1332 * ECC byte 1333 * @mtd: mtd info structure 1334 * @eccbyte: the byte we are searching for 1335 * @sectionp: pointer where the section id will be stored 1336 * @oobregion: OOB region information 1337 * 1338 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1339 * byte. 1340 * 1341 * Returns zero on success, a negative error code otherwise. 1342 */ 1343 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1344 int *section, 1345 struct mtd_oob_region *oobregion) 1346 { 1347 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1348 mtd_ooblayout_ecc); 1349 } 1350 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1351 1352 /** 1353 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1354 * @mtd: mtd info structure 1355 * @buf: destination buffer to store OOB bytes 1356 * @oobbuf: OOB buffer 1357 * @start: first byte to retrieve 1358 * @nbytes: number of bytes to retrieve 1359 * @iter: section iterator 1360 * 1361 * Extract bytes attached to a specific category (ECC or free) 1362 * from the OOB buffer and copy them into buf. 1363 * 1364 * Returns zero on success, a negative error code otherwise. 1365 */ 1366 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1367 const u8 *oobbuf, int start, int nbytes, 1368 int (*iter)(struct mtd_info *, 1369 int section, 1370 struct mtd_oob_region *oobregion)) 1371 { 1372 struct mtd_oob_region oobregion; 1373 int section, ret; 1374 1375 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1376 &oobregion, iter); 1377 1378 while (!ret) { 1379 int cnt; 1380 1381 cnt = min_t(int, nbytes, oobregion.length); 1382 memcpy(buf, oobbuf + oobregion.offset, cnt); 1383 buf += cnt; 1384 nbytes -= cnt; 1385 1386 if (!nbytes) 1387 break; 1388 1389 ret = iter(mtd, ++section, &oobregion); 1390 } 1391 1392 return ret; 1393 } 1394 1395 /** 1396 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1397 * @mtd: mtd info structure 1398 * @buf: source buffer to get OOB bytes from 1399 * @oobbuf: OOB buffer 1400 * @start: first OOB byte to set 1401 * @nbytes: number of OOB bytes to set 1402 * @iter: section iterator 1403 * 1404 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1405 * is selected by passing the appropriate iterator. 1406 * 1407 * Returns zero on success, a negative error code otherwise. 1408 */ 1409 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1410 u8 *oobbuf, int start, int nbytes, 1411 int (*iter)(struct mtd_info *, 1412 int section, 1413 struct mtd_oob_region *oobregion)) 1414 { 1415 struct mtd_oob_region oobregion; 1416 int section, ret; 1417 1418 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1419 &oobregion, iter); 1420 1421 while (!ret) { 1422 int cnt; 1423 1424 cnt = min_t(int, nbytes, oobregion.length); 1425 memcpy(oobbuf + oobregion.offset, buf, cnt); 1426 buf += cnt; 1427 nbytes -= cnt; 1428 1429 if (!nbytes) 1430 break; 1431 1432 ret = iter(mtd, ++section, &oobregion); 1433 } 1434 1435 return ret; 1436 } 1437 1438 /** 1439 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1440 * @mtd: mtd info structure 1441 * @iter: category iterator 1442 * 1443 * Count the number of bytes in a given category. 1444 * 1445 * Returns a positive value on success, a negative error code otherwise. 1446 */ 1447 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1448 int (*iter)(struct mtd_info *, 1449 int section, 1450 struct mtd_oob_region *oobregion)) 1451 { 1452 struct mtd_oob_region oobregion; 1453 int section = 0, ret, nbytes = 0; 1454 1455 while (1) { 1456 ret = iter(mtd, section++, &oobregion); 1457 if (ret) { 1458 if (ret == -ERANGE) 1459 ret = nbytes; 1460 break; 1461 } 1462 1463 nbytes += oobregion.length; 1464 } 1465 1466 return ret; 1467 } 1468 1469 /** 1470 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1471 * @mtd: mtd info structure 1472 * @eccbuf: destination buffer to store ECC bytes 1473 * @oobbuf: OOB buffer 1474 * @start: first ECC byte to retrieve 1475 * @nbytes: number of ECC bytes to retrieve 1476 * 1477 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1478 * 1479 * Returns zero on success, a negative error code otherwise. 1480 */ 1481 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1482 const u8 *oobbuf, int start, int nbytes) 1483 { 1484 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1485 mtd_ooblayout_ecc); 1486 } 1487 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1488 1489 /** 1490 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1491 * @mtd: mtd info structure 1492 * @eccbuf: source buffer to get ECC bytes from 1493 * @oobbuf: OOB buffer 1494 * @start: first ECC byte to set 1495 * @nbytes: number of ECC bytes to set 1496 * 1497 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 1498 * 1499 * Returns zero on success, a negative error code otherwise. 1500 */ 1501 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 1502 u8 *oobbuf, int start, int nbytes) 1503 { 1504 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1505 mtd_ooblayout_ecc); 1506 } 1507 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 1508 1509 /** 1510 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 1511 * @mtd: mtd info structure 1512 * @databuf: destination buffer to store ECC bytes 1513 * @oobbuf: OOB buffer 1514 * @start: first ECC byte to retrieve 1515 * @nbytes: number of ECC bytes to retrieve 1516 * 1517 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1518 * 1519 * Returns zero on success, a negative error code otherwise. 1520 */ 1521 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 1522 const u8 *oobbuf, int start, int nbytes) 1523 { 1524 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 1525 mtd_ooblayout_free); 1526 } 1527 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 1528 1529 /** 1530 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer 1531 * @mtd: mtd info structure 1532 * @databuf: source buffer to get data bytes from 1533 * @oobbuf: OOB buffer 1534 * @start: first ECC byte to set 1535 * @nbytes: number of ECC bytes to set 1536 * 1537 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1538 * 1539 * Returns zero on success, a negative error code otherwise. 1540 */ 1541 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 1542 u8 *oobbuf, int start, int nbytes) 1543 { 1544 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 1545 mtd_ooblayout_free); 1546 } 1547 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 1548 1549 /** 1550 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 1551 * @mtd: mtd info structure 1552 * 1553 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 1554 * 1555 * Returns zero on success, a negative error code otherwise. 1556 */ 1557 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 1558 { 1559 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 1560 } 1561 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 1562 1563 /** 1564 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB 1565 * @mtd: mtd info structure 1566 * 1567 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 1568 * 1569 * Returns zero on success, a negative error code otherwise. 1570 */ 1571 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 1572 { 1573 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 1574 } 1575 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 1576 1577 /* 1578 * Method to access the protection register area, present in some flash 1579 * devices. The user data is one time programmable but the factory data is read 1580 * only. 1581 */ 1582 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1583 struct otp_info *buf) 1584 { 1585 if (!mtd->_get_fact_prot_info) 1586 return -EOPNOTSUPP; 1587 if (!len) 1588 return 0; 1589 return mtd->_get_fact_prot_info(mtd, len, retlen, buf); 1590 } 1591 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 1592 1593 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1594 size_t *retlen, u_char *buf) 1595 { 1596 *retlen = 0; 1597 if (!mtd->_read_fact_prot_reg) 1598 return -EOPNOTSUPP; 1599 if (!len) 1600 return 0; 1601 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); 1602 } 1603 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 1604 1605 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1606 struct otp_info *buf) 1607 { 1608 if (!mtd->_get_user_prot_info) 1609 return -EOPNOTSUPP; 1610 if (!len) 1611 return 0; 1612 return mtd->_get_user_prot_info(mtd, len, retlen, buf); 1613 } 1614 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 1615 1616 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1617 size_t *retlen, u_char *buf) 1618 { 1619 *retlen = 0; 1620 if (!mtd->_read_user_prot_reg) 1621 return -EOPNOTSUPP; 1622 if (!len) 1623 return 0; 1624 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); 1625 } 1626 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 1627 1628 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 1629 size_t *retlen, u_char *buf) 1630 { 1631 int ret; 1632 1633 *retlen = 0; 1634 if (!mtd->_write_user_prot_reg) 1635 return -EOPNOTSUPP; 1636 if (!len) 1637 return 0; 1638 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); 1639 if (ret) 1640 return ret; 1641 1642 /* 1643 * If no data could be written at all, we are out of memory and 1644 * must return -ENOSPC. 1645 */ 1646 return (*retlen) ? 0 : -ENOSPC; 1647 } 1648 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1649 1650 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1651 { 1652 if (!mtd->_lock_user_prot_reg) 1653 return -EOPNOTSUPP; 1654 if (!len) 1655 return 0; 1656 return mtd->_lock_user_prot_reg(mtd, from, len); 1657 } 1658 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1659 1660 /* Chip-supported device locking */ 1661 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1662 { 1663 if (!mtd->_lock) 1664 return -EOPNOTSUPP; 1665 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1666 return -EINVAL; 1667 if (!len) 1668 return 0; 1669 return mtd->_lock(mtd, ofs, len); 1670 } 1671 EXPORT_SYMBOL_GPL(mtd_lock); 1672 1673 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1674 { 1675 if (!mtd->_unlock) 1676 return -EOPNOTSUPP; 1677 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1678 return -EINVAL; 1679 if (!len) 1680 return 0; 1681 return mtd->_unlock(mtd, ofs, len); 1682 } 1683 EXPORT_SYMBOL_GPL(mtd_unlock); 1684 1685 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1686 { 1687 if (!mtd->_is_locked) 1688 return -EOPNOTSUPP; 1689 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1690 return -EINVAL; 1691 if (!len) 1692 return 0; 1693 return mtd->_is_locked(mtd, ofs, len); 1694 } 1695 EXPORT_SYMBOL_GPL(mtd_is_locked); 1696 1697 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 1698 { 1699 if (ofs < 0 || ofs >= mtd->size) 1700 return -EINVAL; 1701 if (!mtd->_block_isreserved) 1702 return 0; 1703 return mtd->_block_isreserved(mtd, ofs); 1704 } 1705 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 1706 1707 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 1708 { 1709 if (ofs < 0 || ofs >= mtd->size) 1710 return -EINVAL; 1711 if (!mtd->_block_isbad) 1712 return 0; 1713 return mtd->_block_isbad(mtd, ofs); 1714 } 1715 EXPORT_SYMBOL_GPL(mtd_block_isbad); 1716 1717 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 1718 { 1719 if (!mtd->_block_markbad) 1720 return -EOPNOTSUPP; 1721 if (ofs < 0 || ofs >= mtd->size) 1722 return -EINVAL; 1723 if (!(mtd->flags & MTD_WRITEABLE)) 1724 return -EROFS; 1725 return mtd->_block_markbad(mtd, ofs); 1726 } 1727 EXPORT_SYMBOL_GPL(mtd_block_markbad); 1728 1729 /* 1730 * default_mtd_writev - the default writev method 1731 * @mtd: mtd device description object pointer 1732 * @vecs: the vectors to write 1733 * @count: count of vectors in @vecs 1734 * @to: the MTD device offset to write to 1735 * @retlen: on exit contains the count of bytes written to the MTD device. 1736 * 1737 * This function returns zero in case of success and a negative error code in 1738 * case of failure. 1739 */ 1740 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1741 unsigned long count, loff_t to, size_t *retlen) 1742 { 1743 unsigned long i; 1744 size_t totlen = 0, thislen; 1745 int ret = 0; 1746 1747 for (i = 0; i < count; i++) { 1748 if (!vecs[i].iov_len) 1749 continue; 1750 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1751 vecs[i].iov_base); 1752 totlen += thislen; 1753 if (ret || thislen != vecs[i].iov_len) 1754 break; 1755 to += vecs[i].iov_len; 1756 } 1757 *retlen = totlen; 1758 return ret; 1759 } 1760 1761 /* 1762 * mtd_writev - the vector-based MTD write method 1763 * @mtd: mtd device description object pointer 1764 * @vecs: the vectors to write 1765 * @count: count of vectors in @vecs 1766 * @to: the MTD device offset to write to 1767 * @retlen: on exit contains the count of bytes written to the MTD device. 1768 * 1769 * This function returns zero in case of success and a negative error code in 1770 * case of failure. 1771 */ 1772 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1773 unsigned long count, loff_t to, size_t *retlen) 1774 { 1775 *retlen = 0; 1776 if (!(mtd->flags & MTD_WRITEABLE)) 1777 return -EROFS; 1778 if (!mtd->_writev) 1779 return default_mtd_writev(mtd, vecs, count, to, retlen); 1780 return mtd->_writev(mtd, vecs, count, to, retlen); 1781 } 1782 EXPORT_SYMBOL_GPL(mtd_writev); 1783 1784 /** 1785 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1786 * @mtd: mtd device description object pointer 1787 * @size: a pointer to the ideal or maximum size of the allocation, points 1788 * to the actual allocation size on success. 1789 * 1790 * This routine attempts to allocate a contiguous kernel buffer up to 1791 * the specified size, backing off the size of the request exponentially 1792 * until the request succeeds or until the allocation size falls below 1793 * the system page size. This attempts to make sure it does not adversely 1794 * impact system performance, so when allocating more than one page, we 1795 * ask the memory allocator to avoid re-trying, swapping, writing back 1796 * or performing I/O. 1797 * 1798 * Note, this function also makes sure that the allocated buffer is aligned to 1799 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1800 * 1801 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1802 * to handle smaller (i.e. degraded) buffer allocations under low- or 1803 * fragmented-memory situations where such reduced allocations, from a 1804 * requested ideal, are allowed. 1805 * 1806 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1807 */ 1808 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1809 { 1810 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 1811 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1812 void *kbuf; 1813 1814 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1815 1816 while (*size > min_alloc) { 1817 kbuf = kmalloc(*size, flags); 1818 if (kbuf) 1819 return kbuf; 1820 1821 *size >>= 1; 1822 *size = ALIGN(*size, mtd->writesize); 1823 } 1824 1825 /* 1826 * For the last resort allocation allow 'kmalloc()' to do all sorts of 1827 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 1828 */ 1829 return kmalloc(*size, GFP_KERNEL); 1830 } 1831 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 1832 1833 #ifdef CONFIG_PROC_FS 1834 1835 /*====================================================================*/ 1836 /* Support for /proc/mtd */ 1837 1838 static int mtd_proc_show(struct seq_file *m, void *v) 1839 { 1840 struct mtd_info *mtd; 1841 1842 seq_puts(m, "dev: size erasesize name\n"); 1843 mutex_lock(&mtd_table_mutex); 1844 mtd_for_each_device(mtd) { 1845 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 1846 mtd->index, (unsigned long long)mtd->size, 1847 mtd->erasesize, mtd->name); 1848 } 1849 mutex_unlock(&mtd_table_mutex); 1850 return 0; 1851 } 1852 #endif /* CONFIG_PROC_FS */ 1853 1854 /*====================================================================*/ 1855 /* Init code */ 1856 1857 static struct backing_dev_info * __init mtd_bdi_init(char *name) 1858 { 1859 struct backing_dev_info *bdi; 1860 int ret; 1861 1862 bdi = bdi_alloc(GFP_KERNEL); 1863 if (!bdi) 1864 return ERR_PTR(-ENOMEM); 1865 1866 bdi->name = name; 1867 /* 1868 * We put '-0' suffix to the name to get the same name format as we 1869 * used to get. Since this is called only once, we get a unique name. 1870 */ 1871 ret = bdi_register(bdi, "%.28s-0", name); 1872 if (ret) 1873 bdi_put(bdi); 1874 1875 return ret ? ERR_PTR(ret) : bdi; 1876 } 1877 1878 static struct proc_dir_entry *proc_mtd; 1879 1880 static int __init init_mtd(void) 1881 { 1882 int ret; 1883 1884 ret = class_register(&mtd_class); 1885 if (ret) 1886 goto err_reg; 1887 1888 mtd_bdi = mtd_bdi_init("mtd"); 1889 if (IS_ERR(mtd_bdi)) { 1890 ret = PTR_ERR(mtd_bdi); 1891 goto err_bdi; 1892 } 1893 1894 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show); 1895 1896 ret = init_mtdchar(); 1897 if (ret) 1898 goto out_procfs; 1899 1900 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 1901 1902 return 0; 1903 1904 out_procfs: 1905 if (proc_mtd) 1906 remove_proc_entry("mtd", NULL); 1907 bdi_put(mtd_bdi); 1908 err_bdi: 1909 class_unregister(&mtd_class); 1910 err_reg: 1911 pr_err("Error registering mtd class or bdi: %d\n", ret); 1912 return ret; 1913 } 1914 1915 static void __exit cleanup_mtd(void) 1916 { 1917 debugfs_remove_recursive(dfs_dir_mtd); 1918 cleanup_mtdchar(); 1919 if (proc_mtd) 1920 remove_proc_entry("mtd", NULL); 1921 class_unregister(&mtd_class); 1922 bdi_put(mtd_bdi); 1923 idr_destroy(&mtd_idr); 1924 } 1925 1926 module_init(init_mtd); 1927 module_exit(cleanup_mtd); 1928 1929 MODULE_LICENSE("GPL"); 1930 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1931 MODULE_DESCRIPTION("Core MTD registration and access routines"); 1932