1 /* 2 * Core registration and callback routines for MTD 3 * drivers and users. 4 * 5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 6 * Copyright © 2006 Red Hat UK Limited 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/kernel.h> 26 #include <linux/ptrace.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/major.h> 31 #include <linux/fs.h> 32 #include <linux/err.h> 33 #include <linux/ioctl.h> 34 #include <linux/init.h> 35 #include <linux/of.h> 36 #include <linux/proc_fs.h> 37 #include <linux/idr.h> 38 #include <linux/backing-dev.h> 39 #include <linux/gfp.h> 40 #include <linux/slab.h> 41 #include <linux/reboot.h> 42 #include <linux/leds.h> 43 44 #include <linux/mtd/mtd.h> 45 #include <linux/mtd/partitions.h> 46 47 #include "mtdcore.h" 48 49 static struct backing_dev_info mtd_bdi = { 50 }; 51 52 #ifdef CONFIG_PM_SLEEP 53 54 static int mtd_cls_suspend(struct device *dev) 55 { 56 struct mtd_info *mtd = dev_get_drvdata(dev); 57 58 return mtd ? mtd_suspend(mtd) : 0; 59 } 60 61 static int mtd_cls_resume(struct device *dev) 62 { 63 struct mtd_info *mtd = dev_get_drvdata(dev); 64 65 if (mtd) 66 mtd_resume(mtd); 67 return 0; 68 } 69 70 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 71 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 72 #else 73 #define MTD_CLS_PM_OPS NULL 74 #endif 75 76 static struct class mtd_class = { 77 .name = "mtd", 78 .owner = THIS_MODULE, 79 .pm = MTD_CLS_PM_OPS, 80 }; 81 82 static DEFINE_IDR(mtd_idr); 83 84 /* These are exported solely for the purpose of mtd_blkdevs.c. You 85 should not use them for _anything_ else */ 86 DEFINE_MUTEX(mtd_table_mutex); 87 EXPORT_SYMBOL_GPL(mtd_table_mutex); 88 89 struct mtd_info *__mtd_next_device(int i) 90 { 91 return idr_get_next(&mtd_idr, &i); 92 } 93 EXPORT_SYMBOL_GPL(__mtd_next_device); 94 95 static LIST_HEAD(mtd_notifiers); 96 97 98 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 99 100 /* REVISIT once MTD uses the driver model better, whoever allocates 101 * the mtd_info will probably want to use the release() hook... 102 */ 103 static void mtd_release(struct device *dev) 104 { 105 struct mtd_info *mtd = dev_get_drvdata(dev); 106 dev_t index = MTD_DEVT(mtd->index); 107 108 /* remove /dev/mtdXro node */ 109 device_destroy(&mtd_class, index + 1); 110 } 111 112 static ssize_t mtd_type_show(struct device *dev, 113 struct device_attribute *attr, char *buf) 114 { 115 struct mtd_info *mtd = dev_get_drvdata(dev); 116 char *type; 117 118 switch (mtd->type) { 119 case MTD_ABSENT: 120 type = "absent"; 121 break; 122 case MTD_RAM: 123 type = "ram"; 124 break; 125 case MTD_ROM: 126 type = "rom"; 127 break; 128 case MTD_NORFLASH: 129 type = "nor"; 130 break; 131 case MTD_NANDFLASH: 132 type = "nand"; 133 break; 134 case MTD_DATAFLASH: 135 type = "dataflash"; 136 break; 137 case MTD_UBIVOLUME: 138 type = "ubi"; 139 break; 140 case MTD_MLCNANDFLASH: 141 type = "mlc-nand"; 142 break; 143 default: 144 type = "unknown"; 145 } 146 147 return snprintf(buf, PAGE_SIZE, "%s\n", type); 148 } 149 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 150 151 static ssize_t mtd_flags_show(struct device *dev, 152 struct device_attribute *attr, char *buf) 153 { 154 struct mtd_info *mtd = dev_get_drvdata(dev); 155 156 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 157 158 } 159 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 160 161 static ssize_t mtd_size_show(struct device *dev, 162 struct device_attribute *attr, char *buf) 163 { 164 struct mtd_info *mtd = dev_get_drvdata(dev); 165 166 return snprintf(buf, PAGE_SIZE, "%llu\n", 167 (unsigned long long)mtd->size); 168 169 } 170 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 171 172 static ssize_t mtd_erasesize_show(struct device *dev, 173 struct device_attribute *attr, char *buf) 174 { 175 struct mtd_info *mtd = dev_get_drvdata(dev); 176 177 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 178 179 } 180 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 181 182 static ssize_t mtd_writesize_show(struct device *dev, 183 struct device_attribute *attr, char *buf) 184 { 185 struct mtd_info *mtd = dev_get_drvdata(dev); 186 187 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 188 189 } 190 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 191 192 static ssize_t mtd_subpagesize_show(struct device *dev, 193 struct device_attribute *attr, char *buf) 194 { 195 struct mtd_info *mtd = dev_get_drvdata(dev); 196 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 197 198 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 199 200 } 201 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 202 203 static ssize_t mtd_oobsize_show(struct device *dev, 204 struct device_attribute *attr, char *buf) 205 { 206 struct mtd_info *mtd = dev_get_drvdata(dev); 207 208 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 209 210 } 211 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 212 213 static ssize_t mtd_numeraseregions_show(struct device *dev, 214 struct device_attribute *attr, char *buf) 215 { 216 struct mtd_info *mtd = dev_get_drvdata(dev); 217 218 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 219 220 } 221 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 222 NULL); 223 224 static ssize_t mtd_name_show(struct device *dev, 225 struct device_attribute *attr, char *buf) 226 { 227 struct mtd_info *mtd = dev_get_drvdata(dev); 228 229 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 230 231 } 232 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 233 234 static ssize_t mtd_ecc_strength_show(struct device *dev, 235 struct device_attribute *attr, char *buf) 236 { 237 struct mtd_info *mtd = dev_get_drvdata(dev); 238 239 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 240 } 241 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 242 243 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 244 struct device_attribute *attr, 245 char *buf) 246 { 247 struct mtd_info *mtd = dev_get_drvdata(dev); 248 249 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 250 } 251 252 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 253 struct device_attribute *attr, 254 const char *buf, size_t count) 255 { 256 struct mtd_info *mtd = dev_get_drvdata(dev); 257 unsigned int bitflip_threshold; 258 int retval; 259 260 retval = kstrtouint(buf, 0, &bitflip_threshold); 261 if (retval) 262 return retval; 263 264 mtd->bitflip_threshold = bitflip_threshold; 265 return count; 266 } 267 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 268 mtd_bitflip_threshold_show, 269 mtd_bitflip_threshold_store); 270 271 static ssize_t mtd_ecc_step_size_show(struct device *dev, 272 struct device_attribute *attr, char *buf) 273 { 274 struct mtd_info *mtd = dev_get_drvdata(dev); 275 276 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 277 278 } 279 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 280 281 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev, 282 struct device_attribute *attr, char *buf) 283 { 284 struct mtd_info *mtd = dev_get_drvdata(dev); 285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 286 287 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected); 288 } 289 static DEVICE_ATTR(corrected_bits, S_IRUGO, 290 mtd_ecc_stats_corrected_show, NULL); 291 292 static ssize_t mtd_ecc_stats_errors_show(struct device *dev, 293 struct device_attribute *attr, char *buf) 294 { 295 struct mtd_info *mtd = dev_get_drvdata(dev); 296 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 297 298 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed); 299 } 300 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL); 301 302 static ssize_t mtd_badblocks_show(struct device *dev, 303 struct device_attribute *attr, char *buf) 304 { 305 struct mtd_info *mtd = dev_get_drvdata(dev); 306 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 307 308 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks); 309 } 310 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL); 311 312 static ssize_t mtd_bbtblocks_show(struct device *dev, 313 struct device_attribute *attr, char *buf) 314 { 315 struct mtd_info *mtd = dev_get_drvdata(dev); 316 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 317 318 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks); 319 } 320 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL); 321 322 static struct attribute *mtd_attrs[] = { 323 &dev_attr_type.attr, 324 &dev_attr_flags.attr, 325 &dev_attr_size.attr, 326 &dev_attr_erasesize.attr, 327 &dev_attr_writesize.attr, 328 &dev_attr_subpagesize.attr, 329 &dev_attr_oobsize.attr, 330 &dev_attr_numeraseregions.attr, 331 &dev_attr_name.attr, 332 &dev_attr_ecc_strength.attr, 333 &dev_attr_ecc_step_size.attr, 334 &dev_attr_corrected_bits.attr, 335 &dev_attr_ecc_failures.attr, 336 &dev_attr_bad_blocks.attr, 337 &dev_attr_bbt_blocks.attr, 338 &dev_attr_bitflip_threshold.attr, 339 NULL, 340 }; 341 ATTRIBUTE_GROUPS(mtd); 342 343 static struct device_type mtd_devtype = { 344 .name = "mtd", 345 .groups = mtd_groups, 346 .release = mtd_release, 347 }; 348 349 #ifndef CONFIG_MMU 350 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 351 { 352 switch (mtd->type) { 353 case MTD_RAM: 354 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 355 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 356 case MTD_ROM: 357 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 358 NOMMU_MAP_READ; 359 default: 360 return NOMMU_MAP_COPY; 361 } 362 } 363 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 364 #endif 365 366 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 367 void *cmd) 368 { 369 struct mtd_info *mtd; 370 371 mtd = container_of(n, struct mtd_info, reboot_notifier); 372 mtd->_reboot(mtd); 373 374 return NOTIFY_DONE; 375 } 376 377 /** 378 * mtd_wunit_to_pairing_info - get pairing information of a wunit 379 * @mtd: pointer to new MTD device info structure 380 * @wunit: write unit we are interested in 381 * @info: returned pairing information 382 * 383 * Retrieve pairing information associated to the wunit. 384 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 385 * paired together, and where programming a page may influence the page it is 386 * paired with. 387 * The notion of page is replaced by the term wunit (write-unit) to stay 388 * consistent with the ->writesize field. 389 * 390 * The @wunit argument can be extracted from an absolute offset using 391 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 392 * to @wunit. 393 * 394 * From the pairing info the MTD user can find all the wunits paired with 395 * @wunit using the following loop: 396 * 397 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 398 * info.pair = i; 399 * mtd_pairing_info_to_wunit(mtd, &info); 400 * ... 401 * } 402 */ 403 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 404 struct mtd_pairing_info *info) 405 { 406 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 407 408 if (wunit < 0 || wunit >= npairs) 409 return -EINVAL; 410 411 if (mtd->pairing && mtd->pairing->get_info) 412 return mtd->pairing->get_info(mtd, wunit, info); 413 414 info->group = 0; 415 info->pair = wunit; 416 417 return 0; 418 } 419 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 420 421 /** 422 * mtd_wunit_to_pairing_info - get wunit from pairing information 423 * @mtd: pointer to new MTD device info structure 424 * @info: pairing information struct 425 * 426 * Returns a positive number representing the wunit associated to the info 427 * struct, or a negative error code. 428 * 429 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 430 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 431 * doc). 432 * 433 * It can also be used to only program the first page of each pair (i.e. 434 * page attached to group 0), which allows one to use an MLC NAND in 435 * software-emulated SLC mode: 436 * 437 * info.group = 0; 438 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 439 * for (info.pair = 0; info.pair < npairs; info.pair++) { 440 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 441 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 442 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 443 * } 444 */ 445 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 446 const struct mtd_pairing_info *info) 447 { 448 int ngroups = mtd_pairing_groups(mtd); 449 int npairs = mtd_wunit_per_eb(mtd) / ngroups; 450 451 if (!info || info->pair < 0 || info->pair >= npairs || 452 info->group < 0 || info->group >= ngroups) 453 return -EINVAL; 454 455 if (mtd->pairing && mtd->pairing->get_wunit) 456 return mtd->pairing->get_wunit(mtd, info); 457 458 return info->pair; 459 } 460 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 461 462 /** 463 * mtd_pairing_groups - get the number of pairing groups 464 * @mtd: pointer to new MTD device info structure 465 * 466 * Returns the number of pairing groups. 467 * 468 * This number is usually equal to the number of bits exposed by a single 469 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 470 * to iterate over all pages of a given pair. 471 */ 472 int mtd_pairing_groups(struct mtd_info *mtd) 473 { 474 if (!mtd->pairing || !mtd->pairing->ngroups) 475 return 1; 476 477 return mtd->pairing->ngroups; 478 } 479 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 480 481 /** 482 * add_mtd_device - register an MTD device 483 * @mtd: pointer to new MTD device info structure 484 * 485 * Add a device to the list of MTD devices present in the system, and 486 * notify each currently active MTD 'user' of its arrival. Returns 487 * zero on success or non-zero on failure. 488 */ 489 490 int add_mtd_device(struct mtd_info *mtd) 491 { 492 struct mtd_notifier *not; 493 int i, error; 494 495 /* 496 * May occur, for instance, on buggy drivers which call 497 * mtd_device_parse_register() multiple times on the same master MTD, 498 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 499 */ 500 if (WARN_ONCE(mtd->backing_dev_info, "MTD already registered\n")) 501 return -EEXIST; 502 503 mtd->backing_dev_info = &mtd_bdi; 504 505 BUG_ON(mtd->writesize == 0); 506 mutex_lock(&mtd_table_mutex); 507 508 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 509 if (i < 0) { 510 error = i; 511 goto fail_locked; 512 } 513 514 mtd->index = i; 515 mtd->usecount = 0; 516 517 /* default value if not set by driver */ 518 if (mtd->bitflip_threshold == 0) 519 mtd->bitflip_threshold = mtd->ecc_strength; 520 521 if (is_power_of_2(mtd->erasesize)) 522 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 523 else 524 mtd->erasesize_shift = 0; 525 526 if (is_power_of_2(mtd->writesize)) 527 mtd->writesize_shift = ffs(mtd->writesize) - 1; 528 else 529 mtd->writesize_shift = 0; 530 531 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 532 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 533 534 /* Some chips always power up locked. Unlock them now */ 535 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 536 error = mtd_unlock(mtd, 0, mtd->size); 537 if (error && error != -EOPNOTSUPP) 538 printk(KERN_WARNING 539 "%s: unlock failed, writes may not work\n", 540 mtd->name); 541 /* Ignore unlock failures? */ 542 error = 0; 543 } 544 545 /* Caller should have set dev.parent to match the 546 * physical device, if appropriate. 547 */ 548 mtd->dev.type = &mtd_devtype; 549 mtd->dev.class = &mtd_class; 550 mtd->dev.devt = MTD_DEVT(i); 551 dev_set_name(&mtd->dev, "mtd%d", i); 552 dev_set_drvdata(&mtd->dev, mtd); 553 of_node_get(mtd_get_of_node(mtd)); 554 error = device_register(&mtd->dev); 555 if (error) 556 goto fail_added; 557 558 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 559 "mtd%dro", i); 560 561 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 562 /* No need to get a refcount on the module containing 563 the notifier, since we hold the mtd_table_mutex */ 564 list_for_each_entry(not, &mtd_notifiers, list) 565 not->add(mtd); 566 567 mutex_unlock(&mtd_table_mutex); 568 /* We _know_ we aren't being removed, because 569 our caller is still holding us here. So none 570 of this try_ nonsense, and no bitching about it 571 either. :) */ 572 __module_get(THIS_MODULE); 573 return 0; 574 575 fail_added: 576 of_node_put(mtd_get_of_node(mtd)); 577 idr_remove(&mtd_idr, i); 578 fail_locked: 579 mutex_unlock(&mtd_table_mutex); 580 return error; 581 } 582 583 /** 584 * del_mtd_device - unregister an MTD device 585 * @mtd: pointer to MTD device info structure 586 * 587 * Remove a device from the list of MTD devices present in the system, 588 * and notify each currently active MTD 'user' of its departure. 589 * Returns zero on success or 1 on failure, which currently will happen 590 * if the requested device does not appear to be present in the list. 591 */ 592 593 int del_mtd_device(struct mtd_info *mtd) 594 { 595 int ret; 596 struct mtd_notifier *not; 597 598 mutex_lock(&mtd_table_mutex); 599 600 if (idr_find(&mtd_idr, mtd->index) != mtd) { 601 ret = -ENODEV; 602 goto out_error; 603 } 604 605 /* No need to get a refcount on the module containing 606 the notifier, since we hold the mtd_table_mutex */ 607 list_for_each_entry(not, &mtd_notifiers, list) 608 not->remove(mtd); 609 610 if (mtd->usecount) { 611 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 612 mtd->index, mtd->name, mtd->usecount); 613 ret = -EBUSY; 614 } else { 615 device_unregister(&mtd->dev); 616 617 idr_remove(&mtd_idr, mtd->index); 618 of_node_put(mtd_get_of_node(mtd)); 619 620 module_put(THIS_MODULE); 621 ret = 0; 622 } 623 624 out_error: 625 mutex_unlock(&mtd_table_mutex); 626 return ret; 627 } 628 629 static int mtd_add_device_partitions(struct mtd_info *mtd, 630 struct mtd_partitions *parts) 631 { 632 const struct mtd_partition *real_parts = parts->parts; 633 int nbparts = parts->nr_parts; 634 int ret; 635 636 if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 637 ret = add_mtd_device(mtd); 638 if (ret) 639 return ret; 640 } 641 642 if (nbparts > 0) { 643 ret = add_mtd_partitions(mtd, real_parts, nbparts); 644 if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) 645 del_mtd_device(mtd); 646 return ret; 647 } 648 649 return 0; 650 } 651 652 /* 653 * Set a few defaults based on the parent devices, if not provided by the 654 * driver 655 */ 656 static void mtd_set_dev_defaults(struct mtd_info *mtd) 657 { 658 if (mtd->dev.parent) { 659 if (!mtd->owner && mtd->dev.parent->driver) 660 mtd->owner = mtd->dev.parent->driver->owner; 661 if (!mtd->name) 662 mtd->name = dev_name(mtd->dev.parent); 663 } else { 664 pr_debug("mtd device won't show a device symlink in sysfs\n"); 665 } 666 } 667 668 /** 669 * mtd_device_parse_register - parse partitions and register an MTD device. 670 * 671 * @mtd: the MTD device to register 672 * @types: the list of MTD partition probes to try, see 673 * 'parse_mtd_partitions()' for more information 674 * @parser_data: MTD partition parser-specific data 675 * @parts: fallback partition information to register, if parsing fails; 676 * only valid if %nr_parts > %0 677 * @nr_parts: the number of partitions in parts, if zero then the full 678 * MTD device is registered if no partition info is found 679 * 680 * This function aggregates MTD partitions parsing (done by 681 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 682 * basically follows the most common pattern found in many MTD drivers: 683 * 684 * * It first tries to probe partitions on MTD device @mtd using parsers 685 * specified in @types (if @types is %NULL, then the default list of parsers 686 * is used, see 'parse_mtd_partitions()' for more information). If none are 687 * found this functions tries to fallback to information specified in 688 * @parts/@nr_parts. 689 * * If any partitioning info was found, this function registers the found 690 * partitions. If the MTD_PARTITIONED_MASTER option is set, then the device 691 * as a whole is registered first. 692 * * If no partitions were found this function just registers the MTD device 693 * @mtd and exits. 694 * 695 * Returns zero in case of success and a negative error code in case of failure. 696 */ 697 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 698 struct mtd_part_parser_data *parser_data, 699 const struct mtd_partition *parts, 700 int nr_parts) 701 { 702 struct mtd_partitions parsed; 703 int ret; 704 705 mtd_set_dev_defaults(mtd); 706 707 memset(&parsed, 0, sizeof(parsed)); 708 709 ret = parse_mtd_partitions(mtd, types, &parsed, parser_data); 710 if ((ret < 0 || parsed.nr_parts == 0) && parts && nr_parts) { 711 /* Fall back to driver-provided partitions */ 712 parsed = (struct mtd_partitions){ 713 .parts = parts, 714 .nr_parts = nr_parts, 715 }; 716 } else if (ret < 0) { 717 /* Didn't come up with parsed OR fallback partitions */ 718 pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n", 719 ret); 720 /* Don't abort on errors; we can still use unpartitioned MTD */ 721 memset(&parsed, 0, sizeof(parsed)); 722 } 723 724 ret = mtd_add_device_partitions(mtd, &parsed); 725 if (ret) 726 goto out; 727 728 /* 729 * FIXME: some drivers unfortunately call this function more than once. 730 * So we have to check if we've already assigned the reboot notifier. 731 * 732 * Generally, we can make multiple calls work for most cases, but it 733 * does cause problems with parse_mtd_partitions() above (e.g., 734 * cmdlineparts will register partitions more than once). 735 */ 736 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 737 "MTD already registered\n"); 738 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 739 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 740 register_reboot_notifier(&mtd->reboot_notifier); 741 } 742 743 out: 744 /* Cleanup any parsed partitions */ 745 mtd_part_parser_cleanup(&parsed); 746 return ret; 747 } 748 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 749 750 /** 751 * mtd_device_unregister - unregister an existing MTD device. 752 * 753 * @master: the MTD device to unregister. This will unregister both the master 754 * and any partitions if registered. 755 */ 756 int mtd_device_unregister(struct mtd_info *master) 757 { 758 int err; 759 760 if (master->_reboot) 761 unregister_reboot_notifier(&master->reboot_notifier); 762 763 err = del_mtd_partitions(master); 764 if (err) 765 return err; 766 767 if (!device_is_registered(&master->dev)) 768 return 0; 769 770 return del_mtd_device(master); 771 } 772 EXPORT_SYMBOL_GPL(mtd_device_unregister); 773 774 /** 775 * register_mtd_user - register a 'user' of MTD devices. 776 * @new: pointer to notifier info structure 777 * 778 * Registers a pair of callbacks function to be called upon addition 779 * or removal of MTD devices. Causes the 'add' callback to be immediately 780 * invoked for each MTD device currently present in the system. 781 */ 782 void register_mtd_user (struct mtd_notifier *new) 783 { 784 struct mtd_info *mtd; 785 786 mutex_lock(&mtd_table_mutex); 787 788 list_add(&new->list, &mtd_notifiers); 789 790 __module_get(THIS_MODULE); 791 792 mtd_for_each_device(mtd) 793 new->add(mtd); 794 795 mutex_unlock(&mtd_table_mutex); 796 } 797 EXPORT_SYMBOL_GPL(register_mtd_user); 798 799 /** 800 * unregister_mtd_user - unregister a 'user' of MTD devices. 801 * @old: pointer to notifier info structure 802 * 803 * Removes a callback function pair from the list of 'users' to be 804 * notified upon addition or removal of MTD devices. Causes the 805 * 'remove' callback to be immediately invoked for each MTD device 806 * currently present in the system. 807 */ 808 int unregister_mtd_user (struct mtd_notifier *old) 809 { 810 struct mtd_info *mtd; 811 812 mutex_lock(&mtd_table_mutex); 813 814 module_put(THIS_MODULE); 815 816 mtd_for_each_device(mtd) 817 old->remove(mtd); 818 819 list_del(&old->list); 820 mutex_unlock(&mtd_table_mutex); 821 return 0; 822 } 823 EXPORT_SYMBOL_GPL(unregister_mtd_user); 824 825 /** 826 * get_mtd_device - obtain a validated handle for an MTD device 827 * @mtd: last known address of the required MTD device 828 * @num: internal device number of the required MTD device 829 * 830 * Given a number and NULL address, return the num'th entry in the device 831 * table, if any. Given an address and num == -1, search the device table 832 * for a device with that address and return if it's still present. Given 833 * both, return the num'th driver only if its address matches. Return 834 * error code if not. 835 */ 836 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 837 { 838 struct mtd_info *ret = NULL, *other; 839 int err = -ENODEV; 840 841 mutex_lock(&mtd_table_mutex); 842 843 if (num == -1) { 844 mtd_for_each_device(other) { 845 if (other == mtd) { 846 ret = mtd; 847 break; 848 } 849 } 850 } else if (num >= 0) { 851 ret = idr_find(&mtd_idr, num); 852 if (mtd && mtd != ret) 853 ret = NULL; 854 } 855 856 if (!ret) { 857 ret = ERR_PTR(err); 858 goto out; 859 } 860 861 err = __get_mtd_device(ret); 862 if (err) 863 ret = ERR_PTR(err); 864 out: 865 mutex_unlock(&mtd_table_mutex); 866 return ret; 867 } 868 EXPORT_SYMBOL_GPL(get_mtd_device); 869 870 871 int __get_mtd_device(struct mtd_info *mtd) 872 { 873 int err; 874 875 if (!try_module_get(mtd->owner)) 876 return -ENODEV; 877 878 if (mtd->_get_device) { 879 err = mtd->_get_device(mtd); 880 881 if (err) { 882 module_put(mtd->owner); 883 return err; 884 } 885 } 886 mtd->usecount++; 887 return 0; 888 } 889 EXPORT_SYMBOL_GPL(__get_mtd_device); 890 891 /** 892 * get_mtd_device_nm - obtain a validated handle for an MTD device by 893 * device name 894 * @name: MTD device name to open 895 * 896 * This function returns MTD device description structure in case of 897 * success and an error code in case of failure. 898 */ 899 struct mtd_info *get_mtd_device_nm(const char *name) 900 { 901 int err = -ENODEV; 902 struct mtd_info *mtd = NULL, *other; 903 904 mutex_lock(&mtd_table_mutex); 905 906 mtd_for_each_device(other) { 907 if (!strcmp(name, other->name)) { 908 mtd = other; 909 break; 910 } 911 } 912 913 if (!mtd) 914 goto out_unlock; 915 916 err = __get_mtd_device(mtd); 917 if (err) 918 goto out_unlock; 919 920 mutex_unlock(&mtd_table_mutex); 921 return mtd; 922 923 out_unlock: 924 mutex_unlock(&mtd_table_mutex); 925 return ERR_PTR(err); 926 } 927 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 928 929 void put_mtd_device(struct mtd_info *mtd) 930 { 931 mutex_lock(&mtd_table_mutex); 932 __put_mtd_device(mtd); 933 mutex_unlock(&mtd_table_mutex); 934 935 } 936 EXPORT_SYMBOL_GPL(put_mtd_device); 937 938 void __put_mtd_device(struct mtd_info *mtd) 939 { 940 --mtd->usecount; 941 BUG_ON(mtd->usecount < 0); 942 943 if (mtd->_put_device) 944 mtd->_put_device(mtd); 945 946 module_put(mtd->owner); 947 } 948 EXPORT_SYMBOL_GPL(__put_mtd_device); 949 950 /* 951 * Erase is an asynchronous operation. Device drivers are supposed 952 * to call instr->callback() whenever the operation completes, even 953 * if it completes with a failure. 954 * Callers are supposed to pass a callback function and wait for it 955 * to be called before writing to the block. 956 */ 957 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 958 { 959 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 960 return -EINVAL; 961 if (!(mtd->flags & MTD_WRITEABLE)) 962 return -EROFS; 963 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 964 if (!instr->len) { 965 instr->state = MTD_ERASE_DONE; 966 mtd_erase_callback(instr); 967 return 0; 968 } 969 ledtrig_mtd_activity(); 970 return mtd->_erase(mtd, instr); 971 } 972 EXPORT_SYMBOL_GPL(mtd_erase); 973 974 /* 975 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 976 */ 977 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 978 void **virt, resource_size_t *phys) 979 { 980 *retlen = 0; 981 *virt = NULL; 982 if (phys) 983 *phys = 0; 984 if (!mtd->_point) 985 return -EOPNOTSUPP; 986 if (from < 0 || from >= mtd->size || len > mtd->size - from) 987 return -EINVAL; 988 if (!len) 989 return 0; 990 return mtd->_point(mtd, from, len, retlen, virt, phys); 991 } 992 EXPORT_SYMBOL_GPL(mtd_point); 993 994 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 995 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 996 { 997 if (!mtd->_point) 998 return -EOPNOTSUPP; 999 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1000 return -EINVAL; 1001 if (!len) 1002 return 0; 1003 return mtd->_unpoint(mtd, from, len); 1004 } 1005 EXPORT_SYMBOL_GPL(mtd_unpoint); 1006 1007 /* 1008 * Allow NOMMU mmap() to directly map the device (if not NULL) 1009 * - return the address to which the offset maps 1010 * - return -ENOSYS to indicate refusal to do the mapping 1011 */ 1012 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1013 unsigned long offset, unsigned long flags) 1014 { 1015 if (!mtd->_get_unmapped_area) 1016 return -EOPNOTSUPP; 1017 if (offset >= mtd->size || len > mtd->size - offset) 1018 return -EINVAL; 1019 return mtd->_get_unmapped_area(mtd, len, offset, flags); 1020 } 1021 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1022 1023 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1024 u_char *buf) 1025 { 1026 int ret_code; 1027 *retlen = 0; 1028 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1029 return -EINVAL; 1030 if (!len) 1031 return 0; 1032 1033 ledtrig_mtd_activity(); 1034 /* 1035 * In the absence of an error, drivers return a non-negative integer 1036 * representing the maximum number of bitflips that were corrected on 1037 * any one ecc region (if applicable; zero otherwise). 1038 */ 1039 ret_code = mtd->_read(mtd, from, len, retlen, buf); 1040 if (unlikely(ret_code < 0)) 1041 return ret_code; 1042 if (mtd->ecc_strength == 0) 1043 return 0; /* device lacks ecc */ 1044 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1045 } 1046 EXPORT_SYMBOL_GPL(mtd_read); 1047 1048 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1049 const u_char *buf) 1050 { 1051 *retlen = 0; 1052 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1053 return -EINVAL; 1054 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE)) 1055 return -EROFS; 1056 if (!len) 1057 return 0; 1058 ledtrig_mtd_activity(); 1059 return mtd->_write(mtd, to, len, retlen, buf); 1060 } 1061 EXPORT_SYMBOL_GPL(mtd_write); 1062 1063 /* 1064 * In blackbox flight recorder like scenarios we want to make successful writes 1065 * in interrupt context. panic_write() is only intended to be called when its 1066 * known the kernel is about to panic and we need the write to succeed. Since 1067 * the kernel is not going to be running for much longer, this function can 1068 * break locks and delay to ensure the write succeeds (but not sleep). 1069 */ 1070 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1071 const u_char *buf) 1072 { 1073 *retlen = 0; 1074 if (!mtd->_panic_write) 1075 return -EOPNOTSUPP; 1076 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1077 return -EINVAL; 1078 if (!(mtd->flags & MTD_WRITEABLE)) 1079 return -EROFS; 1080 if (!len) 1081 return 0; 1082 return mtd->_panic_write(mtd, to, len, retlen, buf); 1083 } 1084 EXPORT_SYMBOL_GPL(mtd_panic_write); 1085 1086 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1087 { 1088 int ret_code; 1089 ops->retlen = ops->oobretlen = 0; 1090 if (!mtd->_read_oob) 1091 return -EOPNOTSUPP; 1092 1093 ledtrig_mtd_activity(); 1094 /* 1095 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1096 * similar to mtd->_read(), returning a non-negative integer 1097 * representing max bitflips. In other cases, mtd->_read_oob() may 1098 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1099 */ 1100 ret_code = mtd->_read_oob(mtd, from, ops); 1101 if (unlikely(ret_code < 0)) 1102 return ret_code; 1103 if (mtd->ecc_strength == 0) 1104 return 0; /* device lacks ecc */ 1105 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1106 } 1107 EXPORT_SYMBOL_GPL(mtd_read_oob); 1108 1109 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1110 struct mtd_oob_ops *ops) 1111 { 1112 ops->retlen = ops->oobretlen = 0; 1113 if (!mtd->_write_oob) 1114 return -EOPNOTSUPP; 1115 if (!(mtd->flags & MTD_WRITEABLE)) 1116 return -EROFS; 1117 ledtrig_mtd_activity(); 1118 return mtd->_write_oob(mtd, to, ops); 1119 } 1120 EXPORT_SYMBOL_GPL(mtd_write_oob); 1121 1122 /** 1123 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1124 * @mtd: MTD device structure 1125 * @section: ECC section. Depending on the layout you may have all the ECC 1126 * bytes stored in a single contiguous section, or one section 1127 * per ECC chunk (and sometime several sections for a single ECC 1128 * ECC chunk) 1129 * @oobecc: OOB region struct filled with the appropriate ECC position 1130 * information 1131 * 1132 * This functions return ECC section information in the OOB area. I you want 1133 * to get all the ECC bytes information, then you should call 1134 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1135 * 1136 * Returns zero on success, a negative error code otherwise. 1137 */ 1138 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1139 struct mtd_oob_region *oobecc) 1140 { 1141 memset(oobecc, 0, sizeof(*oobecc)); 1142 1143 if (!mtd || section < 0) 1144 return -EINVAL; 1145 1146 if (!mtd->ooblayout || !mtd->ooblayout->ecc) 1147 return -ENOTSUPP; 1148 1149 return mtd->ooblayout->ecc(mtd, section, oobecc); 1150 } 1151 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1152 1153 /** 1154 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1155 * section 1156 * @mtd: MTD device structure 1157 * @section: Free section you are interested in. Depending on the layout 1158 * you may have all the free bytes stored in a single contiguous 1159 * section, or one section per ECC chunk plus an extra section 1160 * for the remaining bytes (or other funky layout). 1161 * @oobfree: OOB region struct filled with the appropriate free position 1162 * information 1163 * 1164 * This functions return free bytes position in the OOB area. I you want 1165 * to get all the free bytes information, then you should call 1166 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1167 * 1168 * Returns zero on success, a negative error code otherwise. 1169 */ 1170 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1171 struct mtd_oob_region *oobfree) 1172 { 1173 memset(oobfree, 0, sizeof(*oobfree)); 1174 1175 if (!mtd || section < 0) 1176 return -EINVAL; 1177 1178 if (!mtd->ooblayout || !mtd->ooblayout->free) 1179 return -ENOTSUPP; 1180 1181 return mtd->ooblayout->free(mtd, section, oobfree); 1182 } 1183 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1184 1185 /** 1186 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1187 * @mtd: mtd info structure 1188 * @byte: the byte we are searching for 1189 * @sectionp: pointer where the section id will be stored 1190 * @oobregion: used to retrieve the ECC position 1191 * @iter: iterator function. Should be either mtd_ooblayout_free or 1192 * mtd_ooblayout_ecc depending on the region type you're searching for 1193 * 1194 * This functions returns the section id and oobregion information of a 1195 * specific byte. For example, say you want to know where the 4th ECC byte is 1196 * stored, you'll use: 1197 * 1198 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1199 * 1200 * Returns zero on success, a negative error code otherwise. 1201 */ 1202 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1203 int *sectionp, struct mtd_oob_region *oobregion, 1204 int (*iter)(struct mtd_info *, 1205 int section, 1206 struct mtd_oob_region *oobregion)) 1207 { 1208 int pos = 0, ret, section = 0; 1209 1210 memset(oobregion, 0, sizeof(*oobregion)); 1211 1212 while (1) { 1213 ret = iter(mtd, section, oobregion); 1214 if (ret) 1215 return ret; 1216 1217 if (pos + oobregion->length > byte) 1218 break; 1219 1220 pos += oobregion->length; 1221 section++; 1222 } 1223 1224 /* 1225 * Adjust region info to make it start at the beginning at the 1226 * 'start' ECC byte. 1227 */ 1228 oobregion->offset += byte - pos; 1229 oobregion->length -= byte - pos; 1230 *sectionp = section; 1231 1232 return 0; 1233 } 1234 1235 /** 1236 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1237 * ECC byte 1238 * @mtd: mtd info structure 1239 * @eccbyte: the byte we are searching for 1240 * @sectionp: pointer where the section id will be stored 1241 * @oobregion: OOB region information 1242 * 1243 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1244 * byte. 1245 * 1246 * Returns zero on success, a negative error code otherwise. 1247 */ 1248 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1249 int *section, 1250 struct mtd_oob_region *oobregion) 1251 { 1252 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1253 mtd_ooblayout_ecc); 1254 } 1255 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1256 1257 /** 1258 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1259 * @mtd: mtd info structure 1260 * @buf: destination buffer to store OOB bytes 1261 * @oobbuf: OOB buffer 1262 * @start: first byte to retrieve 1263 * @nbytes: number of bytes to retrieve 1264 * @iter: section iterator 1265 * 1266 * Extract bytes attached to a specific category (ECC or free) 1267 * from the OOB buffer and copy them into buf. 1268 * 1269 * Returns zero on success, a negative error code otherwise. 1270 */ 1271 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1272 const u8 *oobbuf, int start, int nbytes, 1273 int (*iter)(struct mtd_info *, 1274 int section, 1275 struct mtd_oob_region *oobregion)) 1276 { 1277 struct mtd_oob_region oobregion = { }; 1278 int section = 0, ret; 1279 1280 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1281 &oobregion, iter); 1282 1283 while (!ret) { 1284 int cnt; 1285 1286 cnt = oobregion.length > nbytes ? nbytes : oobregion.length; 1287 memcpy(buf, oobbuf + oobregion.offset, cnt); 1288 buf += cnt; 1289 nbytes -= cnt; 1290 1291 if (!nbytes) 1292 break; 1293 1294 ret = iter(mtd, ++section, &oobregion); 1295 } 1296 1297 return ret; 1298 } 1299 1300 /** 1301 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1302 * @mtd: mtd info structure 1303 * @buf: source buffer to get OOB bytes from 1304 * @oobbuf: OOB buffer 1305 * @start: first OOB byte to set 1306 * @nbytes: number of OOB bytes to set 1307 * @iter: section iterator 1308 * 1309 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1310 * is selected by passing the appropriate iterator. 1311 * 1312 * Returns zero on success, a negative error code otherwise. 1313 */ 1314 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1315 u8 *oobbuf, int start, int nbytes, 1316 int (*iter)(struct mtd_info *, 1317 int section, 1318 struct mtd_oob_region *oobregion)) 1319 { 1320 struct mtd_oob_region oobregion = { }; 1321 int section = 0, ret; 1322 1323 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1324 &oobregion, iter); 1325 1326 while (!ret) { 1327 int cnt; 1328 1329 cnt = oobregion.length > nbytes ? nbytes : oobregion.length; 1330 memcpy(oobbuf + oobregion.offset, buf, cnt); 1331 buf += cnt; 1332 nbytes -= cnt; 1333 1334 if (!nbytes) 1335 break; 1336 1337 ret = iter(mtd, ++section, &oobregion); 1338 } 1339 1340 return ret; 1341 } 1342 1343 /** 1344 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1345 * @mtd: mtd info structure 1346 * @iter: category iterator 1347 * 1348 * Count the number of bytes in a given category. 1349 * 1350 * Returns a positive value on success, a negative error code otherwise. 1351 */ 1352 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1353 int (*iter)(struct mtd_info *, 1354 int section, 1355 struct mtd_oob_region *oobregion)) 1356 { 1357 struct mtd_oob_region oobregion = { }; 1358 int section = 0, ret, nbytes = 0; 1359 1360 while (1) { 1361 ret = iter(mtd, section++, &oobregion); 1362 if (ret) { 1363 if (ret == -ERANGE) 1364 ret = nbytes; 1365 break; 1366 } 1367 1368 nbytes += oobregion.length; 1369 } 1370 1371 return ret; 1372 } 1373 1374 /** 1375 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1376 * @mtd: mtd info structure 1377 * @eccbuf: destination buffer to store ECC bytes 1378 * @oobbuf: OOB buffer 1379 * @start: first ECC byte to retrieve 1380 * @nbytes: number of ECC bytes to retrieve 1381 * 1382 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1383 * 1384 * Returns zero on success, a negative error code otherwise. 1385 */ 1386 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1387 const u8 *oobbuf, int start, int nbytes) 1388 { 1389 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1390 mtd_ooblayout_ecc); 1391 } 1392 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1393 1394 /** 1395 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1396 * @mtd: mtd info structure 1397 * @eccbuf: source buffer to get ECC bytes from 1398 * @oobbuf: OOB buffer 1399 * @start: first ECC byte to set 1400 * @nbytes: number of ECC bytes to set 1401 * 1402 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 1403 * 1404 * Returns zero on success, a negative error code otherwise. 1405 */ 1406 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 1407 u8 *oobbuf, int start, int nbytes) 1408 { 1409 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1410 mtd_ooblayout_ecc); 1411 } 1412 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 1413 1414 /** 1415 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 1416 * @mtd: mtd info structure 1417 * @databuf: destination buffer to store ECC bytes 1418 * @oobbuf: OOB buffer 1419 * @start: first ECC byte to retrieve 1420 * @nbytes: number of ECC bytes to retrieve 1421 * 1422 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1423 * 1424 * Returns zero on success, a negative error code otherwise. 1425 */ 1426 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 1427 const u8 *oobbuf, int start, int nbytes) 1428 { 1429 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 1430 mtd_ooblayout_free); 1431 } 1432 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 1433 1434 /** 1435 * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer 1436 * @mtd: mtd info structure 1437 * @eccbuf: source buffer to get data bytes from 1438 * @oobbuf: OOB buffer 1439 * @start: first ECC byte to set 1440 * @nbytes: number of ECC bytes to set 1441 * 1442 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1443 * 1444 * Returns zero on success, a negative error code otherwise. 1445 */ 1446 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 1447 u8 *oobbuf, int start, int nbytes) 1448 { 1449 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 1450 mtd_ooblayout_free); 1451 } 1452 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 1453 1454 /** 1455 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 1456 * @mtd: mtd info structure 1457 * 1458 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 1459 * 1460 * Returns zero on success, a negative error code otherwise. 1461 */ 1462 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 1463 { 1464 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 1465 } 1466 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 1467 1468 /** 1469 * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB 1470 * @mtd: mtd info structure 1471 * 1472 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 1473 * 1474 * Returns zero on success, a negative error code otherwise. 1475 */ 1476 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 1477 { 1478 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 1479 } 1480 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 1481 1482 /* 1483 * Method to access the protection register area, present in some flash 1484 * devices. The user data is one time programmable but the factory data is read 1485 * only. 1486 */ 1487 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1488 struct otp_info *buf) 1489 { 1490 if (!mtd->_get_fact_prot_info) 1491 return -EOPNOTSUPP; 1492 if (!len) 1493 return 0; 1494 return mtd->_get_fact_prot_info(mtd, len, retlen, buf); 1495 } 1496 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 1497 1498 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1499 size_t *retlen, u_char *buf) 1500 { 1501 *retlen = 0; 1502 if (!mtd->_read_fact_prot_reg) 1503 return -EOPNOTSUPP; 1504 if (!len) 1505 return 0; 1506 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); 1507 } 1508 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 1509 1510 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1511 struct otp_info *buf) 1512 { 1513 if (!mtd->_get_user_prot_info) 1514 return -EOPNOTSUPP; 1515 if (!len) 1516 return 0; 1517 return mtd->_get_user_prot_info(mtd, len, retlen, buf); 1518 } 1519 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 1520 1521 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1522 size_t *retlen, u_char *buf) 1523 { 1524 *retlen = 0; 1525 if (!mtd->_read_user_prot_reg) 1526 return -EOPNOTSUPP; 1527 if (!len) 1528 return 0; 1529 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); 1530 } 1531 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 1532 1533 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 1534 size_t *retlen, u_char *buf) 1535 { 1536 int ret; 1537 1538 *retlen = 0; 1539 if (!mtd->_write_user_prot_reg) 1540 return -EOPNOTSUPP; 1541 if (!len) 1542 return 0; 1543 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); 1544 if (ret) 1545 return ret; 1546 1547 /* 1548 * If no data could be written at all, we are out of memory and 1549 * must return -ENOSPC. 1550 */ 1551 return (*retlen) ? 0 : -ENOSPC; 1552 } 1553 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1554 1555 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1556 { 1557 if (!mtd->_lock_user_prot_reg) 1558 return -EOPNOTSUPP; 1559 if (!len) 1560 return 0; 1561 return mtd->_lock_user_prot_reg(mtd, from, len); 1562 } 1563 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1564 1565 /* Chip-supported device locking */ 1566 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1567 { 1568 if (!mtd->_lock) 1569 return -EOPNOTSUPP; 1570 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1571 return -EINVAL; 1572 if (!len) 1573 return 0; 1574 return mtd->_lock(mtd, ofs, len); 1575 } 1576 EXPORT_SYMBOL_GPL(mtd_lock); 1577 1578 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1579 { 1580 if (!mtd->_unlock) 1581 return -EOPNOTSUPP; 1582 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1583 return -EINVAL; 1584 if (!len) 1585 return 0; 1586 return mtd->_unlock(mtd, ofs, len); 1587 } 1588 EXPORT_SYMBOL_GPL(mtd_unlock); 1589 1590 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1591 { 1592 if (!mtd->_is_locked) 1593 return -EOPNOTSUPP; 1594 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1595 return -EINVAL; 1596 if (!len) 1597 return 0; 1598 return mtd->_is_locked(mtd, ofs, len); 1599 } 1600 EXPORT_SYMBOL_GPL(mtd_is_locked); 1601 1602 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 1603 { 1604 if (ofs < 0 || ofs >= mtd->size) 1605 return -EINVAL; 1606 if (!mtd->_block_isreserved) 1607 return 0; 1608 return mtd->_block_isreserved(mtd, ofs); 1609 } 1610 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 1611 1612 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 1613 { 1614 if (ofs < 0 || ofs >= mtd->size) 1615 return -EINVAL; 1616 if (!mtd->_block_isbad) 1617 return 0; 1618 return mtd->_block_isbad(mtd, ofs); 1619 } 1620 EXPORT_SYMBOL_GPL(mtd_block_isbad); 1621 1622 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 1623 { 1624 if (!mtd->_block_markbad) 1625 return -EOPNOTSUPP; 1626 if (ofs < 0 || ofs >= mtd->size) 1627 return -EINVAL; 1628 if (!(mtd->flags & MTD_WRITEABLE)) 1629 return -EROFS; 1630 return mtd->_block_markbad(mtd, ofs); 1631 } 1632 EXPORT_SYMBOL_GPL(mtd_block_markbad); 1633 1634 /* 1635 * default_mtd_writev - the default writev method 1636 * @mtd: mtd device description object pointer 1637 * @vecs: the vectors to write 1638 * @count: count of vectors in @vecs 1639 * @to: the MTD device offset to write to 1640 * @retlen: on exit contains the count of bytes written to the MTD device. 1641 * 1642 * This function returns zero in case of success and a negative error code in 1643 * case of failure. 1644 */ 1645 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1646 unsigned long count, loff_t to, size_t *retlen) 1647 { 1648 unsigned long i; 1649 size_t totlen = 0, thislen; 1650 int ret = 0; 1651 1652 for (i = 0; i < count; i++) { 1653 if (!vecs[i].iov_len) 1654 continue; 1655 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1656 vecs[i].iov_base); 1657 totlen += thislen; 1658 if (ret || thislen != vecs[i].iov_len) 1659 break; 1660 to += vecs[i].iov_len; 1661 } 1662 *retlen = totlen; 1663 return ret; 1664 } 1665 1666 /* 1667 * mtd_writev - the vector-based MTD write method 1668 * @mtd: mtd device description object pointer 1669 * @vecs: the vectors to write 1670 * @count: count of vectors in @vecs 1671 * @to: the MTD device offset to write to 1672 * @retlen: on exit contains the count of bytes written to the MTD device. 1673 * 1674 * This function returns zero in case of success and a negative error code in 1675 * case of failure. 1676 */ 1677 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1678 unsigned long count, loff_t to, size_t *retlen) 1679 { 1680 *retlen = 0; 1681 if (!(mtd->flags & MTD_WRITEABLE)) 1682 return -EROFS; 1683 if (!mtd->_writev) 1684 return default_mtd_writev(mtd, vecs, count, to, retlen); 1685 return mtd->_writev(mtd, vecs, count, to, retlen); 1686 } 1687 EXPORT_SYMBOL_GPL(mtd_writev); 1688 1689 /** 1690 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1691 * @mtd: mtd device description object pointer 1692 * @size: a pointer to the ideal or maximum size of the allocation, points 1693 * to the actual allocation size on success. 1694 * 1695 * This routine attempts to allocate a contiguous kernel buffer up to 1696 * the specified size, backing off the size of the request exponentially 1697 * until the request succeeds or until the allocation size falls below 1698 * the system page size. This attempts to make sure it does not adversely 1699 * impact system performance, so when allocating more than one page, we 1700 * ask the memory allocator to avoid re-trying, swapping, writing back 1701 * or performing I/O. 1702 * 1703 * Note, this function also makes sure that the allocated buffer is aligned to 1704 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1705 * 1706 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1707 * to handle smaller (i.e. degraded) buffer allocations under low- or 1708 * fragmented-memory situations where such reduced allocations, from a 1709 * requested ideal, are allowed. 1710 * 1711 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1712 */ 1713 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1714 { 1715 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 1716 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1717 void *kbuf; 1718 1719 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1720 1721 while (*size > min_alloc) { 1722 kbuf = kmalloc(*size, flags); 1723 if (kbuf) 1724 return kbuf; 1725 1726 *size >>= 1; 1727 *size = ALIGN(*size, mtd->writesize); 1728 } 1729 1730 /* 1731 * For the last resort allocation allow 'kmalloc()' to do all sorts of 1732 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 1733 */ 1734 return kmalloc(*size, GFP_KERNEL); 1735 } 1736 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 1737 1738 #ifdef CONFIG_PROC_FS 1739 1740 /*====================================================================*/ 1741 /* Support for /proc/mtd */ 1742 1743 static int mtd_proc_show(struct seq_file *m, void *v) 1744 { 1745 struct mtd_info *mtd; 1746 1747 seq_puts(m, "dev: size erasesize name\n"); 1748 mutex_lock(&mtd_table_mutex); 1749 mtd_for_each_device(mtd) { 1750 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 1751 mtd->index, (unsigned long long)mtd->size, 1752 mtd->erasesize, mtd->name); 1753 } 1754 mutex_unlock(&mtd_table_mutex); 1755 return 0; 1756 } 1757 1758 static int mtd_proc_open(struct inode *inode, struct file *file) 1759 { 1760 return single_open(file, mtd_proc_show, NULL); 1761 } 1762 1763 static const struct file_operations mtd_proc_ops = { 1764 .open = mtd_proc_open, 1765 .read = seq_read, 1766 .llseek = seq_lseek, 1767 .release = single_release, 1768 }; 1769 #endif /* CONFIG_PROC_FS */ 1770 1771 /*====================================================================*/ 1772 /* Init code */ 1773 1774 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name) 1775 { 1776 int ret; 1777 1778 ret = bdi_init(bdi); 1779 if (!ret) 1780 ret = bdi_register(bdi, NULL, "%s", name); 1781 1782 if (ret) 1783 bdi_destroy(bdi); 1784 1785 return ret; 1786 } 1787 1788 static struct proc_dir_entry *proc_mtd; 1789 1790 static int __init init_mtd(void) 1791 { 1792 int ret; 1793 1794 ret = class_register(&mtd_class); 1795 if (ret) 1796 goto err_reg; 1797 1798 ret = mtd_bdi_init(&mtd_bdi, "mtd"); 1799 if (ret) 1800 goto err_bdi; 1801 1802 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops); 1803 1804 ret = init_mtdchar(); 1805 if (ret) 1806 goto out_procfs; 1807 1808 return 0; 1809 1810 out_procfs: 1811 if (proc_mtd) 1812 remove_proc_entry("mtd", NULL); 1813 err_bdi: 1814 class_unregister(&mtd_class); 1815 err_reg: 1816 pr_err("Error registering mtd class or bdi: %d\n", ret); 1817 return ret; 1818 } 1819 1820 static void __exit cleanup_mtd(void) 1821 { 1822 cleanup_mtdchar(); 1823 if (proc_mtd) 1824 remove_proc_entry("mtd", NULL); 1825 class_unregister(&mtd_class); 1826 bdi_destroy(&mtd_bdi); 1827 idr_destroy(&mtd_idr); 1828 } 1829 1830 module_init(init_mtd); 1831 module_exit(cleanup_mtd); 1832 1833 MODULE_LICENSE("GPL"); 1834 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1835 MODULE_DESCRIPTION("Core MTD registration and access routines"); 1836