xref: /openbmc/linux/drivers/mtd/mtdcore.c (revision e6c81cce)
1 /*
2  * Core registration and callback routines for MTD
3  * drivers and users.
4  *
5  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6  * Copyright © 2006      Red Hat UK Limited
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/proc_fs.h>
36 #include <linux/idr.h>
37 #include <linux/backing-dev.h>
38 #include <linux/gfp.h>
39 #include <linux/slab.h>
40 #include <linux/reboot.h>
41 
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/partitions.h>
44 
45 #include "mtdcore.h"
46 
47 static struct backing_dev_info mtd_bdi = {
48 };
49 
50 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
51 static int mtd_cls_resume(struct device *dev);
52 
53 static struct class mtd_class = {
54 	.name = "mtd",
55 	.owner = THIS_MODULE,
56 	.suspend = mtd_cls_suspend,
57 	.resume = mtd_cls_resume,
58 };
59 
60 static DEFINE_IDR(mtd_idr);
61 
62 /* These are exported solely for the purpose of mtd_blkdevs.c. You
63    should not use them for _anything_ else */
64 DEFINE_MUTEX(mtd_table_mutex);
65 EXPORT_SYMBOL_GPL(mtd_table_mutex);
66 
67 struct mtd_info *__mtd_next_device(int i)
68 {
69 	return idr_get_next(&mtd_idr, &i);
70 }
71 EXPORT_SYMBOL_GPL(__mtd_next_device);
72 
73 static LIST_HEAD(mtd_notifiers);
74 
75 
76 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
77 
78 /* REVISIT once MTD uses the driver model better, whoever allocates
79  * the mtd_info will probably want to use the release() hook...
80  */
81 static void mtd_release(struct device *dev)
82 {
83 	struct mtd_info *mtd = dev_get_drvdata(dev);
84 	dev_t index = MTD_DEVT(mtd->index);
85 
86 	/* remove /dev/mtdXro node */
87 	device_destroy(&mtd_class, index + 1);
88 }
89 
90 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
91 {
92 	struct mtd_info *mtd = dev_get_drvdata(dev);
93 
94 	return mtd ? mtd_suspend(mtd) : 0;
95 }
96 
97 static int mtd_cls_resume(struct device *dev)
98 {
99 	struct mtd_info *mtd = dev_get_drvdata(dev);
100 
101 	if (mtd)
102 		mtd_resume(mtd);
103 	return 0;
104 }
105 
106 static ssize_t mtd_type_show(struct device *dev,
107 		struct device_attribute *attr, char *buf)
108 {
109 	struct mtd_info *mtd = dev_get_drvdata(dev);
110 	char *type;
111 
112 	switch (mtd->type) {
113 	case MTD_ABSENT:
114 		type = "absent";
115 		break;
116 	case MTD_RAM:
117 		type = "ram";
118 		break;
119 	case MTD_ROM:
120 		type = "rom";
121 		break;
122 	case MTD_NORFLASH:
123 		type = "nor";
124 		break;
125 	case MTD_NANDFLASH:
126 		type = "nand";
127 		break;
128 	case MTD_DATAFLASH:
129 		type = "dataflash";
130 		break;
131 	case MTD_UBIVOLUME:
132 		type = "ubi";
133 		break;
134 	case MTD_MLCNANDFLASH:
135 		type = "mlc-nand";
136 		break;
137 	default:
138 		type = "unknown";
139 	}
140 
141 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
142 }
143 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
144 
145 static ssize_t mtd_flags_show(struct device *dev,
146 		struct device_attribute *attr, char *buf)
147 {
148 	struct mtd_info *mtd = dev_get_drvdata(dev);
149 
150 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
151 
152 }
153 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
154 
155 static ssize_t mtd_size_show(struct device *dev,
156 		struct device_attribute *attr, char *buf)
157 {
158 	struct mtd_info *mtd = dev_get_drvdata(dev);
159 
160 	return snprintf(buf, PAGE_SIZE, "%llu\n",
161 		(unsigned long long)mtd->size);
162 
163 }
164 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
165 
166 static ssize_t mtd_erasesize_show(struct device *dev,
167 		struct device_attribute *attr, char *buf)
168 {
169 	struct mtd_info *mtd = dev_get_drvdata(dev);
170 
171 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
172 
173 }
174 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
175 
176 static ssize_t mtd_writesize_show(struct device *dev,
177 		struct device_attribute *attr, char *buf)
178 {
179 	struct mtd_info *mtd = dev_get_drvdata(dev);
180 
181 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
182 
183 }
184 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
185 
186 static ssize_t mtd_subpagesize_show(struct device *dev,
187 		struct device_attribute *attr, char *buf)
188 {
189 	struct mtd_info *mtd = dev_get_drvdata(dev);
190 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
191 
192 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
193 
194 }
195 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
196 
197 static ssize_t mtd_oobsize_show(struct device *dev,
198 		struct device_attribute *attr, char *buf)
199 {
200 	struct mtd_info *mtd = dev_get_drvdata(dev);
201 
202 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
203 
204 }
205 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
206 
207 static ssize_t mtd_numeraseregions_show(struct device *dev,
208 		struct device_attribute *attr, char *buf)
209 {
210 	struct mtd_info *mtd = dev_get_drvdata(dev);
211 
212 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
213 
214 }
215 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
216 	NULL);
217 
218 static ssize_t mtd_name_show(struct device *dev,
219 		struct device_attribute *attr, char *buf)
220 {
221 	struct mtd_info *mtd = dev_get_drvdata(dev);
222 
223 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
224 
225 }
226 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
227 
228 static ssize_t mtd_ecc_strength_show(struct device *dev,
229 				     struct device_attribute *attr, char *buf)
230 {
231 	struct mtd_info *mtd = dev_get_drvdata(dev);
232 
233 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
234 }
235 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
236 
237 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
238 					  struct device_attribute *attr,
239 					  char *buf)
240 {
241 	struct mtd_info *mtd = dev_get_drvdata(dev);
242 
243 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
244 }
245 
246 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
247 					   struct device_attribute *attr,
248 					   const char *buf, size_t count)
249 {
250 	struct mtd_info *mtd = dev_get_drvdata(dev);
251 	unsigned int bitflip_threshold;
252 	int retval;
253 
254 	retval = kstrtouint(buf, 0, &bitflip_threshold);
255 	if (retval)
256 		return retval;
257 
258 	mtd->bitflip_threshold = bitflip_threshold;
259 	return count;
260 }
261 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
262 		   mtd_bitflip_threshold_show,
263 		   mtd_bitflip_threshold_store);
264 
265 static ssize_t mtd_ecc_step_size_show(struct device *dev,
266 		struct device_attribute *attr, char *buf)
267 {
268 	struct mtd_info *mtd = dev_get_drvdata(dev);
269 
270 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
271 
272 }
273 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
274 
275 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
276 		struct device_attribute *attr, char *buf)
277 {
278 	struct mtd_info *mtd = dev_get_drvdata(dev);
279 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
280 
281 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
282 }
283 static DEVICE_ATTR(corrected_bits, S_IRUGO,
284 		   mtd_ecc_stats_corrected_show, NULL);
285 
286 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
287 		struct device_attribute *attr, char *buf)
288 {
289 	struct mtd_info *mtd = dev_get_drvdata(dev);
290 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
291 
292 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
293 }
294 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
295 
296 static ssize_t mtd_badblocks_show(struct device *dev,
297 		struct device_attribute *attr, char *buf)
298 {
299 	struct mtd_info *mtd = dev_get_drvdata(dev);
300 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
301 
302 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
303 }
304 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
305 
306 static ssize_t mtd_bbtblocks_show(struct device *dev,
307 		struct device_attribute *attr, char *buf)
308 {
309 	struct mtd_info *mtd = dev_get_drvdata(dev);
310 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
311 
312 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
313 }
314 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
315 
316 static struct attribute *mtd_attrs[] = {
317 	&dev_attr_type.attr,
318 	&dev_attr_flags.attr,
319 	&dev_attr_size.attr,
320 	&dev_attr_erasesize.attr,
321 	&dev_attr_writesize.attr,
322 	&dev_attr_subpagesize.attr,
323 	&dev_attr_oobsize.attr,
324 	&dev_attr_numeraseregions.attr,
325 	&dev_attr_name.attr,
326 	&dev_attr_ecc_strength.attr,
327 	&dev_attr_ecc_step_size.attr,
328 	&dev_attr_corrected_bits.attr,
329 	&dev_attr_ecc_failures.attr,
330 	&dev_attr_bad_blocks.attr,
331 	&dev_attr_bbt_blocks.attr,
332 	&dev_attr_bitflip_threshold.attr,
333 	NULL,
334 };
335 ATTRIBUTE_GROUPS(mtd);
336 
337 static struct device_type mtd_devtype = {
338 	.name		= "mtd",
339 	.groups		= mtd_groups,
340 	.release	= mtd_release,
341 };
342 
343 #ifndef CONFIG_MMU
344 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
345 {
346 	switch (mtd->type) {
347 	case MTD_RAM:
348 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
349 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
350 	case MTD_ROM:
351 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
352 			NOMMU_MAP_READ;
353 	default:
354 		return NOMMU_MAP_COPY;
355 	}
356 }
357 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
358 #endif
359 
360 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
361 			       void *cmd)
362 {
363 	struct mtd_info *mtd;
364 
365 	mtd = container_of(n, struct mtd_info, reboot_notifier);
366 	mtd->_reboot(mtd);
367 
368 	return NOTIFY_DONE;
369 }
370 
371 /**
372  *	add_mtd_device - register an MTD device
373  *	@mtd: pointer to new MTD device info structure
374  *
375  *	Add a device to the list of MTD devices present in the system, and
376  *	notify each currently active MTD 'user' of its arrival. Returns
377  *	zero on success or 1 on failure, which currently will only happen
378  *	if there is insufficient memory or a sysfs error.
379  */
380 
381 int add_mtd_device(struct mtd_info *mtd)
382 {
383 	struct mtd_notifier *not;
384 	int i, error;
385 
386 	mtd->backing_dev_info = &mtd_bdi;
387 
388 	BUG_ON(mtd->writesize == 0);
389 	mutex_lock(&mtd_table_mutex);
390 
391 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
392 	if (i < 0)
393 		goto fail_locked;
394 
395 	mtd->index = i;
396 	mtd->usecount = 0;
397 
398 	/* default value if not set by driver */
399 	if (mtd->bitflip_threshold == 0)
400 		mtd->bitflip_threshold = mtd->ecc_strength;
401 
402 	if (is_power_of_2(mtd->erasesize))
403 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
404 	else
405 		mtd->erasesize_shift = 0;
406 
407 	if (is_power_of_2(mtd->writesize))
408 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
409 	else
410 		mtd->writesize_shift = 0;
411 
412 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
413 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
414 
415 	/* Some chips always power up locked. Unlock them now */
416 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
417 		error = mtd_unlock(mtd, 0, mtd->size);
418 		if (error && error != -EOPNOTSUPP)
419 			printk(KERN_WARNING
420 			       "%s: unlock failed, writes may not work\n",
421 			       mtd->name);
422 	}
423 
424 	/* Caller should have set dev.parent to match the
425 	 * physical device.
426 	 */
427 	mtd->dev.type = &mtd_devtype;
428 	mtd->dev.class = &mtd_class;
429 	mtd->dev.devt = MTD_DEVT(i);
430 	dev_set_name(&mtd->dev, "mtd%d", i);
431 	dev_set_drvdata(&mtd->dev, mtd);
432 	if (device_register(&mtd->dev) != 0)
433 		goto fail_added;
434 
435 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
436 		      "mtd%dro", i);
437 
438 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
439 	/* No need to get a refcount on the module containing
440 	   the notifier, since we hold the mtd_table_mutex */
441 	list_for_each_entry(not, &mtd_notifiers, list)
442 		not->add(mtd);
443 
444 	mutex_unlock(&mtd_table_mutex);
445 	/* We _know_ we aren't being removed, because
446 	   our caller is still holding us here. So none
447 	   of this try_ nonsense, and no bitching about it
448 	   either. :) */
449 	__module_get(THIS_MODULE);
450 	return 0;
451 
452 fail_added:
453 	idr_remove(&mtd_idr, i);
454 fail_locked:
455 	mutex_unlock(&mtd_table_mutex);
456 	return 1;
457 }
458 
459 /**
460  *	del_mtd_device - unregister an MTD device
461  *	@mtd: pointer to MTD device info structure
462  *
463  *	Remove a device from the list of MTD devices present in the system,
464  *	and notify each currently active MTD 'user' of its departure.
465  *	Returns zero on success or 1 on failure, which currently will happen
466  *	if the requested device does not appear to be present in the list.
467  */
468 
469 int del_mtd_device(struct mtd_info *mtd)
470 {
471 	int ret;
472 	struct mtd_notifier *not;
473 
474 	mutex_lock(&mtd_table_mutex);
475 
476 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
477 		ret = -ENODEV;
478 		goto out_error;
479 	}
480 
481 	/* No need to get a refcount on the module containing
482 		the notifier, since we hold the mtd_table_mutex */
483 	list_for_each_entry(not, &mtd_notifiers, list)
484 		not->remove(mtd);
485 
486 	if (mtd->usecount) {
487 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
488 		       mtd->index, mtd->name, mtd->usecount);
489 		ret = -EBUSY;
490 	} else {
491 		device_unregister(&mtd->dev);
492 
493 		idr_remove(&mtd_idr, mtd->index);
494 
495 		module_put(THIS_MODULE);
496 		ret = 0;
497 	}
498 
499 out_error:
500 	mutex_unlock(&mtd_table_mutex);
501 	return ret;
502 }
503 
504 /**
505  * mtd_device_parse_register - parse partitions and register an MTD device.
506  *
507  * @mtd: the MTD device to register
508  * @types: the list of MTD partition probes to try, see
509  *         'parse_mtd_partitions()' for more information
510  * @parser_data: MTD partition parser-specific data
511  * @parts: fallback partition information to register, if parsing fails;
512  *         only valid if %nr_parts > %0
513  * @nr_parts: the number of partitions in parts, if zero then the full
514  *            MTD device is registered if no partition info is found
515  *
516  * This function aggregates MTD partitions parsing (done by
517  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
518  * basically follows the most common pattern found in many MTD drivers:
519  *
520  * * It first tries to probe partitions on MTD device @mtd using parsers
521  *   specified in @types (if @types is %NULL, then the default list of parsers
522  *   is used, see 'parse_mtd_partitions()' for more information). If none are
523  *   found this functions tries to fallback to information specified in
524  *   @parts/@nr_parts.
525  * * If any partitioning info was found, this function registers the found
526  *   partitions.
527  * * If no partitions were found this function just registers the MTD device
528  *   @mtd and exits.
529  *
530  * Returns zero in case of success and a negative error code in case of failure.
531  */
532 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
533 			      struct mtd_part_parser_data *parser_data,
534 			      const struct mtd_partition *parts,
535 			      int nr_parts)
536 {
537 	int err;
538 	struct mtd_partition *real_parts;
539 
540 	err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
541 	if (err <= 0 && nr_parts && parts) {
542 		real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
543 				     GFP_KERNEL);
544 		if (!real_parts)
545 			err = -ENOMEM;
546 		else
547 			err = nr_parts;
548 	}
549 
550 	if (err > 0) {
551 		err = add_mtd_partitions(mtd, real_parts, err);
552 		kfree(real_parts);
553 	} else if (err == 0) {
554 		err = add_mtd_device(mtd);
555 		if (err == 1)
556 			err = -ENODEV;
557 	}
558 
559 	/*
560 	 * FIXME: some drivers unfortunately call this function more than once.
561 	 * So we have to check if we've already assigned the reboot notifier.
562 	 *
563 	 * Generally, we can make multiple calls work for most cases, but it
564 	 * does cause problems with parse_mtd_partitions() above (e.g.,
565 	 * cmdlineparts will register partitions more than once).
566 	 */
567 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
568 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
569 		register_reboot_notifier(&mtd->reboot_notifier);
570 	}
571 
572 	return err;
573 }
574 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
575 
576 /**
577  * mtd_device_unregister - unregister an existing MTD device.
578  *
579  * @master: the MTD device to unregister.  This will unregister both the master
580  *          and any partitions if registered.
581  */
582 int mtd_device_unregister(struct mtd_info *master)
583 {
584 	int err;
585 
586 	if (master->_reboot)
587 		unregister_reboot_notifier(&master->reboot_notifier);
588 
589 	err = del_mtd_partitions(master);
590 	if (err)
591 		return err;
592 
593 	if (!device_is_registered(&master->dev))
594 		return 0;
595 
596 	return del_mtd_device(master);
597 }
598 EXPORT_SYMBOL_GPL(mtd_device_unregister);
599 
600 /**
601  *	register_mtd_user - register a 'user' of MTD devices.
602  *	@new: pointer to notifier info structure
603  *
604  *	Registers a pair of callbacks function to be called upon addition
605  *	or removal of MTD devices. Causes the 'add' callback to be immediately
606  *	invoked for each MTD device currently present in the system.
607  */
608 void register_mtd_user (struct mtd_notifier *new)
609 {
610 	struct mtd_info *mtd;
611 
612 	mutex_lock(&mtd_table_mutex);
613 
614 	list_add(&new->list, &mtd_notifiers);
615 
616 	__module_get(THIS_MODULE);
617 
618 	mtd_for_each_device(mtd)
619 		new->add(mtd);
620 
621 	mutex_unlock(&mtd_table_mutex);
622 }
623 EXPORT_SYMBOL_GPL(register_mtd_user);
624 
625 /**
626  *	unregister_mtd_user - unregister a 'user' of MTD devices.
627  *	@old: pointer to notifier info structure
628  *
629  *	Removes a callback function pair from the list of 'users' to be
630  *	notified upon addition or removal of MTD devices. Causes the
631  *	'remove' callback to be immediately invoked for each MTD device
632  *	currently present in the system.
633  */
634 int unregister_mtd_user (struct mtd_notifier *old)
635 {
636 	struct mtd_info *mtd;
637 
638 	mutex_lock(&mtd_table_mutex);
639 
640 	module_put(THIS_MODULE);
641 
642 	mtd_for_each_device(mtd)
643 		old->remove(mtd);
644 
645 	list_del(&old->list);
646 	mutex_unlock(&mtd_table_mutex);
647 	return 0;
648 }
649 EXPORT_SYMBOL_GPL(unregister_mtd_user);
650 
651 /**
652  *	get_mtd_device - obtain a validated handle for an MTD device
653  *	@mtd: last known address of the required MTD device
654  *	@num: internal device number of the required MTD device
655  *
656  *	Given a number and NULL address, return the num'th entry in the device
657  *	table, if any.	Given an address and num == -1, search the device table
658  *	for a device with that address and return if it's still present. Given
659  *	both, return the num'th driver only if its address matches. Return
660  *	error code if not.
661  */
662 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
663 {
664 	struct mtd_info *ret = NULL, *other;
665 	int err = -ENODEV;
666 
667 	mutex_lock(&mtd_table_mutex);
668 
669 	if (num == -1) {
670 		mtd_for_each_device(other) {
671 			if (other == mtd) {
672 				ret = mtd;
673 				break;
674 			}
675 		}
676 	} else if (num >= 0) {
677 		ret = idr_find(&mtd_idr, num);
678 		if (mtd && mtd != ret)
679 			ret = NULL;
680 	}
681 
682 	if (!ret) {
683 		ret = ERR_PTR(err);
684 		goto out;
685 	}
686 
687 	err = __get_mtd_device(ret);
688 	if (err)
689 		ret = ERR_PTR(err);
690 out:
691 	mutex_unlock(&mtd_table_mutex);
692 	return ret;
693 }
694 EXPORT_SYMBOL_GPL(get_mtd_device);
695 
696 
697 int __get_mtd_device(struct mtd_info *mtd)
698 {
699 	int err;
700 
701 	if (!try_module_get(mtd->owner))
702 		return -ENODEV;
703 
704 	if (mtd->_get_device) {
705 		err = mtd->_get_device(mtd);
706 
707 		if (err) {
708 			module_put(mtd->owner);
709 			return err;
710 		}
711 	}
712 	mtd->usecount++;
713 	return 0;
714 }
715 EXPORT_SYMBOL_GPL(__get_mtd_device);
716 
717 /**
718  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
719  *	device name
720  *	@name: MTD device name to open
721  *
722  * 	This function returns MTD device description structure in case of
723  * 	success and an error code in case of failure.
724  */
725 struct mtd_info *get_mtd_device_nm(const char *name)
726 {
727 	int err = -ENODEV;
728 	struct mtd_info *mtd = NULL, *other;
729 
730 	mutex_lock(&mtd_table_mutex);
731 
732 	mtd_for_each_device(other) {
733 		if (!strcmp(name, other->name)) {
734 			mtd = other;
735 			break;
736 		}
737 	}
738 
739 	if (!mtd)
740 		goto out_unlock;
741 
742 	err = __get_mtd_device(mtd);
743 	if (err)
744 		goto out_unlock;
745 
746 	mutex_unlock(&mtd_table_mutex);
747 	return mtd;
748 
749 out_unlock:
750 	mutex_unlock(&mtd_table_mutex);
751 	return ERR_PTR(err);
752 }
753 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
754 
755 void put_mtd_device(struct mtd_info *mtd)
756 {
757 	mutex_lock(&mtd_table_mutex);
758 	__put_mtd_device(mtd);
759 	mutex_unlock(&mtd_table_mutex);
760 
761 }
762 EXPORT_SYMBOL_GPL(put_mtd_device);
763 
764 void __put_mtd_device(struct mtd_info *mtd)
765 {
766 	--mtd->usecount;
767 	BUG_ON(mtd->usecount < 0);
768 
769 	if (mtd->_put_device)
770 		mtd->_put_device(mtd);
771 
772 	module_put(mtd->owner);
773 }
774 EXPORT_SYMBOL_GPL(__put_mtd_device);
775 
776 /*
777  * Erase is an asynchronous operation.  Device drivers are supposed
778  * to call instr->callback() whenever the operation completes, even
779  * if it completes with a failure.
780  * Callers are supposed to pass a callback function and wait for it
781  * to be called before writing to the block.
782  */
783 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
784 {
785 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
786 		return -EINVAL;
787 	if (!(mtd->flags & MTD_WRITEABLE))
788 		return -EROFS;
789 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
790 	if (!instr->len) {
791 		instr->state = MTD_ERASE_DONE;
792 		mtd_erase_callback(instr);
793 		return 0;
794 	}
795 	return mtd->_erase(mtd, instr);
796 }
797 EXPORT_SYMBOL_GPL(mtd_erase);
798 
799 /*
800  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
801  */
802 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
803 	      void **virt, resource_size_t *phys)
804 {
805 	*retlen = 0;
806 	*virt = NULL;
807 	if (phys)
808 		*phys = 0;
809 	if (!mtd->_point)
810 		return -EOPNOTSUPP;
811 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
812 		return -EINVAL;
813 	if (!len)
814 		return 0;
815 	return mtd->_point(mtd, from, len, retlen, virt, phys);
816 }
817 EXPORT_SYMBOL_GPL(mtd_point);
818 
819 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
820 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
821 {
822 	if (!mtd->_point)
823 		return -EOPNOTSUPP;
824 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
825 		return -EINVAL;
826 	if (!len)
827 		return 0;
828 	return mtd->_unpoint(mtd, from, len);
829 }
830 EXPORT_SYMBOL_GPL(mtd_unpoint);
831 
832 /*
833  * Allow NOMMU mmap() to directly map the device (if not NULL)
834  * - return the address to which the offset maps
835  * - return -ENOSYS to indicate refusal to do the mapping
836  */
837 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
838 				    unsigned long offset, unsigned long flags)
839 {
840 	if (!mtd->_get_unmapped_area)
841 		return -EOPNOTSUPP;
842 	if (offset >= mtd->size || len > mtd->size - offset)
843 		return -EINVAL;
844 	return mtd->_get_unmapped_area(mtd, len, offset, flags);
845 }
846 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
847 
848 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
849 	     u_char *buf)
850 {
851 	int ret_code;
852 	*retlen = 0;
853 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
854 		return -EINVAL;
855 	if (!len)
856 		return 0;
857 
858 	/*
859 	 * In the absence of an error, drivers return a non-negative integer
860 	 * representing the maximum number of bitflips that were corrected on
861 	 * any one ecc region (if applicable; zero otherwise).
862 	 */
863 	ret_code = mtd->_read(mtd, from, len, retlen, buf);
864 	if (unlikely(ret_code < 0))
865 		return ret_code;
866 	if (mtd->ecc_strength == 0)
867 		return 0;	/* device lacks ecc */
868 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
869 }
870 EXPORT_SYMBOL_GPL(mtd_read);
871 
872 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
873 	      const u_char *buf)
874 {
875 	*retlen = 0;
876 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
877 		return -EINVAL;
878 	if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
879 		return -EROFS;
880 	if (!len)
881 		return 0;
882 	return mtd->_write(mtd, to, len, retlen, buf);
883 }
884 EXPORT_SYMBOL_GPL(mtd_write);
885 
886 /*
887  * In blackbox flight recorder like scenarios we want to make successful writes
888  * in interrupt context. panic_write() is only intended to be called when its
889  * known the kernel is about to panic and we need the write to succeed. Since
890  * the kernel is not going to be running for much longer, this function can
891  * break locks and delay to ensure the write succeeds (but not sleep).
892  */
893 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
894 		    const u_char *buf)
895 {
896 	*retlen = 0;
897 	if (!mtd->_panic_write)
898 		return -EOPNOTSUPP;
899 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
900 		return -EINVAL;
901 	if (!(mtd->flags & MTD_WRITEABLE))
902 		return -EROFS;
903 	if (!len)
904 		return 0;
905 	return mtd->_panic_write(mtd, to, len, retlen, buf);
906 }
907 EXPORT_SYMBOL_GPL(mtd_panic_write);
908 
909 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
910 {
911 	int ret_code;
912 	ops->retlen = ops->oobretlen = 0;
913 	if (!mtd->_read_oob)
914 		return -EOPNOTSUPP;
915 	/*
916 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
917 	 * similar to mtd->_read(), returning a non-negative integer
918 	 * representing max bitflips. In other cases, mtd->_read_oob() may
919 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
920 	 */
921 	ret_code = mtd->_read_oob(mtd, from, ops);
922 	if (unlikely(ret_code < 0))
923 		return ret_code;
924 	if (mtd->ecc_strength == 0)
925 		return 0;	/* device lacks ecc */
926 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
927 }
928 EXPORT_SYMBOL_GPL(mtd_read_oob);
929 
930 /*
931  * Method to access the protection register area, present in some flash
932  * devices. The user data is one time programmable but the factory data is read
933  * only.
934  */
935 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
936 			   struct otp_info *buf)
937 {
938 	if (!mtd->_get_fact_prot_info)
939 		return -EOPNOTSUPP;
940 	if (!len)
941 		return 0;
942 	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
943 }
944 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
945 
946 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
947 			   size_t *retlen, u_char *buf)
948 {
949 	*retlen = 0;
950 	if (!mtd->_read_fact_prot_reg)
951 		return -EOPNOTSUPP;
952 	if (!len)
953 		return 0;
954 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
955 }
956 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
957 
958 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
959 			   struct otp_info *buf)
960 {
961 	if (!mtd->_get_user_prot_info)
962 		return -EOPNOTSUPP;
963 	if (!len)
964 		return 0;
965 	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
966 }
967 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
968 
969 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
970 			   size_t *retlen, u_char *buf)
971 {
972 	*retlen = 0;
973 	if (!mtd->_read_user_prot_reg)
974 		return -EOPNOTSUPP;
975 	if (!len)
976 		return 0;
977 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
978 }
979 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
980 
981 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
982 			    size_t *retlen, u_char *buf)
983 {
984 	int ret;
985 
986 	*retlen = 0;
987 	if (!mtd->_write_user_prot_reg)
988 		return -EOPNOTSUPP;
989 	if (!len)
990 		return 0;
991 	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
992 	if (ret)
993 		return ret;
994 
995 	/*
996 	 * If no data could be written at all, we are out of memory and
997 	 * must return -ENOSPC.
998 	 */
999 	return (*retlen) ? 0 : -ENOSPC;
1000 }
1001 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1002 
1003 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1004 {
1005 	if (!mtd->_lock_user_prot_reg)
1006 		return -EOPNOTSUPP;
1007 	if (!len)
1008 		return 0;
1009 	return mtd->_lock_user_prot_reg(mtd, from, len);
1010 }
1011 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1012 
1013 /* Chip-supported device locking */
1014 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1015 {
1016 	if (!mtd->_lock)
1017 		return -EOPNOTSUPP;
1018 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1019 		return -EINVAL;
1020 	if (!len)
1021 		return 0;
1022 	return mtd->_lock(mtd, ofs, len);
1023 }
1024 EXPORT_SYMBOL_GPL(mtd_lock);
1025 
1026 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1027 {
1028 	if (!mtd->_unlock)
1029 		return -EOPNOTSUPP;
1030 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1031 		return -EINVAL;
1032 	if (!len)
1033 		return 0;
1034 	return mtd->_unlock(mtd, ofs, len);
1035 }
1036 EXPORT_SYMBOL_GPL(mtd_unlock);
1037 
1038 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1039 {
1040 	if (!mtd->_is_locked)
1041 		return -EOPNOTSUPP;
1042 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1043 		return -EINVAL;
1044 	if (!len)
1045 		return 0;
1046 	return mtd->_is_locked(mtd, ofs, len);
1047 }
1048 EXPORT_SYMBOL_GPL(mtd_is_locked);
1049 
1050 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1051 {
1052 	if (ofs < 0 || ofs >= mtd->size)
1053 		return -EINVAL;
1054 	if (!mtd->_block_isreserved)
1055 		return 0;
1056 	return mtd->_block_isreserved(mtd, ofs);
1057 }
1058 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1059 
1060 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1061 {
1062 	if (ofs < 0 || ofs >= mtd->size)
1063 		return -EINVAL;
1064 	if (!mtd->_block_isbad)
1065 		return 0;
1066 	return mtd->_block_isbad(mtd, ofs);
1067 }
1068 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1069 
1070 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1071 {
1072 	if (!mtd->_block_markbad)
1073 		return -EOPNOTSUPP;
1074 	if (ofs < 0 || ofs >= mtd->size)
1075 		return -EINVAL;
1076 	if (!(mtd->flags & MTD_WRITEABLE))
1077 		return -EROFS;
1078 	return mtd->_block_markbad(mtd, ofs);
1079 }
1080 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1081 
1082 /*
1083  * default_mtd_writev - the default writev method
1084  * @mtd: mtd device description object pointer
1085  * @vecs: the vectors to write
1086  * @count: count of vectors in @vecs
1087  * @to: the MTD device offset to write to
1088  * @retlen: on exit contains the count of bytes written to the MTD device.
1089  *
1090  * This function returns zero in case of success and a negative error code in
1091  * case of failure.
1092  */
1093 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1094 			      unsigned long count, loff_t to, size_t *retlen)
1095 {
1096 	unsigned long i;
1097 	size_t totlen = 0, thislen;
1098 	int ret = 0;
1099 
1100 	for (i = 0; i < count; i++) {
1101 		if (!vecs[i].iov_len)
1102 			continue;
1103 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1104 				vecs[i].iov_base);
1105 		totlen += thislen;
1106 		if (ret || thislen != vecs[i].iov_len)
1107 			break;
1108 		to += vecs[i].iov_len;
1109 	}
1110 	*retlen = totlen;
1111 	return ret;
1112 }
1113 
1114 /*
1115  * mtd_writev - the vector-based MTD write method
1116  * @mtd: mtd device description object pointer
1117  * @vecs: the vectors to write
1118  * @count: count of vectors in @vecs
1119  * @to: the MTD device offset to write to
1120  * @retlen: on exit contains the count of bytes written to the MTD device.
1121  *
1122  * This function returns zero in case of success and a negative error code in
1123  * case of failure.
1124  */
1125 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1126 	       unsigned long count, loff_t to, size_t *retlen)
1127 {
1128 	*retlen = 0;
1129 	if (!(mtd->flags & MTD_WRITEABLE))
1130 		return -EROFS;
1131 	if (!mtd->_writev)
1132 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1133 	return mtd->_writev(mtd, vecs, count, to, retlen);
1134 }
1135 EXPORT_SYMBOL_GPL(mtd_writev);
1136 
1137 /**
1138  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1139  * @mtd: mtd device description object pointer
1140  * @size: a pointer to the ideal or maximum size of the allocation, points
1141  *        to the actual allocation size on success.
1142  *
1143  * This routine attempts to allocate a contiguous kernel buffer up to
1144  * the specified size, backing off the size of the request exponentially
1145  * until the request succeeds or until the allocation size falls below
1146  * the system page size. This attempts to make sure it does not adversely
1147  * impact system performance, so when allocating more than one page, we
1148  * ask the memory allocator to avoid re-trying, swapping, writing back
1149  * or performing I/O.
1150  *
1151  * Note, this function also makes sure that the allocated buffer is aligned to
1152  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1153  *
1154  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1155  * to handle smaller (i.e. degraded) buffer allocations under low- or
1156  * fragmented-memory situations where such reduced allocations, from a
1157  * requested ideal, are allowed.
1158  *
1159  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1160  */
1161 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1162 {
1163 	gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1164 		       __GFP_NORETRY | __GFP_NO_KSWAPD;
1165 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1166 	void *kbuf;
1167 
1168 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1169 
1170 	while (*size > min_alloc) {
1171 		kbuf = kmalloc(*size, flags);
1172 		if (kbuf)
1173 			return kbuf;
1174 
1175 		*size >>= 1;
1176 		*size = ALIGN(*size, mtd->writesize);
1177 	}
1178 
1179 	/*
1180 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1181 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1182 	 */
1183 	return kmalloc(*size, GFP_KERNEL);
1184 }
1185 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1186 
1187 #ifdef CONFIG_PROC_FS
1188 
1189 /*====================================================================*/
1190 /* Support for /proc/mtd */
1191 
1192 static int mtd_proc_show(struct seq_file *m, void *v)
1193 {
1194 	struct mtd_info *mtd;
1195 
1196 	seq_puts(m, "dev:    size   erasesize  name\n");
1197 	mutex_lock(&mtd_table_mutex);
1198 	mtd_for_each_device(mtd) {
1199 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1200 			   mtd->index, (unsigned long long)mtd->size,
1201 			   mtd->erasesize, mtd->name);
1202 	}
1203 	mutex_unlock(&mtd_table_mutex);
1204 	return 0;
1205 }
1206 
1207 static int mtd_proc_open(struct inode *inode, struct file *file)
1208 {
1209 	return single_open(file, mtd_proc_show, NULL);
1210 }
1211 
1212 static const struct file_operations mtd_proc_ops = {
1213 	.open		= mtd_proc_open,
1214 	.read		= seq_read,
1215 	.llseek		= seq_lseek,
1216 	.release	= single_release,
1217 };
1218 #endif /* CONFIG_PROC_FS */
1219 
1220 /*====================================================================*/
1221 /* Init code */
1222 
1223 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1224 {
1225 	int ret;
1226 
1227 	ret = bdi_init(bdi);
1228 	if (!ret)
1229 		ret = bdi_register(bdi, NULL, "%s", name);
1230 
1231 	if (ret)
1232 		bdi_destroy(bdi);
1233 
1234 	return ret;
1235 }
1236 
1237 static struct proc_dir_entry *proc_mtd;
1238 
1239 static int __init init_mtd(void)
1240 {
1241 	int ret;
1242 
1243 	ret = class_register(&mtd_class);
1244 	if (ret)
1245 		goto err_reg;
1246 
1247 	ret = mtd_bdi_init(&mtd_bdi, "mtd");
1248 	if (ret)
1249 		goto err_bdi;
1250 
1251 	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1252 
1253 	ret = init_mtdchar();
1254 	if (ret)
1255 		goto out_procfs;
1256 
1257 	return 0;
1258 
1259 out_procfs:
1260 	if (proc_mtd)
1261 		remove_proc_entry("mtd", NULL);
1262 err_bdi:
1263 	class_unregister(&mtd_class);
1264 err_reg:
1265 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1266 	return ret;
1267 }
1268 
1269 static void __exit cleanup_mtd(void)
1270 {
1271 	cleanup_mtdchar();
1272 	if (proc_mtd)
1273 		remove_proc_entry("mtd", NULL);
1274 	class_unregister(&mtd_class);
1275 	bdi_destroy(&mtd_bdi);
1276 }
1277 
1278 module_init(init_mtd);
1279 module_exit(cleanup_mtd);
1280 
1281 MODULE_LICENSE("GPL");
1282 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1283 MODULE_DESCRIPTION("Core MTD registration and access routines");
1284