xref: /openbmc/linux/drivers/mtd/mtdcore.c (revision ddc141e5)
1 /*
2  * Core registration and callback routines for MTD
3  * drivers and users.
4  *
5  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6  * Copyright © 2006      Red Hat UK Limited
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/of.h>
36 #include <linux/proc_fs.h>
37 #include <linux/idr.h>
38 #include <linux/backing-dev.h>
39 #include <linux/gfp.h>
40 #include <linux/slab.h>
41 #include <linux/reboot.h>
42 #include <linux/leds.h>
43 #include <linux/debugfs.h>
44 
45 #include <linux/mtd/mtd.h>
46 #include <linux/mtd/partitions.h>
47 
48 #include "mtdcore.h"
49 
50 struct backing_dev_info *mtd_bdi;
51 
52 #ifdef CONFIG_PM_SLEEP
53 
54 static int mtd_cls_suspend(struct device *dev)
55 {
56 	struct mtd_info *mtd = dev_get_drvdata(dev);
57 
58 	return mtd ? mtd_suspend(mtd) : 0;
59 }
60 
61 static int mtd_cls_resume(struct device *dev)
62 {
63 	struct mtd_info *mtd = dev_get_drvdata(dev);
64 
65 	if (mtd)
66 		mtd_resume(mtd);
67 	return 0;
68 }
69 
70 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
71 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
72 #else
73 #define MTD_CLS_PM_OPS NULL
74 #endif
75 
76 static struct class mtd_class = {
77 	.name = "mtd",
78 	.owner = THIS_MODULE,
79 	.pm = MTD_CLS_PM_OPS,
80 };
81 
82 static DEFINE_IDR(mtd_idr);
83 
84 /* These are exported solely for the purpose of mtd_blkdevs.c. You
85    should not use them for _anything_ else */
86 DEFINE_MUTEX(mtd_table_mutex);
87 EXPORT_SYMBOL_GPL(mtd_table_mutex);
88 
89 struct mtd_info *__mtd_next_device(int i)
90 {
91 	return idr_get_next(&mtd_idr, &i);
92 }
93 EXPORT_SYMBOL_GPL(__mtd_next_device);
94 
95 static LIST_HEAD(mtd_notifiers);
96 
97 
98 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
99 
100 /* REVISIT once MTD uses the driver model better, whoever allocates
101  * the mtd_info will probably want to use the release() hook...
102  */
103 static void mtd_release(struct device *dev)
104 {
105 	struct mtd_info *mtd = dev_get_drvdata(dev);
106 	dev_t index = MTD_DEVT(mtd->index);
107 
108 	/* remove /dev/mtdXro node */
109 	device_destroy(&mtd_class, index + 1);
110 }
111 
112 static ssize_t mtd_type_show(struct device *dev,
113 		struct device_attribute *attr, char *buf)
114 {
115 	struct mtd_info *mtd = dev_get_drvdata(dev);
116 	char *type;
117 
118 	switch (mtd->type) {
119 	case MTD_ABSENT:
120 		type = "absent";
121 		break;
122 	case MTD_RAM:
123 		type = "ram";
124 		break;
125 	case MTD_ROM:
126 		type = "rom";
127 		break;
128 	case MTD_NORFLASH:
129 		type = "nor";
130 		break;
131 	case MTD_NANDFLASH:
132 		type = "nand";
133 		break;
134 	case MTD_DATAFLASH:
135 		type = "dataflash";
136 		break;
137 	case MTD_UBIVOLUME:
138 		type = "ubi";
139 		break;
140 	case MTD_MLCNANDFLASH:
141 		type = "mlc-nand";
142 		break;
143 	default:
144 		type = "unknown";
145 	}
146 
147 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
148 }
149 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
150 
151 static ssize_t mtd_flags_show(struct device *dev,
152 		struct device_attribute *attr, char *buf)
153 {
154 	struct mtd_info *mtd = dev_get_drvdata(dev);
155 
156 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
157 
158 }
159 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
160 
161 static ssize_t mtd_size_show(struct device *dev,
162 		struct device_attribute *attr, char *buf)
163 {
164 	struct mtd_info *mtd = dev_get_drvdata(dev);
165 
166 	return snprintf(buf, PAGE_SIZE, "%llu\n",
167 		(unsigned long long)mtd->size);
168 
169 }
170 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
171 
172 static ssize_t mtd_erasesize_show(struct device *dev,
173 		struct device_attribute *attr, char *buf)
174 {
175 	struct mtd_info *mtd = dev_get_drvdata(dev);
176 
177 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
178 
179 }
180 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
181 
182 static ssize_t mtd_writesize_show(struct device *dev,
183 		struct device_attribute *attr, char *buf)
184 {
185 	struct mtd_info *mtd = dev_get_drvdata(dev);
186 
187 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
188 
189 }
190 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
191 
192 static ssize_t mtd_subpagesize_show(struct device *dev,
193 		struct device_attribute *attr, char *buf)
194 {
195 	struct mtd_info *mtd = dev_get_drvdata(dev);
196 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
197 
198 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
199 
200 }
201 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
202 
203 static ssize_t mtd_oobsize_show(struct device *dev,
204 		struct device_attribute *attr, char *buf)
205 {
206 	struct mtd_info *mtd = dev_get_drvdata(dev);
207 
208 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
209 
210 }
211 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
212 
213 static ssize_t mtd_numeraseregions_show(struct device *dev,
214 		struct device_attribute *attr, char *buf)
215 {
216 	struct mtd_info *mtd = dev_get_drvdata(dev);
217 
218 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
219 
220 }
221 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
222 	NULL);
223 
224 static ssize_t mtd_name_show(struct device *dev,
225 		struct device_attribute *attr, char *buf)
226 {
227 	struct mtd_info *mtd = dev_get_drvdata(dev);
228 
229 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
230 
231 }
232 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
233 
234 static ssize_t mtd_ecc_strength_show(struct device *dev,
235 				     struct device_attribute *attr, char *buf)
236 {
237 	struct mtd_info *mtd = dev_get_drvdata(dev);
238 
239 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
240 }
241 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
242 
243 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
244 					  struct device_attribute *attr,
245 					  char *buf)
246 {
247 	struct mtd_info *mtd = dev_get_drvdata(dev);
248 
249 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
250 }
251 
252 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
253 					   struct device_attribute *attr,
254 					   const char *buf, size_t count)
255 {
256 	struct mtd_info *mtd = dev_get_drvdata(dev);
257 	unsigned int bitflip_threshold;
258 	int retval;
259 
260 	retval = kstrtouint(buf, 0, &bitflip_threshold);
261 	if (retval)
262 		return retval;
263 
264 	mtd->bitflip_threshold = bitflip_threshold;
265 	return count;
266 }
267 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
268 		   mtd_bitflip_threshold_show,
269 		   mtd_bitflip_threshold_store);
270 
271 static ssize_t mtd_ecc_step_size_show(struct device *dev,
272 		struct device_attribute *attr, char *buf)
273 {
274 	struct mtd_info *mtd = dev_get_drvdata(dev);
275 
276 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
277 
278 }
279 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
280 
281 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
282 		struct device_attribute *attr, char *buf)
283 {
284 	struct mtd_info *mtd = dev_get_drvdata(dev);
285 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
286 
287 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
288 }
289 static DEVICE_ATTR(corrected_bits, S_IRUGO,
290 		   mtd_ecc_stats_corrected_show, NULL);
291 
292 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
293 		struct device_attribute *attr, char *buf)
294 {
295 	struct mtd_info *mtd = dev_get_drvdata(dev);
296 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
297 
298 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
299 }
300 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
301 
302 static ssize_t mtd_badblocks_show(struct device *dev,
303 		struct device_attribute *attr, char *buf)
304 {
305 	struct mtd_info *mtd = dev_get_drvdata(dev);
306 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
307 
308 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
309 }
310 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
311 
312 static ssize_t mtd_bbtblocks_show(struct device *dev,
313 		struct device_attribute *attr, char *buf)
314 {
315 	struct mtd_info *mtd = dev_get_drvdata(dev);
316 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
317 
318 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
319 }
320 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
321 
322 static struct attribute *mtd_attrs[] = {
323 	&dev_attr_type.attr,
324 	&dev_attr_flags.attr,
325 	&dev_attr_size.attr,
326 	&dev_attr_erasesize.attr,
327 	&dev_attr_writesize.attr,
328 	&dev_attr_subpagesize.attr,
329 	&dev_attr_oobsize.attr,
330 	&dev_attr_numeraseregions.attr,
331 	&dev_attr_name.attr,
332 	&dev_attr_ecc_strength.attr,
333 	&dev_attr_ecc_step_size.attr,
334 	&dev_attr_corrected_bits.attr,
335 	&dev_attr_ecc_failures.attr,
336 	&dev_attr_bad_blocks.attr,
337 	&dev_attr_bbt_blocks.attr,
338 	&dev_attr_bitflip_threshold.attr,
339 	NULL,
340 };
341 ATTRIBUTE_GROUPS(mtd);
342 
343 static const struct device_type mtd_devtype = {
344 	.name		= "mtd",
345 	.groups		= mtd_groups,
346 	.release	= mtd_release,
347 };
348 
349 #ifndef CONFIG_MMU
350 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
351 {
352 	switch (mtd->type) {
353 	case MTD_RAM:
354 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
355 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
356 	case MTD_ROM:
357 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
358 			NOMMU_MAP_READ;
359 	default:
360 		return NOMMU_MAP_COPY;
361 	}
362 }
363 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
364 #endif
365 
366 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
367 			       void *cmd)
368 {
369 	struct mtd_info *mtd;
370 
371 	mtd = container_of(n, struct mtd_info, reboot_notifier);
372 	mtd->_reboot(mtd);
373 
374 	return NOTIFY_DONE;
375 }
376 
377 /**
378  * mtd_wunit_to_pairing_info - get pairing information of a wunit
379  * @mtd: pointer to new MTD device info structure
380  * @wunit: write unit we are interested in
381  * @info: returned pairing information
382  *
383  * Retrieve pairing information associated to the wunit.
384  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
385  * paired together, and where programming a page may influence the page it is
386  * paired with.
387  * The notion of page is replaced by the term wunit (write-unit) to stay
388  * consistent with the ->writesize field.
389  *
390  * The @wunit argument can be extracted from an absolute offset using
391  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
392  * to @wunit.
393  *
394  * From the pairing info the MTD user can find all the wunits paired with
395  * @wunit using the following loop:
396  *
397  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
398  *	info.pair = i;
399  *	mtd_pairing_info_to_wunit(mtd, &info);
400  *	...
401  * }
402  */
403 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
404 			      struct mtd_pairing_info *info)
405 {
406 	int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
407 
408 	if (wunit < 0 || wunit >= npairs)
409 		return -EINVAL;
410 
411 	if (mtd->pairing && mtd->pairing->get_info)
412 		return mtd->pairing->get_info(mtd, wunit, info);
413 
414 	info->group = 0;
415 	info->pair = wunit;
416 
417 	return 0;
418 }
419 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
420 
421 /**
422  * mtd_wunit_to_pairing_info - get wunit from pairing information
423  * @mtd: pointer to new MTD device info structure
424  * @info: pairing information struct
425  *
426  * Returns a positive number representing the wunit associated to the info
427  * struct, or a negative error code.
428  *
429  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
430  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
431  * doc).
432  *
433  * It can also be used to only program the first page of each pair (i.e.
434  * page attached to group 0), which allows one to use an MLC NAND in
435  * software-emulated SLC mode:
436  *
437  * info.group = 0;
438  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
439  * for (info.pair = 0; info.pair < npairs; info.pair++) {
440  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
441  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
442  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
443  * }
444  */
445 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
446 			      const struct mtd_pairing_info *info)
447 {
448 	int ngroups = mtd_pairing_groups(mtd);
449 	int npairs = mtd_wunit_per_eb(mtd) / ngroups;
450 
451 	if (!info || info->pair < 0 || info->pair >= npairs ||
452 	    info->group < 0 || info->group >= ngroups)
453 		return -EINVAL;
454 
455 	if (mtd->pairing && mtd->pairing->get_wunit)
456 		return mtd->pairing->get_wunit(mtd, info);
457 
458 	return info->pair;
459 }
460 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
461 
462 /**
463  * mtd_pairing_groups - get the number of pairing groups
464  * @mtd: pointer to new MTD device info structure
465  *
466  * Returns the number of pairing groups.
467  *
468  * This number is usually equal to the number of bits exposed by a single
469  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
470  * to iterate over all pages of a given pair.
471  */
472 int mtd_pairing_groups(struct mtd_info *mtd)
473 {
474 	if (!mtd->pairing || !mtd->pairing->ngroups)
475 		return 1;
476 
477 	return mtd->pairing->ngroups;
478 }
479 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
480 
481 static struct dentry *dfs_dir_mtd;
482 
483 /**
484  *	add_mtd_device - register an MTD device
485  *	@mtd: pointer to new MTD device info structure
486  *
487  *	Add a device to the list of MTD devices present in the system, and
488  *	notify each currently active MTD 'user' of its arrival. Returns
489  *	zero on success or non-zero on failure.
490  */
491 
492 int add_mtd_device(struct mtd_info *mtd)
493 {
494 	struct mtd_notifier *not;
495 	int i, error;
496 
497 	/*
498 	 * May occur, for instance, on buggy drivers which call
499 	 * mtd_device_parse_register() multiple times on the same master MTD,
500 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
501 	 */
502 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
503 		return -EEXIST;
504 
505 	BUG_ON(mtd->writesize == 0);
506 
507 	if (WARN_ON((!mtd->erasesize || !mtd->_erase) &&
508 		    !(mtd->flags & MTD_NO_ERASE)))
509 		return -EINVAL;
510 
511 	mutex_lock(&mtd_table_mutex);
512 
513 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
514 	if (i < 0) {
515 		error = i;
516 		goto fail_locked;
517 	}
518 
519 	mtd->index = i;
520 	mtd->usecount = 0;
521 
522 	/* default value if not set by driver */
523 	if (mtd->bitflip_threshold == 0)
524 		mtd->bitflip_threshold = mtd->ecc_strength;
525 
526 	if (is_power_of_2(mtd->erasesize))
527 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
528 	else
529 		mtd->erasesize_shift = 0;
530 
531 	if (is_power_of_2(mtd->writesize))
532 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
533 	else
534 		mtd->writesize_shift = 0;
535 
536 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
537 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
538 
539 	/* Some chips always power up locked. Unlock them now */
540 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
541 		error = mtd_unlock(mtd, 0, mtd->size);
542 		if (error && error != -EOPNOTSUPP)
543 			printk(KERN_WARNING
544 			       "%s: unlock failed, writes may not work\n",
545 			       mtd->name);
546 		/* Ignore unlock failures? */
547 		error = 0;
548 	}
549 
550 	/* Caller should have set dev.parent to match the
551 	 * physical device, if appropriate.
552 	 */
553 	mtd->dev.type = &mtd_devtype;
554 	mtd->dev.class = &mtd_class;
555 	mtd->dev.devt = MTD_DEVT(i);
556 	dev_set_name(&mtd->dev, "mtd%d", i);
557 	dev_set_drvdata(&mtd->dev, mtd);
558 	of_node_get(mtd_get_of_node(mtd));
559 	error = device_register(&mtd->dev);
560 	if (error)
561 		goto fail_added;
562 
563 	if (!IS_ERR_OR_NULL(dfs_dir_mtd)) {
564 		mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd);
565 		if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) {
566 			pr_debug("mtd device %s won't show data in debugfs\n",
567 				 dev_name(&mtd->dev));
568 		}
569 	}
570 
571 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
572 		      "mtd%dro", i);
573 
574 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
575 	/* No need to get a refcount on the module containing
576 	   the notifier, since we hold the mtd_table_mutex */
577 	list_for_each_entry(not, &mtd_notifiers, list)
578 		not->add(mtd);
579 
580 	mutex_unlock(&mtd_table_mutex);
581 	/* We _know_ we aren't being removed, because
582 	   our caller is still holding us here. So none
583 	   of this try_ nonsense, and no bitching about it
584 	   either. :) */
585 	__module_get(THIS_MODULE);
586 	return 0;
587 
588 fail_added:
589 	of_node_put(mtd_get_of_node(mtd));
590 	idr_remove(&mtd_idr, i);
591 fail_locked:
592 	mutex_unlock(&mtd_table_mutex);
593 	return error;
594 }
595 
596 /**
597  *	del_mtd_device - unregister an MTD device
598  *	@mtd: pointer to MTD device info structure
599  *
600  *	Remove a device from the list of MTD devices present in the system,
601  *	and notify each currently active MTD 'user' of its departure.
602  *	Returns zero on success or 1 on failure, which currently will happen
603  *	if the requested device does not appear to be present in the list.
604  */
605 
606 int del_mtd_device(struct mtd_info *mtd)
607 {
608 	int ret;
609 	struct mtd_notifier *not;
610 
611 	mutex_lock(&mtd_table_mutex);
612 
613 	debugfs_remove_recursive(mtd->dbg.dfs_dir);
614 
615 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
616 		ret = -ENODEV;
617 		goto out_error;
618 	}
619 
620 	/* No need to get a refcount on the module containing
621 		the notifier, since we hold the mtd_table_mutex */
622 	list_for_each_entry(not, &mtd_notifiers, list)
623 		not->remove(mtd);
624 
625 	if (mtd->usecount) {
626 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
627 		       mtd->index, mtd->name, mtd->usecount);
628 		ret = -EBUSY;
629 	} else {
630 		device_unregister(&mtd->dev);
631 
632 		idr_remove(&mtd_idr, mtd->index);
633 		of_node_put(mtd_get_of_node(mtd));
634 
635 		module_put(THIS_MODULE);
636 		ret = 0;
637 	}
638 
639 out_error:
640 	mutex_unlock(&mtd_table_mutex);
641 	return ret;
642 }
643 
644 static int mtd_add_device_partitions(struct mtd_info *mtd,
645 				     struct mtd_partitions *parts)
646 {
647 	const struct mtd_partition *real_parts = parts->parts;
648 	int nbparts = parts->nr_parts;
649 	int ret;
650 
651 	if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
652 		ret = add_mtd_device(mtd);
653 		if (ret)
654 			return ret;
655 	}
656 
657 	if (nbparts > 0) {
658 		ret = add_mtd_partitions(mtd, real_parts, nbparts);
659 		if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
660 			del_mtd_device(mtd);
661 		return ret;
662 	}
663 
664 	return 0;
665 }
666 
667 /*
668  * Set a few defaults based on the parent devices, if not provided by the
669  * driver
670  */
671 static void mtd_set_dev_defaults(struct mtd_info *mtd)
672 {
673 	if (mtd->dev.parent) {
674 		if (!mtd->owner && mtd->dev.parent->driver)
675 			mtd->owner = mtd->dev.parent->driver->owner;
676 		if (!mtd->name)
677 			mtd->name = dev_name(mtd->dev.parent);
678 	} else {
679 		pr_debug("mtd device won't show a device symlink in sysfs\n");
680 	}
681 }
682 
683 /**
684  * mtd_device_parse_register - parse partitions and register an MTD device.
685  *
686  * @mtd: the MTD device to register
687  * @types: the list of MTD partition probes to try, see
688  *         'parse_mtd_partitions()' for more information
689  * @parser_data: MTD partition parser-specific data
690  * @parts: fallback partition information to register, if parsing fails;
691  *         only valid if %nr_parts > %0
692  * @nr_parts: the number of partitions in parts, if zero then the full
693  *            MTD device is registered if no partition info is found
694  *
695  * This function aggregates MTD partitions parsing (done by
696  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
697  * basically follows the most common pattern found in many MTD drivers:
698  *
699  * * It first tries to probe partitions on MTD device @mtd using parsers
700  *   specified in @types (if @types is %NULL, then the default list of parsers
701  *   is used, see 'parse_mtd_partitions()' for more information). If none are
702  *   found this functions tries to fallback to information specified in
703  *   @parts/@nr_parts.
704  * * If any partitioning info was found, this function registers the found
705  *   partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
706  *   as a whole is registered first.
707  * * If no partitions were found this function just registers the MTD device
708  *   @mtd and exits.
709  *
710  * Returns zero in case of success and a negative error code in case of failure.
711  */
712 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
713 			      struct mtd_part_parser_data *parser_data,
714 			      const struct mtd_partition *parts,
715 			      int nr_parts)
716 {
717 	struct mtd_partitions parsed;
718 	int ret;
719 
720 	mtd_set_dev_defaults(mtd);
721 
722 	memset(&parsed, 0, sizeof(parsed));
723 
724 	ret = parse_mtd_partitions(mtd, types, &parsed, parser_data);
725 	if ((ret < 0 || parsed.nr_parts == 0) && parts && nr_parts) {
726 		/* Fall back to driver-provided partitions */
727 		parsed = (struct mtd_partitions){
728 			.parts		= parts,
729 			.nr_parts	= nr_parts,
730 		};
731 	} else if (ret < 0) {
732 		/* Didn't come up with parsed OR fallback partitions */
733 		pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n",
734 			ret);
735 		/* Don't abort on errors; we can still use unpartitioned MTD */
736 		memset(&parsed, 0, sizeof(parsed));
737 	}
738 
739 	ret = mtd_add_device_partitions(mtd, &parsed);
740 	if (ret)
741 		goto out;
742 
743 	/*
744 	 * FIXME: some drivers unfortunately call this function more than once.
745 	 * So we have to check if we've already assigned the reboot notifier.
746 	 *
747 	 * Generally, we can make multiple calls work for most cases, but it
748 	 * does cause problems with parse_mtd_partitions() above (e.g.,
749 	 * cmdlineparts will register partitions more than once).
750 	 */
751 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
752 		  "MTD already registered\n");
753 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
754 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
755 		register_reboot_notifier(&mtd->reboot_notifier);
756 	}
757 
758 out:
759 	/* Cleanup any parsed partitions */
760 	mtd_part_parser_cleanup(&parsed);
761 	return ret;
762 }
763 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
764 
765 /**
766  * mtd_device_unregister - unregister an existing MTD device.
767  *
768  * @master: the MTD device to unregister.  This will unregister both the master
769  *          and any partitions if registered.
770  */
771 int mtd_device_unregister(struct mtd_info *master)
772 {
773 	int err;
774 
775 	if (master->_reboot)
776 		unregister_reboot_notifier(&master->reboot_notifier);
777 
778 	err = del_mtd_partitions(master);
779 	if (err)
780 		return err;
781 
782 	if (!device_is_registered(&master->dev))
783 		return 0;
784 
785 	return del_mtd_device(master);
786 }
787 EXPORT_SYMBOL_GPL(mtd_device_unregister);
788 
789 /**
790  *	register_mtd_user - register a 'user' of MTD devices.
791  *	@new: pointer to notifier info structure
792  *
793  *	Registers a pair of callbacks function to be called upon addition
794  *	or removal of MTD devices. Causes the 'add' callback to be immediately
795  *	invoked for each MTD device currently present in the system.
796  */
797 void register_mtd_user (struct mtd_notifier *new)
798 {
799 	struct mtd_info *mtd;
800 
801 	mutex_lock(&mtd_table_mutex);
802 
803 	list_add(&new->list, &mtd_notifiers);
804 
805 	__module_get(THIS_MODULE);
806 
807 	mtd_for_each_device(mtd)
808 		new->add(mtd);
809 
810 	mutex_unlock(&mtd_table_mutex);
811 }
812 EXPORT_SYMBOL_GPL(register_mtd_user);
813 
814 /**
815  *	unregister_mtd_user - unregister a 'user' of MTD devices.
816  *	@old: pointer to notifier info structure
817  *
818  *	Removes a callback function pair from the list of 'users' to be
819  *	notified upon addition or removal of MTD devices. Causes the
820  *	'remove' callback to be immediately invoked for each MTD device
821  *	currently present in the system.
822  */
823 int unregister_mtd_user (struct mtd_notifier *old)
824 {
825 	struct mtd_info *mtd;
826 
827 	mutex_lock(&mtd_table_mutex);
828 
829 	module_put(THIS_MODULE);
830 
831 	mtd_for_each_device(mtd)
832 		old->remove(mtd);
833 
834 	list_del(&old->list);
835 	mutex_unlock(&mtd_table_mutex);
836 	return 0;
837 }
838 EXPORT_SYMBOL_GPL(unregister_mtd_user);
839 
840 /**
841  *	get_mtd_device - obtain a validated handle for an MTD device
842  *	@mtd: last known address of the required MTD device
843  *	@num: internal device number of the required MTD device
844  *
845  *	Given a number and NULL address, return the num'th entry in the device
846  *	table, if any.	Given an address and num == -1, search the device table
847  *	for a device with that address and return if it's still present. Given
848  *	both, return the num'th driver only if its address matches. Return
849  *	error code if not.
850  */
851 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
852 {
853 	struct mtd_info *ret = NULL, *other;
854 	int err = -ENODEV;
855 
856 	mutex_lock(&mtd_table_mutex);
857 
858 	if (num == -1) {
859 		mtd_for_each_device(other) {
860 			if (other == mtd) {
861 				ret = mtd;
862 				break;
863 			}
864 		}
865 	} else if (num >= 0) {
866 		ret = idr_find(&mtd_idr, num);
867 		if (mtd && mtd != ret)
868 			ret = NULL;
869 	}
870 
871 	if (!ret) {
872 		ret = ERR_PTR(err);
873 		goto out;
874 	}
875 
876 	err = __get_mtd_device(ret);
877 	if (err)
878 		ret = ERR_PTR(err);
879 out:
880 	mutex_unlock(&mtd_table_mutex);
881 	return ret;
882 }
883 EXPORT_SYMBOL_GPL(get_mtd_device);
884 
885 
886 int __get_mtd_device(struct mtd_info *mtd)
887 {
888 	int err;
889 
890 	if (!try_module_get(mtd->owner))
891 		return -ENODEV;
892 
893 	if (mtd->_get_device) {
894 		err = mtd->_get_device(mtd);
895 
896 		if (err) {
897 			module_put(mtd->owner);
898 			return err;
899 		}
900 	}
901 	mtd->usecount++;
902 	return 0;
903 }
904 EXPORT_SYMBOL_GPL(__get_mtd_device);
905 
906 /**
907  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
908  *	device name
909  *	@name: MTD device name to open
910  *
911  * 	This function returns MTD device description structure in case of
912  * 	success and an error code in case of failure.
913  */
914 struct mtd_info *get_mtd_device_nm(const char *name)
915 {
916 	int err = -ENODEV;
917 	struct mtd_info *mtd = NULL, *other;
918 
919 	mutex_lock(&mtd_table_mutex);
920 
921 	mtd_for_each_device(other) {
922 		if (!strcmp(name, other->name)) {
923 			mtd = other;
924 			break;
925 		}
926 	}
927 
928 	if (!mtd)
929 		goto out_unlock;
930 
931 	err = __get_mtd_device(mtd);
932 	if (err)
933 		goto out_unlock;
934 
935 	mutex_unlock(&mtd_table_mutex);
936 	return mtd;
937 
938 out_unlock:
939 	mutex_unlock(&mtd_table_mutex);
940 	return ERR_PTR(err);
941 }
942 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
943 
944 void put_mtd_device(struct mtd_info *mtd)
945 {
946 	mutex_lock(&mtd_table_mutex);
947 	__put_mtd_device(mtd);
948 	mutex_unlock(&mtd_table_mutex);
949 
950 }
951 EXPORT_SYMBOL_GPL(put_mtd_device);
952 
953 void __put_mtd_device(struct mtd_info *mtd)
954 {
955 	--mtd->usecount;
956 	BUG_ON(mtd->usecount < 0);
957 
958 	if (mtd->_put_device)
959 		mtd->_put_device(mtd);
960 
961 	module_put(mtd->owner);
962 }
963 EXPORT_SYMBOL_GPL(__put_mtd_device);
964 
965 /*
966  * Erase is an asynchronous operation.  Device drivers are supposed
967  * to call instr->callback() whenever the operation completes, even
968  * if it completes with a failure.
969  * Callers are supposed to pass a callback function and wait for it
970  * to be called before writing to the block.
971  */
972 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
973 {
974 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
975 		return -EINVAL;
976 	if (!(mtd->flags & MTD_WRITEABLE))
977 		return -EROFS;
978 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
979 	if (!instr->len) {
980 		instr->state = MTD_ERASE_DONE;
981 		mtd_erase_callback(instr);
982 		return 0;
983 	}
984 	ledtrig_mtd_activity();
985 	return mtd->_erase(mtd, instr);
986 }
987 EXPORT_SYMBOL_GPL(mtd_erase);
988 
989 /*
990  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
991  */
992 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
993 	      void **virt, resource_size_t *phys)
994 {
995 	*retlen = 0;
996 	*virt = NULL;
997 	if (phys)
998 		*phys = 0;
999 	if (!mtd->_point)
1000 		return -EOPNOTSUPP;
1001 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1002 		return -EINVAL;
1003 	if (!len)
1004 		return 0;
1005 	return mtd->_point(mtd, from, len, retlen, virt, phys);
1006 }
1007 EXPORT_SYMBOL_GPL(mtd_point);
1008 
1009 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1010 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1011 {
1012 	if (!mtd->_unpoint)
1013 		return -EOPNOTSUPP;
1014 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1015 		return -EINVAL;
1016 	if (!len)
1017 		return 0;
1018 	return mtd->_unpoint(mtd, from, len);
1019 }
1020 EXPORT_SYMBOL_GPL(mtd_unpoint);
1021 
1022 /*
1023  * Allow NOMMU mmap() to directly map the device (if not NULL)
1024  * - return the address to which the offset maps
1025  * - return -ENOSYS to indicate refusal to do the mapping
1026  */
1027 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1028 				    unsigned long offset, unsigned long flags)
1029 {
1030 	size_t retlen;
1031 	void *virt;
1032 	int ret;
1033 
1034 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1035 	if (ret)
1036 		return ret;
1037 	if (retlen != len) {
1038 		mtd_unpoint(mtd, offset, retlen);
1039 		return -ENOSYS;
1040 	}
1041 	return (unsigned long)virt;
1042 }
1043 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1044 
1045 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1046 	     u_char *buf)
1047 {
1048 	int ret_code;
1049 	*retlen = 0;
1050 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1051 		return -EINVAL;
1052 	if (!len)
1053 		return 0;
1054 
1055 	ledtrig_mtd_activity();
1056 	/*
1057 	 * In the absence of an error, drivers return a non-negative integer
1058 	 * representing the maximum number of bitflips that were corrected on
1059 	 * any one ecc region (if applicable; zero otherwise).
1060 	 */
1061 	if (mtd->_read) {
1062 		ret_code = mtd->_read(mtd, from, len, retlen, buf);
1063 	} else if (mtd->_read_oob) {
1064 		struct mtd_oob_ops ops = {
1065 			.len = len,
1066 			.datbuf = buf,
1067 		};
1068 
1069 		ret_code = mtd->_read_oob(mtd, from, &ops);
1070 		*retlen = ops.retlen;
1071 	} else {
1072 		return -ENOTSUPP;
1073 	}
1074 
1075 	if (unlikely(ret_code < 0))
1076 		return ret_code;
1077 	if (mtd->ecc_strength == 0)
1078 		return 0;	/* device lacks ecc */
1079 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1080 }
1081 EXPORT_SYMBOL_GPL(mtd_read);
1082 
1083 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1084 	      const u_char *buf)
1085 {
1086 	*retlen = 0;
1087 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1088 		return -EINVAL;
1089 	if ((!mtd->_write && !mtd->_write_oob) ||
1090 	    !(mtd->flags & MTD_WRITEABLE))
1091 		return -EROFS;
1092 	if (!len)
1093 		return 0;
1094 	ledtrig_mtd_activity();
1095 
1096 	if (!mtd->_write) {
1097 		struct mtd_oob_ops ops = {
1098 			.len = len,
1099 			.datbuf = (u8 *)buf,
1100 		};
1101 		int ret;
1102 
1103 		ret = mtd->_write_oob(mtd, to, &ops);
1104 		*retlen = ops.retlen;
1105 		return ret;
1106 	}
1107 
1108 	return mtd->_write(mtd, to, len, retlen, buf);
1109 }
1110 EXPORT_SYMBOL_GPL(mtd_write);
1111 
1112 /*
1113  * In blackbox flight recorder like scenarios we want to make successful writes
1114  * in interrupt context. panic_write() is only intended to be called when its
1115  * known the kernel is about to panic and we need the write to succeed. Since
1116  * the kernel is not going to be running for much longer, this function can
1117  * break locks and delay to ensure the write succeeds (but not sleep).
1118  */
1119 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1120 		    const u_char *buf)
1121 {
1122 	*retlen = 0;
1123 	if (!mtd->_panic_write)
1124 		return -EOPNOTSUPP;
1125 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1126 		return -EINVAL;
1127 	if (!(mtd->flags & MTD_WRITEABLE))
1128 		return -EROFS;
1129 	if (!len)
1130 		return 0;
1131 	return mtd->_panic_write(mtd, to, len, retlen, buf);
1132 }
1133 EXPORT_SYMBOL_GPL(mtd_panic_write);
1134 
1135 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1136 			     struct mtd_oob_ops *ops)
1137 {
1138 	/*
1139 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1140 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1141 	 *  this case.
1142 	 */
1143 	if (!ops->datbuf)
1144 		ops->len = 0;
1145 
1146 	if (!ops->oobbuf)
1147 		ops->ooblen = 0;
1148 
1149 	if (offs < 0 || offs + ops->len > mtd->size)
1150 		return -EINVAL;
1151 
1152 	if (ops->ooblen) {
1153 		u64 maxooblen;
1154 
1155 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1156 			return -EINVAL;
1157 
1158 		maxooblen = ((mtd_div_by_ws(mtd->size, mtd) -
1159 			      mtd_div_by_ws(offs, mtd)) *
1160 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1161 		if (ops->ooblen > maxooblen)
1162 			return -EINVAL;
1163 	}
1164 
1165 	return 0;
1166 }
1167 
1168 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1169 {
1170 	int ret_code;
1171 	ops->retlen = ops->oobretlen = 0;
1172 	if (!mtd->_read_oob)
1173 		return -EOPNOTSUPP;
1174 
1175 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1176 	if (ret_code)
1177 		return ret_code;
1178 
1179 	ledtrig_mtd_activity();
1180 	/*
1181 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1182 	 * similar to mtd->_read(), returning a non-negative integer
1183 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1184 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1185 	 */
1186 	ret_code = mtd->_read_oob(mtd, from, ops);
1187 	if (unlikely(ret_code < 0))
1188 		return ret_code;
1189 	if (mtd->ecc_strength == 0)
1190 		return 0;	/* device lacks ecc */
1191 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1192 }
1193 EXPORT_SYMBOL_GPL(mtd_read_oob);
1194 
1195 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1196 				struct mtd_oob_ops *ops)
1197 {
1198 	int ret;
1199 
1200 	ops->retlen = ops->oobretlen = 0;
1201 	if (!mtd->_write_oob)
1202 		return -EOPNOTSUPP;
1203 	if (!(mtd->flags & MTD_WRITEABLE))
1204 		return -EROFS;
1205 
1206 	ret = mtd_check_oob_ops(mtd, to, ops);
1207 	if (ret)
1208 		return ret;
1209 
1210 	ledtrig_mtd_activity();
1211 	return mtd->_write_oob(mtd, to, ops);
1212 }
1213 EXPORT_SYMBOL_GPL(mtd_write_oob);
1214 
1215 /**
1216  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1217  * @mtd: MTD device structure
1218  * @section: ECC section. Depending on the layout you may have all the ECC
1219  *	     bytes stored in a single contiguous section, or one section
1220  *	     per ECC chunk (and sometime several sections for a single ECC
1221  *	     ECC chunk)
1222  * @oobecc: OOB region struct filled with the appropriate ECC position
1223  *	    information
1224  *
1225  * This function returns ECC section information in the OOB area. If you want
1226  * to get all the ECC bytes information, then you should call
1227  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1228  *
1229  * Returns zero on success, a negative error code otherwise.
1230  */
1231 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1232 		      struct mtd_oob_region *oobecc)
1233 {
1234 	memset(oobecc, 0, sizeof(*oobecc));
1235 
1236 	if (!mtd || section < 0)
1237 		return -EINVAL;
1238 
1239 	if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1240 		return -ENOTSUPP;
1241 
1242 	return mtd->ooblayout->ecc(mtd, section, oobecc);
1243 }
1244 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1245 
1246 /**
1247  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1248  *			section
1249  * @mtd: MTD device structure
1250  * @section: Free section you are interested in. Depending on the layout
1251  *	     you may have all the free bytes stored in a single contiguous
1252  *	     section, or one section per ECC chunk plus an extra section
1253  *	     for the remaining bytes (or other funky layout).
1254  * @oobfree: OOB region struct filled with the appropriate free position
1255  *	     information
1256  *
1257  * This function returns free bytes position in the OOB area. If you want
1258  * to get all the free bytes information, then you should call
1259  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1260  *
1261  * Returns zero on success, a negative error code otherwise.
1262  */
1263 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1264 		       struct mtd_oob_region *oobfree)
1265 {
1266 	memset(oobfree, 0, sizeof(*oobfree));
1267 
1268 	if (!mtd || section < 0)
1269 		return -EINVAL;
1270 
1271 	if (!mtd->ooblayout || !mtd->ooblayout->free)
1272 		return -ENOTSUPP;
1273 
1274 	return mtd->ooblayout->free(mtd, section, oobfree);
1275 }
1276 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1277 
1278 /**
1279  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1280  * @mtd: mtd info structure
1281  * @byte: the byte we are searching for
1282  * @sectionp: pointer where the section id will be stored
1283  * @oobregion: used to retrieve the ECC position
1284  * @iter: iterator function. Should be either mtd_ooblayout_free or
1285  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1286  *
1287  * This function returns the section id and oobregion information of a
1288  * specific byte. For example, say you want to know where the 4th ECC byte is
1289  * stored, you'll use:
1290  *
1291  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1292  *
1293  * Returns zero on success, a negative error code otherwise.
1294  */
1295 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1296 				int *sectionp, struct mtd_oob_region *oobregion,
1297 				int (*iter)(struct mtd_info *,
1298 					    int section,
1299 					    struct mtd_oob_region *oobregion))
1300 {
1301 	int pos = 0, ret, section = 0;
1302 
1303 	memset(oobregion, 0, sizeof(*oobregion));
1304 
1305 	while (1) {
1306 		ret = iter(mtd, section, oobregion);
1307 		if (ret)
1308 			return ret;
1309 
1310 		if (pos + oobregion->length > byte)
1311 			break;
1312 
1313 		pos += oobregion->length;
1314 		section++;
1315 	}
1316 
1317 	/*
1318 	 * Adjust region info to make it start at the beginning at the
1319 	 * 'start' ECC byte.
1320 	 */
1321 	oobregion->offset += byte - pos;
1322 	oobregion->length -= byte - pos;
1323 	*sectionp = section;
1324 
1325 	return 0;
1326 }
1327 
1328 /**
1329  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1330  *				  ECC byte
1331  * @mtd: mtd info structure
1332  * @eccbyte: the byte we are searching for
1333  * @sectionp: pointer where the section id will be stored
1334  * @oobregion: OOB region information
1335  *
1336  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1337  * byte.
1338  *
1339  * Returns zero on success, a negative error code otherwise.
1340  */
1341 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1342 				 int *section,
1343 				 struct mtd_oob_region *oobregion)
1344 {
1345 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1346 					 mtd_ooblayout_ecc);
1347 }
1348 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1349 
1350 /**
1351  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1352  * @mtd: mtd info structure
1353  * @buf: destination buffer to store OOB bytes
1354  * @oobbuf: OOB buffer
1355  * @start: first byte to retrieve
1356  * @nbytes: number of bytes to retrieve
1357  * @iter: section iterator
1358  *
1359  * Extract bytes attached to a specific category (ECC or free)
1360  * from the OOB buffer and copy them into buf.
1361  *
1362  * Returns zero on success, a negative error code otherwise.
1363  */
1364 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1365 				const u8 *oobbuf, int start, int nbytes,
1366 				int (*iter)(struct mtd_info *,
1367 					    int section,
1368 					    struct mtd_oob_region *oobregion))
1369 {
1370 	struct mtd_oob_region oobregion;
1371 	int section, ret;
1372 
1373 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1374 					&oobregion, iter);
1375 
1376 	while (!ret) {
1377 		int cnt;
1378 
1379 		cnt = min_t(int, nbytes, oobregion.length);
1380 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1381 		buf += cnt;
1382 		nbytes -= cnt;
1383 
1384 		if (!nbytes)
1385 			break;
1386 
1387 		ret = iter(mtd, ++section, &oobregion);
1388 	}
1389 
1390 	return ret;
1391 }
1392 
1393 /**
1394  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1395  * @mtd: mtd info structure
1396  * @buf: source buffer to get OOB bytes from
1397  * @oobbuf: OOB buffer
1398  * @start: first OOB byte to set
1399  * @nbytes: number of OOB bytes to set
1400  * @iter: section iterator
1401  *
1402  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1403  * is selected by passing the appropriate iterator.
1404  *
1405  * Returns zero on success, a negative error code otherwise.
1406  */
1407 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1408 				u8 *oobbuf, int start, int nbytes,
1409 				int (*iter)(struct mtd_info *,
1410 					    int section,
1411 					    struct mtd_oob_region *oobregion))
1412 {
1413 	struct mtd_oob_region oobregion;
1414 	int section, ret;
1415 
1416 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1417 					&oobregion, iter);
1418 
1419 	while (!ret) {
1420 		int cnt;
1421 
1422 		cnt = min_t(int, nbytes, oobregion.length);
1423 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1424 		buf += cnt;
1425 		nbytes -= cnt;
1426 
1427 		if (!nbytes)
1428 			break;
1429 
1430 		ret = iter(mtd, ++section, &oobregion);
1431 	}
1432 
1433 	return ret;
1434 }
1435 
1436 /**
1437  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1438  * @mtd: mtd info structure
1439  * @iter: category iterator
1440  *
1441  * Count the number of bytes in a given category.
1442  *
1443  * Returns a positive value on success, a negative error code otherwise.
1444  */
1445 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1446 				int (*iter)(struct mtd_info *,
1447 					    int section,
1448 					    struct mtd_oob_region *oobregion))
1449 {
1450 	struct mtd_oob_region oobregion;
1451 	int section = 0, ret, nbytes = 0;
1452 
1453 	while (1) {
1454 		ret = iter(mtd, section++, &oobregion);
1455 		if (ret) {
1456 			if (ret == -ERANGE)
1457 				ret = nbytes;
1458 			break;
1459 		}
1460 
1461 		nbytes += oobregion.length;
1462 	}
1463 
1464 	return ret;
1465 }
1466 
1467 /**
1468  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1469  * @mtd: mtd info structure
1470  * @eccbuf: destination buffer to store ECC bytes
1471  * @oobbuf: OOB buffer
1472  * @start: first ECC byte to retrieve
1473  * @nbytes: number of ECC bytes to retrieve
1474  *
1475  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1476  *
1477  * Returns zero on success, a negative error code otherwise.
1478  */
1479 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1480 			       const u8 *oobbuf, int start, int nbytes)
1481 {
1482 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1483 				       mtd_ooblayout_ecc);
1484 }
1485 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1486 
1487 /**
1488  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1489  * @mtd: mtd info structure
1490  * @eccbuf: source buffer to get ECC bytes from
1491  * @oobbuf: OOB buffer
1492  * @start: first ECC byte to set
1493  * @nbytes: number of ECC bytes to set
1494  *
1495  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1496  *
1497  * Returns zero on success, a negative error code otherwise.
1498  */
1499 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1500 			       u8 *oobbuf, int start, int nbytes)
1501 {
1502 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1503 				       mtd_ooblayout_ecc);
1504 }
1505 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1506 
1507 /**
1508  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1509  * @mtd: mtd info structure
1510  * @databuf: destination buffer to store ECC bytes
1511  * @oobbuf: OOB buffer
1512  * @start: first ECC byte to retrieve
1513  * @nbytes: number of ECC bytes to retrieve
1514  *
1515  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1516  *
1517  * Returns zero on success, a negative error code otherwise.
1518  */
1519 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1520 				const u8 *oobbuf, int start, int nbytes)
1521 {
1522 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1523 				       mtd_ooblayout_free);
1524 }
1525 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1526 
1527 /**
1528  * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
1529  * @mtd: mtd info structure
1530  * @eccbuf: source buffer to get data bytes from
1531  * @oobbuf: OOB buffer
1532  * @start: first ECC byte to set
1533  * @nbytes: number of ECC bytes to set
1534  *
1535  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1536  *
1537  * Returns zero on success, a negative error code otherwise.
1538  */
1539 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1540 				u8 *oobbuf, int start, int nbytes)
1541 {
1542 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1543 				       mtd_ooblayout_free);
1544 }
1545 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1546 
1547 /**
1548  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1549  * @mtd: mtd info structure
1550  *
1551  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1552  *
1553  * Returns zero on success, a negative error code otherwise.
1554  */
1555 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1556 {
1557 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1558 }
1559 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1560 
1561 /**
1562  * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
1563  * @mtd: mtd info structure
1564  *
1565  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1566  *
1567  * Returns zero on success, a negative error code otherwise.
1568  */
1569 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1570 {
1571 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1572 }
1573 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1574 
1575 /*
1576  * Method to access the protection register area, present in some flash
1577  * devices. The user data is one time programmable but the factory data is read
1578  * only.
1579  */
1580 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1581 			   struct otp_info *buf)
1582 {
1583 	if (!mtd->_get_fact_prot_info)
1584 		return -EOPNOTSUPP;
1585 	if (!len)
1586 		return 0;
1587 	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1588 }
1589 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1590 
1591 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1592 			   size_t *retlen, u_char *buf)
1593 {
1594 	*retlen = 0;
1595 	if (!mtd->_read_fact_prot_reg)
1596 		return -EOPNOTSUPP;
1597 	if (!len)
1598 		return 0;
1599 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1600 }
1601 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1602 
1603 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1604 			   struct otp_info *buf)
1605 {
1606 	if (!mtd->_get_user_prot_info)
1607 		return -EOPNOTSUPP;
1608 	if (!len)
1609 		return 0;
1610 	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1611 }
1612 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1613 
1614 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1615 			   size_t *retlen, u_char *buf)
1616 {
1617 	*retlen = 0;
1618 	if (!mtd->_read_user_prot_reg)
1619 		return -EOPNOTSUPP;
1620 	if (!len)
1621 		return 0;
1622 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1623 }
1624 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1625 
1626 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1627 			    size_t *retlen, u_char *buf)
1628 {
1629 	int ret;
1630 
1631 	*retlen = 0;
1632 	if (!mtd->_write_user_prot_reg)
1633 		return -EOPNOTSUPP;
1634 	if (!len)
1635 		return 0;
1636 	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1637 	if (ret)
1638 		return ret;
1639 
1640 	/*
1641 	 * If no data could be written at all, we are out of memory and
1642 	 * must return -ENOSPC.
1643 	 */
1644 	return (*retlen) ? 0 : -ENOSPC;
1645 }
1646 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1647 
1648 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1649 {
1650 	if (!mtd->_lock_user_prot_reg)
1651 		return -EOPNOTSUPP;
1652 	if (!len)
1653 		return 0;
1654 	return mtd->_lock_user_prot_reg(mtd, from, len);
1655 }
1656 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1657 
1658 /* Chip-supported device locking */
1659 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1660 {
1661 	if (!mtd->_lock)
1662 		return -EOPNOTSUPP;
1663 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1664 		return -EINVAL;
1665 	if (!len)
1666 		return 0;
1667 	return mtd->_lock(mtd, ofs, len);
1668 }
1669 EXPORT_SYMBOL_GPL(mtd_lock);
1670 
1671 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1672 {
1673 	if (!mtd->_unlock)
1674 		return -EOPNOTSUPP;
1675 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1676 		return -EINVAL;
1677 	if (!len)
1678 		return 0;
1679 	return mtd->_unlock(mtd, ofs, len);
1680 }
1681 EXPORT_SYMBOL_GPL(mtd_unlock);
1682 
1683 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1684 {
1685 	if (!mtd->_is_locked)
1686 		return -EOPNOTSUPP;
1687 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1688 		return -EINVAL;
1689 	if (!len)
1690 		return 0;
1691 	return mtd->_is_locked(mtd, ofs, len);
1692 }
1693 EXPORT_SYMBOL_GPL(mtd_is_locked);
1694 
1695 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1696 {
1697 	if (ofs < 0 || ofs >= mtd->size)
1698 		return -EINVAL;
1699 	if (!mtd->_block_isreserved)
1700 		return 0;
1701 	return mtd->_block_isreserved(mtd, ofs);
1702 }
1703 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1704 
1705 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1706 {
1707 	if (ofs < 0 || ofs >= mtd->size)
1708 		return -EINVAL;
1709 	if (!mtd->_block_isbad)
1710 		return 0;
1711 	return mtd->_block_isbad(mtd, ofs);
1712 }
1713 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1714 
1715 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1716 {
1717 	if (!mtd->_block_markbad)
1718 		return -EOPNOTSUPP;
1719 	if (ofs < 0 || ofs >= mtd->size)
1720 		return -EINVAL;
1721 	if (!(mtd->flags & MTD_WRITEABLE))
1722 		return -EROFS;
1723 	return mtd->_block_markbad(mtd, ofs);
1724 }
1725 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1726 
1727 /*
1728  * default_mtd_writev - the default writev method
1729  * @mtd: mtd device description object pointer
1730  * @vecs: the vectors to write
1731  * @count: count of vectors in @vecs
1732  * @to: the MTD device offset to write to
1733  * @retlen: on exit contains the count of bytes written to the MTD device.
1734  *
1735  * This function returns zero in case of success and a negative error code in
1736  * case of failure.
1737  */
1738 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1739 			      unsigned long count, loff_t to, size_t *retlen)
1740 {
1741 	unsigned long i;
1742 	size_t totlen = 0, thislen;
1743 	int ret = 0;
1744 
1745 	for (i = 0; i < count; i++) {
1746 		if (!vecs[i].iov_len)
1747 			continue;
1748 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1749 				vecs[i].iov_base);
1750 		totlen += thislen;
1751 		if (ret || thislen != vecs[i].iov_len)
1752 			break;
1753 		to += vecs[i].iov_len;
1754 	}
1755 	*retlen = totlen;
1756 	return ret;
1757 }
1758 
1759 /*
1760  * mtd_writev - the vector-based MTD write method
1761  * @mtd: mtd device description object pointer
1762  * @vecs: the vectors to write
1763  * @count: count of vectors in @vecs
1764  * @to: the MTD device offset to write to
1765  * @retlen: on exit contains the count of bytes written to the MTD device.
1766  *
1767  * This function returns zero in case of success and a negative error code in
1768  * case of failure.
1769  */
1770 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1771 	       unsigned long count, loff_t to, size_t *retlen)
1772 {
1773 	*retlen = 0;
1774 	if (!(mtd->flags & MTD_WRITEABLE))
1775 		return -EROFS;
1776 	if (!mtd->_writev)
1777 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1778 	return mtd->_writev(mtd, vecs, count, to, retlen);
1779 }
1780 EXPORT_SYMBOL_GPL(mtd_writev);
1781 
1782 /**
1783  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1784  * @mtd: mtd device description object pointer
1785  * @size: a pointer to the ideal or maximum size of the allocation, points
1786  *        to the actual allocation size on success.
1787  *
1788  * This routine attempts to allocate a contiguous kernel buffer up to
1789  * the specified size, backing off the size of the request exponentially
1790  * until the request succeeds or until the allocation size falls below
1791  * the system page size. This attempts to make sure it does not adversely
1792  * impact system performance, so when allocating more than one page, we
1793  * ask the memory allocator to avoid re-trying, swapping, writing back
1794  * or performing I/O.
1795  *
1796  * Note, this function also makes sure that the allocated buffer is aligned to
1797  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1798  *
1799  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1800  * to handle smaller (i.e. degraded) buffer allocations under low- or
1801  * fragmented-memory situations where such reduced allocations, from a
1802  * requested ideal, are allowed.
1803  *
1804  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1805  */
1806 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1807 {
1808 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1809 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1810 	void *kbuf;
1811 
1812 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1813 
1814 	while (*size > min_alloc) {
1815 		kbuf = kmalloc(*size, flags);
1816 		if (kbuf)
1817 			return kbuf;
1818 
1819 		*size >>= 1;
1820 		*size = ALIGN(*size, mtd->writesize);
1821 	}
1822 
1823 	/*
1824 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1825 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1826 	 */
1827 	return kmalloc(*size, GFP_KERNEL);
1828 }
1829 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1830 
1831 #ifdef CONFIG_PROC_FS
1832 
1833 /*====================================================================*/
1834 /* Support for /proc/mtd */
1835 
1836 static int mtd_proc_show(struct seq_file *m, void *v)
1837 {
1838 	struct mtd_info *mtd;
1839 
1840 	seq_puts(m, "dev:    size   erasesize  name\n");
1841 	mutex_lock(&mtd_table_mutex);
1842 	mtd_for_each_device(mtd) {
1843 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1844 			   mtd->index, (unsigned long long)mtd->size,
1845 			   mtd->erasesize, mtd->name);
1846 	}
1847 	mutex_unlock(&mtd_table_mutex);
1848 	return 0;
1849 }
1850 
1851 static int mtd_proc_open(struct inode *inode, struct file *file)
1852 {
1853 	return single_open(file, mtd_proc_show, NULL);
1854 }
1855 
1856 static const struct file_operations mtd_proc_ops = {
1857 	.open		= mtd_proc_open,
1858 	.read		= seq_read,
1859 	.llseek		= seq_lseek,
1860 	.release	= single_release,
1861 };
1862 #endif /* CONFIG_PROC_FS */
1863 
1864 /*====================================================================*/
1865 /* Init code */
1866 
1867 static struct backing_dev_info * __init mtd_bdi_init(char *name)
1868 {
1869 	struct backing_dev_info *bdi;
1870 	int ret;
1871 
1872 	bdi = bdi_alloc(GFP_KERNEL);
1873 	if (!bdi)
1874 		return ERR_PTR(-ENOMEM);
1875 
1876 	bdi->name = name;
1877 	/*
1878 	 * We put '-0' suffix to the name to get the same name format as we
1879 	 * used to get. Since this is called only once, we get a unique name.
1880 	 */
1881 	ret = bdi_register(bdi, "%.28s-0", name);
1882 	if (ret)
1883 		bdi_put(bdi);
1884 
1885 	return ret ? ERR_PTR(ret) : bdi;
1886 }
1887 
1888 static struct proc_dir_entry *proc_mtd;
1889 
1890 static int __init init_mtd(void)
1891 {
1892 	int ret;
1893 
1894 	ret = class_register(&mtd_class);
1895 	if (ret)
1896 		goto err_reg;
1897 
1898 	mtd_bdi = mtd_bdi_init("mtd");
1899 	if (IS_ERR(mtd_bdi)) {
1900 		ret = PTR_ERR(mtd_bdi);
1901 		goto err_bdi;
1902 	}
1903 
1904 	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1905 
1906 	ret = init_mtdchar();
1907 	if (ret)
1908 		goto out_procfs;
1909 
1910 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
1911 
1912 	return 0;
1913 
1914 out_procfs:
1915 	if (proc_mtd)
1916 		remove_proc_entry("mtd", NULL);
1917 	bdi_put(mtd_bdi);
1918 err_bdi:
1919 	class_unregister(&mtd_class);
1920 err_reg:
1921 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1922 	return ret;
1923 }
1924 
1925 static void __exit cleanup_mtd(void)
1926 {
1927 	debugfs_remove_recursive(dfs_dir_mtd);
1928 	cleanup_mtdchar();
1929 	if (proc_mtd)
1930 		remove_proc_entry("mtd", NULL);
1931 	class_unregister(&mtd_class);
1932 	bdi_put(mtd_bdi);
1933 	idr_destroy(&mtd_idr);
1934 }
1935 
1936 module_init(init_mtd);
1937 module_exit(cleanup_mtd);
1938 
1939 MODULE_LICENSE("GPL");
1940 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1941 MODULE_DESCRIPTION("Core MTD registration and access routines");
1942