1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Core registration and callback routines for MTD 4 * drivers and users. 5 * 6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 7 * Copyright © 2006 Red Hat UK Limited 8 */ 9 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/ptrace.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/timer.h> 16 #include <linux/major.h> 17 #include <linux/fs.h> 18 #include <linux/err.h> 19 #include <linux/ioctl.h> 20 #include <linux/init.h> 21 #include <linux/of.h> 22 #include <linux/proc_fs.h> 23 #include <linux/idr.h> 24 #include <linux/backing-dev.h> 25 #include <linux/gfp.h> 26 #include <linux/slab.h> 27 #include <linux/reboot.h> 28 #include <linux/leds.h> 29 #include <linux/debugfs.h> 30 #include <linux/nvmem-provider.h> 31 32 #include <linux/mtd/mtd.h> 33 #include <linux/mtd/partitions.h> 34 35 #include "mtdcore.h" 36 37 struct backing_dev_info *mtd_bdi; 38 39 #ifdef CONFIG_PM_SLEEP 40 41 static int mtd_cls_suspend(struct device *dev) 42 { 43 struct mtd_info *mtd = dev_get_drvdata(dev); 44 45 return mtd ? mtd_suspend(mtd) : 0; 46 } 47 48 static int mtd_cls_resume(struct device *dev) 49 { 50 struct mtd_info *mtd = dev_get_drvdata(dev); 51 52 if (mtd) 53 mtd_resume(mtd); 54 return 0; 55 } 56 57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 59 #else 60 #define MTD_CLS_PM_OPS NULL 61 #endif 62 63 static struct class mtd_class = { 64 .name = "mtd", 65 .owner = THIS_MODULE, 66 .pm = MTD_CLS_PM_OPS, 67 }; 68 69 static DEFINE_IDR(mtd_idr); 70 71 /* These are exported solely for the purpose of mtd_blkdevs.c. You 72 should not use them for _anything_ else */ 73 DEFINE_MUTEX(mtd_table_mutex); 74 EXPORT_SYMBOL_GPL(mtd_table_mutex); 75 76 struct mtd_info *__mtd_next_device(int i) 77 { 78 return idr_get_next(&mtd_idr, &i); 79 } 80 EXPORT_SYMBOL_GPL(__mtd_next_device); 81 82 static LIST_HEAD(mtd_notifiers); 83 84 85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 86 87 /* REVISIT once MTD uses the driver model better, whoever allocates 88 * the mtd_info will probably want to use the release() hook... 89 */ 90 static void mtd_release(struct device *dev) 91 { 92 struct mtd_info *mtd = dev_get_drvdata(dev); 93 dev_t index = MTD_DEVT(mtd->index); 94 95 /* remove /dev/mtdXro node */ 96 device_destroy(&mtd_class, index + 1); 97 } 98 99 #define MTD_DEVICE_ATTR_RO(name) \ 100 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL) 101 102 #define MTD_DEVICE_ATTR_RW(name) \ 103 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store) 104 105 static ssize_t mtd_type_show(struct device *dev, 106 struct device_attribute *attr, char *buf) 107 { 108 struct mtd_info *mtd = dev_get_drvdata(dev); 109 char *type; 110 111 switch (mtd->type) { 112 case MTD_ABSENT: 113 type = "absent"; 114 break; 115 case MTD_RAM: 116 type = "ram"; 117 break; 118 case MTD_ROM: 119 type = "rom"; 120 break; 121 case MTD_NORFLASH: 122 type = "nor"; 123 break; 124 case MTD_NANDFLASH: 125 type = "nand"; 126 break; 127 case MTD_DATAFLASH: 128 type = "dataflash"; 129 break; 130 case MTD_UBIVOLUME: 131 type = "ubi"; 132 break; 133 case MTD_MLCNANDFLASH: 134 type = "mlc-nand"; 135 break; 136 default: 137 type = "unknown"; 138 } 139 140 return sysfs_emit(buf, "%s\n", type); 141 } 142 MTD_DEVICE_ATTR_RO(type); 143 144 static ssize_t mtd_flags_show(struct device *dev, 145 struct device_attribute *attr, char *buf) 146 { 147 struct mtd_info *mtd = dev_get_drvdata(dev); 148 149 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags); 150 } 151 MTD_DEVICE_ATTR_RO(flags); 152 153 static ssize_t mtd_size_show(struct device *dev, 154 struct device_attribute *attr, char *buf) 155 { 156 struct mtd_info *mtd = dev_get_drvdata(dev); 157 158 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size); 159 } 160 MTD_DEVICE_ATTR_RO(size); 161 162 static ssize_t mtd_erasesize_show(struct device *dev, 163 struct device_attribute *attr, char *buf) 164 { 165 struct mtd_info *mtd = dev_get_drvdata(dev); 166 167 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize); 168 } 169 MTD_DEVICE_ATTR_RO(erasesize); 170 171 static ssize_t mtd_writesize_show(struct device *dev, 172 struct device_attribute *attr, char *buf) 173 { 174 struct mtd_info *mtd = dev_get_drvdata(dev); 175 176 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize); 177 } 178 MTD_DEVICE_ATTR_RO(writesize); 179 180 static ssize_t mtd_subpagesize_show(struct device *dev, 181 struct device_attribute *attr, char *buf) 182 { 183 struct mtd_info *mtd = dev_get_drvdata(dev); 184 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 185 186 return sysfs_emit(buf, "%u\n", subpagesize); 187 } 188 MTD_DEVICE_ATTR_RO(subpagesize); 189 190 static ssize_t mtd_oobsize_show(struct device *dev, 191 struct device_attribute *attr, char *buf) 192 { 193 struct mtd_info *mtd = dev_get_drvdata(dev); 194 195 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize); 196 } 197 MTD_DEVICE_ATTR_RO(oobsize); 198 199 static ssize_t mtd_oobavail_show(struct device *dev, 200 struct device_attribute *attr, char *buf) 201 { 202 struct mtd_info *mtd = dev_get_drvdata(dev); 203 204 return sysfs_emit(buf, "%u\n", mtd->oobavail); 205 } 206 MTD_DEVICE_ATTR_RO(oobavail); 207 208 static ssize_t mtd_numeraseregions_show(struct device *dev, 209 struct device_attribute *attr, char *buf) 210 { 211 struct mtd_info *mtd = dev_get_drvdata(dev); 212 213 return sysfs_emit(buf, "%u\n", mtd->numeraseregions); 214 } 215 MTD_DEVICE_ATTR_RO(numeraseregions); 216 217 static ssize_t mtd_name_show(struct device *dev, 218 struct device_attribute *attr, char *buf) 219 { 220 struct mtd_info *mtd = dev_get_drvdata(dev); 221 222 return sysfs_emit(buf, "%s\n", mtd->name); 223 } 224 MTD_DEVICE_ATTR_RO(name); 225 226 static ssize_t mtd_ecc_strength_show(struct device *dev, 227 struct device_attribute *attr, char *buf) 228 { 229 struct mtd_info *mtd = dev_get_drvdata(dev); 230 231 return sysfs_emit(buf, "%u\n", mtd->ecc_strength); 232 } 233 MTD_DEVICE_ATTR_RO(ecc_strength); 234 235 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 236 struct device_attribute *attr, 237 char *buf) 238 { 239 struct mtd_info *mtd = dev_get_drvdata(dev); 240 241 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold); 242 } 243 244 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 245 struct device_attribute *attr, 246 const char *buf, size_t count) 247 { 248 struct mtd_info *mtd = dev_get_drvdata(dev); 249 unsigned int bitflip_threshold; 250 int retval; 251 252 retval = kstrtouint(buf, 0, &bitflip_threshold); 253 if (retval) 254 return retval; 255 256 mtd->bitflip_threshold = bitflip_threshold; 257 return count; 258 } 259 MTD_DEVICE_ATTR_RW(bitflip_threshold); 260 261 static ssize_t mtd_ecc_step_size_show(struct device *dev, 262 struct device_attribute *attr, char *buf) 263 { 264 struct mtd_info *mtd = dev_get_drvdata(dev); 265 266 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size); 267 268 } 269 MTD_DEVICE_ATTR_RO(ecc_step_size); 270 271 static ssize_t mtd_corrected_bits_show(struct device *dev, 272 struct device_attribute *attr, char *buf) 273 { 274 struct mtd_info *mtd = dev_get_drvdata(dev); 275 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 276 277 return sysfs_emit(buf, "%u\n", ecc_stats->corrected); 278 } 279 MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */ 280 281 static ssize_t mtd_ecc_failures_show(struct device *dev, 282 struct device_attribute *attr, char *buf) 283 { 284 struct mtd_info *mtd = dev_get_drvdata(dev); 285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 286 287 return sysfs_emit(buf, "%u\n", ecc_stats->failed); 288 } 289 MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */ 290 291 static ssize_t mtd_bad_blocks_show(struct device *dev, 292 struct device_attribute *attr, char *buf) 293 { 294 struct mtd_info *mtd = dev_get_drvdata(dev); 295 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 296 297 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks); 298 } 299 MTD_DEVICE_ATTR_RO(bad_blocks); 300 301 static ssize_t mtd_bbt_blocks_show(struct device *dev, 302 struct device_attribute *attr, char *buf) 303 { 304 struct mtd_info *mtd = dev_get_drvdata(dev); 305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 306 307 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks); 308 } 309 MTD_DEVICE_ATTR_RO(bbt_blocks); 310 311 static struct attribute *mtd_attrs[] = { 312 &dev_attr_type.attr, 313 &dev_attr_flags.attr, 314 &dev_attr_size.attr, 315 &dev_attr_erasesize.attr, 316 &dev_attr_writesize.attr, 317 &dev_attr_subpagesize.attr, 318 &dev_attr_oobsize.attr, 319 &dev_attr_oobavail.attr, 320 &dev_attr_numeraseregions.attr, 321 &dev_attr_name.attr, 322 &dev_attr_ecc_strength.attr, 323 &dev_attr_ecc_step_size.attr, 324 &dev_attr_corrected_bits.attr, 325 &dev_attr_ecc_failures.attr, 326 &dev_attr_bad_blocks.attr, 327 &dev_attr_bbt_blocks.attr, 328 &dev_attr_bitflip_threshold.attr, 329 NULL, 330 }; 331 ATTRIBUTE_GROUPS(mtd); 332 333 static const struct device_type mtd_devtype = { 334 .name = "mtd", 335 .groups = mtd_groups, 336 .release = mtd_release, 337 }; 338 339 static bool mtd_expert_analysis_mode; 340 341 #ifdef CONFIG_DEBUG_FS 342 bool mtd_check_expert_analysis_mode(void) 343 { 344 const char *mtd_expert_analysis_warning = 345 "Bad block checks have been entirely disabled.\n" 346 "This is only reserved for post-mortem forensics and debug purposes.\n" 347 "Never enable this mode if you do not know what you are doing!\n"; 348 349 return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning); 350 } 351 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode); 352 #endif 353 354 static struct dentry *dfs_dir_mtd; 355 356 static void mtd_debugfs_populate(struct mtd_info *mtd) 357 { 358 struct device *dev = &mtd->dev; 359 360 if (IS_ERR_OR_NULL(dfs_dir_mtd)) 361 return; 362 363 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd); 364 } 365 366 #ifndef CONFIG_MMU 367 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 368 { 369 switch (mtd->type) { 370 case MTD_RAM: 371 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 372 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 373 case MTD_ROM: 374 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 375 NOMMU_MAP_READ; 376 default: 377 return NOMMU_MAP_COPY; 378 } 379 } 380 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 381 #endif 382 383 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 384 void *cmd) 385 { 386 struct mtd_info *mtd; 387 388 mtd = container_of(n, struct mtd_info, reboot_notifier); 389 mtd->_reboot(mtd); 390 391 return NOTIFY_DONE; 392 } 393 394 /** 395 * mtd_wunit_to_pairing_info - get pairing information of a wunit 396 * @mtd: pointer to new MTD device info structure 397 * @wunit: write unit we are interested in 398 * @info: returned pairing information 399 * 400 * Retrieve pairing information associated to the wunit. 401 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 402 * paired together, and where programming a page may influence the page it is 403 * paired with. 404 * The notion of page is replaced by the term wunit (write-unit) to stay 405 * consistent with the ->writesize field. 406 * 407 * The @wunit argument can be extracted from an absolute offset using 408 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 409 * to @wunit. 410 * 411 * From the pairing info the MTD user can find all the wunits paired with 412 * @wunit using the following loop: 413 * 414 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 415 * info.pair = i; 416 * mtd_pairing_info_to_wunit(mtd, &info); 417 * ... 418 * } 419 */ 420 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 421 struct mtd_pairing_info *info) 422 { 423 struct mtd_info *master = mtd_get_master(mtd); 424 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master); 425 426 if (wunit < 0 || wunit >= npairs) 427 return -EINVAL; 428 429 if (master->pairing && master->pairing->get_info) 430 return master->pairing->get_info(master, wunit, info); 431 432 info->group = 0; 433 info->pair = wunit; 434 435 return 0; 436 } 437 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 438 439 /** 440 * mtd_pairing_info_to_wunit - get wunit from pairing information 441 * @mtd: pointer to new MTD device info structure 442 * @info: pairing information struct 443 * 444 * Returns a positive number representing the wunit associated to the info 445 * struct, or a negative error code. 446 * 447 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 448 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 449 * doc). 450 * 451 * It can also be used to only program the first page of each pair (i.e. 452 * page attached to group 0), which allows one to use an MLC NAND in 453 * software-emulated SLC mode: 454 * 455 * info.group = 0; 456 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 457 * for (info.pair = 0; info.pair < npairs; info.pair++) { 458 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 459 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 460 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 461 * } 462 */ 463 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 464 const struct mtd_pairing_info *info) 465 { 466 struct mtd_info *master = mtd_get_master(mtd); 467 int ngroups = mtd_pairing_groups(master); 468 int npairs = mtd_wunit_per_eb(master) / ngroups; 469 470 if (!info || info->pair < 0 || info->pair >= npairs || 471 info->group < 0 || info->group >= ngroups) 472 return -EINVAL; 473 474 if (master->pairing && master->pairing->get_wunit) 475 return mtd->pairing->get_wunit(master, info); 476 477 return info->pair; 478 } 479 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 480 481 /** 482 * mtd_pairing_groups - get the number of pairing groups 483 * @mtd: pointer to new MTD device info structure 484 * 485 * Returns the number of pairing groups. 486 * 487 * This number is usually equal to the number of bits exposed by a single 488 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 489 * to iterate over all pages of a given pair. 490 */ 491 int mtd_pairing_groups(struct mtd_info *mtd) 492 { 493 struct mtd_info *master = mtd_get_master(mtd); 494 495 if (!master->pairing || !master->pairing->ngroups) 496 return 1; 497 498 return master->pairing->ngroups; 499 } 500 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 501 502 static int mtd_nvmem_reg_read(void *priv, unsigned int offset, 503 void *val, size_t bytes) 504 { 505 struct mtd_info *mtd = priv; 506 size_t retlen; 507 int err; 508 509 err = mtd_read(mtd, offset, bytes, &retlen, val); 510 if (err && err != -EUCLEAN) 511 return err; 512 513 return retlen == bytes ? 0 : -EIO; 514 } 515 516 static int mtd_nvmem_add(struct mtd_info *mtd) 517 { 518 struct device_node *node = mtd_get_of_node(mtd); 519 struct nvmem_config config = {}; 520 521 config.id = -1; 522 config.dev = &mtd->dev; 523 config.name = dev_name(&mtd->dev); 524 config.owner = THIS_MODULE; 525 config.reg_read = mtd_nvmem_reg_read; 526 config.size = mtd->size; 527 config.word_size = 1; 528 config.stride = 1; 529 config.read_only = true; 530 config.root_only = true; 531 config.ignore_wp = true; 532 config.no_of_node = !of_device_is_compatible(node, "nvmem-cells"); 533 config.priv = mtd; 534 535 mtd->nvmem = nvmem_register(&config); 536 if (IS_ERR(mtd->nvmem)) { 537 /* Just ignore if there is no NVMEM support in the kernel */ 538 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) { 539 mtd->nvmem = NULL; 540 } else { 541 dev_err(&mtd->dev, "Failed to register NVMEM device\n"); 542 return PTR_ERR(mtd->nvmem); 543 } 544 } 545 546 return 0; 547 } 548 549 /** 550 * add_mtd_device - register an MTD device 551 * @mtd: pointer to new MTD device info structure 552 * 553 * Add a device to the list of MTD devices present in the system, and 554 * notify each currently active MTD 'user' of its arrival. Returns 555 * zero on success or non-zero on failure. 556 */ 557 558 int add_mtd_device(struct mtd_info *mtd) 559 { 560 struct device_node *np = mtd_get_of_node(mtd); 561 struct mtd_info *master = mtd_get_master(mtd); 562 struct mtd_notifier *not; 563 int i, error, ofidx; 564 565 /* 566 * May occur, for instance, on buggy drivers which call 567 * mtd_device_parse_register() multiple times on the same master MTD, 568 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 569 */ 570 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 571 return -EEXIST; 572 573 BUG_ON(mtd->writesize == 0); 574 575 /* 576 * MTD drivers should implement ->_{write,read}() or 577 * ->_{write,read}_oob(), but not both. 578 */ 579 if (WARN_ON((mtd->_write && mtd->_write_oob) || 580 (mtd->_read && mtd->_read_oob))) 581 return -EINVAL; 582 583 if (WARN_ON((!mtd->erasesize || !master->_erase) && 584 !(mtd->flags & MTD_NO_ERASE))) 585 return -EINVAL; 586 587 /* 588 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the 589 * master is an MLC NAND and has a proper pairing scheme defined. 590 * We also reject masters that implement ->_writev() for now, because 591 * NAND controller drivers don't implement this hook, and adding the 592 * SLC -> MLC address/length conversion to this path is useless if we 593 * don't have a user. 594 */ 595 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION && 596 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH || 597 !master->pairing || master->_writev)) 598 return -EINVAL; 599 600 mutex_lock(&mtd_table_mutex); 601 602 ofidx = -1; 603 if (np) 604 ofidx = of_alias_get_id(np, "mtd"); 605 if (ofidx >= 0) 606 i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL); 607 else 608 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 609 if (i < 0) { 610 error = i; 611 goto fail_locked; 612 } 613 614 mtd->index = i; 615 mtd->usecount = 0; 616 617 /* default value if not set by driver */ 618 if (mtd->bitflip_threshold == 0) 619 mtd->bitflip_threshold = mtd->ecc_strength; 620 621 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 622 int ngroups = mtd_pairing_groups(master); 623 624 mtd->erasesize /= ngroups; 625 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) * 626 mtd->erasesize; 627 } 628 629 if (is_power_of_2(mtd->erasesize)) 630 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 631 else 632 mtd->erasesize_shift = 0; 633 634 if (is_power_of_2(mtd->writesize)) 635 mtd->writesize_shift = ffs(mtd->writesize) - 1; 636 else 637 mtd->writesize_shift = 0; 638 639 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 640 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 641 642 /* Some chips always power up locked. Unlock them now */ 643 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 644 error = mtd_unlock(mtd, 0, mtd->size); 645 if (error && error != -EOPNOTSUPP) 646 printk(KERN_WARNING 647 "%s: unlock failed, writes may not work\n", 648 mtd->name); 649 /* Ignore unlock failures? */ 650 error = 0; 651 } 652 653 /* Caller should have set dev.parent to match the 654 * physical device, if appropriate. 655 */ 656 mtd->dev.type = &mtd_devtype; 657 mtd->dev.class = &mtd_class; 658 mtd->dev.devt = MTD_DEVT(i); 659 dev_set_name(&mtd->dev, "mtd%d", i); 660 dev_set_drvdata(&mtd->dev, mtd); 661 of_node_get(mtd_get_of_node(mtd)); 662 error = device_register(&mtd->dev); 663 if (error) 664 goto fail_added; 665 666 /* Add the nvmem provider */ 667 error = mtd_nvmem_add(mtd); 668 if (error) 669 goto fail_nvmem_add; 670 671 mtd_debugfs_populate(mtd); 672 673 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 674 "mtd%dro", i); 675 676 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 677 /* No need to get a refcount on the module containing 678 the notifier, since we hold the mtd_table_mutex */ 679 list_for_each_entry(not, &mtd_notifiers, list) 680 not->add(mtd); 681 682 mutex_unlock(&mtd_table_mutex); 683 /* We _know_ we aren't being removed, because 684 our caller is still holding us here. So none 685 of this try_ nonsense, and no bitching about it 686 either. :) */ 687 __module_get(THIS_MODULE); 688 return 0; 689 690 fail_nvmem_add: 691 device_unregister(&mtd->dev); 692 fail_added: 693 of_node_put(mtd_get_of_node(mtd)); 694 idr_remove(&mtd_idr, i); 695 fail_locked: 696 mutex_unlock(&mtd_table_mutex); 697 return error; 698 } 699 700 /** 701 * del_mtd_device - unregister an MTD device 702 * @mtd: pointer to MTD device info structure 703 * 704 * Remove a device from the list of MTD devices present in the system, 705 * and notify each currently active MTD 'user' of its departure. 706 * Returns zero on success or 1 on failure, which currently will happen 707 * if the requested device does not appear to be present in the list. 708 */ 709 710 int del_mtd_device(struct mtd_info *mtd) 711 { 712 int ret; 713 struct mtd_notifier *not; 714 715 mutex_lock(&mtd_table_mutex); 716 717 if (idr_find(&mtd_idr, mtd->index) != mtd) { 718 ret = -ENODEV; 719 goto out_error; 720 } 721 722 /* No need to get a refcount on the module containing 723 the notifier, since we hold the mtd_table_mutex */ 724 list_for_each_entry(not, &mtd_notifiers, list) 725 not->remove(mtd); 726 727 if (mtd->usecount) { 728 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 729 mtd->index, mtd->name, mtd->usecount); 730 ret = -EBUSY; 731 } else { 732 debugfs_remove_recursive(mtd->dbg.dfs_dir); 733 734 /* Try to remove the NVMEM provider */ 735 nvmem_unregister(mtd->nvmem); 736 737 device_unregister(&mtd->dev); 738 739 /* Clear dev so mtd can be safely re-registered later if desired */ 740 memset(&mtd->dev, 0, sizeof(mtd->dev)); 741 742 idr_remove(&mtd_idr, mtd->index); 743 of_node_put(mtd_get_of_node(mtd)); 744 745 module_put(THIS_MODULE); 746 ret = 0; 747 } 748 749 out_error: 750 mutex_unlock(&mtd_table_mutex); 751 return ret; 752 } 753 754 /* 755 * Set a few defaults based on the parent devices, if not provided by the 756 * driver 757 */ 758 static void mtd_set_dev_defaults(struct mtd_info *mtd) 759 { 760 if (mtd->dev.parent) { 761 if (!mtd->owner && mtd->dev.parent->driver) 762 mtd->owner = mtd->dev.parent->driver->owner; 763 if (!mtd->name) 764 mtd->name = dev_name(mtd->dev.parent); 765 } else { 766 pr_debug("mtd device won't show a device symlink in sysfs\n"); 767 } 768 769 INIT_LIST_HEAD(&mtd->partitions); 770 mutex_init(&mtd->master.partitions_lock); 771 mutex_init(&mtd->master.chrdev_lock); 772 } 773 774 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user) 775 { 776 struct otp_info *info; 777 ssize_t size = 0; 778 unsigned int i; 779 size_t retlen; 780 int ret; 781 782 info = kmalloc(PAGE_SIZE, GFP_KERNEL); 783 if (!info) 784 return -ENOMEM; 785 786 if (is_user) 787 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info); 788 else 789 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info); 790 if (ret) 791 goto err; 792 793 for (i = 0; i < retlen / sizeof(*info); i++) 794 size += info[i].length; 795 796 kfree(info); 797 return size; 798 799 err: 800 kfree(info); 801 802 /* ENODATA means there is no OTP region. */ 803 return ret == -ENODATA ? 0 : ret; 804 } 805 806 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd, 807 const char *compatible, 808 int size, 809 nvmem_reg_read_t reg_read) 810 { 811 struct nvmem_device *nvmem = NULL; 812 struct nvmem_config config = {}; 813 struct device_node *np; 814 815 /* DT binding is optional */ 816 np = of_get_compatible_child(mtd->dev.of_node, compatible); 817 818 /* OTP nvmem will be registered on the physical device */ 819 config.dev = mtd->dev.parent; 820 config.name = kasprintf(GFP_KERNEL, "%s-%s", dev_name(&mtd->dev), compatible); 821 config.id = NVMEM_DEVID_NONE; 822 config.owner = THIS_MODULE; 823 config.type = NVMEM_TYPE_OTP; 824 config.root_only = true; 825 config.ignore_wp = true; 826 config.reg_read = reg_read; 827 config.size = size; 828 config.of_node = np; 829 config.priv = mtd; 830 831 nvmem = nvmem_register(&config); 832 /* Just ignore if there is no NVMEM support in the kernel */ 833 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP) 834 nvmem = NULL; 835 836 of_node_put(np); 837 kfree(config.name); 838 839 return nvmem; 840 } 841 842 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset, 843 void *val, size_t bytes) 844 { 845 struct mtd_info *mtd = priv; 846 size_t retlen; 847 int ret; 848 849 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val); 850 if (ret) 851 return ret; 852 853 return retlen == bytes ? 0 : -EIO; 854 } 855 856 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset, 857 void *val, size_t bytes) 858 { 859 struct mtd_info *mtd = priv; 860 size_t retlen; 861 int ret; 862 863 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val); 864 if (ret) 865 return ret; 866 867 return retlen == bytes ? 0 : -EIO; 868 } 869 870 static int mtd_otp_nvmem_add(struct mtd_info *mtd) 871 { 872 struct nvmem_device *nvmem; 873 ssize_t size; 874 int err; 875 876 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) { 877 size = mtd_otp_size(mtd, true); 878 if (size < 0) 879 return size; 880 881 if (size > 0) { 882 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size, 883 mtd_nvmem_user_otp_reg_read); 884 if (IS_ERR(nvmem)) { 885 dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n"); 886 return PTR_ERR(nvmem); 887 } 888 mtd->otp_user_nvmem = nvmem; 889 } 890 } 891 892 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) { 893 size = mtd_otp_size(mtd, false); 894 if (size < 0) { 895 err = size; 896 goto err; 897 } 898 899 if (size > 0) { 900 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size, 901 mtd_nvmem_fact_otp_reg_read); 902 if (IS_ERR(nvmem)) { 903 dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n"); 904 err = PTR_ERR(nvmem); 905 goto err; 906 } 907 mtd->otp_factory_nvmem = nvmem; 908 } 909 } 910 911 return 0; 912 913 err: 914 nvmem_unregister(mtd->otp_user_nvmem); 915 return err; 916 } 917 918 /** 919 * mtd_device_parse_register - parse partitions and register an MTD device. 920 * 921 * @mtd: the MTD device to register 922 * @types: the list of MTD partition probes to try, see 923 * 'parse_mtd_partitions()' for more information 924 * @parser_data: MTD partition parser-specific data 925 * @parts: fallback partition information to register, if parsing fails; 926 * only valid if %nr_parts > %0 927 * @nr_parts: the number of partitions in parts, if zero then the full 928 * MTD device is registered if no partition info is found 929 * 930 * This function aggregates MTD partitions parsing (done by 931 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 932 * basically follows the most common pattern found in many MTD drivers: 933 * 934 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is 935 * registered first. 936 * * Then It tries to probe partitions on MTD device @mtd using parsers 937 * specified in @types (if @types is %NULL, then the default list of parsers 938 * is used, see 'parse_mtd_partitions()' for more information). If none are 939 * found this functions tries to fallback to information specified in 940 * @parts/@nr_parts. 941 * * If no partitions were found this function just registers the MTD device 942 * @mtd and exits. 943 * 944 * Returns zero in case of success and a negative error code in case of failure. 945 */ 946 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 947 struct mtd_part_parser_data *parser_data, 948 const struct mtd_partition *parts, 949 int nr_parts) 950 { 951 int ret; 952 953 mtd_set_dev_defaults(mtd); 954 955 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 956 ret = add_mtd_device(mtd); 957 if (ret) 958 return ret; 959 } 960 961 /* Prefer parsed partitions over driver-provided fallback */ 962 ret = parse_mtd_partitions(mtd, types, parser_data); 963 if (ret == -EPROBE_DEFER) 964 goto out; 965 966 if (ret > 0) 967 ret = 0; 968 else if (nr_parts) 969 ret = add_mtd_partitions(mtd, parts, nr_parts); 970 else if (!device_is_registered(&mtd->dev)) 971 ret = add_mtd_device(mtd); 972 else 973 ret = 0; 974 975 if (ret) 976 goto out; 977 978 /* 979 * FIXME: some drivers unfortunately call this function more than once. 980 * So we have to check if we've already assigned the reboot notifier. 981 * 982 * Generally, we can make multiple calls work for most cases, but it 983 * does cause problems with parse_mtd_partitions() above (e.g., 984 * cmdlineparts will register partitions more than once). 985 */ 986 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 987 "MTD already registered\n"); 988 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 989 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 990 register_reboot_notifier(&mtd->reboot_notifier); 991 } 992 993 ret = mtd_otp_nvmem_add(mtd); 994 995 out: 996 if (ret && device_is_registered(&mtd->dev)) 997 del_mtd_device(mtd); 998 999 return ret; 1000 } 1001 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 1002 1003 /** 1004 * mtd_device_unregister - unregister an existing MTD device. 1005 * 1006 * @master: the MTD device to unregister. This will unregister both the master 1007 * and any partitions if registered. 1008 */ 1009 int mtd_device_unregister(struct mtd_info *master) 1010 { 1011 int err; 1012 1013 if (master->_reboot) { 1014 unregister_reboot_notifier(&master->reboot_notifier); 1015 memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier)); 1016 } 1017 1018 nvmem_unregister(master->otp_user_nvmem); 1019 nvmem_unregister(master->otp_factory_nvmem); 1020 1021 err = del_mtd_partitions(master); 1022 if (err) 1023 return err; 1024 1025 if (!device_is_registered(&master->dev)) 1026 return 0; 1027 1028 return del_mtd_device(master); 1029 } 1030 EXPORT_SYMBOL_GPL(mtd_device_unregister); 1031 1032 /** 1033 * register_mtd_user - register a 'user' of MTD devices. 1034 * @new: pointer to notifier info structure 1035 * 1036 * Registers a pair of callbacks function to be called upon addition 1037 * or removal of MTD devices. Causes the 'add' callback to be immediately 1038 * invoked for each MTD device currently present in the system. 1039 */ 1040 void register_mtd_user (struct mtd_notifier *new) 1041 { 1042 struct mtd_info *mtd; 1043 1044 mutex_lock(&mtd_table_mutex); 1045 1046 list_add(&new->list, &mtd_notifiers); 1047 1048 __module_get(THIS_MODULE); 1049 1050 mtd_for_each_device(mtd) 1051 new->add(mtd); 1052 1053 mutex_unlock(&mtd_table_mutex); 1054 } 1055 EXPORT_SYMBOL_GPL(register_mtd_user); 1056 1057 /** 1058 * unregister_mtd_user - unregister a 'user' of MTD devices. 1059 * @old: pointer to notifier info structure 1060 * 1061 * Removes a callback function pair from the list of 'users' to be 1062 * notified upon addition or removal of MTD devices. Causes the 1063 * 'remove' callback to be immediately invoked for each MTD device 1064 * currently present in the system. 1065 */ 1066 int unregister_mtd_user (struct mtd_notifier *old) 1067 { 1068 struct mtd_info *mtd; 1069 1070 mutex_lock(&mtd_table_mutex); 1071 1072 module_put(THIS_MODULE); 1073 1074 mtd_for_each_device(mtd) 1075 old->remove(mtd); 1076 1077 list_del(&old->list); 1078 mutex_unlock(&mtd_table_mutex); 1079 return 0; 1080 } 1081 EXPORT_SYMBOL_GPL(unregister_mtd_user); 1082 1083 /** 1084 * get_mtd_device - obtain a validated handle for an MTD device 1085 * @mtd: last known address of the required MTD device 1086 * @num: internal device number of the required MTD device 1087 * 1088 * Given a number and NULL address, return the num'th entry in the device 1089 * table, if any. Given an address and num == -1, search the device table 1090 * for a device with that address and return if it's still present. Given 1091 * both, return the num'th driver only if its address matches. Return 1092 * error code if not. 1093 */ 1094 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 1095 { 1096 struct mtd_info *ret = NULL, *other; 1097 int err = -ENODEV; 1098 1099 mutex_lock(&mtd_table_mutex); 1100 1101 if (num == -1) { 1102 mtd_for_each_device(other) { 1103 if (other == mtd) { 1104 ret = mtd; 1105 break; 1106 } 1107 } 1108 } else if (num >= 0) { 1109 ret = idr_find(&mtd_idr, num); 1110 if (mtd && mtd != ret) 1111 ret = NULL; 1112 } 1113 1114 if (!ret) { 1115 ret = ERR_PTR(err); 1116 goto out; 1117 } 1118 1119 err = __get_mtd_device(ret); 1120 if (err) 1121 ret = ERR_PTR(err); 1122 out: 1123 mutex_unlock(&mtd_table_mutex); 1124 return ret; 1125 } 1126 EXPORT_SYMBOL_GPL(get_mtd_device); 1127 1128 1129 int __get_mtd_device(struct mtd_info *mtd) 1130 { 1131 struct mtd_info *master = mtd_get_master(mtd); 1132 int err; 1133 1134 if (!try_module_get(master->owner)) 1135 return -ENODEV; 1136 1137 if (master->_get_device) { 1138 err = master->_get_device(mtd); 1139 1140 if (err) { 1141 module_put(master->owner); 1142 return err; 1143 } 1144 } 1145 1146 master->usecount++; 1147 1148 while (mtd->parent) { 1149 mtd->usecount++; 1150 mtd = mtd->parent; 1151 } 1152 1153 return 0; 1154 } 1155 EXPORT_SYMBOL_GPL(__get_mtd_device); 1156 1157 /** 1158 * get_mtd_device_nm - obtain a validated handle for an MTD device by 1159 * device name 1160 * @name: MTD device name to open 1161 * 1162 * This function returns MTD device description structure in case of 1163 * success and an error code in case of failure. 1164 */ 1165 struct mtd_info *get_mtd_device_nm(const char *name) 1166 { 1167 int err = -ENODEV; 1168 struct mtd_info *mtd = NULL, *other; 1169 1170 mutex_lock(&mtd_table_mutex); 1171 1172 mtd_for_each_device(other) { 1173 if (!strcmp(name, other->name)) { 1174 mtd = other; 1175 break; 1176 } 1177 } 1178 1179 if (!mtd) 1180 goto out_unlock; 1181 1182 err = __get_mtd_device(mtd); 1183 if (err) 1184 goto out_unlock; 1185 1186 mutex_unlock(&mtd_table_mutex); 1187 return mtd; 1188 1189 out_unlock: 1190 mutex_unlock(&mtd_table_mutex); 1191 return ERR_PTR(err); 1192 } 1193 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 1194 1195 void put_mtd_device(struct mtd_info *mtd) 1196 { 1197 mutex_lock(&mtd_table_mutex); 1198 __put_mtd_device(mtd); 1199 mutex_unlock(&mtd_table_mutex); 1200 1201 } 1202 EXPORT_SYMBOL_GPL(put_mtd_device); 1203 1204 void __put_mtd_device(struct mtd_info *mtd) 1205 { 1206 struct mtd_info *master = mtd_get_master(mtd); 1207 1208 while (mtd->parent) { 1209 --mtd->usecount; 1210 BUG_ON(mtd->usecount < 0); 1211 mtd = mtd->parent; 1212 } 1213 1214 master->usecount--; 1215 1216 if (master->_put_device) 1217 master->_put_device(master); 1218 1219 module_put(master->owner); 1220 } 1221 EXPORT_SYMBOL_GPL(__put_mtd_device); 1222 1223 /* 1224 * Erase is an synchronous operation. Device drivers are epected to return a 1225 * negative error code if the operation failed and update instr->fail_addr 1226 * to point the portion that was not properly erased. 1227 */ 1228 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 1229 { 1230 struct mtd_info *master = mtd_get_master(mtd); 1231 u64 mst_ofs = mtd_get_master_ofs(mtd, 0); 1232 struct erase_info adjinstr; 1233 int ret; 1234 1235 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 1236 adjinstr = *instr; 1237 1238 if (!mtd->erasesize || !master->_erase) 1239 return -ENOTSUPP; 1240 1241 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 1242 return -EINVAL; 1243 if (!(mtd->flags & MTD_WRITEABLE)) 1244 return -EROFS; 1245 1246 if (!instr->len) 1247 return 0; 1248 1249 ledtrig_mtd_activity(); 1250 1251 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1252 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) * 1253 master->erasesize; 1254 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) * 1255 master->erasesize) - 1256 adjinstr.addr; 1257 } 1258 1259 adjinstr.addr += mst_ofs; 1260 1261 ret = master->_erase(master, &adjinstr); 1262 1263 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) { 1264 instr->fail_addr = adjinstr.fail_addr - mst_ofs; 1265 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1266 instr->fail_addr = mtd_div_by_eb(instr->fail_addr, 1267 master); 1268 instr->fail_addr *= mtd->erasesize; 1269 } 1270 } 1271 1272 return ret; 1273 } 1274 EXPORT_SYMBOL_GPL(mtd_erase); 1275 1276 /* 1277 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 1278 */ 1279 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1280 void **virt, resource_size_t *phys) 1281 { 1282 struct mtd_info *master = mtd_get_master(mtd); 1283 1284 *retlen = 0; 1285 *virt = NULL; 1286 if (phys) 1287 *phys = 0; 1288 if (!master->_point) 1289 return -EOPNOTSUPP; 1290 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1291 return -EINVAL; 1292 if (!len) 1293 return 0; 1294 1295 from = mtd_get_master_ofs(mtd, from); 1296 return master->_point(master, from, len, retlen, virt, phys); 1297 } 1298 EXPORT_SYMBOL_GPL(mtd_point); 1299 1300 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 1301 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1302 { 1303 struct mtd_info *master = mtd_get_master(mtd); 1304 1305 if (!master->_unpoint) 1306 return -EOPNOTSUPP; 1307 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1308 return -EINVAL; 1309 if (!len) 1310 return 0; 1311 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len); 1312 } 1313 EXPORT_SYMBOL_GPL(mtd_unpoint); 1314 1315 /* 1316 * Allow NOMMU mmap() to directly map the device (if not NULL) 1317 * - return the address to which the offset maps 1318 * - return -ENOSYS to indicate refusal to do the mapping 1319 */ 1320 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1321 unsigned long offset, unsigned long flags) 1322 { 1323 size_t retlen; 1324 void *virt; 1325 int ret; 1326 1327 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); 1328 if (ret) 1329 return ret; 1330 if (retlen != len) { 1331 mtd_unpoint(mtd, offset, retlen); 1332 return -ENOSYS; 1333 } 1334 return (unsigned long)virt; 1335 } 1336 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1337 1338 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master, 1339 const struct mtd_ecc_stats *old_stats) 1340 { 1341 struct mtd_ecc_stats diff; 1342 1343 if (master == mtd) 1344 return; 1345 1346 diff = master->ecc_stats; 1347 diff.failed -= old_stats->failed; 1348 diff.corrected -= old_stats->corrected; 1349 1350 while (mtd->parent) { 1351 mtd->ecc_stats.failed += diff.failed; 1352 mtd->ecc_stats.corrected += diff.corrected; 1353 mtd = mtd->parent; 1354 } 1355 } 1356 1357 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1358 u_char *buf) 1359 { 1360 struct mtd_oob_ops ops = { 1361 .len = len, 1362 .datbuf = buf, 1363 }; 1364 int ret; 1365 1366 ret = mtd_read_oob(mtd, from, &ops); 1367 *retlen = ops.retlen; 1368 1369 return ret; 1370 } 1371 EXPORT_SYMBOL_GPL(mtd_read); 1372 1373 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1374 const u_char *buf) 1375 { 1376 struct mtd_oob_ops ops = { 1377 .len = len, 1378 .datbuf = (u8 *)buf, 1379 }; 1380 int ret; 1381 1382 ret = mtd_write_oob(mtd, to, &ops); 1383 *retlen = ops.retlen; 1384 1385 return ret; 1386 } 1387 EXPORT_SYMBOL_GPL(mtd_write); 1388 1389 /* 1390 * In blackbox flight recorder like scenarios we want to make successful writes 1391 * in interrupt context. panic_write() is only intended to be called when its 1392 * known the kernel is about to panic and we need the write to succeed. Since 1393 * the kernel is not going to be running for much longer, this function can 1394 * break locks and delay to ensure the write succeeds (but not sleep). 1395 */ 1396 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1397 const u_char *buf) 1398 { 1399 struct mtd_info *master = mtd_get_master(mtd); 1400 1401 *retlen = 0; 1402 if (!master->_panic_write) 1403 return -EOPNOTSUPP; 1404 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1405 return -EINVAL; 1406 if (!(mtd->flags & MTD_WRITEABLE)) 1407 return -EROFS; 1408 if (!len) 1409 return 0; 1410 if (!master->oops_panic_write) 1411 master->oops_panic_write = true; 1412 1413 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len, 1414 retlen, buf); 1415 } 1416 EXPORT_SYMBOL_GPL(mtd_panic_write); 1417 1418 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1419 struct mtd_oob_ops *ops) 1420 { 1421 /* 1422 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1423 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1424 * this case. 1425 */ 1426 if (!ops->datbuf) 1427 ops->len = 0; 1428 1429 if (!ops->oobbuf) 1430 ops->ooblen = 0; 1431 1432 if (offs < 0 || offs + ops->len > mtd->size) 1433 return -EINVAL; 1434 1435 if (ops->ooblen) { 1436 size_t maxooblen; 1437 1438 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1439 return -EINVAL; 1440 1441 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) - 1442 mtd_div_by_ws(offs, mtd)) * 1443 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1444 if (ops->ooblen > maxooblen) 1445 return -EINVAL; 1446 } 1447 1448 return 0; 1449 } 1450 1451 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from, 1452 struct mtd_oob_ops *ops) 1453 { 1454 struct mtd_info *master = mtd_get_master(mtd); 1455 int ret; 1456 1457 from = mtd_get_master_ofs(mtd, from); 1458 if (master->_read_oob) 1459 ret = master->_read_oob(master, from, ops); 1460 else 1461 ret = master->_read(master, from, ops->len, &ops->retlen, 1462 ops->datbuf); 1463 1464 return ret; 1465 } 1466 1467 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to, 1468 struct mtd_oob_ops *ops) 1469 { 1470 struct mtd_info *master = mtd_get_master(mtd); 1471 int ret; 1472 1473 to = mtd_get_master_ofs(mtd, to); 1474 if (master->_write_oob) 1475 ret = master->_write_oob(master, to, ops); 1476 else 1477 ret = master->_write(master, to, ops->len, &ops->retlen, 1478 ops->datbuf); 1479 1480 return ret; 1481 } 1482 1483 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read, 1484 struct mtd_oob_ops *ops) 1485 { 1486 struct mtd_info *master = mtd_get_master(mtd); 1487 int ngroups = mtd_pairing_groups(master); 1488 int npairs = mtd_wunit_per_eb(master) / ngroups; 1489 struct mtd_oob_ops adjops = *ops; 1490 unsigned int wunit, oobavail; 1491 struct mtd_pairing_info info; 1492 int max_bitflips = 0; 1493 u32 ebofs, pageofs; 1494 loff_t base, pos; 1495 1496 ebofs = mtd_mod_by_eb(start, mtd); 1497 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize; 1498 info.group = 0; 1499 info.pair = mtd_div_by_ws(ebofs, mtd); 1500 pageofs = mtd_mod_by_ws(ebofs, mtd); 1501 oobavail = mtd_oobavail(mtd, ops); 1502 1503 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) { 1504 int ret; 1505 1506 if (info.pair >= npairs) { 1507 info.pair = 0; 1508 base += master->erasesize; 1509 } 1510 1511 wunit = mtd_pairing_info_to_wunit(master, &info); 1512 pos = mtd_wunit_to_offset(mtd, base, wunit); 1513 1514 adjops.len = ops->len - ops->retlen; 1515 if (adjops.len > mtd->writesize - pageofs) 1516 adjops.len = mtd->writesize - pageofs; 1517 1518 adjops.ooblen = ops->ooblen - ops->oobretlen; 1519 if (adjops.ooblen > oobavail - adjops.ooboffs) 1520 adjops.ooblen = oobavail - adjops.ooboffs; 1521 1522 if (read) { 1523 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops); 1524 if (ret > 0) 1525 max_bitflips = max(max_bitflips, ret); 1526 } else { 1527 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops); 1528 } 1529 1530 if (ret < 0) 1531 return ret; 1532 1533 max_bitflips = max(max_bitflips, ret); 1534 ops->retlen += adjops.retlen; 1535 ops->oobretlen += adjops.oobretlen; 1536 adjops.datbuf += adjops.retlen; 1537 adjops.oobbuf += adjops.oobretlen; 1538 adjops.ooboffs = 0; 1539 pageofs = 0; 1540 info.pair++; 1541 } 1542 1543 return max_bitflips; 1544 } 1545 1546 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1547 { 1548 struct mtd_info *master = mtd_get_master(mtd); 1549 struct mtd_ecc_stats old_stats = master->ecc_stats; 1550 int ret_code; 1551 1552 ops->retlen = ops->oobretlen = 0; 1553 1554 ret_code = mtd_check_oob_ops(mtd, from, ops); 1555 if (ret_code) 1556 return ret_code; 1557 1558 ledtrig_mtd_activity(); 1559 1560 /* Check the validity of a potential fallback on mtd->_read */ 1561 if (!master->_read_oob && (!master->_read || ops->oobbuf)) 1562 return -EOPNOTSUPP; 1563 1564 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1565 ret_code = mtd_io_emulated_slc(mtd, from, true, ops); 1566 else 1567 ret_code = mtd_read_oob_std(mtd, from, ops); 1568 1569 mtd_update_ecc_stats(mtd, master, &old_stats); 1570 1571 /* 1572 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1573 * similar to mtd->_read(), returning a non-negative integer 1574 * representing max bitflips. In other cases, mtd->_read_oob() may 1575 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1576 */ 1577 if (unlikely(ret_code < 0)) 1578 return ret_code; 1579 if (mtd->ecc_strength == 0) 1580 return 0; /* device lacks ecc */ 1581 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1582 } 1583 EXPORT_SYMBOL_GPL(mtd_read_oob); 1584 1585 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1586 struct mtd_oob_ops *ops) 1587 { 1588 struct mtd_info *master = mtd_get_master(mtd); 1589 int ret; 1590 1591 ops->retlen = ops->oobretlen = 0; 1592 1593 if (!(mtd->flags & MTD_WRITEABLE)) 1594 return -EROFS; 1595 1596 ret = mtd_check_oob_ops(mtd, to, ops); 1597 if (ret) 1598 return ret; 1599 1600 ledtrig_mtd_activity(); 1601 1602 /* Check the validity of a potential fallback on mtd->_write */ 1603 if (!master->_write_oob && (!master->_write || ops->oobbuf)) 1604 return -EOPNOTSUPP; 1605 1606 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1607 return mtd_io_emulated_slc(mtd, to, false, ops); 1608 1609 return mtd_write_oob_std(mtd, to, ops); 1610 } 1611 EXPORT_SYMBOL_GPL(mtd_write_oob); 1612 1613 /** 1614 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1615 * @mtd: MTD device structure 1616 * @section: ECC section. Depending on the layout you may have all the ECC 1617 * bytes stored in a single contiguous section, or one section 1618 * per ECC chunk (and sometime several sections for a single ECC 1619 * ECC chunk) 1620 * @oobecc: OOB region struct filled with the appropriate ECC position 1621 * information 1622 * 1623 * This function returns ECC section information in the OOB area. If you want 1624 * to get all the ECC bytes information, then you should call 1625 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1626 * 1627 * Returns zero on success, a negative error code otherwise. 1628 */ 1629 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1630 struct mtd_oob_region *oobecc) 1631 { 1632 struct mtd_info *master = mtd_get_master(mtd); 1633 1634 memset(oobecc, 0, sizeof(*oobecc)); 1635 1636 if (!master || section < 0) 1637 return -EINVAL; 1638 1639 if (!master->ooblayout || !master->ooblayout->ecc) 1640 return -ENOTSUPP; 1641 1642 return master->ooblayout->ecc(master, section, oobecc); 1643 } 1644 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1645 1646 /** 1647 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1648 * section 1649 * @mtd: MTD device structure 1650 * @section: Free section you are interested in. Depending on the layout 1651 * you may have all the free bytes stored in a single contiguous 1652 * section, or one section per ECC chunk plus an extra section 1653 * for the remaining bytes (or other funky layout). 1654 * @oobfree: OOB region struct filled with the appropriate free position 1655 * information 1656 * 1657 * This function returns free bytes position in the OOB area. If you want 1658 * to get all the free bytes information, then you should call 1659 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1660 * 1661 * Returns zero on success, a negative error code otherwise. 1662 */ 1663 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1664 struct mtd_oob_region *oobfree) 1665 { 1666 struct mtd_info *master = mtd_get_master(mtd); 1667 1668 memset(oobfree, 0, sizeof(*oobfree)); 1669 1670 if (!master || section < 0) 1671 return -EINVAL; 1672 1673 if (!master->ooblayout || !master->ooblayout->free) 1674 return -ENOTSUPP; 1675 1676 return master->ooblayout->free(master, section, oobfree); 1677 } 1678 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1679 1680 /** 1681 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1682 * @mtd: mtd info structure 1683 * @byte: the byte we are searching for 1684 * @sectionp: pointer where the section id will be stored 1685 * @oobregion: used to retrieve the ECC position 1686 * @iter: iterator function. Should be either mtd_ooblayout_free or 1687 * mtd_ooblayout_ecc depending on the region type you're searching for 1688 * 1689 * This function returns the section id and oobregion information of a 1690 * specific byte. For example, say you want to know where the 4th ECC byte is 1691 * stored, you'll use: 1692 * 1693 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1694 * 1695 * Returns zero on success, a negative error code otherwise. 1696 */ 1697 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1698 int *sectionp, struct mtd_oob_region *oobregion, 1699 int (*iter)(struct mtd_info *, 1700 int section, 1701 struct mtd_oob_region *oobregion)) 1702 { 1703 int pos = 0, ret, section = 0; 1704 1705 memset(oobregion, 0, sizeof(*oobregion)); 1706 1707 while (1) { 1708 ret = iter(mtd, section, oobregion); 1709 if (ret) 1710 return ret; 1711 1712 if (pos + oobregion->length > byte) 1713 break; 1714 1715 pos += oobregion->length; 1716 section++; 1717 } 1718 1719 /* 1720 * Adjust region info to make it start at the beginning at the 1721 * 'start' ECC byte. 1722 */ 1723 oobregion->offset += byte - pos; 1724 oobregion->length -= byte - pos; 1725 *sectionp = section; 1726 1727 return 0; 1728 } 1729 1730 /** 1731 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1732 * ECC byte 1733 * @mtd: mtd info structure 1734 * @eccbyte: the byte we are searching for 1735 * @section: pointer where the section id will be stored 1736 * @oobregion: OOB region information 1737 * 1738 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1739 * byte. 1740 * 1741 * Returns zero on success, a negative error code otherwise. 1742 */ 1743 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1744 int *section, 1745 struct mtd_oob_region *oobregion) 1746 { 1747 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1748 mtd_ooblayout_ecc); 1749 } 1750 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1751 1752 /** 1753 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1754 * @mtd: mtd info structure 1755 * @buf: destination buffer to store OOB bytes 1756 * @oobbuf: OOB buffer 1757 * @start: first byte to retrieve 1758 * @nbytes: number of bytes to retrieve 1759 * @iter: section iterator 1760 * 1761 * Extract bytes attached to a specific category (ECC or free) 1762 * from the OOB buffer and copy them into buf. 1763 * 1764 * Returns zero on success, a negative error code otherwise. 1765 */ 1766 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1767 const u8 *oobbuf, int start, int nbytes, 1768 int (*iter)(struct mtd_info *, 1769 int section, 1770 struct mtd_oob_region *oobregion)) 1771 { 1772 struct mtd_oob_region oobregion; 1773 int section, ret; 1774 1775 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1776 &oobregion, iter); 1777 1778 while (!ret) { 1779 int cnt; 1780 1781 cnt = min_t(int, nbytes, oobregion.length); 1782 memcpy(buf, oobbuf + oobregion.offset, cnt); 1783 buf += cnt; 1784 nbytes -= cnt; 1785 1786 if (!nbytes) 1787 break; 1788 1789 ret = iter(mtd, ++section, &oobregion); 1790 } 1791 1792 return ret; 1793 } 1794 1795 /** 1796 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1797 * @mtd: mtd info structure 1798 * @buf: source buffer to get OOB bytes from 1799 * @oobbuf: OOB buffer 1800 * @start: first OOB byte to set 1801 * @nbytes: number of OOB bytes to set 1802 * @iter: section iterator 1803 * 1804 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1805 * is selected by passing the appropriate iterator. 1806 * 1807 * Returns zero on success, a negative error code otherwise. 1808 */ 1809 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1810 u8 *oobbuf, int start, int nbytes, 1811 int (*iter)(struct mtd_info *, 1812 int section, 1813 struct mtd_oob_region *oobregion)) 1814 { 1815 struct mtd_oob_region oobregion; 1816 int section, ret; 1817 1818 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1819 &oobregion, iter); 1820 1821 while (!ret) { 1822 int cnt; 1823 1824 cnt = min_t(int, nbytes, oobregion.length); 1825 memcpy(oobbuf + oobregion.offset, buf, cnt); 1826 buf += cnt; 1827 nbytes -= cnt; 1828 1829 if (!nbytes) 1830 break; 1831 1832 ret = iter(mtd, ++section, &oobregion); 1833 } 1834 1835 return ret; 1836 } 1837 1838 /** 1839 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1840 * @mtd: mtd info structure 1841 * @iter: category iterator 1842 * 1843 * Count the number of bytes in a given category. 1844 * 1845 * Returns a positive value on success, a negative error code otherwise. 1846 */ 1847 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1848 int (*iter)(struct mtd_info *, 1849 int section, 1850 struct mtd_oob_region *oobregion)) 1851 { 1852 struct mtd_oob_region oobregion; 1853 int section = 0, ret, nbytes = 0; 1854 1855 while (1) { 1856 ret = iter(mtd, section++, &oobregion); 1857 if (ret) { 1858 if (ret == -ERANGE) 1859 ret = nbytes; 1860 break; 1861 } 1862 1863 nbytes += oobregion.length; 1864 } 1865 1866 return ret; 1867 } 1868 1869 /** 1870 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1871 * @mtd: mtd info structure 1872 * @eccbuf: destination buffer to store ECC bytes 1873 * @oobbuf: OOB buffer 1874 * @start: first ECC byte to retrieve 1875 * @nbytes: number of ECC bytes to retrieve 1876 * 1877 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1878 * 1879 * Returns zero on success, a negative error code otherwise. 1880 */ 1881 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1882 const u8 *oobbuf, int start, int nbytes) 1883 { 1884 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1885 mtd_ooblayout_ecc); 1886 } 1887 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1888 1889 /** 1890 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1891 * @mtd: mtd info structure 1892 * @eccbuf: source buffer to get ECC bytes from 1893 * @oobbuf: OOB buffer 1894 * @start: first ECC byte to set 1895 * @nbytes: number of ECC bytes to set 1896 * 1897 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 1898 * 1899 * Returns zero on success, a negative error code otherwise. 1900 */ 1901 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 1902 u8 *oobbuf, int start, int nbytes) 1903 { 1904 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1905 mtd_ooblayout_ecc); 1906 } 1907 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 1908 1909 /** 1910 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 1911 * @mtd: mtd info structure 1912 * @databuf: destination buffer to store ECC bytes 1913 * @oobbuf: OOB buffer 1914 * @start: first ECC byte to retrieve 1915 * @nbytes: number of ECC bytes to retrieve 1916 * 1917 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1918 * 1919 * Returns zero on success, a negative error code otherwise. 1920 */ 1921 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 1922 const u8 *oobbuf, int start, int nbytes) 1923 { 1924 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 1925 mtd_ooblayout_free); 1926 } 1927 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 1928 1929 /** 1930 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer 1931 * @mtd: mtd info structure 1932 * @databuf: source buffer to get data bytes from 1933 * @oobbuf: OOB buffer 1934 * @start: first ECC byte to set 1935 * @nbytes: number of ECC bytes to set 1936 * 1937 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes. 1938 * 1939 * Returns zero on success, a negative error code otherwise. 1940 */ 1941 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 1942 u8 *oobbuf, int start, int nbytes) 1943 { 1944 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 1945 mtd_ooblayout_free); 1946 } 1947 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 1948 1949 /** 1950 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 1951 * @mtd: mtd info structure 1952 * 1953 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 1954 * 1955 * Returns zero on success, a negative error code otherwise. 1956 */ 1957 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 1958 { 1959 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 1960 } 1961 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 1962 1963 /** 1964 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB 1965 * @mtd: mtd info structure 1966 * 1967 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 1968 * 1969 * Returns zero on success, a negative error code otherwise. 1970 */ 1971 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 1972 { 1973 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 1974 } 1975 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 1976 1977 /* 1978 * Method to access the protection register area, present in some flash 1979 * devices. The user data is one time programmable but the factory data is read 1980 * only. 1981 */ 1982 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1983 struct otp_info *buf) 1984 { 1985 struct mtd_info *master = mtd_get_master(mtd); 1986 1987 if (!master->_get_fact_prot_info) 1988 return -EOPNOTSUPP; 1989 if (!len) 1990 return 0; 1991 return master->_get_fact_prot_info(master, len, retlen, buf); 1992 } 1993 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 1994 1995 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1996 size_t *retlen, u_char *buf) 1997 { 1998 struct mtd_info *master = mtd_get_master(mtd); 1999 2000 *retlen = 0; 2001 if (!master->_read_fact_prot_reg) 2002 return -EOPNOTSUPP; 2003 if (!len) 2004 return 0; 2005 return master->_read_fact_prot_reg(master, from, len, retlen, buf); 2006 } 2007 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 2008 2009 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 2010 struct otp_info *buf) 2011 { 2012 struct mtd_info *master = mtd_get_master(mtd); 2013 2014 if (!master->_get_user_prot_info) 2015 return -EOPNOTSUPP; 2016 if (!len) 2017 return 0; 2018 return master->_get_user_prot_info(master, len, retlen, buf); 2019 } 2020 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 2021 2022 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 2023 size_t *retlen, u_char *buf) 2024 { 2025 struct mtd_info *master = mtd_get_master(mtd); 2026 2027 *retlen = 0; 2028 if (!master->_read_user_prot_reg) 2029 return -EOPNOTSUPP; 2030 if (!len) 2031 return 0; 2032 return master->_read_user_prot_reg(master, from, len, retlen, buf); 2033 } 2034 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 2035 2036 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 2037 size_t *retlen, const u_char *buf) 2038 { 2039 struct mtd_info *master = mtd_get_master(mtd); 2040 int ret; 2041 2042 *retlen = 0; 2043 if (!master->_write_user_prot_reg) 2044 return -EOPNOTSUPP; 2045 if (!len) 2046 return 0; 2047 ret = master->_write_user_prot_reg(master, to, len, retlen, buf); 2048 if (ret) 2049 return ret; 2050 2051 /* 2052 * If no data could be written at all, we are out of memory and 2053 * must return -ENOSPC. 2054 */ 2055 return (*retlen) ? 0 : -ENOSPC; 2056 } 2057 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 2058 2059 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2060 { 2061 struct mtd_info *master = mtd_get_master(mtd); 2062 2063 if (!master->_lock_user_prot_reg) 2064 return -EOPNOTSUPP; 2065 if (!len) 2066 return 0; 2067 return master->_lock_user_prot_reg(master, from, len); 2068 } 2069 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 2070 2071 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2072 { 2073 struct mtd_info *master = mtd_get_master(mtd); 2074 2075 if (!master->_erase_user_prot_reg) 2076 return -EOPNOTSUPP; 2077 if (!len) 2078 return 0; 2079 return master->_erase_user_prot_reg(master, from, len); 2080 } 2081 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg); 2082 2083 /* Chip-supported device locking */ 2084 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2085 { 2086 struct mtd_info *master = mtd_get_master(mtd); 2087 2088 if (!master->_lock) 2089 return -EOPNOTSUPP; 2090 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2091 return -EINVAL; 2092 if (!len) 2093 return 0; 2094 2095 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2096 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2097 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2098 } 2099 2100 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len); 2101 } 2102 EXPORT_SYMBOL_GPL(mtd_lock); 2103 2104 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2105 { 2106 struct mtd_info *master = mtd_get_master(mtd); 2107 2108 if (!master->_unlock) 2109 return -EOPNOTSUPP; 2110 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2111 return -EINVAL; 2112 if (!len) 2113 return 0; 2114 2115 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2116 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2117 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2118 } 2119 2120 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len); 2121 } 2122 EXPORT_SYMBOL_GPL(mtd_unlock); 2123 2124 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2125 { 2126 struct mtd_info *master = mtd_get_master(mtd); 2127 2128 if (!master->_is_locked) 2129 return -EOPNOTSUPP; 2130 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2131 return -EINVAL; 2132 if (!len) 2133 return 0; 2134 2135 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2136 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2137 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2138 } 2139 2140 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len); 2141 } 2142 EXPORT_SYMBOL_GPL(mtd_is_locked); 2143 2144 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 2145 { 2146 struct mtd_info *master = mtd_get_master(mtd); 2147 2148 if (ofs < 0 || ofs >= mtd->size) 2149 return -EINVAL; 2150 if (!master->_block_isreserved) 2151 return 0; 2152 2153 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2154 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2155 2156 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs)); 2157 } 2158 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 2159 2160 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 2161 { 2162 struct mtd_info *master = mtd_get_master(mtd); 2163 2164 if (ofs < 0 || ofs >= mtd->size) 2165 return -EINVAL; 2166 if (!master->_block_isbad) 2167 return 0; 2168 2169 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2170 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2171 2172 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs)); 2173 } 2174 EXPORT_SYMBOL_GPL(mtd_block_isbad); 2175 2176 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 2177 { 2178 struct mtd_info *master = mtd_get_master(mtd); 2179 int ret; 2180 2181 if (!master->_block_markbad) 2182 return -EOPNOTSUPP; 2183 if (ofs < 0 || ofs >= mtd->size) 2184 return -EINVAL; 2185 if (!(mtd->flags & MTD_WRITEABLE)) 2186 return -EROFS; 2187 2188 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2189 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2190 2191 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs)); 2192 if (ret) 2193 return ret; 2194 2195 while (mtd->parent) { 2196 mtd->ecc_stats.badblocks++; 2197 mtd = mtd->parent; 2198 } 2199 2200 return 0; 2201 } 2202 EXPORT_SYMBOL_GPL(mtd_block_markbad); 2203 2204 /* 2205 * default_mtd_writev - the default writev method 2206 * @mtd: mtd device description object pointer 2207 * @vecs: the vectors to write 2208 * @count: count of vectors in @vecs 2209 * @to: the MTD device offset to write to 2210 * @retlen: on exit contains the count of bytes written to the MTD device. 2211 * 2212 * This function returns zero in case of success and a negative error code in 2213 * case of failure. 2214 */ 2215 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2216 unsigned long count, loff_t to, size_t *retlen) 2217 { 2218 unsigned long i; 2219 size_t totlen = 0, thislen; 2220 int ret = 0; 2221 2222 for (i = 0; i < count; i++) { 2223 if (!vecs[i].iov_len) 2224 continue; 2225 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 2226 vecs[i].iov_base); 2227 totlen += thislen; 2228 if (ret || thislen != vecs[i].iov_len) 2229 break; 2230 to += vecs[i].iov_len; 2231 } 2232 *retlen = totlen; 2233 return ret; 2234 } 2235 2236 /* 2237 * mtd_writev - the vector-based MTD write method 2238 * @mtd: mtd device description object pointer 2239 * @vecs: the vectors to write 2240 * @count: count of vectors in @vecs 2241 * @to: the MTD device offset to write to 2242 * @retlen: on exit contains the count of bytes written to the MTD device. 2243 * 2244 * This function returns zero in case of success and a negative error code in 2245 * case of failure. 2246 */ 2247 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2248 unsigned long count, loff_t to, size_t *retlen) 2249 { 2250 struct mtd_info *master = mtd_get_master(mtd); 2251 2252 *retlen = 0; 2253 if (!(mtd->flags & MTD_WRITEABLE)) 2254 return -EROFS; 2255 2256 if (!master->_writev) 2257 return default_mtd_writev(mtd, vecs, count, to, retlen); 2258 2259 return master->_writev(master, vecs, count, 2260 mtd_get_master_ofs(mtd, to), retlen); 2261 } 2262 EXPORT_SYMBOL_GPL(mtd_writev); 2263 2264 /** 2265 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 2266 * @mtd: mtd device description object pointer 2267 * @size: a pointer to the ideal or maximum size of the allocation, points 2268 * to the actual allocation size on success. 2269 * 2270 * This routine attempts to allocate a contiguous kernel buffer up to 2271 * the specified size, backing off the size of the request exponentially 2272 * until the request succeeds or until the allocation size falls below 2273 * the system page size. This attempts to make sure it does not adversely 2274 * impact system performance, so when allocating more than one page, we 2275 * ask the memory allocator to avoid re-trying, swapping, writing back 2276 * or performing I/O. 2277 * 2278 * Note, this function also makes sure that the allocated buffer is aligned to 2279 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 2280 * 2281 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 2282 * to handle smaller (i.e. degraded) buffer allocations under low- or 2283 * fragmented-memory situations where such reduced allocations, from a 2284 * requested ideal, are allowed. 2285 * 2286 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 2287 */ 2288 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 2289 { 2290 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 2291 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 2292 void *kbuf; 2293 2294 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 2295 2296 while (*size > min_alloc) { 2297 kbuf = kmalloc(*size, flags); 2298 if (kbuf) 2299 return kbuf; 2300 2301 *size >>= 1; 2302 *size = ALIGN(*size, mtd->writesize); 2303 } 2304 2305 /* 2306 * For the last resort allocation allow 'kmalloc()' to do all sorts of 2307 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 2308 */ 2309 return kmalloc(*size, GFP_KERNEL); 2310 } 2311 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 2312 2313 #ifdef CONFIG_PROC_FS 2314 2315 /*====================================================================*/ 2316 /* Support for /proc/mtd */ 2317 2318 static int mtd_proc_show(struct seq_file *m, void *v) 2319 { 2320 struct mtd_info *mtd; 2321 2322 seq_puts(m, "dev: size erasesize name\n"); 2323 mutex_lock(&mtd_table_mutex); 2324 mtd_for_each_device(mtd) { 2325 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 2326 mtd->index, (unsigned long long)mtd->size, 2327 mtd->erasesize, mtd->name); 2328 } 2329 mutex_unlock(&mtd_table_mutex); 2330 return 0; 2331 } 2332 #endif /* CONFIG_PROC_FS */ 2333 2334 /*====================================================================*/ 2335 /* Init code */ 2336 2337 static struct backing_dev_info * __init mtd_bdi_init(const char *name) 2338 { 2339 struct backing_dev_info *bdi; 2340 int ret; 2341 2342 bdi = bdi_alloc(NUMA_NO_NODE); 2343 if (!bdi) 2344 return ERR_PTR(-ENOMEM); 2345 bdi->ra_pages = 0; 2346 bdi->io_pages = 0; 2347 2348 /* 2349 * We put '-0' suffix to the name to get the same name format as we 2350 * used to get. Since this is called only once, we get a unique name. 2351 */ 2352 ret = bdi_register(bdi, "%.28s-0", name); 2353 if (ret) 2354 bdi_put(bdi); 2355 2356 return ret ? ERR_PTR(ret) : bdi; 2357 } 2358 2359 static struct proc_dir_entry *proc_mtd; 2360 2361 static int __init init_mtd(void) 2362 { 2363 int ret; 2364 2365 ret = class_register(&mtd_class); 2366 if (ret) 2367 goto err_reg; 2368 2369 mtd_bdi = mtd_bdi_init("mtd"); 2370 if (IS_ERR(mtd_bdi)) { 2371 ret = PTR_ERR(mtd_bdi); 2372 goto err_bdi; 2373 } 2374 2375 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show); 2376 2377 ret = init_mtdchar(); 2378 if (ret) 2379 goto out_procfs; 2380 2381 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 2382 debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd, 2383 &mtd_expert_analysis_mode); 2384 2385 return 0; 2386 2387 out_procfs: 2388 if (proc_mtd) 2389 remove_proc_entry("mtd", NULL); 2390 bdi_put(mtd_bdi); 2391 err_bdi: 2392 class_unregister(&mtd_class); 2393 err_reg: 2394 pr_err("Error registering mtd class or bdi: %d\n", ret); 2395 return ret; 2396 } 2397 2398 static void __exit cleanup_mtd(void) 2399 { 2400 debugfs_remove_recursive(dfs_dir_mtd); 2401 cleanup_mtdchar(); 2402 if (proc_mtd) 2403 remove_proc_entry("mtd", NULL); 2404 class_unregister(&mtd_class); 2405 bdi_unregister(mtd_bdi); 2406 bdi_put(mtd_bdi); 2407 idr_destroy(&mtd_idr); 2408 } 2409 2410 module_init(init_mtd); 2411 module_exit(cleanup_mtd); 2412 2413 MODULE_LICENSE("GPL"); 2414 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 2415 MODULE_DESCRIPTION("Core MTD registration and access routines"); 2416