xref: /openbmc/linux/drivers/mtd/mtdcore.c (revision d9e32672)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/slab.h>
27 #include <linux/reboot.h>
28 #include <linux/leds.h>
29 #include <linux/debugfs.h>
30 #include <linux/nvmem-provider.h>
31 
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/partitions.h>
34 
35 #include "mtdcore.h"
36 
37 struct backing_dev_info *mtd_bdi;
38 
39 #ifdef CONFIG_PM_SLEEP
40 
41 static int mtd_cls_suspend(struct device *dev)
42 {
43 	struct mtd_info *mtd = dev_get_drvdata(dev);
44 
45 	return mtd ? mtd_suspend(mtd) : 0;
46 }
47 
48 static int mtd_cls_resume(struct device *dev)
49 {
50 	struct mtd_info *mtd = dev_get_drvdata(dev);
51 
52 	if (mtd)
53 		mtd_resume(mtd);
54 	return 0;
55 }
56 
57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59 #else
60 #define MTD_CLS_PM_OPS NULL
61 #endif
62 
63 static struct class mtd_class = {
64 	.name = "mtd",
65 	.owner = THIS_MODULE,
66 	.pm = MTD_CLS_PM_OPS,
67 };
68 
69 static DEFINE_IDR(mtd_idr);
70 
71 /* These are exported solely for the purpose of mtd_blkdevs.c. You
72    should not use them for _anything_ else */
73 DEFINE_MUTEX(mtd_table_mutex);
74 EXPORT_SYMBOL_GPL(mtd_table_mutex);
75 
76 struct mtd_info *__mtd_next_device(int i)
77 {
78 	return idr_get_next(&mtd_idr, &i);
79 }
80 EXPORT_SYMBOL_GPL(__mtd_next_device);
81 
82 static LIST_HEAD(mtd_notifiers);
83 
84 
85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
86 
87 /* REVISIT once MTD uses the driver model better, whoever allocates
88  * the mtd_info will probably want to use the release() hook...
89  */
90 static void mtd_release(struct device *dev)
91 {
92 	struct mtd_info *mtd = dev_get_drvdata(dev);
93 	dev_t index = MTD_DEVT(mtd->index);
94 
95 	/* remove /dev/mtdXro node */
96 	device_destroy(&mtd_class, index + 1);
97 }
98 
99 static ssize_t mtd_type_show(struct device *dev,
100 		struct device_attribute *attr, char *buf)
101 {
102 	struct mtd_info *mtd = dev_get_drvdata(dev);
103 	char *type;
104 
105 	switch (mtd->type) {
106 	case MTD_ABSENT:
107 		type = "absent";
108 		break;
109 	case MTD_RAM:
110 		type = "ram";
111 		break;
112 	case MTD_ROM:
113 		type = "rom";
114 		break;
115 	case MTD_NORFLASH:
116 		type = "nor";
117 		break;
118 	case MTD_NANDFLASH:
119 		type = "nand";
120 		break;
121 	case MTD_DATAFLASH:
122 		type = "dataflash";
123 		break;
124 	case MTD_UBIVOLUME:
125 		type = "ubi";
126 		break;
127 	case MTD_MLCNANDFLASH:
128 		type = "mlc-nand";
129 		break;
130 	default:
131 		type = "unknown";
132 	}
133 
134 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
135 }
136 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
137 
138 static ssize_t mtd_flags_show(struct device *dev,
139 		struct device_attribute *attr, char *buf)
140 {
141 	struct mtd_info *mtd = dev_get_drvdata(dev);
142 
143 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
144 }
145 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
146 
147 static ssize_t mtd_size_show(struct device *dev,
148 		struct device_attribute *attr, char *buf)
149 {
150 	struct mtd_info *mtd = dev_get_drvdata(dev);
151 
152 	return snprintf(buf, PAGE_SIZE, "%llu\n",
153 		(unsigned long long)mtd->size);
154 }
155 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
156 
157 static ssize_t mtd_erasesize_show(struct device *dev,
158 		struct device_attribute *attr, char *buf)
159 {
160 	struct mtd_info *mtd = dev_get_drvdata(dev);
161 
162 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
163 }
164 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
165 
166 static ssize_t mtd_writesize_show(struct device *dev,
167 		struct device_attribute *attr, char *buf)
168 {
169 	struct mtd_info *mtd = dev_get_drvdata(dev);
170 
171 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
172 }
173 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
174 
175 static ssize_t mtd_subpagesize_show(struct device *dev,
176 		struct device_attribute *attr, char *buf)
177 {
178 	struct mtd_info *mtd = dev_get_drvdata(dev);
179 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
180 
181 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
182 }
183 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
184 
185 static ssize_t mtd_oobsize_show(struct device *dev,
186 		struct device_attribute *attr, char *buf)
187 {
188 	struct mtd_info *mtd = dev_get_drvdata(dev);
189 
190 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
191 }
192 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
193 
194 static ssize_t mtd_oobavail_show(struct device *dev,
195 				 struct device_attribute *attr, char *buf)
196 {
197 	struct mtd_info *mtd = dev_get_drvdata(dev);
198 
199 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
200 }
201 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
202 
203 static ssize_t mtd_numeraseregions_show(struct device *dev,
204 		struct device_attribute *attr, char *buf)
205 {
206 	struct mtd_info *mtd = dev_get_drvdata(dev);
207 
208 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
209 }
210 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
211 	NULL);
212 
213 static ssize_t mtd_name_show(struct device *dev,
214 		struct device_attribute *attr, char *buf)
215 {
216 	struct mtd_info *mtd = dev_get_drvdata(dev);
217 
218 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
219 }
220 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
221 
222 static ssize_t mtd_ecc_strength_show(struct device *dev,
223 				     struct device_attribute *attr, char *buf)
224 {
225 	struct mtd_info *mtd = dev_get_drvdata(dev);
226 
227 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
228 }
229 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
230 
231 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
232 					  struct device_attribute *attr,
233 					  char *buf)
234 {
235 	struct mtd_info *mtd = dev_get_drvdata(dev);
236 
237 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
238 }
239 
240 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
241 					   struct device_attribute *attr,
242 					   const char *buf, size_t count)
243 {
244 	struct mtd_info *mtd = dev_get_drvdata(dev);
245 	unsigned int bitflip_threshold;
246 	int retval;
247 
248 	retval = kstrtouint(buf, 0, &bitflip_threshold);
249 	if (retval)
250 		return retval;
251 
252 	mtd->bitflip_threshold = bitflip_threshold;
253 	return count;
254 }
255 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
256 		   mtd_bitflip_threshold_show,
257 		   mtd_bitflip_threshold_store);
258 
259 static ssize_t mtd_ecc_step_size_show(struct device *dev,
260 		struct device_attribute *attr, char *buf)
261 {
262 	struct mtd_info *mtd = dev_get_drvdata(dev);
263 
264 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
265 
266 }
267 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
268 
269 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
270 		struct device_attribute *attr, char *buf)
271 {
272 	struct mtd_info *mtd = dev_get_drvdata(dev);
273 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
274 
275 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
276 }
277 static DEVICE_ATTR(corrected_bits, S_IRUGO,
278 		   mtd_ecc_stats_corrected_show, NULL);
279 
280 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
281 		struct device_attribute *attr, char *buf)
282 {
283 	struct mtd_info *mtd = dev_get_drvdata(dev);
284 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
285 
286 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
287 }
288 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
289 
290 static ssize_t mtd_badblocks_show(struct device *dev,
291 		struct device_attribute *attr, char *buf)
292 {
293 	struct mtd_info *mtd = dev_get_drvdata(dev);
294 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
295 
296 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
297 }
298 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
299 
300 static ssize_t mtd_bbtblocks_show(struct device *dev,
301 		struct device_attribute *attr, char *buf)
302 {
303 	struct mtd_info *mtd = dev_get_drvdata(dev);
304 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
305 
306 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
307 }
308 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
309 
310 static struct attribute *mtd_attrs[] = {
311 	&dev_attr_type.attr,
312 	&dev_attr_flags.attr,
313 	&dev_attr_size.attr,
314 	&dev_attr_erasesize.attr,
315 	&dev_attr_writesize.attr,
316 	&dev_attr_subpagesize.attr,
317 	&dev_attr_oobsize.attr,
318 	&dev_attr_oobavail.attr,
319 	&dev_attr_numeraseregions.attr,
320 	&dev_attr_name.attr,
321 	&dev_attr_ecc_strength.attr,
322 	&dev_attr_ecc_step_size.attr,
323 	&dev_attr_corrected_bits.attr,
324 	&dev_attr_ecc_failures.attr,
325 	&dev_attr_bad_blocks.attr,
326 	&dev_attr_bbt_blocks.attr,
327 	&dev_attr_bitflip_threshold.attr,
328 	NULL,
329 };
330 ATTRIBUTE_GROUPS(mtd);
331 
332 static const struct device_type mtd_devtype = {
333 	.name		= "mtd",
334 	.groups		= mtd_groups,
335 	.release	= mtd_release,
336 };
337 
338 static int mtd_partid_show(struct seq_file *s, void *p)
339 {
340 	struct mtd_info *mtd = s->private;
341 
342 	seq_printf(s, "%s\n", mtd->dbg.partid);
343 
344 	return 0;
345 }
346 
347 static int mtd_partid_debugfs_open(struct inode *inode, struct file *file)
348 {
349 	return single_open(file, mtd_partid_show, inode->i_private);
350 }
351 
352 static const struct file_operations mtd_partid_debug_fops = {
353 	.open           = mtd_partid_debugfs_open,
354 	.read           = seq_read,
355 	.llseek         = seq_lseek,
356 	.release        = single_release,
357 };
358 
359 static int mtd_partname_show(struct seq_file *s, void *p)
360 {
361 	struct mtd_info *mtd = s->private;
362 
363 	seq_printf(s, "%s\n", mtd->dbg.partname);
364 
365 	return 0;
366 }
367 
368 static int mtd_partname_debugfs_open(struct inode *inode, struct file *file)
369 {
370 	return single_open(file, mtd_partname_show, inode->i_private);
371 }
372 
373 static const struct file_operations mtd_partname_debug_fops = {
374 	.open           = mtd_partname_debugfs_open,
375 	.read           = seq_read,
376 	.llseek         = seq_lseek,
377 	.release        = single_release,
378 };
379 
380 static struct dentry *dfs_dir_mtd;
381 
382 static void mtd_debugfs_populate(struct mtd_info *mtd)
383 {
384 	struct device *dev = &mtd->dev;
385 	struct dentry *root, *dent;
386 
387 	if (IS_ERR_OR_NULL(dfs_dir_mtd))
388 		return;
389 
390 	root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
391 	if (IS_ERR_OR_NULL(root)) {
392 		dev_dbg(dev, "won't show data in debugfs\n");
393 		return;
394 	}
395 
396 	mtd->dbg.dfs_dir = root;
397 
398 	if (mtd->dbg.partid) {
399 		dent = debugfs_create_file("partid", 0400, root, mtd,
400 					   &mtd_partid_debug_fops);
401 		if (IS_ERR_OR_NULL(dent))
402 			dev_err(dev, "can't create debugfs entry for partid\n");
403 	}
404 
405 	if (mtd->dbg.partname) {
406 		dent = debugfs_create_file("partname", 0400, root, mtd,
407 					   &mtd_partname_debug_fops);
408 		if (IS_ERR_OR_NULL(dent))
409 			dev_err(dev,
410 				"can't create debugfs entry for partname\n");
411 	}
412 }
413 
414 #ifndef CONFIG_MMU
415 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
416 {
417 	switch (mtd->type) {
418 	case MTD_RAM:
419 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
420 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
421 	case MTD_ROM:
422 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
423 			NOMMU_MAP_READ;
424 	default:
425 		return NOMMU_MAP_COPY;
426 	}
427 }
428 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
429 #endif
430 
431 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
432 			       void *cmd)
433 {
434 	struct mtd_info *mtd;
435 
436 	mtd = container_of(n, struct mtd_info, reboot_notifier);
437 	mtd->_reboot(mtd);
438 
439 	return NOTIFY_DONE;
440 }
441 
442 /**
443  * mtd_wunit_to_pairing_info - get pairing information of a wunit
444  * @mtd: pointer to new MTD device info structure
445  * @wunit: write unit we are interested in
446  * @info: returned pairing information
447  *
448  * Retrieve pairing information associated to the wunit.
449  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
450  * paired together, and where programming a page may influence the page it is
451  * paired with.
452  * The notion of page is replaced by the term wunit (write-unit) to stay
453  * consistent with the ->writesize field.
454  *
455  * The @wunit argument can be extracted from an absolute offset using
456  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
457  * to @wunit.
458  *
459  * From the pairing info the MTD user can find all the wunits paired with
460  * @wunit using the following loop:
461  *
462  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
463  *	info.pair = i;
464  *	mtd_pairing_info_to_wunit(mtd, &info);
465  *	...
466  * }
467  */
468 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
469 			      struct mtd_pairing_info *info)
470 {
471 	int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
472 
473 	if (wunit < 0 || wunit >= npairs)
474 		return -EINVAL;
475 
476 	if (mtd->pairing && mtd->pairing->get_info)
477 		return mtd->pairing->get_info(mtd, wunit, info);
478 
479 	info->group = 0;
480 	info->pair = wunit;
481 
482 	return 0;
483 }
484 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
485 
486 /**
487  * mtd_pairing_info_to_wunit - get wunit from pairing information
488  * @mtd: pointer to new MTD device info structure
489  * @info: pairing information struct
490  *
491  * Returns a positive number representing the wunit associated to the info
492  * struct, or a negative error code.
493  *
494  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
495  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
496  * doc).
497  *
498  * It can also be used to only program the first page of each pair (i.e.
499  * page attached to group 0), which allows one to use an MLC NAND in
500  * software-emulated SLC mode:
501  *
502  * info.group = 0;
503  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
504  * for (info.pair = 0; info.pair < npairs; info.pair++) {
505  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
506  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
507  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
508  * }
509  */
510 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
511 			      const struct mtd_pairing_info *info)
512 {
513 	int ngroups = mtd_pairing_groups(mtd);
514 	int npairs = mtd_wunit_per_eb(mtd) / ngroups;
515 
516 	if (!info || info->pair < 0 || info->pair >= npairs ||
517 	    info->group < 0 || info->group >= ngroups)
518 		return -EINVAL;
519 
520 	if (mtd->pairing && mtd->pairing->get_wunit)
521 		return mtd->pairing->get_wunit(mtd, info);
522 
523 	return info->pair;
524 }
525 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
526 
527 /**
528  * mtd_pairing_groups - get the number of pairing groups
529  * @mtd: pointer to new MTD device info structure
530  *
531  * Returns the number of pairing groups.
532  *
533  * This number is usually equal to the number of bits exposed by a single
534  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
535  * to iterate over all pages of a given pair.
536  */
537 int mtd_pairing_groups(struct mtd_info *mtd)
538 {
539 	if (!mtd->pairing || !mtd->pairing->ngroups)
540 		return 1;
541 
542 	return mtd->pairing->ngroups;
543 }
544 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
545 
546 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
547 			      void *val, size_t bytes)
548 {
549 	struct mtd_info *mtd = priv;
550 	size_t retlen;
551 	int err;
552 
553 	err = mtd_read(mtd, offset, bytes, &retlen, val);
554 	if (err && err != -EUCLEAN)
555 		return err;
556 
557 	return retlen == bytes ? 0 : -EIO;
558 }
559 
560 static int mtd_nvmem_add(struct mtd_info *mtd)
561 {
562 	struct nvmem_config config = {};
563 
564 	config.id = -1;
565 	config.dev = &mtd->dev;
566 	config.name = mtd->name;
567 	config.owner = THIS_MODULE;
568 	config.reg_read = mtd_nvmem_reg_read;
569 	config.size = mtd->size;
570 	config.word_size = 1;
571 	config.stride = 1;
572 	config.read_only = true;
573 	config.root_only = true;
574 	config.no_of_node = true;
575 	config.priv = mtd;
576 
577 	mtd->nvmem = nvmem_register(&config);
578 	if (IS_ERR(mtd->nvmem)) {
579 		/* Just ignore if there is no NVMEM support in the kernel */
580 		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
581 			mtd->nvmem = NULL;
582 		} else {
583 			dev_err(&mtd->dev, "Failed to register NVMEM device\n");
584 			return PTR_ERR(mtd->nvmem);
585 		}
586 	}
587 
588 	return 0;
589 }
590 
591 /**
592  *	add_mtd_device - register an MTD device
593  *	@mtd: pointer to new MTD device info structure
594  *
595  *	Add a device to the list of MTD devices present in the system, and
596  *	notify each currently active MTD 'user' of its arrival. Returns
597  *	zero on success or non-zero on failure.
598  */
599 
600 int add_mtd_device(struct mtd_info *mtd)
601 {
602 	struct mtd_notifier *not;
603 	int i, error;
604 
605 	/*
606 	 * May occur, for instance, on buggy drivers which call
607 	 * mtd_device_parse_register() multiple times on the same master MTD,
608 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
609 	 */
610 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
611 		return -EEXIST;
612 
613 	BUG_ON(mtd->writesize == 0);
614 
615 	/*
616 	 * MTD drivers should implement ->_{write,read}() or
617 	 * ->_{write,read}_oob(), but not both.
618 	 */
619 	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
620 		    (mtd->_read && mtd->_read_oob)))
621 		return -EINVAL;
622 
623 	if (WARN_ON((!mtd->erasesize || !mtd->_erase) &&
624 		    !(mtd->flags & MTD_NO_ERASE)))
625 		return -EINVAL;
626 
627 	mutex_lock(&mtd_table_mutex);
628 
629 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
630 	if (i < 0) {
631 		error = i;
632 		goto fail_locked;
633 	}
634 
635 	mtd->index = i;
636 	mtd->usecount = 0;
637 
638 	/* default value if not set by driver */
639 	if (mtd->bitflip_threshold == 0)
640 		mtd->bitflip_threshold = mtd->ecc_strength;
641 
642 	if (is_power_of_2(mtd->erasesize))
643 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
644 	else
645 		mtd->erasesize_shift = 0;
646 
647 	if (is_power_of_2(mtd->writesize))
648 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
649 	else
650 		mtd->writesize_shift = 0;
651 
652 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
653 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
654 
655 	/* Some chips always power up locked. Unlock them now */
656 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
657 		error = mtd_unlock(mtd, 0, mtd->size);
658 		if (error && error != -EOPNOTSUPP)
659 			printk(KERN_WARNING
660 			       "%s: unlock failed, writes may not work\n",
661 			       mtd->name);
662 		/* Ignore unlock failures? */
663 		error = 0;
664 	}
665 
666 	/* Caller should have set dev.parent to match the
667 	 * physical device, if appropriate.
668 	 */
669 	mtd->dev.type = &mtd_devtype;
670 	mtd->dev.class = &mtd_class;
671 	mtd->dev.devt = MTD_DEVT(i);
672 	dev_set_name(&mtd->dev, "mtd%d", i);
673 	dev_set_drvdata(&mtd->dev, mtd);
674 	of_node_get(mtd_get_of_node(mtd));
675 	error = device_register(&mtd->dev);
676 	if (error)
677 		goto fail_added;
678 
679 	/* Add the nvmem provider */
680 	error = mtd_nvmem_add(mtd);
681 	if (error)
682 		goto fail_nvmem_add;
683 
684 	mtd_debugfs_populate(mtd);
685 
686 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
687 		      "mtd%dro", i);
688 
689 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
690 	/* No need to get a refcount on the module containing
691 	   the notifier, since we hold the mtd_table_mutex */
692 	list_for_each_entry(not, &mtd_notifiers, list)
693 		not->add(mtd);
694 
695 	mutex_unlock(&mtd_table_mutex);
696 	/* We _know_ we aren't being removed, because
697 	   our caller is still holding us here. So none
698 	   of this try_ nonsense, and no bitching about it
699 	   either. :) */
700 	__module_get(THIS_MODULE);
701 	return 0;
702 
703 fail_nvmem_add:
704 	device_unregister(&mtd->dev);
705 fail_added:
706 	of_node_put(mtd_get_of_node(mtd));
707 	idr_remove(&mtd_idr, i);
708 fail_locked:
709 	mutex_unlock(&mtd_table_mutex);
710 	return error;
711 }
712 
713 /**
714  *	del_mtd_device - unregister an MTD device
715  *	@mtd: pointer to MTD device info structure
716  *
717  *	Remove a device from the list of MTD devices present in the system,
718  *	and notify each currently active MTD 'user' of its departure.
719  *	Returns zero on success or 1 on failure, which currently will happen
720  *	if the requested device does not appear to be present in the list.
721  */
722 
723 int del_mtd_device(struct mtd_info *mtd)
724 {
725 	int ret;
726 	struct mtd_notifier *not;
727 
728 	mutex_lock(&mtd_table_mutex);
729 
730 	debugfs_remove_recursive(mtd->dbg.dfs_dir);
731 
732 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
733 		ret = -ENODEV;
734 		goto out_error;
735 	}
736 
737 	/* No need to get a refcount on the module containing
738 		the notifier, since we hold the mtd_table_mutex */
739 	list_for_each_entry(not, &mtd_notifiers, list)
740 		not->remove(mtd);
741 
742 	if (mtd->usecount) {
743 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
744 		       mtd->index, mtd->name, mtd->usecount);
745 		ret = -EBUSY;
746 	} else {
747 		/* Try to remove the NVMEM provider */
748 		if (mtd->nvmem)
749 			nvmem_unregister(mtd->nvmem);
750 
751 		device_unregister(&mtd->dev);
752 
753 		idr_remove(&mtd_idr, mtd->index);
754 		of_node_put(mtd_get_of_node(mtd));
755 
756 		module_put(THIS_MODULE);
757 		ret = 0;
758 	}
759 
760 out_error:
761 	mutex_unlock(&mtd_table_mutex);
762 	return ret;
763 }
764 
765 /*
766  * Set a few defaults based on the parent devices, if not provided by the
767  * driver
768  */
769 static void mtd_set_dev_defaults(struct mtd_info *mtd)
770 {
771 	if (mtd->dev.parent) {
772 		if (!mtd->owner && mtd->dev.parent->driver)
773 			mtd->owner = mtd->dev.parent->driver->owner;
774 		if (!mtd->name)
775 			mtd->name = dev_name(mtd->dev.parent);
776 	} else {
777 		pr_debug("mtd device won't show a device symlink in sysfs\n");
778 	}
779 
780 	mtd->orig_flags = mtd->flags;
781 }
782 
783 /**
784  * mtd_device_parse_register - parse partitions and register an MTD device.
785  *
786  * @mtd: the MTD device to register
787  * @types: the list of MTD partition probes to try, see
788  *         'parse_mtd_partitions()' for more information
789  * @parser_data: MTD partition parser-specific data
790  * @parts: fallback partition information to register, if parsing fails;
791  *         only valid if %nr_parts > %0
792  * @nr_parts: the number of partitions in parts, if zero then the full
793  *            MTD device is registered if no partition info is found
794  *
795  * This function aggregates MTD partitions parsing (done by
796  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
797  * basically follows the most common pattern found in many MTD drivers:
798  *
799  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
800  *   registered first.
801  * * Then It tries to probe partitions on MTD device @mtd using parsers
802  *   specified in @types (if @types is %NULL, then the default list of parsers
803  *   is used, see 'parse_mtd_partitions()' for more information). If none are
804  *   found this functions tries to fallback to information specified in
805  *   @parts/@nr_parts.
806  * * If no partitions were found this function just registers the MTD device
807  *   @mtd and exits.
808  *
809  * Returns zero in case of success and a negative error code in case of failure.
810  */
811 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
812 			      struct mtd_part_parser_data *parser_data,
813 			      const struct mtd_partition *parts,
814 			      int nr_parts)
815 {
816 	int ret;
817 
818 	mtd_set_dev_defaults(mtd);
819 
820 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
821 		ret = add_mtd_device(mtd);
822 		if (ret)
823 			return ret;
824 	}
825 
826 	/* Prefer parsed partitions over driver-provided fallback */
827 	ret = parse_mtd_partitions(mtd, types, parser_data);
828 	if (ret > 0)
829 		ret = 0;
830 	else if (nr_parts)
831 		ret = add_mtd_partitions(mtd, parts, nr_parts);
832 	else if (!device_is_registered(&mtd->dev))
833 		ret = add_mtd_device(mtd);
834 	else
835 		ret = 0;
836 
837 	if (ret)
838 		goto out;
839 
840 	/*
841 	 * FIXME: some drivers unfortunately call this function more than once.
842 	 * So we have to check if we've already assigned the reboot notifier.
843 	 *
844 	 * Generally, we can make multiple calls work for most cases, but it
845 	 * does cause problems with parse_mtd_partitions() above (e.g.,
846 	 * cmdlineparts will register partitions more than once).
847 	 */
848 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
849 		  "MTD already registered\n");
850 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
851 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
852 		register_reboot_notifier(&mtd->reboot_notifier);
853 	}
854 
855 out:
856 	if (ret && device_is_registered(&mtd->dev))
857 		del_mtd_device(mtd);
858 
859 	return ret;
860 }
861 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
862 
863 /**
864  * mtd_device_unregister - unregister an existing MTD device.
865  *
866  * @master: the MTD device to unregister.  This will unregister both the master
867  *          and any partitions if registered.
868  */
869 int mtd_device_unregister(struct mtd_info *master)
870 {
871 	int err;
872 
873 	if (master->_reboot)
874 		unregister_reboot_notifier(&master->reboot_notifier);
875 
876 	err = del_mtd_partitions(master);
877 	if (err)
878 		return err;
879 
880 	if (!device_is_registered(&master->dev))
881 		return 0;
882 
883 	return del_mtd_device(master);
884 }
885 EXPORT_SYMBOL_GPL(mtd_device_unregister);
886 
887 /**
888  *	register_mtd_user - register a 'user' of MTD devices.
889  *	@new: pointer to notifier info structure
890  *
891  *	Registers a pair of callbacks function to be called upon addition
892  *	or removal of MTD devices. Causes the 'add' callback to be immediately
893  *	invoked for each MTD device currently present in the system.
894  */
895 void register_mtd_user (struct mtd_notifier *new)
896 {
897 	struct mtd_info *mtd;
898 
899 	mutex_lock(&mtd_table_mutex);
900 
901 	list_add(&new->list, &mtd_notifiers);
902 
903 	__module_get(THIS_MODULE);
904 
905 	mtd_for_each_device(mtd)
906 		new->add(mtd);
907 
908 	mutex_unlock(&mtd_table_mutex);
909 }
910 EXPORT_SYMBOL_GPL(register_mtd_user);
911 
912 /**
913  *	unregister_mtd_user - unregister a 'user' of MTD devices.
914  *	@old: pointer to notifier info structure
915  *
916  *	Removes a callback function pair from the list of 'users' to be
917  *	notified upon addition or removal of MTD devices. Causes the
918  *	'remove' callback to be immediately invoked for each MTD device
919  *	currently present in the system.
920  */
921 int unregister_mtd_user (struct mtd_notifier *old)
922 {
923 	struct mtd_info *mtd;
924 
925 	mutex_lock(&mtd_table_mutex);
926 
927 	module_put(THIS_MODULE);
928 
929 	mtd_for_each_device(mtd)
930 		old->remove(mtd);
931 
932 	list_del(&old->list);
933 	mutex_unlock(&mtd_table_mutex);
934 	return 0;
935 }
936 EXPORT_SYMBOL_GPL(unregister_mtd_user);
937 
938 /**
939  *	get_mtd_device - obtain a validated handle for an MTD device
940  *	@mtd: last known address of the required MTD device
941  *	@num: internal device number of the required MTD device
942  *
943  *	Given a number and NULL address, return the num'th entry in the device
944  *	table, if any.	Given an address and num == -1, search the device table
945  *	for a device with that address and return if it's still present. Given
946  *	both, return the num'th driver only if its address matches. Return
947  *	error code if not.
948  */
949 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
950 {
951 	struct mtd_info *ret = NULL, *other;
952 	int err = -ENODEV;
953 
954 	mutex_lock(&mtd_table_mutex);
955 
956 	if (num == -1) {
957 		mtd_for_each_device(other) {
958 			if (other == mtd) {
959 				ret = mtd;
960 				break;
961 			}
962 		}
963 	} else if (num >= 0) {
964 		ret = idr_find(&mtd_idr, num);
965 		if (mtd && mtd != ret)
966 			ret = NULL;
967 	}
968 
969 	if (!ret) {
970 		ret = ERR_PTR(err);
971 		goto out;
972 	}
973 
974 	err = __get_mtd_device(ret);
975 	if (err)
976 		ret = ERR_PTR(err);
977 out:
978 	mutex_unlock(&mtd_table_mutex);
979 	return ret;
980 }
981 EXPORT_SYMBOL_GPL(get_mtd_device);
982 
983 
984 int __get_mtd_device(struct mtd_info *mtd)
985 {
986 	int err;
987 
988 	if (!try_module_get(mtd->owner))
989 		return -ENODEV;
990 
991 	if (mtd->_get_device) {
992 		err = mtd->_get_device(mtd);
993 
994 		if (err) {
995 			module_put(mtd->owner);
996 			return err;
997 		}
998 	}
999 	mtd->usecount++;
1000 	return 0;
1001 }
1002 EXPORT_SYMBOL_GPL(__get_mtd_device);
1003 
1004 /**
1005  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1006  *	device name
1007  *	@name: MTD device name to open
1008  *
1009  * 	This function returns MTD device description structure in case of
1010  * 	success and an error code in case of failure.
1011  */
1012 struct mtd_info *get_mtd_device_nm(const char *name)
1013 {
1014 	int err = -ENODEV;
1015 	struct mtd_info *mtd = NULL, *other;
1016 
1017 	mutex_lock(&mtd_table_mutex);
1018 
1019 	mtd_for_each_device(other) {
1020 		if (!strcmp(name, other->name)) {
1021 			mtd = other;
1022 			break;
1023 		}
1024 	}
1025 
1026 	if (!mtd)
1027 		goto out_unlock;
1028 
1029 	err = __get_mtd_device(mtd);
1030 	if (err)
1031 		goto out_unlock;
1032 
1033 	mutex_unlock(&mtd_table_mutex);
1034 	return mtd;
1035 
1036 out_unlock:
1037 	mutex_unlock(&mtd_table_mutex);
1038 	return ERR_PTR(err);
1039 }
1040 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1041 
1042 void put_mtd_device(struct mtd_info *mtd)
1043 {
1044 	mutex_lock(&mtd_table_mutex);
1045 	__put_mtd_device(mtd);
1046 	mutex_unlock(&mtd_table_mutex);
1047 
1048 }
1049 EXPORT_SYMBOL_GPL(put_mtd_device);
1050 
1051 void __put_mtd_device(struct mtd_info *mtd)
1052 {
1053 	--mtd->usecount;
1054 	BUG_ON(mtd->usecount < 0);
1055 
1056 	if (mtd->_put_device)
1057 		mtd->_put_device(mtd);
1058 
1059 	module_put(mtd->owner);
1060 }
1061 EXPORT_SYMBOL_GPL(__put_mtd_device);
1062 
1063 /*
1064  * Erase is an synchronous operation. Device drivers are epected to return a
1065  * negative error code if the operation failed and update instr->fail_addr
1066  * to point the portion that was not properly erased.
1067  */
1068 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1069 {
1070 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1071 
1072 	if (!mtd->erasesize || !mtd->_erase)
1073 		return -ENOTSUPP;
1074 
1075 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1076 		return -EINVAL;
1077 	if (!(mtd->flags & MTD_WRITEABLE))
1078 		return -EROFS;
1079 
1080 	if (!instr->len)
1081 		return 0;
1082 
1083 	ledtrig_mtd_activity();
1084 	return mtd->_erase(mtd, instr);
1085 }
1086 EXPORT_SYMBOL_GPL(mtd_erase);
1087 
1088 /*
1089  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1090  */
1091 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1092 	      void **virt, resource_size_t *phys)
1093 {
1094 	*retlen = 0;
1095 	*virt = NULL;
1096 	if (phys)
1097 		*phys = 0;
1098 	if (!mtd->_point)
1099 		return -EOPNOTSUPP;
1100 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1101 		return -EINVAL;
1102 	if (!len)
1103 		return 0;
1104 	return mtd->_point(mtd, from, len, retlen, virt, phys);
1105 }
1106 EXPORT_SYMBOL_GPL(mtd_point);
1107 
1108 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1109 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1110 {
1111 	if (!mtd->_unpoint)
1112 		return -EOPNOTSUPP;
1113 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1114 		return -EINVAL;
1115 	if (!len)
1116 		return 0;
1117 	return mtd->_unpoint(mtd, from, len);
1118 }
1119 EXPORT_SYMBOL_GPL(mtd_unpoint);
1120 
1121 /*
1122  * Allow NOMMU mmap() to directly map the device (if not NULL)
1123  * - return the address to which the offset maps
1124  * - return -ENOSYS to indicate refusal to do the mapping
1125  */
1126 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1127 				    unsigned long offset, unsigned long flags)
1128 {
1129 	size_t retlen;
1130 	void *virt;
1131 	int ret;
1132 
1133 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1134 	if (ret)
1135 		return ret;
1136 	if (retlen != len) {
1137 		mtd_unpoint(mtd, offset, retlen);
1138 		return -ENOSYS;
1139 	}
1140 	return (unsigned long)virt;
1141 }
1142 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1143 
1144 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1145 	     u_char *buf)
1146 {
1147 	struct mtd_oob_ops ops = {
1148 		.len = len,
1149 		.datbuf = buf,
1150 	};
1151 	int ret;
1152 
1153 	ret = mtd_read_oob(mtd, from, &ops);
1154 	*retlen = ops.retlen;
1155 
1156 	return ret;
1157 }
1158 EXPORT_SYMBOL_GPL(mtd_read);
1159 
1160 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1161 	      const u_char *buf)
1162 {
1163 	struct mtd_oob_ops ops = {
1164 		.len = len,
1165 		.datbuf = (u8 *)buf,
1166 	};
1167 	int ret;
1168 
1169 	ret = mtd_write_oob(mtd, to, &ops);
1170 	*retlen = ops.retlen;
1171 
1172 	return ret;
1173 }
1174 EXPORT_SYMBOL_GPL(mtd_write);
1175 
1176 /*
1177  * In blackbox flight recorder like scenarios we want to make successful writes
1178  * in interrupt context. panic_write() is only intended to be called when its
1179  * known the kernel is about to panic and we need the write to succeed. Since
1180  * the kernel is not going to be running for much longer, this function can
1181  * break locks and delay to ensure the write succeeds (but not sleep).
1182  */
1183 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1184 		    const u_char *buf)
1185 {
1186 	*retlen = 0;
1187 	if (!mtd->_panic_write)
1188 		return -EOPNOTSUPP;
1189 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1190 		return -EINVAL;
1191 	if (!(mtd->flags & MTD_WRITEABLE))
1192 		return -EROFS;
1193 	if (!len)
1194 		return 0;
1195 	if (!mtd->oops_panic_write)
1196 		mtd->oops_panic_write = true;
1197 
1198 	return mtd->_panic_write(mtd, to, len, retlen, buf);
1199 }
1200 EXPORT_SYMBOL_GPL(mtd_panic_write);
1201 
1202 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1203 			     struct mtd_oob_ops *ops)
1204 {
1205 	/*
1206 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1207 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1208 	 *  this case.
1209 	 */
1210 	if (!ops->datbuf)
1211 		ops->len = 0;
1212 
1213 	if (!ops->oobbuf)
1214 		ops->ooblen = 0;
1215 
1216 	if (offs < 0 || offs + ops->len > mtd->size)
1217 		return -EINVAL;
1218 
1219 	if (ops->ooblen) {
1220 		size_t maxooblen;
1221 
1222 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1223 			return -EINVAL;
1224 
1225 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1226 				      mtd_div_by_ws(offs, mtd)) *
1227 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1228 		if (ops->ooblen > maxooblen)
1229 			return -EINVAL;
1230 	}
1231 
1232 	return 0;
1233 }
1234 
1235 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1236 {
1237 	int ret_code;
1238 	ops->retlen = ops->oobretlen = 0;
1239 
1240 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1241 	if (ret_code)
1242 		return ret_code;
1243 
1244 	ledtrig_mtd_activity();
1245 
1246 	/* Check the validity of a potential fallback on mtd->_read */
1247 	if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf))
1248 		return -EOPNOTSUPP;
1249 
1250 	if (mtd->_read_oob)
1251 		ret_code = mtd->_read_oob(mtd, from, ops);
1252 	else
1253 		ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen,
1254 				      ops->datbuf);
1255 
1256 	/*
1257 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1258 	 * similar to mtd->_read(), returning a non-negative integer
1259 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1260 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1261 	 */
1262 	if (unlikely(ret_code < 0))
1263 		return ret_code;
1264 	if (mtd->ecc_strength == 0)
1265 		return 0;	/* device lacks ecc */
1266 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1267 }
1268 EXPORT_SYMBOL_GPL(mtd_read_oob);
1269 
1270 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1271 				struct mtd_oob_ops *ops)
1272 {
1273 	int ret;
1274 
1275 	ops->retlen = ops->oobretlen = 0;
1276 
1277 	if (!(mtd->flags & MTD_WRITEABLE))
1278 		return -EROFS;
1279 
1280 	ret = mtd_check_oob_ops(mtd, to, ops);
1281 	if (ret)
1282 		return ret;
1283 
1284 	ledtrig_mtd_activity();
1285 
1286 	/* Check the validity of a potential fallback on mtd->_write */
1287 	if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf))
1288 		return -EOPNOTSUPP;
1289 
1290 	if (mtd->_write_oob)
1291 		return mtd->_write_oob(mtd, to, ops);
1292 	else
1293 		return mtd->_write(mtd, to, ops->len, &ops->retlen,
1294 				   ops->datbuf);
1295 }
1296 EXPORT_SYMBOL_GPL(mtd_write_oob);
1297 
1298 /**
1299  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1300  * @mtd: MTD device structure
1301  * @section: ECC section. Depending on the layout you may have all the ECC
1302  *	     bytes stored in a single contiguous section, or one section
1303  *	     per ECC chunk (and sometime several sections for a single ECC
1304  *	     ECC chunk)
1305  * @oobecc: OOB region struct filled with the appropriate ECC position
1306  *	    information
1307  *
1308  * This function returns ECC section information in the OOB area. If you want
1309  * to get all the ECC bytes information, then you should call
1310  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1311  *
1312  * Returns zero on success, a negative error code otherwise.
1313  */
1314 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1315 		      struct mtd_oob_region *oobecc)
1316 {
1317 	memset(oobecc, 0, sizeof(*oobecc));
1318 
1319 	if (!mtd || section < 0)
1320 		return -EINVAL;
1321 
1322 	if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1323 		return -ENOTSUPP;
1324 
1325 	return mtd->ooblayout->ecc(mtd, section, oobecc);
1326 }
1327 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1328 
1329 /**
1330  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1331  *			section
1332  * @mtd: MTD device structure
1333  * @section: Free section you are interested in. Depending on the layout
1334  *	     you may have all the free bytes stored in a single contiguous
1335  *	     section, or one section per ECC chunk plus an extra section
1336  *	     for the remaining bytes (or other funky layout).
1337  * @oobfree: OOB region struct filled with the appropriate free position
1338  *	     information
1339  *
1340  * This function returns free bytes position in the OOB area. If you want
1341  * to get all the free bytes information, then you should call
1342  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1343  *
1344  * Returns zero on success, a negative error code otherwise.
1345  */
1346 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1347 		       struct mtd_oob_region *oobfree)
1348 {
1349 	memset(oobfree, 0, sizeof(*oobfree));
1350 
1351 	if (!mtd || section < 0)
1352 		return -EINVAL;
1353 
1354 	if (!mtd->ooblayout || !mtd->ooblayout->free)
1355 		return -ENOTSUPP;
1356 
1357 	return mtd->ooblayout->free(mtd, section, oobfree);
1358 }
1359 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1360 
1361 /**
1362  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1363  * @mtd: mtd info structure
1364  * @byte: the byte we are searching for
1365  * @sectionp: pointer where the section id will be stored
1366  * @oobregion: used to retrieve the ECC position
1367  * @iter: iterator function. Should be either mtd_ooblayout_free or
1368  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1369  *
1370  * This function returns the section id and oobregion information of a
1371  * specific byte. For example, say you want to know where the 4th ECC byte is
1372  * stored, you'll use:
1373  *
1374  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1375  *
1376  * Returns zero on success, a negative error code otherwise.
1377  */
1378 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1379 				int *sectionp, struct mtd_oob_region *oobregion,
1380 				int (*iter)(struct mtd_info *,
1381 					    int section,
1382 					    struct mtd_oob_region *oobregion))
1383 {
1384 	int pos = 0, ret, section = 0;
1385 
1386 	memset(oobregion, 0, sizeof(*oobregion));
1387 
1388 	while (1) {
1389 		ret = iter(mtd, section, oobregion);
1390 		if (ret)
1391 			return ret;
1392 
1393 		if (pos + oobregion->length > byte)
1394 			break;
1395 
1396 		pos += oobregion->length;
1397 		section++;
1398 	}
1399 
1400 	/*
1401 	 * Adjust region info to make it start at the beginning at the
1402 	 * 'start' ECC byte.
1403 	 */
1404 	oobregion->offset += byte - pos;
1405 	oobregion->length -= byte - pos;
1406 	*sectionp = section;
1407 
1408 	return 0;
1409 }
1410 
1411 /**
1412  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1413  *				  ECC byte
1414  * @mtd: mtd info structure
1415  * @eccbyte: the byte we are searching for
1416  * @sectionp: pointer where the section id will be stored
1417  * @oobregion: OOB region information
1418  *
1419  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1420  * byte.
1421  *
1422  * Returns zero on success, a negative error code otherwise.
1423  */
1424 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1425 				 int *section,
1426 				 struct mtd_oob_region *oobregion)
1427 {
1428 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1429 					 mtd_ooblayout_ecc);
1430 }
1431 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1432 
1433 /**
1434  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1435  * @mtd: mtd info structure
1436  * @buf: destination buffer to store OOB bytes
1437  * @oobbuf: OOB buffer
1438  * @start: first byte to retrieve
1439  * @nbytes: number of bytes to retrieve
1440  * @iter: section iterator
1441  *
1442  * Extract bytes attached to a specific category (ECC or free)
1443  * from the OOB buffer and copy them into buf.
1444  *
1445  * Returns zero on success, a negative error code otherwise.
1446  */
1447 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1448 				const u8 *oobbuf, int start, int nbytes,
1449 				int (*iter)(struct mtd_info *,
1450 					    int section,
1451 					    struct mtd_oob_region *oobregion))
1452 {
1453 	struct mtd_oob_region oobregion;
1454 	int section, ret;
1455 
1456 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1457 					&oobregion, iter);
1458 
1459 	while (!ret) {
1460 		int cnt;
1461 
1462 		cnt = min_t(int, nbytes, oobregion.length);
1463 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1464 		buf += cnt;
1465 		nbytes -= cnt;
1466 
1467 		if (!nbytes)
1468 			break;
1469 
1470 		ret = iter(mtd, ++section, &oobregion);
1471 	}
1472 
1473 	return ret;
1474 }
1475 
1476 /**
1477  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1478  * @mtd: mtd info structure
1479  * @buf: source buffer to get OOB bytes from
1480  * @oobbuf: OOB buffer
1481  * @start: first OOB byte to set
1482  * @nbytes: number of OOB bytes to set
1483  * @iter: section iterator
1484  *
1485  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1486  * is selected by passing the appropriate iterator.
1487  *
1488  * Returns zero on success, a negative error code otherwise.
1489  */
1490 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1491 				u8 *oobbuf, int start, int nbytes,
1492 				int (*iter)(struct mtd_info *,
1493 					    int section,
1494 					    struct mtd_oob_region *oobregion))
1495 {
1496 	struct mtd_oob_region oobregion;
1497 	int section, ret;
1498 
1499 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1500 					&oobregion, iter);
1501 
1502 	while (!ret) {
1503 		int cnt;
1504 
1505 		cnt = min_t(int, nbytes, oobregion.length);
1506 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1507 		buf += cnt;
1508 		nbytes -= cnt;
1509 
1510 		if (!nbytes)
1511 			break;
1512 
1513 		ret = iter(mtd, ++section, &oobregion);
1514 	}
1515 
1516 	return ret;
1517 }
1518 
1519 /**
1520  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1521  * @mtd: mtd info structure
1522  * @iter: category iterator
1523  *
1524  * Count the number of bytes in a given category.
1525  *
1526  * Returns a positive value on success, a negative error code otherwise.
1527  */
1528 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1529 				int (*iter)(struct mtd_info *,
1530 					    int section,
1531 					    struct mtd_oob_region *oobregion))
1532 {
1533 	struct mtd_oob_region oobregion;
1534 	int section = 0, ret, nbytes = 0;
1535 
1536 	while (1) {
1537 		ret = iter(mtd, section++, &oobregion);
1538 		if (ret) {
1539 			if (ret == -ERANGE)
1540 				ret = nbytes;
1541 			break;
1542 		}
1543 
1544 		nbytes += oobregion.length;
1545 	}
1546 
1547 	return ret;
1548 }
1549 
1550 /**
1551  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1552  * @mtd: mtd info structure
1553  * @eccbuf: destination buffer to store ECC bytes
1554  * @oobbuf: OOB buffer
1555  * @start: first ECC byte to retrieve
1556  * @nbytes: number of ECC bytes to retrieve
1557  *
1558  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1559  *
1560  * Returns zero on success, a negative error code otherwise.
1561  */
1562 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1563 			       const u8 *oobbuf, int start, int nbytes)
1564 {
1565 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1566 				       mtd_ooblayout_ecc);
1567 }
1568 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1569 
1570 /**
1571  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1572  * @mtd: mtd info structure
1573  * @eccbuf: source buffer to get ECC bytes from
1574  * @oobbuf: OOB buffer
1575  * @start: first ECC byte to set
1576  * @nbytes: number of ECC bytes to set
1577  *
1578  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1579  *
1580  * Returns zero on success, a negative error code otherwise.
1581  */
1582 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1583 			       u8 *oobbuf, int start, int nbytes)
1584 {
1585 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1586 				       mtd_ooblayout_ecc);
1587 }
1588 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1589 
1590 /**
1591  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1592  * @mtd: mtd info structure
1593  * @databuf: destination buffer to store ECC bytes
1594  * @oobbuf: OOB buffer
1595  * @start: first ECC byte to retrieve
1596  * @nbytes: number of ECC bytes to retrieve
1597  *
1598  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1599  *
1600  * Returns zero on success, a negative error code otherwise.
1601  */
1602 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1603 				const u8 *oobbuf, int start, int nbytes)
1604 {
1605 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1606 				       mtd_ooblayout_free);
1607 }
1608 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1609 
1610 /**
1611  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1612  * @mtd: mtd info structure
1613  * @databuf: source buffer to get data bytes from
1614  * @oobbuf: OOB buffer
1615  * @start: first ECC byte to set
1616  * @nbytes: number of ECC bytes to set
1617  *
1618  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1619  *
1620  * Returns zero on success, a negative error code otherwise.
1621  */
1622 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1623 				u8 *oobbuf, int start, int nbytes)
1624 {
1625 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1626 				       mtd_ooblayout_free);
1627 }
1628 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1629 
1630 /**
1631  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1632  * @mtd: mtd info structure
1633  *
1634  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1635  *
1636  * Returns zero on success, a negative error code otherwise.
1637  */
1638 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1639 {
1640 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1641 }
1642 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1643 
1644 /**
1645  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1646  * @mtd: mtd info structure
1647  *
1648  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1649  *
1650  * Returns zero on success, a negative error code otherwise.
1651  */
1652 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1653 {
1654 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1655 }
1656 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1657 
1658 /*
1659  * Method to access the protection register area, present in some flash
1660  * devices. The user data is one time programmable but the factory data is read
1661  * only.
1662  */
1663 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1664 			   struct otp_info *buf)
1665 {
1666 	if (!mtd->_get_fact_prot_info)
1667 		return -EOPNOTSUPP;
1668 	if (!len)
1669 		return 0;
1670 	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1671 }
1672 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1673 
1674 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1675 			   size_t *retlen, u_char *buf)
1676 {
1677 	*retlen = 0;
1678 	if (!mtd->_read_fact_prot_reg)
1679 		return -EOPNOTSUPP;
1680 	if (!len)
1681 		return 0;
1682 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1683 }
1684 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1685 
1686 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1687 			   struct otp_info *buf)
1688 {
1689 	if (!mtd->_get_user_prot_info)
1690 		return -EOPNOTSUPP;
1691 	if (!len)
1692 		return 0;
1693 	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1694 }
1695 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1696 
1697 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1698 			   size_t *retlen, u_char *buf)
1699 {
1700 	*retlen = 0;
1701 	if (!mtd->_read_user_prot_reg)
1702 		return -EOPNOTSUPP;
1703 	if (!len)
1704 		return 0;
1705 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1706 }
1707 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1708 
1709 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1710 			    size_t *retlen, u_char *buf)
1711 {
1712 	int ret;
1713 
1714 	*retlen = 0;
1715 	if (!mtd->_write_user_prot_reg)
1716 		return -EOPNOTSUPP;
1717 	if (!len)
1718 		return 0;
1719 	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1720 	if (ret)
1721 		return ret;
1722 
1723 	/*
1724 	 * If no data could be written at all, we are out of memory and
1725 	 * must return -ENOSPC.
1726 	 */
1727 	return (*retlen) ? 0 : -ENOSPC;
1728 }
1729 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1730 
1731 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1732 {
1733 	if (!mtd->_lock_user_prot_reg)
1734 		return -EOPNOTSUPP;
1735 	if (!len)
1736 		return 0;
1737 	return mtd->_lock_user_prot_reg(mtd, from, len);
1738 }
1739 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1740 
1741 /* Chip-supported device locking */
1742 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1743 {
1744 	if (!mtd->_lock)
1745 		return -EOPNOTSUPP;
1746 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1747 		return -EINVAL;
1748 	if (!len)
1749 		return 0;
1750 	return mtd->_lock(mtd, ofs, len);
1751 }
1752 EXPORT_SYMBOL_GPL(mtd_lock);
1753 
1754 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1755 {
1756 	if (!mtd->_unlock)
1757 		return -EOPNOTSUPP;
1758 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1759 		return -EINVAL;
1760 	if (!len)
1761 		return 0;
1762 	return mtd->_unlock(mtd, ofs, len);
1763 }
1764 EXPORT_SYMBOL_GPL(mtd_unlock);
1765 
1766 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1767 {
1768 	if (!mtd->_is_locked)
1769 		return -EOPNOTSUPP;
1770 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1771 		return -EINVAL;
1772 	if (!len)
1773 		return 0;
1774 	return mtd->_is_locked(mtd, ofs, len);
1775 }
1776 EXPORT_SYMBOL_GPL(mtd_is_locked);
1777 
1778 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1779 {
1780 	if (ofs < 0 || ofs >= mtd->size)
1781 		return -EINVAL;
1782 	if (!mtd->_block_isreserved)
1783 		return 0;
1784 	return mtd->_block_isreserved(mtd, ofs);
1785 }
1786 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1787 
1788 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1789 {
1790 	if (ofs < 0 || ofs >= mtd->size)
1791 		return -EINVAL;
1792 	if (!mtd->_block_isbad)
1793 		return 0;
1794 	return mtd->_block_isbad(mtd, ofs);
1795 }
1796 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1797 
1798 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1799 {
1800 	if (!mtd->_block_markbad)
1801 		return -EOPNOTSUPP;
1802 	if (ofs < 0 || ofs >= mtd->size)
1803 		return -EINVAL;
1804 	if (!(mtd->flags & MTD_WRITEABLE))
1805 		return -EROFS;
1806 	return mtd->_block_markbad(mtd, ofs);
1807 }
1808 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1809 
1810 /*
1811  * default_mtd_writev - the default writev method
1812  * @mtd: mtd device description object pointer
1813  * @vecs: the vectors to write
1814  * @count: count of vectors in @vecs
1815  * @to: the MTD device offset to write to
1816  * @retlen: on exit contains the count of bytes written to the MTD device.
1817  *
1818  * This function returns zero in case of success and a negative error code in
1819  * case of failure.
1820  */
1821 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1822 			      unsigned long count, loff_t to, size_t *retlen)
1823 {
1824 	unsigned long i;
1825 	size_t totlen = 0, thislen;
1826 	int ret = 0;
1827 
1828 	for (i = 0; i < count; i++) {
1829 		if (!vecs[i].iov_len)
1830 			continue;
1831 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1832 				vecs[i].iov_base);
1833 		totlen += thislen;
1834 		if (ret || thislen != vecs[i].iov_len)
1835 			break;
1836 		to += vecs[i].iov_len;
1837 	}
1838 	*retlen = totlen;
1839 	return ret;
1840 }
1841 
1842 /*
1843  * mtd_writev - the vector-based MTD write method
1844  * @mtd: mtd device description object pointer
1845  * @vecs: the vectors to write
1846  * @count: count of vectors in @vecs
1847  * @to: the MTD device offset to write to
1848  * @retlen: on exit contains the count of bytes written to the MTD device.
1849  *
1850  * This function returns zero in case of success and a negative error code in
1851  * case of failure.
1852  */
1853 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1854 	       unsigned long count, loff_t to, size_t *retlen)
1855 {
1856 	*retlen = 0;
1857 	if (!(mtd->flags & MTD_WRITEABLE))
1858 		return -EROFS;
1859 	if (!mtd->_writev)
1860 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1861 	return mtd->_writev(mtd, vecs, count, to, retlen);
1862 }
1863 EXPORT_SYMBOL_GPL(mtd_writev);
1864 
1865 /**
1866  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1867  * @mtd: mtd device description object pointer
1868  * @size: a pointer to the ideal or maximum size of the allocation, points
1869  *        to the actual allocation size on success.
1870  *
1871  * This routine attempts to allocate a contiguous kernel buffer up to
1872  * the specified size, backing off the size of the request exponentially
1873  * until the request succeeds or until the allocation size falls below
1874  * the system page size. This attempts to make sure it does not adversely
1875  * impact system performance, so when allocating more than one page, we
1876  * ask the memory allocator to avoid re-trying, swapping, writing back
1877  * or performing I/O.
1878  *
1879  * Note, this function also makes sure that the allocated buffer is aligned to
1880  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1881  *
1882  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1883  * to handle smaller (i.e. degraded) buffer allocations under low- or
1884  * fragmented-memory situations where such reduced allocations, from a
1885  * requested ideal, are allowed.
1886  *
1887  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1888  */
1889 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1890 {
1891 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1892 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1893 	void *kbuf;
1894 
1895 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1896 
1897 	while (*size > min_alloc) {
1898 		kbuf = kmalloc(*size, flags);
1899 		if (kbuf)
1900 			return kbuf;
1901 
1902 		*size >>= 1;
1903 		*size = ALIGN(*size, mtd->writesize);
1904 	}
1905 
1906 	/*
1907 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1908 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1909 	 */
1910 	return kmalloc(*size, GFP_KERNEL);
1911 }
1912 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1913 
1914 #ifdef CONFIG_PROC_FS
1915 
1916 /*====================================================================*/
1917 /* Support for /proc/mtd */
1918 
1919 static int mtd_proc_show(struct seq_file *m, void *v)
1920 {
1921 	struct mtd_info *mtd;
1922 
1923 	seq_puts(m, "dev:    size   erasesize  name\n");
1924 	mutex_lock(&mtd_table_mutex);
1925 	mtd_for_each_device(mtd) {
1926 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1927 			   mtd->index, (unsigned long long)mtd->size,
1928 			   mtd->erasesize, mtd->name);
1929 	}
1930 	mutex_unlock(&mtd_table_mutex);
1931 	return 0;
1932 }
1933 #endif /* CONFIG_PROC_FS */
1934 
1935 /*====================================================================*/
1936 /* Init code */
1937 
1938 static struct backing_dev_info * __init mtd_bdi_init(char *name)
1939 {
1940 	struct backing_dev_info *bdi;
1941 	int ret;
1942 
1943 	bdi = bdi_alloc(GFP_KERNEL);
1944 	if (!bdi)
1945 		return ERR_PTR(-ENOMEM);
1946 
1947 	bdi->name = name;
1948 	/*
1949 	 * We put '-0' suffix to the name to get the same name format as we
1950 	 * used to get. Since this is called only once, we get a unique name.
1951 	 */
1952 	ret = bdi_register(bdi, "%.28s-0", name);
1953 	if (ret)
1954 		bdi_put(bdi);
1955 
1956 	return ret ? ERR_PTR(ret) : bdi;
1957 }
1958 
1959 static struct proc_dir_entry *proc_mtd;
1960 
1961 static int __init init_mtd(void)
1962 {
1963 	int ret;
1964 
1965 	ret = class_register(&mtd_class);
1966 	if (ret)
1967 		goto err_reg;
1968 
1969 	mtd_bdi = mtd_bdi_init("mtd");
1970 	if (IS_ERR(mtd_bdi)) {
1971 		ret = PTR_ERR(mtd_bdi);
1972 		goto err_bdi;
1973 	}
1974 
1975 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
1976 
1977 	ret = init_mtdchar();
1978 	if (ret)
1979 		goto out_procfs;
1980 
1981 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
1982 
1983 	return 0;
1984 
1985 out_procfs:
1986 	if (proc_mtd)
1987 		remove_proc_entry("mtd", NULL);
1988 	bdi_put(mtd_bdi);
1989 err_bdi:
1990 	class_unregister(&mtd_class);
1991 err_reg:
1992 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1993 	return ret;
1994 }
1995 
1996 static void __exit cleanup_mtd(void)
1997 {
1998 	debugfs_remove_recursive(dfs_dir_mtd);
1999 	cleanup_mtdchar();
2000 	if (proc_mtd)
2001 		remove_proc_entry("mtd", NULL);
2002 	class_unregister(&mtd_class);
2003 	bdi_put(mtd_bdi);
2004 	idr_destroy(&mtd_idr);
2005 }
2006 
2007 module_init(init_mtd);
2008 module_exit(cleanup_mtd);
2009 
2010 MODULE_LICENSE("GPL");
2011 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2012 MODULE_DESCRIPTION("Core MTD registration and access routines");
2013