1 /* 2 * Core registration and callback routines for MTD 3 * drivers and users. 4 * 5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 6 * Copyright © 2006 Red Hat UK Limited 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/kernel.h> 26 #include <linux/ptrace.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/major.h> 31 #include <linux/fs.h> 32 #include <linux/err.h> 33 #include <linux/ioctl.h> 34 #include <linux/init.h> 35 #include <linux/of.h> 36 #include <linux/proc_fs.h> 37 #include <linux/idr.h> 38 #include <linux/backing-dev.h> 39 #include <linux/gfp.h> 40 #include <linux/slab.h> 41 #include <linux/reboot.h> 42 #include <linux/leds.h> 43 #include <linux/debugfs.h> 44 45 #include <linux/mtd/mtd.h> 46 #include <linux/mtd/partitions.h> 47 48 #include "mtdcore.h" 49 50 struct backing_dev_info *mtd_bdi; 51 52 #ifdef CONFIG_PM_SLEEP 53 54 static int mtd_cls_suspend(struct device *dev) 55 { 56 struct mtd_info *mtd = dev_get_drvdata(dev); 57 58 return mtd ? mtd_suspend(mtd) : 0; 59 } 60 61 static int mtd_cls_resume(struct device *dev) 62 { 63 struct mtd_info *mtd = dev_get_drvdata(dev); 64 65 if (mtd) 66 mtd_resume(mtd); 67 return 0; 68 } 69 70 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 71 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 72 #else 73 #define MTD_CLS_PM_OPS NULL 74 #endif 75 76 static struct class mtd_class = { 77 .name = "mtd", 78 .owner = THIS_MODULE, 79 .pm = MTD_CLS_PM_OPS, 80 }; 81 82 static DEFINE_IDR(mtd_idr); 83 84 /* These are exported solely for the purpose of mtd_blkdevs.c. You 85 should not use them for _anything_ else */ 86 DEFINE_MUTEX(mtd_table_mutex); 87 EXPORT_SYMBOL_GPL(mtd_table_mutex); 88 89 struct mtd_info *__mtd_next_device(int i) 90 { 91 return idr_get_next(&mtd_idr, &i); 92 } 93 EXPORT_SYMBOL_GPL(__mtd_next_device); 94 95 static LIST_HEAD(mtd_notifiers); 96 97 98 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 99 100 /* REVISIT once MTD uses the driver model better, whoever allocates 101 * the mtd_info will probably want to use the release() hook... 102 */ 103 static void mtd_release(struct device *dev) 104 { 105 struct mtd_info *mtd = dev_get_drvdata(dev); 106 dev_t index = MTD_DEVT(mtd->index); 107 108 /* remove /dev/mtdXro node */ 109 device_destroy(&mtd_class, index + 1); 110 } 111 112 static ssize_t mtd_type_show(struct device *dev, 113 struct device_attribute *attr, char *buf) 114 { 115 struct mtd_info *mtd = dev_get_drvdata(dev); 116 char *type; 117 118 switch (mtd->type) { 119 case MTD_ABSENT: 120 type = "absent"; 121 break; 122 case MTD_RAM: 123 type = "ram"; 124 break; 125 case MTD_ROM: 126 type = "rom"; 127 break; 128 case MTD_NORFLASH: 129 type = "nor"; 130 break; 131 case MTD_NANDFLASH: 132 type = "nand"; 133 break; 134 case MTD_DATAFLASH: 135 type = "dataflash"; 136 break; 137 case MTD_UBIVOLUME: 138 type = "ubi"; 139 break; 140 case MTD_MLCNANDFLASH: 141 type = "mlc-nand"; 142 break; 143 default: 144 type = "unknown"; 145 } 146 147 return snprintf(buf, PAGE_SIZE, "%s\n", type); 148 } 149 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 150 151 static ssize_t mtd_flags_show(struct device *dev, 152 struct device_attribute *attr, char *buf) 153 { 154 struct mtd_info *mtd = dev_get_drvdata(dev); 155 156 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 157 158 } 159 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 160 161 static ssize_t mtd_size_show(struct device *dev, 162 struct device_attribute *attr, char *buf) 163 { 164 struct mtd_info *mtd = dev_get_drvdata(dev); 165 166 return snprintf(buf, PAGE_SIZE, "%llu\n", 167 (unsigned long long)mtd->size); 168 169 } 170 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 171 172 static ssize_t mtd_erasesize_show(struct device *dev, 173 struct device_attribute *attr, char *buf) 174 { 175 struct mtd_info *mtd = dev_get_drvdata(dev); 176 177 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 178 179 } 180 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 181 182 static ssize_t mtd_writesize_show(struct device *dev, 183 struct device_attribute *attr, char *buf) 184 { 185 struct mtd_info *mtd = dev_get_drvdata(dev); 186 187 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 188 189 } 190 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 191 192 static ssize_t mtd_subpagesize_show(struct device *dev, 193 struct device_attribute *attr, char *buf) 194 { 195 struct mtd_info *mtd = dev_get_drvdata(dev); 196 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 197 198 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 199 200 } 201 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 202 203 static ssize_t mtd_oobsize_show(struct device *dev, 204 struct device_attribute *attr, char *buf) 205 { 206 struct mtd_info *mtd = dev_get_drvdata(dev); 207 208 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 209 210 } 211 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 212 213 static ssize_t mtd_numeraseregions_show(struct device *dev, 214 struct device_attribute *attr, char *buf) 215 { 216 struct mtd_info *mtd = dev_get_drvdata(dev); 217 218 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 219 220 } 221 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 222 NULL); 223 224 static ssize_t mtd_name_show(struct device *dev, 225 struct device_attribute *attr, char *buf) 226 { 227 struct mtd_info *mtd = dev_get_drvdata(dev); 228 229 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 230 231 } 232 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 233 234 static ssize_t mtd_ecc_strength_show(struct device *dev, 235 struct device_attribute *attr, char *buf) 236 { 237 struct mtd_info *mtd = dev_get_drvdata(dev); 238 239 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 240 } 241 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 242 243 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 244 struct device_attribute *attr, 245 char *buf) 246 { 247 struct mtd_info *mtd = dev_get_drvdata(dev); 248 249 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 250 } 251 252 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 253 struct device_attribute *attr, 254 const char *buf, size_t count) 255 { 256 struct mtd_info *mtd = dev_get_drvdata(dev); 257 unsigned int bitflip_threshold; 258 int retval; 259 260 retval = kstrtouint(buf, 0, &bitflip_threshold); 261 if (retval) 262 return retval; 263 264 mtd->bitflip_threshold = bitflip_threshold; 265 return count; 266 } 267 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 268 mtd_bitflip_threshold_show, 269 mtd_bitflip_threshold_store); 270 271 static ssize_t mtd_ecc_step_size_show(struct device *dev, 272 struct device_attribute *attr, char *buf) 273 { 274 struct mtd_info *mtd = dev_get_drvdata(dev); 275 276 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 277 278 } 279 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 280 281 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev, 282 struct device_attribute *attr, char *buf) 283 { 284 struct mtd_info *mtd = dev_get_drvdata(dev); 285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 286 287 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected); 288 } 289 static DEVICE_ATTR(corrected_bits, S_IRUGO, 290 mtd_ecc_stats_corrected_show, NULL); 291 292 static ssize_t mtd_ecc_stats_errors_show(struct device *dev, 293 struct device_attribute *attr, char *buf) 294 { 295 struct mtd_info *mtd = dev_get_drvdata(dev); 296 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 297 298 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed); 299 } 300 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL); 301 302 static ssize_t mtd_badblocks_show(struct device *dev, 303 struct device_attribute *attr, char *buf) 304 { 305 struct mtd_info *mtd = dev_get_drvdata(dev); 306 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 307 308 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks); 309 } 310 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL); 311 312 static ssize_t mtd_bbtblocks_show(struct device *dev, 313 struct device_attribute *attr, char *buf) 314 { 315 struct mtd_info *mtd = dev_get_drvdata(dev); 316 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 317 318 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks); 319 } 320 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL); 321 322 static struct attribute *mtd_attrs[] = { 323 &dev_attr_type.attr, 324 &dev_attr_flags.attr, 325 &dev_attr_size.attr, 326 &dev_attr_erasesize.attr, 327 &dev_attr_writesize.attr, 328 &dev_attr_subpagesize.attr, 329 &dev_attr_oobsize.attr, 330 &dev_attr_numeraseregions.attr, 331 &dev_attr_name.attr, 332 &dev_attr_ecc_strength.attr, 333 &dev_attr_ecc_step_size.attr, 334 &dev_attr_corrected_bits.attr, 335 &dev_attr_ecc_failures.attr, 336 &dev_attr_bad_blocks.attr, 337 &dev_attr_bbt_blocks.attr, 338 &dev_attr_bitflip_threshold.attr, 339 NULL, 340 }; 341 ATTRIBUTE_GROUPS(mtd); 342 343 static const struct device_type mtd_devtype = { 344 .name = "mtd", 345 .groups = mtd_groups, 346 .release = mtd_release, 347 }; 348 349 #ifndef CONFIG_MMU 350 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 351 { 352 switch (mtd->type) { 353 case MTD_RAM: 354 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 355 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 356 case MTD_ROM: 357 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 358 NOMMU_MAP_READ; 359 default: 360 return NOMMU_MAP_COPY; 361 } 362 } 363 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 364 #endif 365 366 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 367 void *cmd) 368 { 369 struct mtd_info *mtd; 370 371 mtd = container_of(n, struct mtd_info, reboot_notifier); 372 mtd->_reboot(mtd); 373 374 return NOTIFY_DONE; 375 } 376 377 /** 378 * mtd_wunit_to_pairing_info - get pairing information of a wunit 379 * @mtd: pointer to new MTD device info structure 380 * @wunit: write unit we are interested in 381 * @info: returned pairing information 382 * 383 * Retrieve pairing information associated to the wunit. 384 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 385 * paired together, and where programming a page may influence the page it is 386 * paired with. 387 * The notion of page is replaced by the term wunit (write-unit) to stay 388 * consistent with the ->writesize field. 389 * 390 * The @wunit argument can be extracted from an absolute offset using 391 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 392 * to @wunit. 393 * 394 * From the pairing info the MTD user can find all the wunits paired with 395 * @wunit using the following loop: 396 * 397 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 398 * info.pair = i; 399 * mtd_pairing_info_to_wunit(mtd, &info); 400 * ... 401 * } 402 */ 403 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 404 struct mtd_pairing_info *info) 405 { 406 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 407 408 if (wunit < 0 || wunit >= npairs) 409 return -EINVAL; 410 411 if (mtd->pairing && mtd->pairing->get_info) 412 return mtd->pairing->get_info(mtd, wunit, info); 413 414 info->group = 0; 415 info->pair = wunit; 416 417 return 0; 418 } 419 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 420 421 /** 422 * mtd_wunit_to_pairing_info - get wunit from pairing information 423 * @mtd: pointer to new MTD device info structure 424 * @info: pairing information struct 425 * 426 * Returns a positive number representing the wunit associated to the info 427 * struct, or a negative error code. 428 * 429 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 430 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 431 * doc). 432 * 433 * It can also be used to only program the first page of each pair (i.e. 434 * page attached to group 0), which allows one to use an MLC NAND in 435 * software-emulated SLC mode: 436 * 437 * info.group = 0; 438 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 439 * for (info.pair = 0; info.pair < npairs; info.pair++) { 440 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 441 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 442 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 443 * } 444 */ 445 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 446 const struct mtd_pairing_info *info) 447 { 448 int ngroups = mtd_pairing_groups(mtd); 449 int npairs = mtd_wunit_per_eb(mtd) / ngroups; 450 451 if (!info || info->pair < 0 || info->pair >= npairs || 452 info->group < 0 || info->group >= ngroups) 453 return -EINVAL; 454 455 if (mtd->pairing && mtd->pairing->get_wunit) 456 return mtd->pairing->get_wunit(mtd, info); 457 458 return info->pair; 459 } 460 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 461 462 /** 463 * mtd_pairing_groups - get the number of pairing groups 464 * @mtd: pointer to new MTD device info structure 465 * 466 * Returns the number of pairing groups. 467 * 468 * This number is usually equal to the number of bits exposed by a single 469 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 470 * to iterate over all pages of a given pair. 471 */ 472 int mtd_pairing_groups(struct mtd_info *mtd) 473 { 474 if (!mtd->pairing || !mtd->pairing->ngroups) 475 return 1; 476 477 return mtd->pairing->ngroups; 478 } 479 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 480 481 static struct dentry *dfs_dir_mtd; 482 483 /** 484 * add_mtd_device - register an MTD device 485 * @mtd: pointer to new MTD device info structure 486 * 487 * Add a device to the list of MTD devices present in the system, and 488 * notify each currently active MTD 'user' of its arrival. Returns 489 * zero on success or non-zero on failure. 490 */ 491 492 int add_mtd_device(struct mtd_info *mtd) 493 { 494 struct mtd_notifier *not; 495 int i, error; 496 497 /* 498 * May occur, for instance, on buggy drivers which call 499 * mtd_device_parse_register() multiple times on the same master MTD, 500 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 501 */ 502 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 503 return -EEXIST; 504 505 BUG_ON(mtd->writesize == 0); 506 mutex_lock(&mtd_table_mutex); 507 508 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 509 if (i < 0) { 510 error = i; 511 goto fail_locked; 512 } 513 514 mtd->index = i; 515 mtd->usecount = 0; 516 517 /* default value if not set by driver */ 518 if (mtd->bitflip_threshold == 0) 519 mtd->bitflip_threshold = mtd->ecc_strength; 520 521 if (is_power_of_2(mtd->erasesize)) 522 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 523 else 524 mtd->erasesize_shift = 0; 525 526 if (is_power_of_2(mtd->writesize)) 527 mtd->writesize_shift = ffs(mtd->writesize) - 1; 528 else 529 mtd->writesize_shift = 0; 530 531 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 532 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 533 534 /* Some chips always power up locked. Unlock them now */ 535 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 536 error = mtd_unlock(mtd, 0, mtd->size); 537 if (error && error != -EOPNOTSUPP) 538 printk(KERN_WARNING 539 "%s: unlock failed, writes may not work\n", 540 mtd->name); 541 /* Ignore unlock failures? */ 542 error = 0; 543 } 544 545 /* Caller should have set dev.parent to match the 546 * physical device, if appropriate. 547 */ 548 mtd->dev.type = &mtd_devtype; 549 mtd->dev.class = &mtd_class; 550 mtd->dev.devt = MTD_DEVT(i); 551 dev_set_name(&mtd->dev, "mtd%d", i); 552 dev_set_drvdata(&mtd->dev, mtd); 553 of_node_get(mtd_get_of_node(mtd)); 554 error = device_register(&mtd->dev); 555 if (error) 556 goto fail_added; 557 558 if (!IS_ERR_OR_NULL(dfs_dir_mtd)) { 559 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd); 560 if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) { 561 pr_debug("mtd device %s won't show data in debugfs\n", 562 dev_name(&mtd->dev)); 563 } 564 } 565 566 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 567 "mtd%dro", i); 568 569 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 570 /* No need to get a refcount on the module containing 571 the notifier, since we hold the mtd_table_mutex */ 572 list_for_each_entry(not, &mtd_notifiers, list) 573 not->add(mtd); 574 575 mutex_unlock(&mtd_table_mutex); 576 /* We _know_ we aren't being removed, because 577 our caller is still holding us here. So none 578 of this try_ nonsense, and no bitching about it 579 either. :) */ 580 __module_get(THIS_MODULE); 581 return 0; 582 583 fail_added: 584 of_node_put(mtd_get_of_node(mtd)); 585 idr_remove(&mtd_idr, i); 586 fail_locked: 587 mutex_unlock(&mtd_table_mutex); 588 return error; 589 } 590 591 /** 592 * del_mtd_device - unregister an MTD device 593 * @mtd: pointer to MTD device info structure 594 * 595 * Remove a device from the list of MTD devices present in the system, 596 * and notify each currently active MTD 'user' of its departure. 597 * Returns zero on success or 1 on failure, which currently will happen 598 * if the requested device does not appear to be present in the list. 599 */ 600 601 int del_mtd_device(struct mtd_info *mtd) 602 { 603 int ret; 604 struct mtd_notifier *not; 605 606 mutex_lock(&mtd_table_mutex); 607 608 debugfs_remove_recursive(mtd->dbg.dfs_dir); 609 610 if (idr_find(&mtd_idr, mtd->index) != mtd) { 611 ret = -ENODEV; 612 goto out_error; 613 } 614 615 /* No need to get a refcount on the module containing 616 the notifier, since we hold the mtd_table_mutex */ 617 list_for_each_entry(not, &mtd_notifiers, list) 618 not->remove(mtd); 619 620 if (mtd->usecount) { 621 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 622 mtd->index, mtd->name, mtd->usecount); 623 ret = -EBUSY; 624 } else { 625 device_unregister(&mtd->dev); 626 627 idr_remove(&mtd_idr, mtd->index); 628 of_node_put(mtd_get_of_node(mtd)); 629 630 module_put(THIS_MODULE); 631 ret = 0; 632 } 633 634 out_error: 635 mutex_unlock(&mtd_table_mutex); 636 return ret; 637 } 638 639 static int mtd_add_device_partitions(struct mtd_info *mtd, 640 struct mtd_partitions *parts) 641 { 642 const struct mtd_partition *real_parts = parts->parts; 643 int nbparts = parts->nr_parts; 644 int ret; 645 646 if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 647 ret = add_mtd_device(mtd); 648 if (ret) 649 return ret; 650 } 651 652 if (nbparts > 0) { 653 ret = add_mtd_partitions(mtd, real_parts, nbparts); 654 if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) 655 del_mtd_device(mtd); 656 return ret; 657 } 658 659 return 0; 660 } 661 662 /* 663 * Set a few defaults based on the parent devices, if not provided by the 664 * driver 665 */ 666 static void mtd_set_dev_defaults(struct mtd_info *mtd) 667 { 668 if (mtd->dev.parent) { 669 if (!mtd->owner && mtd->dev.parent->driver) 670 mtd->owner = mtd->dev.parent->driver->owner; 671 if (!mtd->name) 672 mtd->name = dev_name(mtd->dev.parent); 673 } else { 674 pr_debug("mtd device won't show a device symlink in sysfs\n"); 675 } 676 } 677 678 /** 679 * mtd_device_parse_register - parse partitions and register an MTD device. 680 * 681 * @mtd: the MTD device to register 682 * @types: the list of MTD partition probes to try, see 683 * 'parse_mtd_partitions()' for more information 684 * @parser_data: MTD partition parser-specific data 685 * @parts: fallback partition information to register, if parsing fails; 686 * only valid if %nr_parts > %0 687 * @nr_parts: the number of partitions in parts, if zero then the full 688 * MTD device is registered if no partition info is found 689 * 690 * This function aggregates MTD partitions parsing (done by 691 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 692 * basically follows the most common pattern found in many MTD drivers: 693 * 694 * * It first tries to probe partitions on MTD device @mtd using parsers 695 * specified in @types (if @types is %NULL, then the default list of parsers 696 * is used, see 'parse_mtd_partitions()' for more information). If none are 697 * found this functions tries to fallback to information specified in 698 * @parts/@nr_parts. 699 * * If any partitioning info was found, this function registers the found 700 * partitions. If the MTD_PARTITIONED_MASTER option is set, then the device 701 * as a whole is registered first. 702 * * If no partitions were found this function just registers the MTD device 703 * @mtd and exits. 704 * 705 * Returns zero in case of success and a negative error code in case of failure. 706 */ 707 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 708 struct mtd_part_parser_data *parser_data, 709 const struct mtd_partition *parts, 710 int nr_parts) 711 { 712 struct mtd_partitions parsed; 713 int ret; 714 715 mtd_set_dev_defaults(mtd); 716 717 memset(&parsed, 0, sizeof(parsed)); 718 719 ret = parse_mtd_partitions(mtd, types, &parsed, parser_data); 720 if ((ret < 0 || parsed.nr_parts == 0) && parts && nr_parts) { 721 /* Fall back to driver-provided partitions */ 722 parsed = (struct mtd_partitions){ 723 .parts = parts, 724 .nr_parts = nr_parts, 725 }; 726 } else if (ret < 0) { 727 /* Didn't come up with parsed OR fallback partitions */ 728 pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n", 729 ret); 730 /* Don't abort on errors; we can still use unpartitioned MTD */ 731 memset(&parsed, 0, sizeof(parsed)); 732 } 733 734 ret = mtd_add_device_partitions(mtd, &parsed); 735 if (ret) 736 goto out; 737 738 /* 739 * FIXME: some drivers unfortunately call this function more than once. 740 * So we have to check if we've already assigned the reboot notifier. 741 * 742 * Generally, we can make multiple calls work for most cases, but it 743 * does cause problems with parse_mtd_partitions() above (e.g., 744 * cmdlineparts will register partitions more than once). 745 */ 746 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 747 "MTD already registered\n"); 748 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 749 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 750 register_reboot_notifier(&mtd->reboot_notifier); 751 } 752 753 out: 754 /* Cleanup any parsed partitions */ 755 mtd_part_parser_cleanup(&parsed); 756 return ret; 757 } 758 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 759 760 /** 761 * mtd_device_unregister - unregister an existing MTD device. 762 * 763 * @master: the MTD device to unregister. This will unregister both the master 764 * and any partitions if registered. 765 */ 766 int mtd_device_unregister(struct mtd_info *master) 767 { 768 int err; 769 770 if (master->_reboot) 771 unregister_reboot_notifier(&master->reboot_notifier); 772 773 err = del_mtd_partitions(master); 774 if (err) 775 return err; 776 777 if (!device_is_registered(&master->dev)) 778 return 0; 779 780 return del_mtd_device(master); 781 } 782 EXPORT_SYMBOL_GPL(mtd_device_unregister); 783 784 /** 785 * register_mtd_user - register a 'user' of MTD devices. 786 * @new: pointer to notifier info structure 787 * 788 * Registers a pair of callbacks function to be called upon addition 789 * or removal of MTD devices. Causes the 'add' callback to be immediately 790 * invoked for each MTD device currently present in the system. 791 */ 792 void register_mtd_user (struct mtd_notifier *new) 793 { 794 struct mtd_info *mtd; 795 796 mutex_lock(&mtd_table_mutex); 797 798 list_add(&new->list, &mtd_notifiers); 799 800 __module_get(THIS_MODULE); 801 802 mtd_for_each_device(mtd) 803 new->add(mtd); 804 805 mutex_unlock(&mtd_table_mutex); 806 } 807 EXPORT_SYMBOL_GPL(register_mtd_user); 808 809 /** 810 * unregister_mtd_user - unregister a 'user' of MTD devices. 811 * @old: pointer to notifier info structure 812 * 813 * Removes a callback function pair from the list of 'users' to be 814 * notified upon addition or removal of MTD devices. Causes the 815 * 'remove' callback to be immediately invoked for each MTD device 816 * currently present in the system. 817 */ 818 int unregister_mtd_user (struct mtd_notifier *old) 819 { 820 struct mtd_info *mtd; 821 822 mutex_lock(&mtd_table_mutex); 823 824 module_put(THIS_MODULE); 825 826 mtd_for_each_device(mtd) 827 old->remove(mtd); 828 829 list_del(&old->list); 830 mutex_unlock(&mtd_table_mutex); 831 return 0; 832 } 833 EXPORT_SYMBOL_GPL(unregister_mtd_user); 834 835 /** 836 * get_mtd_device - obtain a validated handle for an MTD device 837 * @mtd: last known address of the required MTD device 838 * @num: internal device number of the required MTD device 839 * 840 * Given a number and NULL address, return the num'th entry in the device 841 * table, if any. Given an address and num == -1, search the device table 842 * for a device with that address and return if it's still present. Given 843 * both, return the num'th driver only if its address matches. Return 844 * error code if not. 845 */ 846 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 847 { 848 struct mtd_info *ret = NULL, *other; 849 int err = -ENODEV; 850 851 mutex_lock(&mtd_table_mutex); 852 853 if (num == -1) { 854 mtd_for_each_device(other) { 855 if (other == mtd) { 856 ret = mtd; 857 break; 858 } 859 } 860 } else if (num >= 0) { 861 ret = idr_find(&mtd_idr, num); 862 if (mtd && mtd != ret) 863 ret = NULL; 864 } 865 866 if (!ret) { 867 ret = ERR_PTR(err); 868 goto out; 869 } 870 871 err = __get_mtd_device(ret); 872 if (err) 873 ret = ERR_PTR(err); 874 out: 875 mutex_unlock(&mtd_table_mutex); 876 return ret; 877 } 878 EXPORT_SYMBOL_GPL(get_mtd_device); 879 880 881 int __get_mtd_device(struct mtd_info *mtd) 882 { 883 int err; 884 885 if (!try_module_get(mtd->owner)) 886 return -ENODEV; 887 888 if (mtd->_get_device) { 889 err = mtd->_get_device(mtd); 890 891 if (err) { 892 module_put(mtd->owner); 893 return err; 894 } 895 } 896 mtd->usecount++; 897 return 0; 898 } 899 EXPORT_SYMBOL_GPL(__get_mtd_device); 900 901 /** 902 * get_mtd_device_nm - obtain a validated handle for an MTD device by 903 * device name 904 * @name: MTD device name to open 905 * 906 * This function returns MTD device description structure in case of 907 * success and an error code in case of failure. 908 */ 909 struct mtd_info *get_mtd_device_nm(const char *name) 910 { 911 int err = -ENODEV; 912 struct mtd_info *mtd = NULL, *other; 913 914 mutex_lock(&mtd_table_mutex); 915 916 mtd_for_each_device(other) { 917 if (!strcmp(name, other->name)) { 918 mtd = other; 919 break; 920 } 921 } 922 923 if (!mtd) 924 goto out_unlock; 925 926 err = __get_mtd_device(mtd); 927 if (err) 928 goto out_unlock; 929 930 mutex_unlock(&mtd_table_mutex); 931 return mtd; 932 933 out_unlock: 934 mutex_unlock(&mtd_table_mutex); 935 return ERR_PTR(err); 936 } 937 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 938 939 void put_mtd_device(struct mtd_info *mtd) 940 { 941 mutex_lock(&mtd_table_mutex); 942 __put_mtd_device(mtd); 943 mutex_unlock(&mtd_table_mutex); 944 945 } 946 EXPORT_SYMBOL_GPL(put_mtd_device); 947 948 void __put_mtd_device(struct mtd_info *mtd) 949 { 950 --mtd->usecount; 951 BUG_ON(mtd->usecount < 0); 952 953 if (mtd->_put_device) 954 mtd->_put_device(mtd); 955 956 module_put(mtd->owner); 957 } 958 EXPORT_SYMBOL_GPL(__put_mtd_device); 959 960 /* 961 * Erase is an asynchronous operation. Device drivers are supposed 962 * to call instr->callback() whenever the operation completes, even 963 * if it completes with a failure. 964 * Callers are supposed to pass a callback function and wait for it 965 * to be called before writing to the block. 966 */ 967 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 968 { 969 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 970 return -EINVAL; 971 if (!(mtd->flags & MTD_WRITEABLE)) 972 return -EROFS; 973 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 974 if (!instr->len) { 975 instr->state = MTD_ERASE_DONE; 976 mtd_erase_callback(instr); 977 return 0; 978 } 979 ledtrig_mtd_activity(); 980 return mtd->_erase(mtd, instr); 981 } 982 EXPORT_SYMBOL_GPL(mtd_erase); 983 984 /* 985 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 986 */ 987 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 988 void **virt, resource_size_t *phys) 989 { 990 *retlen = 0; 991 *virt = NULL; 992 if (phys) 993 *phys = 0; 994 if (!mtd->_point) 995 return -EOPNOTSUPP; 996 if (from < 0 || from >= mtd->size || len > mtd->size - from) 997 return -EINVAL; 998 if (!len) 999 return 0; 1000 return mtd->_point(mtd, from, len, retlen, virt, phys); 1001 } 1002 EXPORT_SYMBOL_GPL(mtd_point); 1003 1004 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 1005 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1006 { 1007 if (!mtd->_unpoint) 1008 return -EOPNOTSUPP; 1009 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1010 return -EINVAL; 1011 if (!len) 1012 return 0; 1013 return mtd->_unpoint(mtd, from, len); 1014 } 1015 EXPORT_SYMBOL_GPL(mtd_unpoint); 1016 1017 /* 1018 * Allow NOMMU mmap() to directly map the device (if not NULL) 1019 * - return the address to which the offset maps 1020 * - return -ENOSYS to indicate refusal to do the mapping 1021 */ 1022 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1023 unsigned long offset, unsigned long flags) 1024 { 1025 if (!mtd->_get_unmapped_area) 1026 return -EOPNOTSUPP; 1027 if (offset >= mtd->size || len > mtd->size - offset) 1028 return -EINVAL; 1029 return mtd->_get_unmapped_area(mtd, len, offset, flags); 1030 } 1031 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1032 1033 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1034 u_char *buf) 1035 { 1036 int ret_code; 1037 *retlen = 0; 1038 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1039 return -EINVAL; 1040 if (!len) 1041 return 0; 1042 1043 ledtrig_mtd_activity(); 1044 /* 1045 * In the absence of an error, drivers return a non-negative integer 1046 * representing the maximum number of bitflips that were corrected on 1047 * any one ecc region (if applicable; zero otherwise). 1048 */ 1049 ret_code = mtd->_read(mtd, from, len, retlen, buf); 1050 if (unlikely(ret_code < 0)) 1051 return ret_code; 1052 if (mtd->ecc_strength == 0) 1053 return 0; /* device lacks ecc */ 1054 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1055 } 1056 EXPORT_SYMBOL_GPL(mtd_read); 1057 1058 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1059 const u_char *buf) 1060 { 1061 *retlen = 0; 1062 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1063 return -EINVAL; 1064 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE)) 1065 return -EROFS; 1066 if (!len) 1067 return 0; 1068 ledtrig_mtd_activity(); 1069 return mtd->_write(mtd, to, len, retlen, buf); 1070 } 1071 EXPORT_SYMBOL_GPL(mtd_write); 1072 1073 /* 1074 * In blackbox flight recorder like scenarios we want to make successful writes 1075 * in interrupt context. panic_write() is only intended to be called when its 1076 * known the kernel is about to panic and we need the write to succeed. Since 1077 * the kernel is not going to be running for much longer, this function can 1078 * break locks and delay to ensure the write succeeds (but not sleep). 1079 */ 1080 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1081 const u_char *buf) 1082 { 1083 *retlen = 0; 1084 if (!mtd->_panic_write) 1085 return -EOPNOTSUPP; 1086 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1087 return -EINVAL; 1088 if (!(mtd->flags & MTD_WRITEABLE)) 1089 return -EROFS; 1090 if (!len) 1091 return 0; 1092 return mtd->_panic_write(mtd, to, len, retlen, buf); 1093 } 1094 EXPORT_SYMBOL_GPL(mtd_panic_write); 1095 1096 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1097 { 1098 int ret_code; 1099 ops->retlen = ops->oobretlen = 0; 1100 if (!mtd->_read_oob) 1101 return -EOPNOTSUPP; 1102 1103 ledtrig_mtd_activity(); 1104 /* 1105 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1106 * similar to mtd->_read(), returning a non-negative integer 1107 * representing max bitflips. In other cases, mtd->_read_oob() may 1108 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1109 */ 1110 ret_code = mtd->_read_oob(mtd, from, ops); 1111 if (unlikely(ret_code < 0)) 1112 return ret_code; 1113 if (mtd->ecc_strength == 0) 1114 return 0; /* device lacks ecc */ 1115 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1116 } 1117 EXPORT_SYMBOL_GPL(mtd_read_oob); 1118 1119 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1120 struct mtd_oob_ops *ops) 1121 { 1122 ops->retlen = ops->oobretlen = 0; 1123 if (!mtd->_write_oob) 1124 return -EOPNOTSUPP; 1125 if (!(mtd->flags & MTD_WRITEABLE)) 1126 return -EROFS; 1127 ledtrig_mtd_activity(); 1128 return mtd->_write_oob(mtd, to, ops); 1129 } 1130 EXPORT_SYMBOL_GPL(mtd_write_oob); 1131 1132 /** 1133 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1134 * @mtd: MTD device structure 1135 * @section: ECC section. Depending on the layout you may have all the ECC 1136 * bytes stored in a single contiguous section, or one section 1137 * per ECC chunk (and sometime several sections for a single ECC 1138 * ECC chunk) 1139 * @oobecc: OOB region struct filled with the appropriate ECC position 1140 * information 1141 * 1142 * This function returns ECC section information in the OOB area. If you want 1143 * to get all the ECC bytes information, then you should call 1144 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1145 * 1146 * Returns zero on success, a negative error code otherwise. 1147 */ 1148 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1149 struct mtd_oob_region *oobecc) 1150 { 1151 memset(oobecc, 0, sizeof(*oobecc)); 1152 1153 if (!mtd || section < 0) 1154 return -EINVAL; 1155 1156 if (!mtd->ooblayout || !mtd->ooblayout->ecc) 1157 return -ENOTSUPP; 1158 1159 return mtd->ooblayout->ecc(mtd, section, oobecc); 1160 } 1161 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1162 1163 /** 1164 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1165 * section 1166 * @mtd: MTD device structure 1167 * @section: Free section you are interested in. Depending on the layout 1168 * you may have all the free bytes stored in a single contiguous 1169 * section, or one section per ECC chunk plus an extra section 1170 * for the remaining bytes (or other funky layout). 1171 * @oobfree: OOB region struct filled with the appropriate free position 1172 * information 1173 * 1174 * This function returns free bytes position in the OOB area. If you want 1175 * to get all the free bytes information, then you should call 1176 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1177 * 1178 * Returns zero on success, a negative error code otherwise. 1179 */ 1180 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1181 struct mtd_oob_region *oobfree) 1182 { 1183 memset(oobfree, 0, sizeof(*oobfree)); 1184 1185 if (!mtd || section < 0) 1186 return -EINVAL; 1187 1188 if (!mtd->ooblayout || !mtd->ooblayout->free) 1189 return -ENOTSUPP; 1190 1191 return mtd->ooblayout->free(mtd, section, oobfree); 1192 } 1193 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1194 1195 /** 1196 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1197 * @mtd: mtd info structure 1198 * @byte: the byte we are searching for 1199 * @sectionp: pointer where the section id will be stored 1200 * @oobregion: used to retrieve the ECC position 1201 * @iter: iterator function. Should be either mtd_ooblayout_free or 1202 * mtd_ooblayout_ecc depending on the region type you're searching for 1203 * 1204 * This function returns the section id and oobregion information of a 1205 * specific byte. For example, say you want to know where the 4th ECC byte is 1206 * stored, you'll use: 1207 * 1208 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1209 * 1210 * Returns zero on success, a negative error code otherwise. 1211 */ 1212 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1213 int *sectionp, struct mtd_oob_region *oobregion, 1214 int (*iter)(struct mtd_info *, 1215 int section, 1216 struct mtd_oob_region *oobregion)) 1217 { 1218 int pos = 0, ret, section = 0; 1219 1220 memset(oobregion, 0, sizeof(*oobregion)); 1221 1222 while (1) { 1223 ret = iter(mtd, section, oobregion); 1224 if (ret) 1225 return ret; 1226 1227 if (pos + oobregion->length > byte) 1228 break; 1229 1230 pos += oobregion->length; 1231 section++; 1232 } 1233 1234 /* 1235 * Adjust region info to make it start at the beginning at the 1236 * 'start' ECC byte. 1237 */ 1238 oobregion->offset += byte - pos; 1239 oobregion->length -= byte - pos; 1240 *sectionp = section; 1241 1242 return 0; 1243 } 1244 1245 /** 1246 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1247 * ECC byte 1248 * @mtd: mtd info structure 1249 * @eccbyte: the byte we are searching for 1250 * @sectionp: pointer where the section id will be stored 1251 * @oobregion: OOB region information 1252 * 1253 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1254 * byte. 1255 * 1256 * Returns zero on success, a negative error code otherwise. 1257 */ 1258 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1259 int *section, 1260 struct mtd_oob_region *oobregion) 1261 { 1262 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1263 mtd_ooblayout_ecc); 1264 } 1265 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1266 1267 /** 1268 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1269 * @mtd: mtd info structure 1270 * @buf: destination buffer to store OOB bytes 1271 * @oobbuf: OOB buffer 1272 * @start: first byte to retrieve 1273 * @nbytes: number of bytes to retrieve 1274 * @iter: section iterator 1275 * 1276 * Extract bytes attached to a specific category (ECC or free) 1277 * from the OOB buffer and copy them into buf. 1278 * 1279 * Returns zero on success, a negative error code otherwise. 1280 */ 1281 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1282 const u8 *oobbuf, int start, int nbytes, 1283 int (*iter)(struct mtd_info *, 1284 int section, 1285 struct mtd_oob_region *oobregion)) 1286 { 1287 struct mtd_oob_region oobregion; 1288 int section, ret; 1289 1290 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1291 &oobregion, iter); 1292 1293 while (!ret) { 1294 int cnt; 1295 1296 cnt = min_t(int, nbytes, oobregion.length); 1297 memcpy(buf, oobbuf + oobregion.offset, cnt); 1298 buf += cnt; 1299 nbytes -= cnt; 1300 1301 if (!nbytes) 1302 break; 1303 1304 ret = iter(mtd, ++section, &oobregion); 1305 } 1306 1307 return ret; 1308 } 1309 1310 /** 1311 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1312 * @mtd: mtd info structure 1313 * @buf: source buffer to get OOB bytes from 1314 * @oobbuf: OOB buffer 1315 * @start: first OOB byte to set 1316 * @nbytes: number of OOB bytes to set 1317 * @iter: section iterator 1318 * 1319 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1320 * is selected by passing the appropriate iterator. 1321 * 1322 * Returns zero on success, a negative error code otherwise. 1323 */ 1324 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1325 u8 *oobbuf, int start, int nbytes, 1326 int (*iter)(struct mtd_info *, 1327 int section, 1328 struct mtd_oob_region *oobregion)) 1329 { 1330 struct mtd_oob_region oobregion; 1331 int section, ret; 1332 1333 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1334 &oobregion, iter); 1335 1336 while (!ret) { 1337 int cnt; 1338 1339 cnt = min_t(int, nbytes, oobregion.length); 1340 memcpy(oobbuf + oobregion.offset, buf, cnt); 1341 buf += cnt; 1342 nbytes -= cnt; 1343 1344 if (!nbytes) 1345 break; 1346 1347 ret = iter(mtd, ++section, &oobregion); 1348 } 1349 1350 return ret; 1351 } 1352 1353 /** 1354 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1355 * @mtd: mtd info structure 1356 * @iter: category iterator 1357 * 1358 * Count the number of bytes in a given category. 1359 * 1360 * Returns a positive value on success, a negative error code otherwise. 1361 */ 1362 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1363 int (*iter)(struct mtd_info *, 1364 int section, 1365 struct mtd_oob_region *oobregion)) 1366 { 1367 struct mtd_oob_region oobregion; 1368 int section = 0, ret, nbytes = 0; 1369 1370 while (1) { 1371 ret = iter(mtd, section++, &oobregion); 1372 if (ret) { 1373 if (ret == -ERANGE) 1374 ret = nbytes; 1375 break; 1376 } 1377 1378 nbytes += oobregion.length; 1379 } 1380 1381 return ret; 1382 } 1383 1384 /** 1385 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1386 * @mtd: mtd info structure 1387 * @eccbuf: destination buffer to store ECC bytes 1388 * @oobbuf: OOB buffer 1389 * @start: first ECC byte to retrieve 1390 * @nbytes: number of ECC bytes to retrieve 1391 * 1392 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1393 * 1394 * Returns zero on success, a negative error code otherwise. 1395 */ 1396 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1397 const u8 *oobbuf, int start, int nbytes) 1398 { 1399 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1400 mtd_ooblayout_ecc); 1401 } 1402 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1403 1404 /** 1405 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1406 * @mtd: mtd info structure 1407 * @eccbuf: source buffer to get ECC bytes from 1408 * @oobbuf: OOB buffer 1409 * @start: first ECC byte to set 1410 * @nbytes: number of ECC bytes to set 1411 * 1412 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 1413 * 1414 * Returns zero on success, a negative error code otherwise. 1415 */ 1416 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 1417 u8 *oobbuf, int start, int nbytes) 1418 { 1419 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1420 mtd_ooblayout_ecc); 1421 } 1422 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 1423 1424 /** 1425 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 1426 * @mtd: mtd info structure 1427 * @databuf: destination buffer to store ECC bytes 1428 * @oobbuf: OOB buffer 1429 * @start: first ECC byte to retrieve 1430 * @nbytes: number of ECC bytes to retrieve 1431 * 1432 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1433 * 1434 * Returns zero on success, a negative error code otherwise. 1435 */ 1436 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 1437 const u8 *oobbuf, int start, int nbytes) 1438 { 1439 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 1440 mtd_ooblayout_free); 1441 } 1442 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 1443 1444 /** 1445 * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer 1446 * @mtd: mtd info structure 1447 * @eccbuf: source buffer to get data bytes from 1448 * @oobbuf: OOB buffer 1449 * @start: first ECC byte to set 1450 * @nbytes: number of ECC bytes to set 1451 * 1452 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1453 * 1454 * Returns zero on success, a negative error code otherwise. 1455 */ 1456 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 1457 u8 *oobbuf, int start, int nbytes) 1458 { 1459 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 1460 mtd_ooblayout_free); 1461 } 1462 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 1463 1464 /** 1465 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 1466 * @mtd: mtd info structure 1467 * 1468 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 1469 * 1470 * Returns zero on success, a negative error code otherwise. 1471 */ 1472 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 1473 { 1474 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 1475 } 1476 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 1477 1478 /** 1479 * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB 1480 * @mtd: mtd info structure 1481 * 1482 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 1483 * 1484 * Returns zero on success, a negative error code otherwise. 1485 */ 1486 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 1487 { 1488 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 1489 } 1490 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 1491 1492 /* 1493 * Method to access the protection register area, present in some flash 1494 * devices. The user data is one time programmable but the factory data is read 1495 * only. 1496 */ 1497 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1498 struct otp_info *buf) 1499 { 1500 if (!mtd->_get_fact_prot_info) 1501 return -EOPNOTSUPP; 1502 if (!len) 1503 return 0; 1504 return mtd->_get_fact_prot_info(mtd, len, retlen, buf); 1505 } 1506 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 1507 1508 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1509 size_t *retlen, u_char *buf) 1510 { 1511 *retlen = 0; 1512 if (!mtd->_read_fact_prot_reg) 1513 return -EOPNOTSUPP; 1514 if (!len) 1515 return 0; 1516 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); 1517 } 1518 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 1519 1520 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1521 struct otp_info *buf) 1522 { 1523 if (!mtd->_get_user_prot_info) 1524 return -EOPNOTSUPP; 1525 if (!len) 1526 return 0; 1527 return mtd->_get_user_prot_info(mtd, len, retlen, buf); 1528 } 1529 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 1530 1531 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1532 size_t *retlen, u_char *buf) 1533 { 1534 *retlen = 0; 1535 if (!mtd->_read_user_prot_reg) 1536 return -EOPNOTSUPP; 1537 if (!len) 1538 return 0; 1539 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); 1540 } 1541 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 1542 1543 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 1544 size_t *retlen, u_char *buf) 1545 { 1546 int ret; 1547 1548 *retlen = 0; 1549 if (!mtd->_write_user_prot_reg) 1550 return -EOPNOTSUPP; 1551 if (!len) 1552 return 0; 1553 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); 1554 if (ret) 1555 return ret; 1556 1557 /* 1558 * If no data could be written at all, we are out of memory and 1559 * must return -ENOSPC. 1560 */ 1561 return (*retlen) ? 0 : -ENOSPC; 1562 } 1563 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1564 1565 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1566 { 1567 if (!mtd->_lock_user_prot_reg) 1568 return -EOPNOTSUPP; 1569 if (!len) 1570 return 0; 1571 return mtd->_lock_user_prot_reg(mtd, from, len); 1572 } 1573 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1574 1575 /* Chip-supported device locking */ 1576 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1577 { 1578 if (!mtd->_lock) 1579 return -EOPNOTSUPP; 1580 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1581 return -EINVAL; 1582 if (!len) 1583 return 0; 1584 return mtd->_lock(mtd, ofs, len); 1585 } 1586 EXPORT_SYMBOL_GPL(mtd_lock); 1587 1588 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1589 { 1590 if (!mtd->_unlock) 1591 return -EOPNOTSUPP; 1592 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1593 return -EINVAL; 1594 if (!len) 1595 return 0; 1596 return mtd->_unlock(mtd, ofs, len); 1597 } 1598 EXPORT_SYMBOL_GPL(mtd_unlock); 1599 1600 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1601 { 1602 if (!mtd->_is_locked) 1603 return -EOPNOTSUPP; 1604 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1605 return -EINVAL; 1606 if (!len) 1607 return 0; 1608 return mtd->_is_locked(mtd, ofs, len); 1609 } 1610 EXPORT_SYMBOL_GPL(mtd_is_locked); 1611 1612 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 1613 { 1614 if (ofs < 0 || ofs >= mtd->size) 1615 return -EINVAL; 1616 if (!mtd->_block_isreserved) 1617 return 0; 1618 return mtd->_block_isreserved(mtd, ofs); 1619 } 1620 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 1621 1622 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 1623 { 1624 if (ofs < 0 || ofs >= mtd->size) 1625 return -EINVAL; 1626 if (!mtd->_block_isbad) 1627 return 0; 1628 return mtd->_block_isbad(mtd, ofs); 1629 } 1630 EXPORT_SYMBOL_GPL(mtd_block_isbad); 1631 1632 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 1633 { 1634 if (!mtd->_block_markbad) 1635 return -EOPNOTSUPP; 1636 if (ofs < 0 || ofs >= mtd->size) 1637 return -EINVAL; 1638 if (!(mtd->flags & MTD_WRITEABLE)) 1639 return -EROFS; 1640 return mtd->_block_markbad(mtd, ofs); 1641 } 1642 EXPORT_SYMBOL_GPL(mtd_block_markbad); 1643 1644 /* 1645 * default_mtd_writev - the default writev method 1646 * @mtd: mtd device description object pointer 1647 * @vecs: the vectors to write 1648 * @count: count of vectors in @vecs 1649 * @to: the MTD device offset to write to 1650 * @retlen: on exit contains the count of bytes written to the MTD device. 1651 * 1652 * This function returns zero in case of success and a negative error code in 1653 * case of failure. 1654 */ 1655 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1656 unsigned long count, loff_t to, size_t *retlen) 1657 { 1658 unsigned long i; 1659 size_t totlen = 0, thislen; 1660 int ret = 0; 1661 1662 for (i = 0; i < count; i++) { 1663 if (!vecs[i].iov_len) 1664 continue; 1665 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1666 vecs[i].iov_base); 1667 totlen += thislen; 1668 if (ret || thislen != vecs[i].iov_len) 1669 break; 1670 to += vecs[i].iov_len; 1671 } 1672 *retlen = totlen; 1673 return ret; 1674 } 1675 1676 /* 1677 * mtd_writev - the vector-based MTD write method 1678 * @mtd: mtd device description object pointer 1679 * @vecs: the vectors to write 1680 * @count: count of vectors in @vecs 1681 * @to: the MTD device offset to write to 1682 * @retlen: on exit contains the count of bytes written to the MTD device. 1683 * 1684 * This function returns zero in case of success and a negative error code in 1685 * case of failure. 1686 */ 1687 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1688 unsigned long count, loff_t to, size_t *retlen) 1689 { 1690 *retlen = 0; 1691 if (!(mtd->flags & MTD_WRITEABLE)) 1692 return -EROFS; 1693 if (!mtd->_writev) 1694 return default_mtd_writev(mtd, vecs, count, to, retlen); 1695 return mtd->_writev(mtd, vecs, count, to, retlen); 1696 } 1697 EXPORT_SYMBOL_GPL(mtd_writev); 1698 1699 /** 1700 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1701 * @mtd: mtd device description object pointer 1702 * @size: a pointer to the ideal or maximum size of the allocation, points 1703 * to the actual allocation size on success. 1704 * 1705 * This routine attempts to allocate a contiguous kernel buffer up to 1706 * the specified size, backing off the size of the request exponentially 1707 * until the request succeeds or until the allocation size falls below 1708 * the system page size. This attempts to make sure it does not adversely 1709 * impact system performance, so when allocating more than one page, we 1710 * ask the memory allocator to avoid re-trying, swapping, writing back 1711 * or performing I/O. 1712 * 1713 * Note, this function also makes sure that the allocated buffer is aligned to 1714 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1715 * 1716 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1717 * to handle smaller (i.e. degraded) buffer allocations under low- or 1718 * fragmented-memory situations where such reduced allocations, from a 1719 * requested ideal, are allowed. 1720 * 1721 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1722 */ 1723 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1724 { 1725 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 1726 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1727 void *kbuf; 1728 1729 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1730 1731 while (*size > min_alloc) { 1732 kbuf = kmalloc(*size, flags); 1733 if (kbuf) 1734 return kbuf; 1735 1736 *size >>= 1; 1737 *size = ALIGN(*size, mtd->writesize); 1738 } 1739 1740 /* 1741 * For the last resort allocation allow 'kmalloc()' to do all sorts of 1742 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 1743 */ 1744 return kmalloc(*size, GFP_KERNEL); 1745 } 1746 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 1747 1748 #ifdef CONFIG_PROC_FS 1749 1750 /*====================================================================*/ 1751 /* Support for /proc/mtd */ 1752 1753 static int mtd_proc_show(struct seq_file *m, void *v) 1754 { 1755 struct mtd_info *mtd; 1756 1757 seq_puts(m, "dev: size erasesize name\n"); 1758 mutex_lock(&mtd_table_mutex); 1759 mtd_for_each_device(mtd) { 1760 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 1761 mtd->index, (unsigned long long)mtd->size, 1762 mtd->erasesize, mtd->name); 1763 } 1764 mutex_unlock(&mtd_table_mutex); 1765 return 0; 1766 } 1767 1768 static int mtd_proc_open(struct inode *inode, struct file *file) 1769 { 1770 return single_open(file, mtd_proc_show, NULL); 1771 } 1772 1773 static const struct file_operations mtd_proc_ops = { 1774 .open = mtd_proc_open, 1775 .read = seq_read, 1776 .llseek = seq_lseek, 1777 .release = single_release, 1778 }; 1779 #endif /* CONFIG_PROC_FS */ 1780 1781 /*====================================================================*/ 1782 /* Init code */ 1783 1784 static struct backing_dev_info * __init mtd_bdi_init(char *name) 1785 { 1786 struct backing_dev_info *bdi; 1787 int ret; 1788 1789 bdi = bdi_alloc(GFP_KERNEL); 1790 if (!bdi) 1791 return ERR_PTR(-ENOMEM); 1792 1793 bdi->name = name; 1794 /* 1795 * We put '-0' suffix to the name to get the same name format as we 1796 * used to get. Since this is called only once, we get a unique name. 1797 */ 1798 ret = bdi_register(bdi, "%.28s-0", name); 1799 if (ret) 1800 bdi_put(bdi); 1801 1802 return ret ? ERR_PTR(ret) : bdi; 1803 } 1804 1805 static struct proc_dir_entry *proc_mtd; 1806 1807 static int __init init_mtd(void) 1808 { 1809 int ret; 1810 1811 ret = class_register(&mtd_class); 1812 if (ret) 1813 goto err_reg; 1814 1815 mtd_bdi = mtd_bdi_init("mtd"); 1816 if (IS_ERR(mtd_bdi)) { 1817 ret = PTR_ERR(mtd_bdi); 1818 goto err_bdi; 1819 } 1820 1821 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops); 1822 1823 ret = init_mtdchar(); 1824 if (ret) 1825 goto out_procfs; 1826 1827 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 1828 1829 return 0; 1830 1831 out_procfs: 1832 if (proc_mtd) 1833 remove_proc_entry("mtd", NULL); 1834 bdi_put(mtd_bdi); 1835 err_bdi: 1836 class_unregister(&mtd_class); 1837 err_reg: 1838 pr_err("Error registering mtd class or bdi: %d\n", ret); 1839 return ret; 1840 } 1841 1842 static void __exit cleanup_mtd(void) 1843 { 1844 debugfs_remove_recursive(dfs_dir_mtd); 1845 cleanup_mtdchar(); 1846 if (proc_mtd) 1847 remove_proc_entry("mtd", NULL); 1848 class_unregister(&mtd_class); 1849 bdi_put(mtd_bdi); 1850 idr_destroy(&mtd_idr); 1851 } 1852 1853 module_init(init_mtd); 1854 module_exit(cleanup_mtd); 1855 1856 MODULE_LICENSE("GPL"); 1857 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1858 MODULE_DESCRIPTION("Core MTD registration and access routines"); 1859