xref: /openbmc/linux/drivers/mtd/mtdcore.c (revision cd5d5810)
1 /*
2  * Core registration and callback routines for MTD
3  * drivers and users.
4  *
5  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6  * Copyright © 2006      Red Hat UK Limited
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/proc_fs.h>
36 #include <linux/idr.h>
37 #include <linux/backing-dev.h>
38 #include <linux/gfp.h>
39 #include <linux/slab.h>
40 
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/partitions.h>
43 
44 #include "mtdcore.h"
45 
46 /*
47  * backing device capabilities for non-mappable devices (such as NAND flash)
48  * - permits private mappings, copies are taken of the data
49  */
50 static struct backing_dev_info mtd_bdi_unmappable = {
51 	.capabilities	= BDI_CAP_MAP_COPY,
52 };
53 
54 /*
55  * backing device capabilities for R/O mappable devices (such as ROM)
56  * - permits private mappings, copies are taken of the data
57  * - permits non-writable shared mappings
58  */
59 static struct backing_dev_info mtd_bdi_ro_mappable = {
60 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
61 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
62 };
63 
64 /*
65  * backing device capabilities for writable mappable devices (such as RAM)
66  * - permits private mappings, copies are taken of the data
67  * - permits non-writable shared mappings
68  */
69 static struct backing_dev_info mtd_bdi_rw_mappable = {
70 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
71 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
72 			   BDI_CAP_WRITE_MAP),
73 };
74 
75 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
76 static int mtd_cls_resume(struct device *dev);
77 
78 static struct class mtd_class = {
79 	.name = "mtd",
80 	.owner = THIS_MODULE,
81 	.suspend = mtd_cls_suspend,
82 	.resume = mtd_cls_resume,
83 };
84 
85 static DEFINE_IDR(mtd_idr);
86 
87 /* These are exported solely for the purpose of mtd_blkdevs.c. You
88    should not use them for _anything_ else */
89 DEFINE_MUTEX(mtd_table_mutex);
90 EXPORT_SYMBOL_GPL(mtd_table_mutex);
91 
92 struct mtd_info *__mtd_next_device(int i)
93 {
94 	return idr_get_next(&mtd_idr, &i);
95 }
96 EXPORT_SYMBOL_GPL(__mtd_next_device);
97 
98 static LIST_HEAD(mtd_notifiers);
99 
100 
101 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
102 
103 /* REVISIT once MTD uses the driver model better, whoever allocates
104  * the mtd_info will probably want to use the release() hook...
105  */
106 static void mtd_release(struct device *dev)
107 {
108 	struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
109 	dev_t index = MTD_DEVT(mtd->index);
110 
111 	/* remove /dev/mtdXro node if needed */
112 	if (index)
113 		device_destroy(&mtd_class, index + 1);
114 }
115 
116 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
117 {
118 	struct mtd_info *mtd = dev_get_drvdata(dev);
119 
120 	return mtd ? mtd_suspend(mtd) : 0;
121 }
122 
123 static int mtd_cls_resume(struct device *dev)
124 {
125 	struct mtd_info *mtd = dev_get_drvdata(dev);
126 
127 	if (mtd)
128 		mtd_resume(mtd);
129 	return 0;
130 }
131 
132 static ssize_t mtd_type_show(struct device *dev,
133 		struct device_attribute *attr, char *buf)
134 {
135 	struct mtd_info *mtd = dev_get_drvdata(dev);
136 	char *type;
137 
138 	switch (mtd->type) {
139 	case MTD_ABSENT:
140 		type = "absent";
141 		break;
142 	case MTD_RAM:
143 		type = "ram";
144 		break;
145 	case MTD_ROM:
146 		type = "rom";
147 		break;
148 	case MTD_NORFLASH:
149 		type = "nor";
150 		break;
151 	case MTD_NANDFLASH:
152 		type = "nand";
153 		break;
154 	case MTD_DATAFLASH:
155 		type = "dataflash";
156 		break;
157 	case MTD_UBIVOLUME:
158 		type = "ubi";
159 		break;
160 	default:
161 		type = "unknown";
162 	}
163 
164 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
165 }
166 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
167 
168 static ssize_t mtd_flags_show(struct device *dev,
169 		struct device_attribute *attr, char *buf)
170 {
171 	struct mtd_info *mtd = dev_get_drvdata(dev);
172 
173 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
174 
175 }
176 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
177 
178 static ssize_t mtd_size_show(struct device *dev,
179 		struct device_attribute *attr, char *buf)
180 {
181 	struct mtd_info *mtd = dev_get_drvdata(dev);
182 
183 	return snprintf(buf, PAGE_SIZE, "%llu\n",
184 		(unsigned long long)mtd->size);
185 
186 }
187 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
188 
189 static ssize_t mtd_erasesize_show(struct device *dev,
190 		struct device_attribute *attr, char *buf)
191 {
192 	struct mtd_info *mtd = dev_get_drvdata(dev);
193 
194 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
195 
196 }
197 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
198 
199 static ssize_t mtd_writesize_show(struct device *dev,
200 		struct device_attribute *attr, char *buf)
201 {
202 	struct mtd_info *mtd = dev_get_drvdata(dev);
203 
204 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
205 
206 }
207 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
208 
209 static ssize_t mtd_subpagesize_show(struct device *dev,
210 		struct device_attribute *attr, char *buf)
211 {
212 	struct mtd_info *mtd = dev_get_drvdata(dev);
213 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
214 
215 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
216 
217 }
218 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
219 
220 static ssize_t mtd_oobsize_show(struct device *dev,
221 		struct device_attribute *attr, char *buf)
222 {
223 	struct mtd_info *mtd = dev_get_drvdata(dev);
224 
225 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
226 
227 }
228 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
229 
230 static ssize_t mtd_numeraseregions_show(struct device *dev,
231 		struct device_attribute *attr, char *buf)
232 {
233 	struct mtd_info *mtd = dev_get_drvdata(dev);
234 
235 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
236 
237 }
238 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
239 	NULL);
240 
241 static ssize_t mtd_name_show(struct device *dev,
242 		struct device_attribute *attr, char *buf)
243 {
244 	struct mtd_info *mtd = dev_get_drvdata(dev);
245 
246 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
247 
248 }
249 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
250 
251 static ssize_t mtd_ecc_strength_show(struct device *dev,
252 				     struct device_attribute *attr, char *buf)
253 {
254 	struct mtd_info *mtd = dev_get_drvdata(dev);
255 
256 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
257 }
258 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
259 
260 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
261 					  struct device_attribute *attr,
262 					  char *buf)
263 {
264 	struct mtd_info *mtd = dev_get_drvdata(dev);
265 
266 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
267 }
268 
269 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
270 					   struct device_attribute *attr,
271 					   const char *buf, size_t count)
272 {
273 	struct mtd_info *mtd = dev_get_drvdata(dev);
274 	unsigned int bitflip_threshold;
275 	int retval;
276 
277 	retval = kstrtouint(buf, 0, &bitflip_threshold);
278 	if (retval)
279 		return retval;
280 
281 	mtd->bitflip_threshold = bitflip_threshold;
282 	return count;
283 }
284 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
285 		   mtd_bitflip_threshold_show,
286 		   mtd_bitflip_threshold_store);
287 
288 static ssize_t mtd_ecc_step_size_show(struct device *dev,
289 		struct device_attribute *attr, char *buf)
290 {
291 	struct mtd_info *mtd = dev_get_drvdata(dev);
292 
293 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
294 
295 }
296 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
297 
298 static struct attribute *mtd_attrs[] = {
299 	&dev_attr_type.attr,
300 	&dev_attr_flags.attr,
301 	&dev_attr_size.attr,
302 	&dev_attr_erasesize.attr,
303 	&dev_attr_writesize.attr,
304 	&dev_attr_subpagesize.attr,
305 	&dev_attr_oobsize.attr,
306 	&dev_attr_numeraseregions.attr,
307 	&dev_attr_name.attr,
308 	&dev_attr_ecc_strength.attr,
309 	&dev_attr_ecc_step_size.attr,
310 	&dev_attr_bitflip_threshold.attr,
311 	NULL,
312 };
313 
314 static struct attribute_group mtd_group = {
315 	.attrs		= mtd_attrs,
316 };
317 
318 static const struct attribute_group *mtd_groups[] = {
319 	&mtd_group,
320 	NULL,
321 };
322 
323 static struct device_type mtd_devtype = {
324 	.name		= "mtd",
325 	.groups		= mtd_groups,
326 	.release	= mtd_release,
327 };
328 
329 /**
330  *	add_mtd_device - register an MTD device
331  *	@mtd: pointer to new MTD device info structure
332  *
333  *	Add a device to the list of MTD devices present in the system, and
334  *	notify each currently active MTD 'user' of its arrival. Returns
335  *	zero on success or 1 on failure, which currently will only happen
336  *	if there is insufficient memory or a sysfs error.
337  */
338 
339 int add_mtd_device(struct mtd_info *mtd)
340 {
341 	struct mtd_notifier *not;
342 	int i, error;
343 
344 	if (!mtd->backing_dev_info) {
345 		switch (mtd->type) {
346 		case MTD_RAM:
347 			mtd->backing_dev_info = &mtd_bdi_rw_mappable;
348 			break;
349 		case MTD_ROM:
350 			mtd->backing_dev_info = &mtd_bdi_ro_mappable;
351 			break;
352 		default:
353 			mtd->backing_dev_info = &mtd_bdi_unmappable;
354 			break;
355 		}
356 	}
357 
358 	BUG_ON(mtd->writesize == 0);
359 	mutex_lock(&mtd_table_mutex);
360 
361 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
362 	if (i < 0)
363 		goto fail_locked;
364 
365 	mtd->index = i;
366 	mtd->usecount = 0;
367 
368 	/* default value if not set by driver */
369 	if (mtd->bitflip_threshold == 0)
370 		mtd->bitflip_threshold = mtd->ecc_strength;
371 
372 	if (is_power_of_2(mtd->erasesize))
373 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
374 	else
375 		mtd->erasesize_shift = 0;
376 
377 	if (is_power_of_2(mtd->writesize))
378 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
379 	else
380 		mtd->writesize_shift = 0;
381 
382 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
383 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
384 
385 	/* Some chips always power up locked. Unlock them now */
386 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
387 		error = mtd_unlock(mtd, 0, mtd->size);
388 		if (error && error != -EOPNOTSUPP)
389 			printk(KERN_WARNING
390 			       "%s: unlock failed, writes may not work\n",
391 			       mtd->name);
392 	}
393 
394 	/* Caller should have set dev.parent to match the
395 	 * physical device.
396 	 */
397 	mtd->dev.type = &mtd_devtype;
398 	mtd->dev.class = &mtd_class;
399 	mtd->dev.devt = MTD_DEVT(i);
400 	dev_set_name(&mtd->dev, "mtd%d", i);
401 	dev_set_drvdata(&mtd->dev, mtd);
402 	if (device_register(&mtd->dev) != 0)
403 		goto fail_added;
404 
405 	if (MTD_DEVT(i))
406 		device_create(&mtd_class, mtd->dev.parent,
407 			      MTD_DEVT(i) + 1,
408 			      NULL, "mtd%dro", i);
409 
410 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
411 	/* No need to get a refcount on the module containing
412 	   the notifier, since we hold the mtd_table_mutex */
413 	list_for_each_entry(not, &mtd_notifiers, list)
414 		not->add(mtd);
415 
416 	mutex_unlock(&mtd_table_mutex);
417 	/* We _know_ we aren't being removed, because
418 	   our caller is still holding us here. So none
419 	   of this try_ nonsense, and no bitching about it
420 	   either. :) */
421 	__module_get(THIS_MODULE);
422 	return 0;
423 
424 fail_added:
425 	idr_remove(&mtd_idr, i);
426 fail_locked:
427 	mutex_unlock(&mtd_table_mutex);
428 	return 1;
429 }
430 
431 /**
432  *	del_mtd_device - unregister an MTD device
433  *	@mtd: pointer to MTD device info structure
434  *
435  *	Remove a device from the list of MTD devices present in the system,
436  *	and notify each currently active MTD 'user' of its departure.
437  *	Returns zero on success or 1 on failure, which currently will happen
438  *	if the requested device does not appear to be present in the list.
439  */
440 
441 int del_mtd_device(struct mtd_info *mtd)
442 {
443 	int ret;
444 	struct mtd_notifier *not;
445 
446 	mutex_lock(&mtd_table_mutex);
447 
448 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
449 		ret = -ENODEV;
450 		goto out_error;
451 	}
452 
453 	/* No need to get a refcount on the module containing
454 		the notifier, since we hold the mtd_table_mutex */
455 	list_for_each_entry(not, &mtd_notifiers, list)
456 		not->remove(mtd);
457 
458 	if (mtd->usecount) {
459 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
460 		       mtd->index, mtd->name, mtd->usecount);
461 		ret = -EBUSY;
462 	} else {
463 		device_unregister(&mtd->dev);
464 
465 		idr_remove(&mtd_idr, mtd->index);
466 
467 		module_put(THIS_MODULE);
468 		ret = 0;
469 	}
470 
471 out_error:
472 	mutex_unlock(&mtd_table_mutex);
473 	return ret;
474 }
475 
476 /**
477  * mtd_device_parse_register - parse partitions and register an MTD device.
478  *
479  * @mtd: the MTD device to register
480  * @types: the list of MTD partition probes to try, see
481  *         'parse_mtd_partitions()' for more information
482  * @parser_data: MTD partition parser-specific data
483  * @parts: fallback partition information to register, if parsing fails;
484  *         only valid if %nr_parts > %0
485  * @nr_parts: the number of partitions in parts, if zero then the full
486  *            MTD device is registered if no partition info is found
487  *
488  * This function aggregates MTD partitions parsing (done by
489  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
490  * basically follows the most common pattern found in many MTD drivers:
491  *
492  * * It first tries to probe partitions on MTD device @mtd using parsers
493  *   specified in @types (if @types is %NULL, then the default list of parsers
494  *   is used, see 'parse_mtd_partitions()' for more information). If none are
495  *   found this functions tries to fallback to information specified in
496  *   @parts/@nr_parts.
497  * * If any partitioning info was found, this function registers the found
498  *   partitions.
499  * * If no partitions were found this function just registers the MTD device
500  *   @mtd and exits.
501  *
502  * Returns zero in case of success and a negative error code in case of failure.
503  */
504 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
505 			      struct mtd_part_parser_data *parser_data,
506 			      const struct mtd_partition *parts,
507 			      int nr_parts)
508 {
509 	int err;
510 	struct mtd_partition *real_parts;
511 
512 	err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
513 	if (err <= 0 && nr_parts && parts) {
514 		real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
515 				     GFP_KERNEL);
516 		if (!real_parts)
517 			err = -ENOMEM;
518 		else
519 			err = nr_parts;
520 	}
521 
522 	if (err > 0) {
523 		err = add_mtd_partitions(mtd, real_parts, err);
524 		kfree(real_parts);
525 	} else if (err == 0) {
526 		err = add_mtd_device(mtd);
527 		if (err == 1)
528 			err = -ENODEV;
529 	}
530 
531 	return err;
532 }
533 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
534 
535 /**
536  * mtd_device_unregister - unregister an existing MTD device.
537  *
538  * @master: the MTD device to unregister.  This will unregister both the master
539  *          and any partitions if registered.
540  */
541 int mtd_device_unregister(struct mtd_info *master)
542 {
543 	int err;
544 
545 	err = del_mtd_partitions(master);
546 	if (err)
547 		return err;
548 
549 	if (!device_is_registered(&master->dev))
550 		return 0;
551 
552 	return del_mtd_device(master);
553 }
554 EXPORT_SYMBOL_GPL(mtd_device_unregister);
555 
556 /**
557  *	register_mtd_user - register a 'user' of MTD devices.
558  *	@new: pointer to notifier info structure
559  *
560  *	Registers a pair of callbacks function to be called upon addition
561  *	or removal of MTD devices. Causes the 'add' callback to be immediately
562  *	invoked for each MTD device currently present in the system.
563  */
564 void register_mtd_user (struct mtd_notifier *new)
565 {
566 	struct mtd_info *mtd;
567 
568 	mutex_lock(&mtd_table_mutex);
569 
570 	list_add(&new->list, &mtd_notifiers);
571 
572 	__module_get(THIS_MODULE);
573 
574 	mtd_for_each_device(mtd)
575 		new->add(mtd);
576 
577 	mutex_unlock(&mtd_table_mutex);
578 }
579 EXPORT_SYMBOL_GPL(register_mtd_user);
580 
581 /**
582  *	unregister_mtd_user - unregister a 'user' of MTD devices.
583  *	@old: pointer to notifier info structure
584  *
585  *	Removes a callback function pair from the list of 'users' to be
586  *	notified upon addition or removal of MTD devices. Causes the
587  *	'remove' callback to be immediately invoked for each MTD device
588  *	currently present in the system.
589  */
590 int unregister_mtd_user (struct mtd_notifier *old)
591 {
592 	struct mtd_info *mtd;
593 
594 	mutex_lock(&mtd_table_mutex);
595 
596 	module_put(THIS_MODULE);
597 
598 	mtd_for_each_device(mtd)
599 		old->remove(mtd);
600 
601 	list_del(&old->list);
602 	mutex_unlock(&mtd_table_mutex);
603 	return 0;
604 }
605 EXPORT_SYMBOL_GPL(unregister_mtd_user);
606 
607 /**
608  *	get_mtd_device - obtain a validated handle for an MTD device
609  *	@mtd: last known address of the required MTD device
610  *	@num: internal device number of the required MTD device
611  *
612  *	Given a number and NULL address, return the num'th entry in the device
613  *	table, if any.	Given an address and num == -1, search the device table
614  *	for a device with that address and return if it's still present. Given
615  *	both, return the num'th driver only if its address matches. Return
616  *	error code if not.
617  */
618 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
619 {
620 	struct mtd_info *ret = NULL, *other;
621 	int err = -ENODEV;
622 
623 	mutex_lock(&mtd_table_mutex);
624 
625 	if (num == -1) {
626 		mtd_for_each_device(other) {
627 			if (other == mtd) {
628 				ret = mtd;
629 				break;
630 			}
631 		}
632 	} else if (num >= 0) {
633 		ret = idr_find(&mtd_idr, num);
634 		if (mtd && mtd != ret)
635 			ret = NULL;
636 	}
637 
638 	if (!ret) {
639 		ret = ERR_PTR(err);
640 		goto out;
641 	}
642 
643 	err = __get_mtd_device(ret);
644 	if (err)
645 		ret = ERR_PTR(err);
646 out:
647 	mutex_unlock(&mtd_table_mutex);
648 	return ret;
649 }
650 EXPORT_SYMBOL_GPL(get_mtd_device);
651 
652 
653 int __get_mtd_device(struct mtd_info *mtd)
654 {
655 	int err;
656 
657 	if (!try_module_get(mtd->owner))
658 		return -ENODEV;
659 
660 	if (mtd->_get_device) {
661 		err = mtd->_get_device(mtd);
662 
663 		if (err) {
664 			module_put(mtd->owner);
665 			return err;
666 		}
667 	}
668 	mtd->usecount++;
669 	return 0;
670 }
671 EXPORT_SYMBOL_GPL(__get_mtd_device);
672 
673 /**
674  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
675  *	device name
676  *	@name: MTD device name to open
677  *
678  * 	This function returns MTD device description structure in case of
679  * 	success and an error code in case of failure.
680  */
681 struct mtd_info *get_mtd_device_nm(const char *name)
682 {
683 	int err = -ENODEV;
684 	struct mtd_info *mtd = NULL, *other;
685 
686 	mutex_lock(&mtd_table_mutex);
687 
688 	mtd_for_each_device(other) {
689 		if (!strcmp(name, other->name)) {
690 			mtd = other;
691 			break;
692 		}
693 	}
694 
695 	if (!mtd)
696 		goto out_unlock;
697 
698 	err = __get_mtd_device(mtd);
699 	if (err)
700 		goto out_unlock;
701 
702 	mutex_unlock(&mtd_table_mutex);
703 	return mtd;
704 
705 out_unlock:
706 	mutex_unlock(&mtd_table_mutex);
707 	return ERR_PTR(err);
708 }
709 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
710 
711 void put_mtd_device(struct mtd_info *mtd)
712 {
713 	mutex_lock(&mtd_table_mutex);
714 	__put_mtd_device(mtd);
715 	mutex_unlock(&mtd_table_mutex);
716 
717 }
718 EXPORT_SYMBOL_GPL(put_mtd_device);
719 
720 void __put_mtd_device(struct mtd_info *mtd)
721 {
722 	--mtd->usecount;
723 	BUG_ON(mtd->usecount < 0);
724 
725 	if (mtd->_put_device)
726 		mtd->_put_device(mtd);
727 
728 	module_put(mtd->owner);
729 }
730 EXPORT_SYMBOL_GPL(__put_mtd_device);
731 
732 /*
733  * Erase is an asynchronous operation.  Device drivers are supposed
734  * to call instr->callback() whenever the operation completes, even
735  * if it completes with a failure.
736  * Callers are supposed to pass a callback function and wait for it
737  * to be called before writing to the block.
738  */
739 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
740 {
741 	if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
742 		return -EINVAL;
743 	if (!(mtd->flags & MTD_WRITEABLE))
744 		return -EROFS;
745 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
746 	if (!instr->len) {
747 		instr->state = MTD_ERASE_DONE;
748 		mtd_erase_callback(instr);
749 		return 0;
750 	}
751 	return mtd->_erase(mtd, instr);
752 }
753 EXPORT_SYMBOL_GPL(mtd_erase);
754 
755 /*
756  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
757  */
758 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
759 	      void **virt, resource_size_t *phys)
760 {
761 	*retlen = 0;
762 	*virt = NULL;
763 	if (phys)
764 		*phys = 0;
765 	if (!mtd->_point)
766 		return -EOPNOTSUPP;
767 	if (from < 0 || from > mtd->size || len > mtd->size - from)
768 		return -EINVAL;
769 	if (!len)
770 		return 0;
771 	return mtd->_point(mtd, from, len, retlen, virt, phys);
772 }
773 EXPORT_SYMBOL_GPL(mtd_point);
774 
775 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
776 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
777 {
778 	if (!mtd->_point)
779 		return -EOPNOTSUPP;
780 	if (from < 0 || from > mtd->size || len > mtd->size - from)
781 		return -EINVAL;
782 	if (!len)
783 		return 0;
784 	return mtd->_unpoint(mtd, from, len);
785 }
786 EXPORT_SYMBOL_GPL(mtd_unpoint);
787 
788 /*
789  * Allow NOMMU mmap() to directly map the device (if not NULL)
790  * - return the address to which the offset maps
791  * - return -ENOSYS to indicate refusal to do the mapping
792  */
793 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
794 				    unsigned long offset, unsigned long flags)
795 {
796 	if (!mtd->_get_unmapped_area)
797 		return -EOPNOTSUPP;
798 	if (offset > mtd->size || len > mtd->size - offset)
799 		return -EINVAL;
800 	return mtd->_get_unmapped_area(mtd, len, offset, flags);
801 }
802 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
803 
804 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
805 	     u_char *buf)
806 {
807 	int ret_code;
808 	*retlen = 0;
809 	if (from < 0 || from > mtd->size || len > mtd->size - from)
810 		return -EINVAL;
811 	if (!len)
812 		return 0;
813 
814 	/*
815 	 * In the absence of an error, drivers return a non-negative integer
816 	 * representing the maximum number of bitflips that were corrected on
817 	 * any one ecc region (if applicable; zero otherwise).
818 	 */
819 	ret_code = mtd->_read(mtd, from, len, retlen, buf);
820 	if (unlikely(ret_code < 0))
821 		return ret_code;
822 	if (mtd->ecc_strength == 0)
823 		return 0;	/* device lacks ecc */
824 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
825 }
826 EXPORT_SYMBOL_GPL(mtd_read);
827 
828 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
829 	      const u_char *buf)
830 {
831 	*retlen = 0;
832 	if (to < 0 || to > mtd->size || len > mtd->size - to)
833 		return -EINVAL;
834 	if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
835 		return -EROFS;
836 	if (!len)
837 		return 0;
838 	return mtd->_write(mtd, to, len, retlen, buf);
839 }
840 EXPORT_SYMBOL_GPL(mtd_write);
841 
842 /*
843  * In blackbox flight recorder like scenarios we want to make successful writes
844  * in interrupt context. panic_write() is only intended to be called when its
845  * known the kernel is about to panic and we need the write to succeed. Since
846  * the kernel is not going to be running for much longer, this function can
847  * break locks and delay to ensure the write succeeds (but not sleep).
848  */
849 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
850 		    const u_char *buf)
851 {
852 	*retlen = 0;
853 	if (!mtd->_panic_write)
854 		return -EOPNOTSUPP;
855 	if (to < 0 || to > mtd->size || len > mtd->size - to)
856 		return -EINVAL;
857 	if (!(mtd->flags & MTD_WRITEABLE))
858 		return -EROFS;
859 	if (!len)
860 		return 0;
861 	return mtd->_panic_write(mtd, to, len, retlen, buf);
862 }
863 EXPORT_SYMBOL_GPL(mtd_panic_write);
864 
865 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
866 {
867 	int ret_code;
868 	ops->retlen = ops->oobretlen = 0;
869 	if (!mtd->_read_oob)
870 		return -EOPNOTSUPP;
871 	/*
872 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
873 	 * similar to mtd->_read(), returning a non-negative integer
874 	 * representing max bitflips. In other cases, mtd->_read_oob() may
875 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
876 	 */
877 	ret_code = mtd->_read_oob(mtd, from, ops);
878 	if (unlikely(ret_code < 0))
879 		return ret_code;
880 	if (mtd->ecc_strength == 0)
881 		return 0;	/* device lacks ecc */
882 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
883 }
884 EXPORT_SYMBOL_GPL(mtd_read_oob);
885 
886 /*
887  * Method to access the protection register area, present in some flash
888  * devices. The user data is one time programmable but the factory data is read
889  * only.
890  */
891 int mtd_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
892 			   size_t len)
893 {
894 	if (!mtd->_get_fact_prot_info)
895 		return -EOPNOTSUPP;
896 	if (!len)
897 		return 0;
898 	return mtd->_get_fact_prot_info(mtd, buf, len);
899 }
900 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
901 
902 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
903 			   size_t *retlen, u_char *buf)
904 {
905 	*retlen = 0;
906 	if (!mtd->_read_fact_prot_reg)
907 		return -EOPNOTSUPP;
908 	if (!len)
909 		return 0;
910 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
911 }
912 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
913 
914 int mtd_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf,
915 			   size_t len)
916 {
917 	if (!mtd->_get_user_prot_info)
918 		return -EOPNOTSUPP;
919 	if (!len)
920 		return 0;
921 	return mtd->_get_user_prot_info(mtd, buf, len);
922 }
923 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
924 
925 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
926 			   size_t *retlen, u_char *buf)
927 {
928 	*retlen = 0;
929 	if (!mtd->_read_user_prot_reg)
930 		return -EOPNOTSUPP;
931 	if (!len)
932 		return 0;
933 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
934 }
935 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
936 
937 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
938 			    size_t *retlen, u_char *buf)
939 {
940 	*retlen = 0;
941 	if (!mtd->_write_user_prot_reg)
942 		return -EOPNOTSUPP;
943 	if (!len)
944 		return 0;
945 	return mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
946 }
947 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
948 
949 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
950 {
951 	if (!mtd->_lock_user_prot_reg)
952 		return -EOPNOTSUPP;
953 	if (!len)
954 		return 0;
955 	return mtd->_lock_user_prot_reg(mtd, from, len);
956 }
957 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
958 
959 /* Chip-supported device locking */
960 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
961 {
962 	if (!mtd->_lock)
963 		return -EOPNOTSUPP;
964 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
965 		return -EINVAL;
966 	if (!len)
967 		return 0;
968 	return mtd->_lock(mtd, ofs, len);
969 }
970 EXPORT_SYMBOL_GPL(mtd_lock);
971 
972 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
973 {
974 	if (!mtd->_unlock)
975 		return -EOPNOTSUPP;
976 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
977 		return -EINVAL;
978 	if (!len)
979 		return 0;
980 	return mtd->_unlock(mtd, ofs, len);
981 }
982 EXPORT_SYMBOL_GPL(mtd_unlock);
983 
984 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
985 {
986 	if (!mtd->_is_locked)
987 		return -EOPNOTSUPP;
988 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
989 		return -EINVAL;
990 	if (!len)
991 		return 0;
992 	return mtd->_is_locked(mtd, ofs, len);
993 }
994 EXPORT_SYMBOL_GPL(mtd_is_locked);
995 
996 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
997 {
998 	if (!mtd->_block_isbad)
999 		return 0;
1000 	if (ofs < 0 || ofs > mtd->size)
1001 		return -EINVAL;
1002 	return mtd->_block_isbad(mtd, ofs);
1003 }
1004 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1005 
1006 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1007 {
1008 	if (!mtd->_block_markbad)
1009 		return -EOPNOTSUPP;
1010 	if (ofs < 0 || ofs > mtd->size)
1011 		return -EINVAL;
1012 	if (!(mtd->flags & MTD_WRITEABLE))
1013 		return -EROFS;
1014 	return mtd->_block_markbad(mtd, ofs);
1015 }
1016 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1017 
1018 /*
1019  * default_mtd_writev - the default writev method
1020  * @mtd: mtd device description object pointer
1021  * @vecs: the vectors to write
1022  * @count: count of vectors in @vecs
1023  * @to: the MTD device offset to write to
1024  * @retlen: on exit contains the count of bytes written to the MTD device.
1025  *
1026  * This function returns zero in case of success and a negative error code in
1027  * case of failure.
1028  */
1029 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1030 			      unsigned long count, loff_t to, size_t *retlen)
1031 {
1032 	unsigned long i;
1033 	size_t totlen = 0, thislen;
1034 	int ret = 0;
1035 
1036 	for (i = 0; i < count; i++) {
1037 		if (!vecs[i].iov_len)
1038 			continue;
1039 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1040 				vecs[i].iov_base);
1041 		totlen += thislen;
1042 		if (ret || thislen != vecs[i].iov_len)
1043 			break;
1044 		to += vecs[i].iov_len;
1045 	}
1046 	*retlen = totlen;
1047 	return ret;
1048 }
1049 
1050 /*
1051  * mtd_writev - the vector-based MTD write method
1052  * @mtd: mtd device description object pointer
1053  * @vecs: the vectors to write
1054  * @count: count of vectors in @vecs
1055  * @to: the MTD device offset to write to
1056  * @retlen: on exit contains the count of bytes written to the MTD device.
1057  *
1058  * This function returns zero in case of success and a negative error code in
1059  * case of failure.
1060  */
1061 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1062 	       unsigned long count, loff_t to, size_t *retlen)
1063 {
1064 	*retlen = 0;
1065 	if (!(mtd->flags & MTD_WRITEABLE))
1066 		return -EROFS;
1067 	if (!mtd->_writev)
1068 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1069 	return mtd->_writev(mtd, vecs, count, to, retlen);
1070 }
1071 EXPORT_SYMBOL_GPL(mtd_writev);
1072 
1073 /**
1074  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1075  * @mtd: mtd device description object pointer
1076  * @size: a pointer to the ideal or maximum size of the allocation, points
1077  *        to the actual allocation size on success.
1078  *
1079  * This routine attempts to allocate a contiguous kernel buffer up to
1080  * the specified size, backing off the size of the request exponentially
1081  * until the request succeeds or until the allocation size falls below
1082  * the system page size. This attempts to make sure it does not adversely
1083  * impact system performance, so when allocating more than one page, we
1084  * ask the memory allocator to avoid re-trying, swapping, writing back
1085  * or performing I/O.
1086  *
1087  * Note, this function also makes sure that the allocated buffer is aligned to
1088  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1089  *
1090  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1091  * to handle smaller (i.e. degraded) buffer allocations under low- or
1092  * fragmented-memory situations where such reduced allocations, from a
1093  * requested ideal, are allowed.
1094  *
1095  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1096  */
1097 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1098 {
1099 	gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1100 		       __GFP_NORETRY | __GFP_NO_KSWAPD;
1101 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1102 	void *kbuf;
1103 
1104 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1105 
1106 	while (*size > min_alloc) {
1107 		kbuf = kmalloc(*size, flags);
1108 		if (kbuf)
1109 			return kbuf;
1110 
1111 		*size >>= 1;
1112 		*size = ALIGN(*size, mtd->writesize);
1113 	}
1114 
1115 	/*
1116 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1117 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1118 	 */
1119 	return kmalloc(*size, GFP_KERNEL);
1120 }
1121 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1122 
1123 #ifdef CONFIG_PROC_FS
1124 
1125 /*====================================================================*/
1126 /* Support for /proc/mtd */
1127 
1128 static int mtd_proc_show(struct seq_file *m, void *v)
1129 {
1130 	struct mtd_info *mtd;
1131 
1132 	seq_puts(m, "dev:    size   erasesize  name\n");
1133 	mutex_lock(&mtd_table_mutex);
1134 	mtd_for_each_device(mtd) {
1135 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1136 			   mtd->index, (unsigned long long)mtd->size,
1137 			   mtd->erasesize, mtd->name);
1138 	}
1139 	mutex_unlock(&mtd_table_mutex);
1140 	return 0;
1141 }
1142 
1143 static int mtd_proc_open(struct inode *inode, struct file *file)
1144 {
1145 	return single_open(file, mtd_proc_show, NULL);
1146 }
1147 
1148 static const struct file_operations mtd_proc_ops = {
1149 	.open		= mtd_proc_open,
1150 	.read		= seq_read,
1151 	.llseek		= seq_lseek,
1152 	.release	= single_release,
1153 };
1154 #endif /* CONFIG_PROC_FS */
1155 
1156 /*====================================================================*/
1157 /* Init code */
1158 
1159 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1160 {
1161 	int ret;
1162 
1163 	ret = bdi_init(bdi);
1164 	if (!ret)
1165 		ret = bdi_register(bdi, NULL, "%s", name);
1166 
1167 	if (ret)
1168 		bdi_destroy(bdi);
1169 
1170 	return ret;
1171 }
1172 
1173 static struct proc_dir_entry *proc_mtd;
1174 
1175 static int __init init_mtd(void)
1176 {
1177 	int ret;
1178 
1179 	ret = class_register(&mtd_class);
1180 	if (ret)
1181 		goto err_reg;
1182 
1183 	ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1184 	if (ret)
1185 		goto err_bdi1;
1186 
1187 	ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1188 	if (ret)
1189 		goto err_bdi2;
1190 
1191 	ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1192 	if (ret)
1193 		goto err_bdi3;
1194 
1195 	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1196 
1197 	ret = init_mtdchar();
1198 	if (ret)
1199 		goto out_procfs;
1200 
1201 	return 0;
1202 
1203 out_procfs:
1204 	if (proc_mtd)
1205 		remove_proc_entry("mtd", NULL);
1206 err_bdi3:
1207 	bdi_destroy(&mtd_bdi_ro_mappable);
1208 err_bdi2:
1209 	bdi_destroy(&mtd_bdi_unmappable);
1210 err_bdi1:
1211 	class_unregister(&mtd_class);
1212 err_reg:
1213 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1214 	return ret;
1215 }
1216 
1217 static void __exit cleanup_mtd(void)
1218 {
1219 	cleanup_mtdchar();
1220 	if (proc_mtd)
1221 		remove_proc_entry("mtd", NULL);
1222 	class_unregister(&mtd_class);
1223 	bdi_destroy(&mtd_bdi_unmappable);
1224 	bdi_destroy(&mtd_bdi_ro_mappable);
1225 	bdi_destroy(&mtd_bdi_rw_mappable);
1226 }
1227 
1228 module_init(init_mtd);
1229 module_exit(cleanup_mtd);
1230 
1231 MODULE_LICENSE("GPL");
1232 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1233 MODULE_DESCRIPTION("Core MTD registration and access routines");
1234