1 /* 2 * Core registration and callback routines for MTD 3 * drivers and users. 4 * 5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 6 * Copyright © 2006 Red Hat UK Limited 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/kernel.h> 26 #include <linux/ptrace.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/major.h> 31 #include <linux/fs.h> 32 #include <linux/err.h> 33 #include <linux/ioctl.h> 34 #include <linux/init.h> 35 #include <linux/proc_fs.h> 36 #include <linux/idr.h> 37 #include <linux/backing-dev.h> 38 #include <linux/gfp.h> 39 #include <linux/slab.h> 40 41 #include <linux/mtd/mtd.h> 42 #include <linux/mtd/partitions.h> 43 44 #include "mtdcore.h" 45 46 /* 47 * backing device capabilities for non-mappable devices (such as NAND flash) 48 * - permits private mappings, copies are taken of the data 49 */ 50 static struct backing_dev_info mtd_bdi_unmappable = { 51 .capabilities = BDI_CAP_MAP_COPY, 52 }; 53 54 /* 55 * backing device capabilities for R/O mappable devices (such as ROM) 56 * - permits private mappings, copies are taken of the data 57 * - permits non-writable shared mappings 58 */ 59 static struct backing_dev_info mtd_bdi_ro_mappable = { 60 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT | 61 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP), 62 }; 63 64 /* 65 * backing device capabilities for writable mappable devices (such as RAM) 66 * - permits private mappings, copies are taken of the data 67 * - permits non-writable shared mappings 68 */ 69 static struct backing_dev_info mtd_bdi_rw_mappable = { 70 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT | 71 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP | 72 BDI_CAP_WRITE_MAP), 73 }; 74 75 static int mtd_cls_suspend(struct device *dev, pm_message_t state); 76 static int mtd_cls_resume(struct device *dev); 77 78 static struct class mtd_class = { 79 .name = "mtd", 80 .owner = THIS_MODULE, 81 .suspend = mtd_cls_suspend, 82 .resume = mtd_cls_resume, 83 }; 84 85 static DEFINE_IDR(mtd_idr); 86 87 /* These are exported solely for the purpose of mtd_blkdevs.c. You 88 should not use them for _anything_ else */ 89 DEFINE_MUTEX(mtd_table_mutex); 90 EXPORT_SYMBOL_GPL(mtd_table_mutex); 91 92 struct mtd_info *__mtd_next_device(int i) 93 { 94 return idr_get_next(&mtd_idr, &i); 95 } 96 EXPORT_SYMBOL_GPL(__mtd_next_device); 97 98 static LIST_HEAD(mtd_notifiers); 99 100 101 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 102 103 /* REVISIT once MTD uses the driver model better, whoever allocates 104 * the mtd_info will probably want to use the release() hook... 105 */ 106 static void mtd_release(struct device *dev) 107 { 108 struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev); 109 dev_t index = MTD_DEVT(mtd->index); 110 111 /* remove /dev/mtdXro node if needed */ 112 if (index) 113 device_destroy(&mtd_class, index + 1); 114 } 115 116 static int mtd_cls_suspend(struct device *dev, pm_message_t state) 117 { 118 struct mtd_info *mtd = dev_get_drvdata(dev); 119 120 return mtd ? mtd_suspend(mtd) : 0; 121 } 122 123 static int mtd_cls_resume(struct device *dev) 124 { 125 struct mtd_info *mtd = dev_get_drvdata(dev); 126 127 if (mtd) 128 mtd_resume(mtd); 129 return 0; 130 } 131 132 static ssize_t mtd_type_show(struct device *dev, 133 struct device_attribute *attr, char *buf) 134 { 135 struct mtd_info *mtd = dev_get_drvdata(dev); 136 char *type; 137 138 switch (mtd->type) { 139 case MTD_ABSENT: 140 type = "absent"; 141 break; 142 case MTD_RAM: 143 type = "ram"; 144 break; 145 case MTD_ROM: 146 type = "rom"; 147 break; 148 case MTD_NORFLASH: 149 type = "nor"; 150 break; 151 case MTD_NANDFLASH: 152 type = "nand"; 153 break; 154 case MTD_DATAFLASH: 155 type = "dataflash"; 156 break; 157 case MTD_UBIVOLUME: 158 type = "ubi"; 159 break; 160 default: 161 type = "unknown"; 162 } 163 164 return snprintf(buf, PAGE_SIZE, "%s\n", type); 165 } 166 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 167 168 static ssize_t mtd_flags_show(struct device *dev, 169 struct device_attribute *attr, char *buf) 170 { 171 struct mtd_info *mtd = dev_get_drvdata(dev); 172 173 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 174 175 } 176 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 177 178 static ssize_t mtd_size_show(struct device *dev, 179 struct device_attribute *attr, char *buf) 180 { 181 struct mtd_info *mtd = dev_get_drvdata(dev); 182 183 return snprintf(buf, PAGE_SIZE, "%llu\n", 184 (unsigned long long)mtd->size); 185 186 } 187 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 188 189 static ssize_t mtd_erasesize_show(struct device *dev, 190 struct device_attribute *attr, char *buf) 191 { 192 struct mtd_info *mtd = dev_get_drvdata(dev); 193 194 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 195 196 } 197 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 198 199 static ssize_t mtd_writesize_show(struct device *dev, 200 struct device_attribute *attr, char *buf) 201 { 202 struct mtd_info *mtd = dev_get_drvdata(dev); 203 204 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 205 206 } 207 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 208 209 static ssize_t mtd_subpagesize_show(struct device *dev, 210 struct device_attribute *attr, char *buf) 211 { 212 struct mtd_info *mtd = dev_get_drvdata(dev); 213 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 214 215 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 216 217 } 218 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 219 220 static ssize_t mtd_oobsize_show(struct device *dev, 221 struct device_attribute *attr, char *buf) 222 { 223 struct mtd_info *mtd = dev_get_drvdata(dev); 224 225 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 226 227 } 228 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 229 230 static ssize_t mtd_numeraseregions_show(struct device *dev, 231 struct device_attribute *attr, char *buf) 232 { 233 struct mtd_info *mtd = dev_get_drvdata(dev); 234 235 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 236 237 } 238 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 239 NULL); 240 241 static ssize_t mtd_name_show(struct device *dev, 242 struct device_attribute *attr, char *buf) 243 { 244 struct mtd_info *mtd = dev_get_drvdata(dev); 245 246 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 247 248 } 249 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 250 251 static ssize_t mtd_ecc_strength_show(struct device *dev, 252 struct device_attribute *attr, char *buf) 253 { 254 struct mtd_info *mtd = dev_get_drvdata(dev); 255 256 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 257 } 258 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 259 260 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 261 struct device_attribute *attr, 262 char *buf) 263 { 264 struct mtd_info *mtd = dev_get_drvdata(dev); 265 266 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 267 } 268 269 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 270 struct device_attribute *attr, 271 const char *buf, size_t count) 272 { 273 struct mtd_info *mtd = dev_get_drvdata(dev); 274 unsigned int bitflip_threshold; 275 int retval; 276 277 retval = kstrtouint(buf, 0, &bitflip_threshold); 278 if (retval) 279 return retval; 280 281 mtd->bitflip_threshold = bitflip_threshold; 282 return count; 283 } 284 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 285 mtd_bitflip_threshold_show, 286 mtd_bitflip_threshold_store); 287 288 static ssize_t mtd_ecc_step_size_show(struct device *dev, 289 struct device_attribute *attr, char *buf) 290 { 291 struct mtd_info *mtd = dev_get_drvdata(dev); 292 293 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 294 295 } 296 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 297 298 static struct attribute *mtd_attrs[] = { 299 &dev_attr_type.attr, 300 &dev_attr_flags.attr, 301 &dev_attr_size.attr, 302 &dev_attr_erasesize.attr, 303 &dev_attr_writesize.attr, 304 &dev_attr_subpagesize.attr, 305 &dev_attr_oobsize.attr, 306 &dev_attr_numeraseregions.attr, 307 &dev_attr_name.attr, 308 &dev_attr_ecc_strength.attr, 309 &dev_attr_ecc_step_size.attr, 310 &dev_attr_bitflip_threshold.attr, 311 NULL, 312 }; 313 314 static struct attribute_group mtd_group = { 315 .attrs = mtd_attrs, 316 }; 317 318 static const struct attribute_group *mtd_groups[] = { 319 &mtd_group, 320 NULL, 321 }; 322 323 static struct device_type mtd_devtype = { 324 .name = "mtd", 325 .groups = mtd_groups, 326 .release = mtd_release, 327 }; 328 329 /** 330 * add_mtd_device - register an MTD device 331 * @mtd: pointer to new MTD device info structure 332 * 333 * Add a device to the list of MTD devices present in the system, and 334 * notify each currently active MTD 'user' of its arrival. Returns 335 * zero on success or 1 on failure, which currently will only happen 336 * if there is insufficient memory or a sysfs error. 337 */ 338 339 int add_mtd_device(struct mtd_info *mtd) 340 { 341 struct mtd_notifier *not; 342 int i, error; 343 344 if (!mtd->backing_dev_info) { 345 switch (mtd->type) { 346 case MTD_RAM: 347 mtd->backing_dev_info = &mtd_bdi_rw_mappable; 348 break; 349 case MTD_ROM: 350 mtd->backing_dev_info = &mtd_bdi_ro_mappable; 351 break; 352 default: 353 mtd->backing_dev_info = &mtd_bdi_unmappable; 354 break; 355 } 356 } 357 358 BUG_ON(mtd->writesize == 0); 359 mutex_lock(&mtd_table_mutex); 360 361 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 362 if (i < 0) 363 goto fail_locked; 364 365 mtd->index = i; 366 mtd->usecount = 0; 367 368 /* default value if not set by driver */ 369 if (mtd->bitflip_threshold == 0) 370 mtd->bitflip_threshold = mtd->ecc_strength; 371 372 if (is_power_of_2(mtd->erasesize)) 373 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 374 else 375 mtd->erasesize_shift = 0; 376 377 if (is_power_of_2(mtd->writesize)) 378 mtd->writesize_shift = ffs(mtd->writesize) - 1; 379 else 380 mtd->writesize_shift = 0; 381 382 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 383 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 384 385 /* Some chips always power up locked. Unlock them now */ 386 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 387 error = mtd_unlock(mtd, 0, mtd->size); 388 if (error && error != -EOPNOTSUPP) 389 printk(KERN_WARNING 390 "%s: unlock failed, writes may not work\n", 391 mtd->name); 392 } 393 394 /* Caller should have set dev.parent to match the 395 * physical device. 396 */ 397 mtd->dev.type = &mtd_devtype; 398 mtd->dev.class = &mtd_class; 399 mtd->dev.devt = MTD_DEVT(i); 400 dev_set_name(&mtd->dev, "mtd%d", i); 401 dev_set_drvdata(&mtd->dev, mtd); 402 if (device_register(&mtd->dev) != 0) 403 goto fail_added; 404 405 if (MTD_DEVT(i)) 406 device_create(&mtd_class, mtd->dev.parent, 407 MTD_DEVT(i) + 1, 408 NULL, "mtd%dro", i); 409 410 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 411 /* No need to get a refcount on the module containing 412 the notifier, since we hold the mtd_table_mutex */ 413 list_for_each_entry(not, &mtd_notifiers, list) 414 not->add(mtd); 415 416 mutex_unlock(&mtd_table_mutex); 417 /* We _know_ we aren't being removed, because 418 our caller is still holding us here. So none 419 of this try_ nonsense, and no bitching about it 420 either. :) */ 421 __module_get(THIS_MODULE); 422 return 0; 423 424 fail_added: 425 idr_remove(&mtd_idr, i); 426 fail_locked: 427 mutex_unlock(&mtd_table_mutex); 428 return 1; 429 } 430 431 /** 432 * del_mtd_device - unregister an MTD device 433 * @mtd: pointer to MTD device info structure 434 * 435 * Remove a device from the list of MTD devices present in the system, 436 * and notify each currently active MTD 'user' of its departure. 437 * Returns zero on success or 1 on failure, which currently will happen 438 * if the requested device does not appear to be present in the list. 439 */ 440 441 int del_mtd_device(struct mtd_info *mtd) 442 { 443 int ret; 444 struct mtd_notifier *not; 445 446 mutex_lock(&mtd_table_mutex); 447 448 if (idr_find(&mtd_idr, mtd->index) != mtd) { 449 ret = -ENODEV; 450 goto out_error; 451 } 452 453 /* No need to get a refcount on the module containing 454 the notifier, since we hold the mtd_table_mutex */ 455 list_for_each_entry(not, &mtd_notifiers, list) 456 not->remove(mtd); 457 458 if (mtd->usecount) { 459 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 460 mtd->index, mtd->name, mtd->usecount); 461 ret = -EBUSY; 462 } else { 463 device_unregister(&mtd->dev); 464 465 idr_remove(&mtd_idr, mtd->index); 466 467 module_put(THIS_MODULE); 468 ret = 0; 469 } 470 471 out_error: 472 mutex_unlock(&mtd_table_mutex); 473 return ret; 474 } 475 476 /** 477 * mtd_device_parse_register - parse partitions and register an MTD device. 478 * 479 * @mtd: the MTD device to register 480 * @types: the list of MTD partition probes to try, see 481 * 'parse_mtd_partitions()' for more information 482 * @parser_data: MTD partition parser-specific data 483 * @parts: fallback partition information to register, if parsing fails; 484 * only valid if %nr_parts > %0 485 * @nr_parts: the number of partitions in parts, if zero then the full 486 * MTD device is registered if no partition info is found 487 * 488 * This function aggregates MTD partitions parsing (done by 489 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 490 * basically follows the most common pattern found in many MTD drivers: 491 * 492 * * It first tries to probe partitions on MTD device @mtd using parsers 493 * specified in @types (if @types is %NULL, then the default list of parsers 494 * is used, see 'parse_mtd_partitions()' for more information). If none are 495 * found this functions tries to fallback to information specified in 496 * @parts/@nr_parts. 497 * * If any partitioning info was found, this function registers the found 498 * partitions. 499 * * If no partitions were found this function just registers the MTD device 500 * @mtd and exits. 501 * 502 * Returns zero in case of success and a negative error code in case of failure. 503 */ 504 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 505 struct mtd_part_parser_data *parser_data, 506 const struct mtd_partition *parts, 507 int nr_parts) 508 { 509 int err; 510 struct mtd_partition *real_parts; 511 512 err = parse_mtd_partitions(mtd, types, &real_parts, parser_data); 513 if (err <= 0 && nr_parts && parts) { 514 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts, 515 GFP_KERNEL); 516 if (!real_parts) 517 err = -ENOMEM; 518 else 519 err = nr_parts; 520 } 521 522 if (err > 0) { 523 err = add_mtd_partitions(mtd, real_parts, err); 524 kfree(real_parts); 525 } else if (err == 0) { 526 err = add_mtd_device(mtd); 527 if (err == 1) 528 err = -ENODEV; 529 } 530 531 return err; 532 } 533 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 534 535 /** 536 * mtd_device_unregister - unregister an existing MTD device. 537 * 538 * @master: the MTD device to unregister. This will unregister both the master 539 * and any partitions if registered. 540 */ 541 int mtd_device_unregister(struct mtd_info *master) 542 { 543 int err; 544 545 err = del_mtd_partitions(master); 546 if (err) 547 return err; 548 549 if (!device_is_registered(&master->dev)) 550 return 0; 551 552 return del_mtd_device(master); 553 } 554 EXPORT_SYMBOL_GPL(mtd_device_unregister); 555 556 /** 557 * register_mtd_user - register a 'user' of MTD devices. 558 * @new: pointer to notifier info structure 559 * 560 * Registers a pair of callbacks function to be called upon addition 561 * or removal of MTD devices. Causes the 'add' callback to be immediately 562 * invoked for each MTD device currently present in the system. 563 */ 564 void register_mtd_user (struct mtd_notifier *new) 565 { 566 struct mtd_info *mtd; 567 568 mutex_lock(&mtd_table_mutex); 569 570 list_add(&new->list, &mtd_notifiers); 571 572 __module_get(THIS_MODULE); 573 574 mtd_for_each_device(mtd) 575 new->add(mtd); 576 577 mutex_unlock(&mtd_table_mutex); 578 } 579 EXPORT_SYMBOL_GPL(register_mtd_user); 580 581 /** 582 * unregister_mtd_user - unregister a 'user' of MTD devices. 583 * @old: pointer to notifier info structure 584 * 585 * Removes a callback function pair from the list of 'users' to be 586 * notified upon addition or removal of MTD devices. Causes the 587 * 'remove' callback to be immediately invoked for each MTD device 588 * currently present in the system. 589 */ 590 int unregister_mtd_user (struct mtd_notifier *old) 591 { 592 struct mtd_info *mtd; 593 594 mutex_lock(&mtd_table_mutex); 595 596 module_put(THIS_MODULE); 597 598 mtd_for_each_device(mtd) 599 old->remove(mtd); 600 601 list_del(&old->list); 602 mutex_unlock(&mtd_table_mutex); 603 return 0; 604 } 605 EXPORT_SYMBOL_GPL(unregister_mtd_user); 606 607 /** 608 * get_mtd_device - obtain a validated handle for an MTD device 609 * @mtd: last known address of the required MTD device 610 * @num: internal device number of the required MTD device 611 * 612 * Given a number and NULL address, return the num'th entry in the device 613 * table, if any. Given an address and num == -1, search the device table 614 * for a device with that address and return if it's still present. Given 615 * both, return the num'th driver only if its address matches. Return 616 * error code if not. 617 */ 618 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 619 { 620 struct mtd_info *ret = NULL, *other; 621 int err = -ENODEV; 622 623 mutex_lock(&mtd_table_mutex); 624 625 if (num == -1) { 626 mtd_for_each_device(other) { 627 if (other == mtd) { 628 ret = mtd; 629 break; 630 } 631 } 632 } else if (num >= 0) { 633 ret = idr_find(&mtd_idr, num); 634 if (mtd && mtd != ret) 635 ret = NULL; 636 } 637 638 if (!ret) { 639 ret = ERR_PTR(err); 640 goto out; 641 } 642 643 err = __get_mtd_device(ret); 644 if (err) 645 ret = ERR_PTR(err); 646 out: 647 mutex_unlock(&mtd_table_mutex); 648 return ret; 649 } 650 EXPORT_SYMBOL_GPL(get_mtd_device); 651 652 653 int __get_mtd_device(struct mtd_info *mtd) 654 { 655 int err; 656 657 if (!try_module_get(mtd->owner)) 658 return -ENODEV; 659 660 if (mtd->_get_device) { 661 err = mtd->_get_device(mtd); 662 663 if (err) { 664 module_put(mtd->owner); 665 return err; 666 } 667 } 668 mtd->usecount++; 669 return 0; 670 } 671 EXPORT_SYMBOL_GPL(__get_mtd_device); 672 673 /** 674 * get_mtd_device_nm - obtain a validated handle for an MTD device by 675 * device name 676 * @name: MTD device name to open 677 * 678 * This function returns MTD device description structure in case of 679 * success and an error code in case of failure. 680 */ 681 struct mtd_info *get_mtd_device_nm(const char *name) 682 { 683 int err = -ENODEV; 684 struct mtd_info *mtd = NULL, *other; 685 686 mutex_lock(&mtd_table_mutex); 687 688 mtd_for_each_device(other) { 689 if (!strcmp(name, other->name)) { 690 mtd = other; 691 break; 692 } 693 } 694 695 if (!mtd) 696 goto out_unlock; 697 698 err = __get_mtd_device(mtd); 699 if (err) 700 goto out_unlock; 701 702 mutex_unlock(&mtd_table_mutex); 703 return mtd; 704 705 out_unlock: 706 mutex_unlock(&mtd_table_mutex); 707 return ERR_PTR(err); 708 } 709 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 710 711 void put_mtd_device(struct mtd_info *mtd) 712 { 713 mutex_lock(&mtd_table_mutex); 714 __put_mtd_device(mtd); 715 mutex_unlock(&mtd_table_mutex); 716 717 } 718 EXPORT_SYMBOL_GPL(put_mtd_device); 719 720 void __put_mtd_device(struct mtd_info *mtd) 721 { 722 --mtd->usecount; 723 BUG_ON(mtd->usecount < 0); 724 725 if (mtd->_put_device) 726 mtd->_put_device(mtd); 727 728 module_put(mtd->owner); 729 } 730 EXPORT_SYMBOL_GPL(__put_mtd_device); 731 732 /* 733 * Erase is an asynchronous operation. Device drivers are supposed 734 * to call instr->callback() whenever the operation completes, even 735 * if it completes with a failure. 736 * Callers are supposed to pass a callback function and wait for it 737 * to be called before writing to the block. 738 */ 739 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 740 { 741 if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr) 742 return -EINVAL; 743 if (!(mtd->flags & MTD_WRITEABLE)) 744 return -EROFS; 745 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 746 if (!instr->len) { 747 instr->state = MTD_ERASE_DONE; 748 mtd_erase_callback(instr); 749 return 0; 750 } 751 return mtd->_erase(mtd, instr); 752 } 753 EXPORT_SYMBOL_GPL(mtd_erase); 754 755 /* 756 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 757 */ 758 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 759 void **virt, resource_size_t *phys) 760 { 761 *retlen = 0; 762 *virt = NULL; 763 if (phys) 764 *phys = 0; 765 if (!mtd->_point) 766 return -EOPNOTSUPP; 767 if (from < 0 || from > mtd->size || len > mtd->size - from) 768 return -EINVAL; 769 if (!len) 770 return 0; 771 return mtd->_point(mtd, from, len, retlen, virt, phys); 772 } 773 EXPORT_SYMBOL_GPL(mtd_point); 774 775 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 776 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 777 { 778 if (!mtd->_point) 779 return -EOPNOTSUPP; 780 if (from < 0 || from > mtd->size || len > mtd->size - from) 781 return -EINVAL; 782 if (!len) 783 return 0; 784 return mtd->_unpoint(mtd, from, len); 785 } 786 EXPORT_SYMBOL_GPL(mtd_unpoint); 787 788 /* 789 * Allow NOMMU mmap() to directly map the device (if not NULL) 790 * - return the address to which the offset maps 791 * - return -ENOSYS to indicate refusal to do the mapping 792 */ 793 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 794 unsigned long offset, unsigned long flags) 795 { 796 if (!mtd->_get_unmapped_area) 797 return -EOPNOTSUPP; 798 if (offset > mtd->size || len > mtd->size - offset) 799 return -EINVAL; 800 return mtd->_get_unmapped_area(mtd, len, offset, flags); 801 } 802 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 803 804 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 805 u_char *buf) 806 { 807 int ret_code; 808 *retlen = 0; 809 if (from < 0 || from > mtd->size || len > mtd->size - from) 810 return -EINVAL; 811 if (!len) 812 return 0; 813 814 /* 815 * In the absence of an error, drivers return a non-negative integer 816 * representing the maximum number of bitflips that were corrected on 817 * any one ecc region (if applicable; zero otherwise). 818 */ 819 ret_code = mtd->_read(mtd, from, len, retlen, buf); 820 if (unlikely(ret_code < 0)) 821 return ret_code; 822 if (mtd->ecc_strength == 0) 823 return 0; /* device lacks ecc */ 824 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 825 } 826 EXPORT_SYMBOL_GPL(mtd_read); 827 828 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 829 const u_char *buf) 830 { 831 *retlen = 0; 832 if (to < 0 || to > mtd->size || len > mtd->size - to) 833 return -EINVAL; 834 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE)) 835 return -EROFS; 836 if (!len) 837 return 0; 838 return mtd->_write(mtd, to, len, retlen, buf); 839 } 840 EXPORT_SYMBOL_GPL(mtd_write); 841 842 /* 843 * In blackbox flight recorder like scenarios we want to make successful writes 844 * in interrupt context. panic_write() is only intended to be called when its 845 * known the kernel is about to panic and we need the write to succeed. Since 846 * the kernel is not going to be running for much longer, this function can 847 * break locks and delay to ensure the write succeeds (but not sleep). 848 */ 849 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 850 const u_char *buf) 851 { 852 *retlen = 0; 853 if (!mtd->_panic_write) 854 return -EOPNOTSUPP; 855 if (to < 0 || to > mtd->size || len > mtd->size - to) 856 return -EINVAL; 857 if (!(mtd->flags & MTD_WRITEABLE)) 858 return -EROFS; 859 if (!len) 860 return 0; 861 return mtd->_panic_write(mtd, to, len, retlen, buf); 862 } 863 EXPORT_SYMBOL_GPL(mtd_panic_write); 864 865 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 866 { 867 int ret_code; 868 ops->retlen = ops->oobretlen = 0; 869 if (!mtd->_read_oob) 870 return -EOPNOTSUPP; 871 /* 872 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 873 * similar to mtd->_read(), returning a non-negative integer 874 * representing max bitflips. In other cases, mtd->_read_oob() may 875 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 876 */ 877 ret_code = mtd->_read_oob(mtd, from, ops); 878 if (unlikely(ret_code < 0)) 879 return ret_code; 880 if (mtd->ecc_strength == 0) 881 return 0; /* device lacks ecc */ 882 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 883 } 884 EXPORT_SYMBOL_GPL(mtd_read_oob); 885 886 /* 887 * Method to access the protection register area, present in some flash 888 * devices. The user data is one time programmable but the factory data is read 889 * only. 890 */ 891 int mtd_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf, 892 size_t len) 893 { 894 if (!mtd->_get_fact_prot_info) 895 return -EOPNOTSUPP; 896 if (!len) 897 return 0; 898 return mtd->_get_fact_prot_info(mtd, buf, len); 899 } 900 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 901 902 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 903 size_t *retlen, u_char *buf) 904 { 905 *retlen = 0; 906 if (!mtd->_read_fact_prot_reg) 907 return -EOPNOTSUPP; 908 if (!len) 909 return 0; 910 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); 911 } 912 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 913 914 int mtd_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf, 915 size_t len) 916 { 917 if (!mtd->_get_user_prot_info) 918 return -EOPNOTSUPP; 919 if (!len) 920 return 0; 921 return mtd->_get_user_prot_info(mtd, buf, len); 922 } 923 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 924 925 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 926 size_t *retlen, u_char *buf) 927 { 928 *retlen = 0; 929 if (!mtd->_read_user_prot_reg) 930 return -EOPNOTSUPP; 931 if (!len) 932 return 0; 933 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); 934 } 935 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 936 937 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 938 size_t *retlen, u_char *buf) 939 { 940 *retlen = 0; 941 if (!mtd->_write_user_prot_reg) 942 return -EOPNOTSUPP; 943 if (!len) 944 return 0; 945 return mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); 946 } 947 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 948 949 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 950 { 951 if (!mtd->_lock_user_prot_reg) 952 return -EOPNOTSUPP; 953 if (!len) 954 return 0; 955 return mtd->_lock_user_prot_reg(mtd, from, len); 956 } 957 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 958 959 /* Chip-supported device locking */ 960 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 961 { 962 if (!mtd->_lock) 963 return -EOPNOTSUPP; 964 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) 965 return -EINVAL; 966 if (!len) 967 return 0; 968 return mtd->_lock(mtd, ofs, len); 969 } 970 EXPORT_SYMBOL_GPL(mtd_lock); 971 972 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 973 { 974 if (!mtd->_unlock) 975 return -EOPNOTSUPP; 976 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) 977 return -EINVAL; 978 if (!len) 979 return 0; 980 return mtd->_unlock(mtd, ofs, len); 981 } 982 EXPORT_SYMBOL_GPL(mtd_unlock); 983 984 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 985 { 986 if (!mtd->_is_locked) 987 return -EOPNOTSUPP; 988 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) 989 return -EINVAL; 990 if (!len) 991 return 0; 992 return mtd->_is_locked(mtd, ofs, len); 993 } 994 EXPORT_SYMBOL_GPL(mtd_is_locked); 995 996 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 997 { 998 if (!mtd->_block_isbad) 999 return 0; 1000 if (ofs < 0 || ofs > mtd->size) 1001 return -EINVAL; 1002 return mtd->_block_isbad(mtd, ofs); 1003 } 1004 EXPORT_SYMBOL_GPL(mtd_block_isbad); 1005 1006 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 1007 { 1008 if (!mtd->_block_markbad) 1009 return -EOPNOTSUPP; 1010 if (ofs < 0 || ofs > mtd->size) 1011 return -EINVAL; 1012 if (!(mtd->flags & MTD_WRITEABLE)) 1013 return -EROFS; 1014 return mtd->_block_markbad(mtd, ofs); 1015 } 1016 EXPORT_SYMBOL_GPL(mtd_block_markbad); 1017 1018 /* 1019 * default_mtd_writev - the default writev method 1020 * @mtd: mtd device description object pointer 1021 * @vecs: the vectors to write 1022 * @count: count of vectors in @vecs 1023 * @to: the MTD device offset to write to 1024 * @retlen: on exit contains the count of bytes written to the MTD device. 1025 * 1026 * This function returns zero in case of success and a negative error code in 1027 * case of failure. 1028 */ 1029 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1030 unsigned long count, loff_t to, size_t *retlen) 1031 { 1032 unsigned long i; 1033 size_t totlen = 0, thislen; 1034 int ret = 0; 1035 1036 for (i = 0; i < count; i++) { 1037 if (!vecs[i].iov_len) 1038 continue; 1039 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1040 vecs[i].iov_base); 1041 totlen += thislen; 1042 if (ret || thislen != vecs[i].iov_len) 1043 break; 1044 to += vecs[i].iov_len; 1045 } 1046 *retlen = totlen; 1047 return ret; 1048 } 1049 1050 /* 1051 * mtd_writev - the vector-based MTD write method 1052 * @mtd: mtd device description object pointer 1053 * @vecs: the vectors to write 1054 * @count: count of vectors in @vecs 1055 * @to: the MTD device offset to write to 1056 * @retlen: on exit contains the count of bytes written to the MTD device. 1057 * 1058 * This function returns zero in case of success and a negative error code in 1059 * case of failure. 1060 */ 1061 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1062 unsigned long count, loff_t to, size_t *retlen) 1063 { 1064 *retlen = 0; 1065 if (!(mtd->flags & MTD_WRITEABLE)) 1066 return -EROFS; 1067 if (!mtd->_writev) 1068 return default_mtd_writev(mtd, vecs, count, to, retlen); 1069 return mtd->_writev(mtd, vecs, count, to, retlen); 1070 } 1071 EXPORT_SYMBOL_GPL(mtd_writev); 1072 1073 /** 1074 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1075 * @mtd: mtd device description object pointer 1076 * @size: a pointer to the ideal or maximum size of the allocation, points 1077 * to the actual allocation size on success. 1078 * 1079 * This routine attempts to allocate a contiguous kernel buffer up to 1080 * the specified size, backing off the size of the request exponentially 1081 * until the request succeeds or until the allocation size falls below 1082 * the system page size. This attempts to make sure it does not adversely 1083 * impact system performance, so when allocating more than one page, we 1084 * ask the memory allocator to avoid re-trying, swapping, writing back 1085 * or performing I/O. 1086 * 1087 * Note, this function also makes sure that the allocated buffer is aligned to 1088 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1089 * 1090 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1091 * to handle smaller (i.e. degraded) buffer allocations under low- or 1092 * fragmented-memory situations where such reduced allocations, from a 1093 * requested ideal, are allowed. 1094 * 1095 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1096 */ 1097 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1098 { 1099 gfp_t flags = __GFP_NOWARN | __GFP_WAIT | 1100 __GFP_NORETRY | __GFP_NO_KSWAPD; 1101 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1102 void *kbuf; 1103 1104 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1105 1106 while (*size > min_alloc) { 1107 kbuf = kmalloc(*size, flags); 1108 if (kbuf) 1109 return kbuf; 1110 1111 *size >>= 1; 1112 *size = ALIGN(*size, mtd->writesize); 1113 } 1114 1115 /* 1116 * For the last resort allocation allow 'kmalloc()' to do all sorts of 1117 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 1118 */ 1119 return kmalloc(*size, GFP_KERNEL); 1120 } 1121 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 1122 1123 #ifdef CONFIG_PROC_FS 1124 1125 /*====================================================================*/ 1126 /* Support for /proc/mtd */ 1127 1128 static int mtd_proc_show(struct seq_file *m, void *v) 1129 { 1130 struct mtd_info *mtd; 1131 1132 seq_puts(m, "dev: size erasesize name\n"); 1133 mutex_lock(&mtd_table_mutex); 1134 mtd_for_each_device(mtd) { 1135 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 1136 mtd->index, (unsigned long long)mtd->size, 1137 mtd->erasesize, mtd->name); 1138 } 1139 mutex_unlock(&mtd_table_mutex); 1140 return 0; 1141 } 1142 1143 static int mtd_proc_open(struct inode *inode, struct file *file) 1144 { 1145 return single_open(file, mtd_proc_show, NULL); 1146 } 1147 1148 static const struct file_operations mtd_proc_ops = { 1149 .open = mtd_proc_open, 1150 .read = seq_read, 1151 .llseek = seq_lseek, 1152 .release = single_release, 1153 }; 1154 #endif /* CONFIG_PROC_FS */ 1155 1156 /*====================================================================*/ 1157 /* Init code */ 1158 1159 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name) 1160 { 1161 int ret; 1162 1163 ret = bdi_init(bdi); 1164 if (!ret) 1165 ret = bdi_register(bdi, NULL, "%s", name); 1166 1167 if (ret) 1168 bdi_destroy(bdi); 1169 1170 return ret; 1171 } 1172 1173 static struct proc_dir_entry *proc_mtd; 1174 1175 static int __init init_mtd(void) 1176 { 1177 int ret; 1178 1179 ret = class_register(&mtd_class); 1180 if (ret) 1181 goto err_reg; 1182 1183 ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap"); 1184 if (ret) 1185 goto err_bdi1; 1186 1187 ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap"); 1188 if (ret) 1189 goto err_bdi2; 1190 1191 ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap"); 1192 if (ret) 1193 goto err_bdi3; 1194 1195 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops); 1196 1197 ret = init_mtdchar(); 1198 if (ret) 1199 goto out_procfs; 1200 1201 return 0; 1202 1203 out_procfs: 1204 if (proc_mtd) 1205 remove_proc_entry("mtd", NULL); 1206 err_bdi3: 1207 bdi_destroy(&mtd_bdi_ro_mappable); 1208 err_bdi2: 1209 bdi_destroy(&mtd_bdi_unmappable); 1210 err_bdi1: 1211 class_unregister(&mtd_class); 1212 err_reg: 1213 pr_err("Error registering mtd class or bdi: %d\n", ret); 1214 return ret; 1215 } 1216 1217 static void __exit cleanup_mtd(void) 1218 { 1219 cleanup_mtdchar(); 1220 if (proc_mtd) 1221 remove_proc_entry("mtd", NULL); 1222 class_unregister(&mtd_class); 1223 bdi_destroy(&mtd_bdi_unmappable); 1224 bdi_destroy(&mtd_bdi_ro_mappable); 1225 bdi_destroy(&mtd_bdi_rw_mappable); 1226 } 1227 1228 module_init(init_mtd); 1229 module_exit(cleanup_mtd); 1230 1231 MODULE_LICENSE("GPL"); 1232 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1233 MODULE_DESCRIPTION("Core MTD registration and access routines"); 1234