xref: /openbmc/linux/drivers/mtd/mtdcore.c (revision c4ee0af3)
1 /*
2  * Core registration and callback routines for MTD
3  * drivers and users.
4  *
5  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6  * Copyright © 2006      Red Hat UK Limited
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/proc_fs.h>
36 #include <linux/idr.h>
37 #include <linux/backing-dev.h>
38 #include <linux/gfp.h>
39 #include <linux/slab.h>
40 
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/partitions.h>
43 
44 #include "mtdcore.h"
45 
46 /*
47  * backing device capabilities for non-mappable devices (such as NAND flash)
48  * - permits private mappings, copies are taken of the data
49  */
50 static struct backing_dev_info mtd_bdi_unmappable = {
51 	.capabilities	= BDI_CAP_MAP_COPY,
52 };
53 
54 /*
55  * backing device capabilities for R/O mappable devices (such as ROM)
56  * - permits private mappings, copies are taken of the data
57  * - permits non-writable shared mappings
58  */
59 static struct backing_dev_info mtd_bdi_ro_mappable = {
60 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
61 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
62 };
63 
64 /*
65  * backing device capabilities for writable mappable devices (such as RAM)
66  * - permits private mappings, copies are taken of the data
67  * - permits non-writable shared mappings
68  */
69 static struct backing_dev_info mtd_bdi_rw_mappable = {
70 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
71 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
72 			   BDI_CAP_WRITE_MAP),
73 };
74 
75 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
76 static int mtd_cls_resume(struct device *dev);
77 
78 static struct class mtd_class = {
79 	.name = "mtd",
80 	.owner = THIS_MODULE,
81 	.suspend = mtd_cls_suspend,
82 	.resume = mtd_cls_resume,
83 };
84 
85 static DEFINE_IDR(mtd_idr);
86 
87 /* These are exported solely for the purpose of mtd_blkdevs.c. You
88    should not use them for _anything_ else */
89 DEFINE_MUTEX(mtd_table_mutex);
90 EXPORT_SYMBOL_GPL(mtd_table_mutex);
91 
92 struct mtd_info *__mtd_next_device(int i)
93 {
94 	return idr_get_next(&mtd_idr, &i);
95 }
96 EXPORT_SYMBOL_GPL(__mtd_next_device);
97 
98 static LIST_HEAD(mtd_notifiers);
99 
100 
101 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
102 
103 /* REVISIT once MTD uses the driver model better, whoever allocates
104  * the mtd_info will probably want to use the release() hook...
105  */
106 static void mtd_release(struct device *dev)
107 {
108 	struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
109 	dev_t index = MTD_DEVT(mtd->index);
110 
111 	/* remove /dev/mtdXro node if needed */
112 	if (index)
113 		device_destroy(&mtd_class, index + 1);
114 }
115 
116 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
117 {
118 	struct mtd_info *mtd = dev_get_drvdata(dev);
119 
120 	return mtd ? mtd_suspend(mtd) : 0;
121 }
122 
123 static int mtd_cls_resume(struct device *dev)
124 {
125 	struct mtd_info *mtd = dev_get_drvdata(dev);
126 
127 	if (mtd)
128 		mtd_resume(mtd);
129 	return 0;
130 }
131 
132 static ssize_t mtd_type_show(struct device *dev,
133 		struct device_attribute *attr, char *buf)
134 {
135 	struct mtd_info *mtd = dev_get_drvdata(dev);
136 	char *type;
137 
138 	switch (mtd->type) {
139 	case MTD_ABSENT:
140 		type = "absent";
141 		break;
142 	case MTD_RAM:
143 		type = "ram";
144 		break;
145 	case MTD_ROM:
146 		type = "rom";
147 		break;
148 	case MTD_NORFLASH:
149 		type = "nor";
150 		break;
151 	case MTD_NANDFLASH:
152 		type = "nand";
153 		break;
154 	case MTD_DATAFLASH:
155 		type = "dataflash";
156 		break;
157 	case MTD_UBIVOLUME:
158 		type = "ubi";
159 		break;
160 	case MTD_MLCNANDFLASH:
161 		type = "mlc-nand";
162 		break;
163 	default:
164 		type = "unknown";
165 	}
166 
167 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
168 }
169 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
170 
171 static ssize_t mtd_flags_show(struct device *dev,
172 		struct device_attribute *attr, char *buf)
173 {
174 	struct mtd_info *mtd = dev_get_drvdata(dev);
175 
176 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
177 
178 }
179 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
180 
181 static ssize_t mtd_size_show(struct device *dev,
182 		struct device_attribute *attr, char *buf)
183 {
184 	struct mtd_info *mtd = dev_get_drvdata(dev);
185 
186 	return snprintf(buf, PAGE_SIZE, "%llu\n",
187 		(unsigned long long)mtd->size);
188 
189 }
190 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
191 
192 static ssize_t mtd_erasesize_show(struct device *dev,
193 		struct device_attribute *attr, char *buf)
194 {
195 	struct mtd_info *mtd = dev_get_drvdata(dev);
196 
197 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
198 
199 }
200 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
201 
202 static ssize_t mtd_writesize_show(struct device *dev,
203 		struct device_attribute *attr, char *buf)
204 {
205 	struct mtd_info *mtd = dev_get_drvdata(dev);
206 
207 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
208 
209 }
210 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
211 
212 static ssize_t mtd_subpagesize_show(struct device *dev,
213 		struct device_attribute *attr, char *buf)
214 {
215 	struct mtd_info *mtd = dev_get_drvdata(dev);
216 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
217 
218 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
219 
220 }
221 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
222 
223 static ssize_t mtd_oobsize_show(struct device *dev,
224 		struct device_attribute *attr, char *buf)
225 {
226 	struct mtd_info *mtd = dev_get_drvdata(dev);
227 
228 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
229 
230 }
231 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
232 
233 static ssize_t mtd_numeraseregions_show(struct device *dev,
234 		struct device_attribute *attr, char *buf)
235 {
236 	struct mtd_info *mtd = dev_get_drvdata(dev);
237 
238 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
239 
240 }
241 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
242 	NULL);
243 
244 static ssize_t mtd_name_show(struct device *dev,
245 		struct device_attribute *attr, char *buf)
246 {
247 	struct mtd_info *mtd = dev_get_drvdata(dev);
248 
249 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
250 
251 }
252 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
253 
254 static ssize_t mtd_ecc_strength_show(struct device *dev,
255 				     struct device_attribute *attr, char *buf)
256 {
257 	struct mtd_info *mtd = dev_get_drvdata(dev);
258 
259 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
260 }
261 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
262 
263 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
264 					  struct device_attribute *attr,
265 					  char *buf)
266 {
267 	struct mtd_info *mtd = dev_get_drvdata(dev);
268 
269 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
270 }
271 
272 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
273 					   struct device_attribute *attr,
274 					   const char *buf, size_t count)
275 {
276 	struct mtd_info *mtd = dev_get_drvdata(dev);
277 	unsigned int bitflip_threshold;
278 	int retval;
279 
280 	retval = kstrtouint(buf, 0, &bitflip_threshold);
281 	if (retval)
282 		return retval;
283 
284 	mtd->bitflip_threshold = bitflip_threshold;
285 	return count;
286 }
287 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
288 		   mtd_bitflip_threshold_show,
289 		   mtd_bitflip_threshold_store);
290 
291 static ssize_t mtd_ecc_step_size_show(struct device *dev,
292 		struct device_attribute *attr, char *buf)
293 {
294 	struct mtd_info *mtd = dev_get_drvdata(dev);
295 
296 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
297 
298 }
299 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
300 
301 static struct attribute *mtd_attrs[] = {
302 	&dev_attr_type.attr,
303 	&dev_attr_flags.attr,
304 	&dev_attr_size.attr,
305 	&dev_attr_erasesize.attr,
306 	&dev_attr_writesize.attr,
307 	&dev_attr_subpagesize.attr,
308 	&dev_attr_oobsize.attr,
309 	&dev_attr_numeraseregions.attr,
310 	&dev_attr_name.attr,
311 	&dev_attr_ecc_strength.attr,
312 	&dev_attr_ecc_step_size.attr,
313 	&dev_attr_bitflip_threshold.attr,
314 	NULL,
315 };
316 
317 static struct attribute_group mtd_group = {
318 	.attrs		= mtd_attrs,
319 };
320 
321 static const struct attribute_group *mtd_groups[] = {
322 	&mtd_group,
323 	NULL,
324 };
325 
326 static struct device_type mtd_devtype = {
327 	.name		= "mtd",
328 	.groups		= mtd_groups,
329 	.release	= mtd_release,
330 };
331 
332 /**
333  *	add_mtd_device - register an MTD device
334  *	@mtd: pointer to new MTD device info structure
335  *
336  *	Add a device to the list of MTD devices present in the system, and
337  *	notify each currently active MTD 'user' of its arrival. Returns
338  *	zero on success or 1 on failure, which currently will only happen
339  *	if there is insufficient memory or a sysfs error.
340  */
341 
342 int add_mtd_device(struct mtd_info *mtd)
343 {
344 	struct mtd_notifier *not;
345 	int i, error;
346 
347 	if (!mtd->backing_dev_info) {
348 		switch (mtd->type) {
349 		case MTD_RAM:
350 			mtd->backing_dev_info = &mtd_bdi_rw_mappable;
351 			break;
352 		case MTD_ROM:
353 			mtd->backing_dev_info = &mtd_bdi_ro_mappable;
354 			break;
355 		default:
356 			mtd->backing_dev_info = &mtd_bdi_unmappable;
357 			break;
358 		}
359 	}
360 
361 	BUG_ON(mtd->writesize == 0);
362 	mutex_lock(&mtd_table_mutex);
363 
364 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
365 	if (i < 0)
366 		goto fail_locked;
367 
368 	mtd->index = i;
369 	mtd->usecount = 0;
370 
371 	/* default value if not set by driver */
372 	if (mtd->bitflip_threshold == 0)
373 		mtd->bitflip_threshold = mtd->ecc_strength;
374 
375 	if (is_power_of_2(mtd->erasesize))
376 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
377 	else
378 		mtd->erasesize_shift = 0;
379 
380 	if (is_power_of_2(mtd->writesize))
381 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
382 	else
383 		mtd->writesize_shift = 0;
384 
385 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
386 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
387 
388 	/* Some chips always power up locked. Unlock them now */
389 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
390 		error = mtd_unlock(mtd, 0, mtd->size);
391 		if (error && error != -EOPNOTSUPP)
392 			printk(KERN_WARNING
393 			       "%s: unlock failed, writes may not work\n",
394 			       mtd->name);
395 	}
396 
397 	/* Caller should have set dev.parent to match the
398 	 * physical device.
399 	 */
400 	mtd->dev.type = &mtd_devtype;
401 	mtd->dev.class = &mtd_class;
402 	mtd->dev.devt = MTD_DEVT(i);
403 	dev_set_name(&mtd->dev, "mtd%d", i);
404 	dev_set_drvdata(&mtd->dev, mtd);
405 	if (device_register(&mtd->dev) != 0)
406 		goto fail_added;
407 
408 	if (MTD_DEVT(i))
409 		device_create(&mtd_class, mtd->dev.parent,
410 			      MTD_DEVT(i) + 1,
411 			      NULL, "mtd%dro", i);
412 
413 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
414 	/* No need to get a refcount on the module containing
415 	   the notifier, since we hold the mtd_table_mutex */
416 	list_for_each_entry(not, &mtd_notifiers, list)
417 		not->add(mtd);
418 
419 	mutex_unlock(&mtd_table_mutex);
420 	/* We _know_ we aren't being removed, because
421 	   our caller is still holding us here. So none
422 	   of this try_ nonsense, and no bitching about it
423 	   either. :) */
424 	__module_get(THIS_MODULE);
425 	return 0;
426 
427 fail_added:
428 	idr_remove(&mtd_idr, i);
429 fail_locked:
430 	mutex_unlock(&mtd_table_mutex);
431 	return 1;
432 }
433 
434 /**
435  *	del_mtd_device - unregister an MTD device
436  *	@mtd: pointer to MTD device info structure
437  *
438  *	Remove a device from the list of MTD devices present in the system,
439  *	and notify each currently active MTD 'user' of its departure.
440  *	Returns zero on success or 1 on failure, which currently will happen
441  *	if the requested device does not appear to be present in the list.
442  */
443 
444 int del_mtd_device(struct mtd_info *mtd)
445 {
446 	int ret;
447 	struct mtd_notifier *not;
448 
449 	mutex_lock(&mtd_table_mutex);
450 
451 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
452 		ret = -ENODEV;
453 		goto out_error;
454 	}
455 
456 	/* No need to get a refcount on the module containing
457 		the notifier, since we hold the mtd_table_mutex */
458 	list_for_each_entry(not, &mtd_notifiers, list)
459 		not->remove(mtd);
460 
461 	if (mtd->usecount) {
462 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
463 		       mtd->index, mtd->name, mtd->usecount);
464 		ret = -EBUSY;
465 	} else {
466 		device_unregister(&mtd->dev);
467 
468 		idr_remove(&mtd_idr, mtd->index);
469 
470 		module_put(THIS_MODULE);
471 		ret = 0;
472 	}
473 
474 out_error:
475 	mutex_unlock(&mtd_table_mutex);
476 	return ret;
477 }
478 
479 /**
480  * mtd_device_parse_register - parse partitions and register an MTD device.
481  *
482  * @mtd: the MTD device to register
483  * @types: the list of MTD partition probes to try, see
484  *         'parse_mtd_partitions()' for more information
485  * @parser_data: MTD partition parser-specific data
486  * @parts: fallback partition information to register, if parsing fails;
487  *         only valid if %nr_parts > %0
488  * @nr_parts: the number of partitions in parts, if zero then the full
489  *            MTD device is registered if no partition info is found
490  *
491  * This function aggregates MTD partitions parsing (done by
492  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
493  * basically follows the most common pattern found in many MTD drivers:
494  *
495  * * It first tries to probe partitions on MTD device @mtd using parsers
496  *   specified in @types (if @types is %NULL, then the default list of parsers
497  *   is used, see 'parse_mtd_partitions()' for more information). If none are
498  *   found this functions tries to fallback to information specified in
499  *   @parts/@nr_parts.
500  * * If any partitioning info was found, this function registers the found
501  *   partitions.
502  * * If no partitions were found this function just registers the MTD device
503  *   @mtd and exits.
504  *
505  * Returns zero in case of success and a negative error code in case of failure.
506  */
507 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
508 			      struct mtd_part_parser_data *parser_data,
509 			      const struct mtd_partition *parts,
510 			      int nr_parts)
511 {
512 	int err;
513 	struct mtd_partition *real_parts;
514 
515 	err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
516 	if (err <= 0 && nr_parts && parts) {
517 		real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
518 				     GFP_KERNEL);
519 		if (!real_parts)
520 			err = -ENOMEM;
521 		else
522 			err = nr_parts;
523 	}
524 
525 	if (err > 0) {
526 		err = add_mtd_partitions(mtd, real_parts, err);
527 		kfree(real_parts);
528 	} else if (err == 0) {
529 		err = add_mtd_device(mtd);
530 		if (err == 1)
531 			err = -ENODEV;
532 	}
533 
534 	return err;
535 }
536 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
537 
538 /**
539  * mtd_device_unregister - unregister an existing MTD device.
540  *
541  * @master: the MTD device to unregister.  This will unregister both the master
542  *          and any partitions if registered.
543  */
544 int mtd_device_unregister(struct mtd_info *master)
545 {
546 	int err;
547 
548 	err = del_mtd_partitions(master);
549 	if (err)
550 		return err;
551 
552 	if (!device_is_registered(&master->dev))
553 		return 0;
554 
555 	return del_mtd_device(master);
556 }
557 EXPORT_SYMBOL_GPL(mtd_device_unregister);
558 
559 /**
560  *	register_mtd_user - register a 'user' of MTD devices.
561  *	@new: pointer to notifier info structure
562  *
563  *	Registers a pair of callbacks function to be called upon addition
564  *	or removal of MTD devices. Causes the 'add' callback to be immediately
565  *	invoked for each MTD device currently present in the system.
566  */
567 void register_mtd_user (struct mtd_notifier *new)
568 {
569 	struct mtd_info *mtd;
570 
571 	mutex_lock(&mtd_table_mutex);
572 
573 	list_add(&new->list, &mtd_notifiers);
574 
575 	__module_get(THIS_MODULE);
576 
577 	mtd_for_each_device(mtd)
578 		new->add(mtd);
579 
580 	mutex_unlock(&mtd_table_mutex);
581 }
582 EXPORT_SYMBOL_GPL(register_mtd_user);
583 
584 /**
585  *	unregister_mtd_user - unregister a 'user' of MTD devices.
586  *	@old: pointer to notifier info structure
587  *
588  *	Removes a callback function pair from the list of 'users' to be
589  *	notified upon addition or removal of MTD devices. Causes the
590  *	'remove' callback to be immediately invoked for each MTD device
591  *	currently present in the system.
592  */
593 int unregister_mtd_user (struct mtd_notifier *old)
594 {
595 	struct mtd_info *mtd;
596 
597 	mutex_lock(&mtd_table_mutex);
598 
599 	module_put(THIS_MODULE);
600 
601 	mtd_for_each_device(mtd)
602 		old->remove(mtd);
603 
604 	list_del(&old->list);
605 	mutex_unlock(&mtd_table_mutex);
606 	return 0;
607 }
608 EXPORT_SYMBOL_GPL(unregister_mtd_user);
609 
610 /**
611  *	get_mtd_device - obtain a validated handle for an MTD device
612  *	@mtd: last known address of the required MTD device
613  *	@num: internal device number of the required MTD device
614  *
615  *	Given a number and NULL address, return the num'th entry in the device
616  *	table, if any.	Given an address and num == -1, search the device table
617  *	for a device with that address and return if it's still present. Given
618  *	both, return the num'th driver only if its address matches. Return
619  *	error code if not.
620  */
621 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
622 {
623 	struct mtd_info *ret = NULL, *other;
624 	int err = -ENODEV;
625 
626 	mutex_lock(&mtd_table_mutex);
627 
628 	if (num == -1) {
629 		mtd_for_each_device(other) {
630 			if (other == mtd) {
631 				ret = mtd;
632 				break;
633 			}
634 		}
635 	} else if (num >= 0) {
636 		ret = idr_find(&mtd_idr, num);
637 		if (mtd && mtd != ret)
638 			ret = NULL;
639 	}
640 
641 	if (!ret) {
642 		ret = ERR_PTR(err);
643 		goto out;
644 	}
645 
646 	err = __get_mtd_device(ret);
647 	if (err)
648 		ret = ERR_PTR(err);
649 out:
650 	mutex_unlock(&mtd_table_mutex);
651 	return ret;
652 }
653 EXPORT_SYMBOL_GPL(get_mtd_device);
654 
655 
656 int __get_mtd_device(struct mtd_info *mtd)
657 {
658 	int err;
659 
660 	if (!try_module_get(mtd->owner))
661 		return -ENODEV;
662 
663 	if (mtd->_get_device) {
664 		err = mtd->_get_device(mtd);
665 
666 		if (err) {
667 			module_put(mtd->owner);
668 			return err;
669 		}
670 	}
671 	mtd->usecount++;
672 	return 0;
673 }
674 EXPORT_SYMBOL_GPL(__get_mtd_device);
675 
676 /**
677  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
678  *	device name
679  *	@name: MTD device name to open
680  *
681  * 	This function returns MTD device description structure in case of
682  * 	success and an error code in case of failure.
683  */
684 struct mtd_info *get_mtd_device_nm(const char *name)
685 {
686 	int err = -ENODEV;
687 	struct mtd_info *mtd = NULL, *other;
688 
689 	mutex_lock(&mtd_table_mutex);
690 
691 	mtd_for_each_device(other) {
692 		if (!strcmp(name, other->name)) {
693 			mtd = other;
694 			break;
695 		}
696 	}
697 
698 	if (!mtd)
699 		goto out_unlock;
700 
701 	err = __get_mtd_device(mtd);
702 	if (err)
703 		goto out_unlock;
704 
705 	mutex_unlock(&mtd_table_mutex);
706 	return mtd;
707 
708 out_unlock:
709 	mutex_unlock(&mtd_table_mutex);
710 	return ERR_PTR(err);
711 }
712 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
713 
714 void put_mtd_device(struct mtd_info *mtd)
715 {
716 	mutex_lock(&mtd_table_mutex);
717 	__put_mtd_device(mtd);
718 	mutex_unlock(&mtd_table_mutex);
719 
720 }
721 EXPORT_SYMBOL_GPL(put_mtd_device);
722 
723 void __put_mtd_device(struct mtd_info *mtd)
724 {
725 	--mtd->usecount;
726 	BUG_ON(mtd->usecount < 0);
727 
728 	if (mtd->_put_device)
729 		mtd->_put_device(mtd);
730 
731 	module_put(mtd->owner);
732 }
733 EXPORT_SYMBOL_GPL(__put_mtd_device);
734 
735 /*
736  * Erase is an asynchronous operation.  Device drivers are supposed
737  * to call instr->callback() whenever the operation completes, even
738  * if it completes with a failure.
739  * Callers are supposed to pass a callback function and wait for it
740  * to be called before writing to the block.
741  */
742 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
743 {
744 	if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
745 		return -EINVAL;
746 	if (!(mtd->flags & MTD_WRITEABLE))
747 		return -EROFS;
748 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
749 	if (!instr->len) {
750 		instr->state = MTD_ERASE_DONE;
751 		mtd_erase_callback(instr);
752 		return 0;
753 	}
754 	return mtd->_erase(mtd, instr);
755 }
756 EXPORT_SYMBOL_GPL(mtd_erase);
757 
758 /*
759  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
760  */
761 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
762 	      void **virt, resource_size_t *phys)
763 {
764 	*retlen = 0;
765 	*virt = NULL;
766 	if (phys)
767 		*phys = 0;
768 	if (!mtd->_point)
769 		return -EOPNOTSUPP;
770 	if (from < 0 || from > mtd->size || len > mtd->size - from)
771 		return -EINVAL;
772 	if (!len)
773 		return 0;
774 	return mtd->_point(mtd, from, len, retlen, virt, phys);
775 }
776 EXPORT_SYMBOL_GPL(mtd_point);
777 
778 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
779 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
780 {
781 	if (!mtd->_point)
782 		return -EOPNOTSUPP;
783 	if (from < 0 || from > mtd->size || len > mtd->size - from)
784 		return -EINVAL;
785 	if (!len)
786 		return 0;
787 	return mtd->_unpoint(mtd, from, len);
788 }
789 EXPORT_SYMBOL_GPL(mtd_unpoint);
790 
791 /*
792  * Allow NOMMU mmap() to directly map the device (if not NULL)
793  * - return the address to which the offset maps
794  * - return -ENOSYS to indicate refusal to do the mapping
795  */
796 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
797 				    unsigned long offset, unsigned long flags)
798 {
799 	if (!mtd->_get_unmapped_area)
800 		return -EOPNOTSUPP;
801 	if (offset > mtd->size || len > mtd->size - offset)
802 		return -EINVAL;
803 	return mtd->_get_unmapped_area(mtd, len, offset, flags);
804 }
805 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
806 
807 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
808 	     u_char *buf)
809 {
810 	int ret_code;
811 	*retlen = 0;
812 	if (from < 0 || from > mtd->size || len > mtd->size - from)
813 		return -EINVAL;
814 	if (!len)
815 		return 0;
816 
817 	/*
818 	 * In the absence of an error, drivers return a non-negative integer
819 	 * representing the maximum number of bitflips that were corrected on
820 	 * any one ecc region (if applicable; zero otherwise).
821 	 */
822 	ret_code = mtd->_read(mtd, from, len, retlen, buf);
823 	if (unlikely(ret_code < 0))
824 		return ret_code;
825 	if (mtd->ecc_strength == 0)
826 		return 0;	/* device lacks ecc */
827 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
828 }
829 EXPORT_SYMBOL_GPL(mtd_read);
830 
831 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
832 	      const u_char *buf)
833 {
834 	*retlen = 0;
835 	if (to < 0 || to > mtd->size || len > mtd->size - to)
836 		return -EINVAL;
837 	if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
838 		return -EROFS;
839 	if (!len)
840 		return 0;
841 	return mtd->_write(mtd, to, len, retlen, buf);
842 }
843 EXPORT_SYMBOL_GPL(mtd_write);
844 
845 /*
846  * In blackbox flight recorder like scenarios we want to make successful writes
847  * in interrupt context. panic_write() is only intended to be called when its
848  * known the kernel is about to panic and we need the write to succeed. Since
849  * the kernel is not going to be running for much longer, this function can
850  * break locks and delay to ensure the write succeeds (but not sleep).
851  */
852 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
853 		    const u_char *buf)
854 {
855 	*retlen = 0;
856 	if (!mtd->_panic_write)
857 		return -EOPNOTSUPP;
858 	if (to < 0 || to > mtd->size || len > mtd->size - to)
859 		return -EINVAL;
860 	if (!(mtd->flags & MTD_WRITEABLE))
861 		return -EROFS;
862 	if (!len)
863 		return 0;
864 	return mtd->_panic_write(mtd, to, len, retlen, buf);
865 }
866 EXPORT_SYMBOL_GPL(mtd_panic_write);
867 
868 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
869 {
870 	int ret_code;
871 	ops->retlen = ops->oobretlen = 0;
872 	if (!mtd->_read_oob)
873 		return -EOPNOTSUPP;
874 	/*
875 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
876 	 * similar to mtd->_read(), returning a non-negative integer
877 	 * representing max bitflips. In other cases, mtd->_read_oob() may
878 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
879 	 */
880 	ret_code = mtd->_read_oob(mtd, from, ops);
881 	if (unlikely(ret_code < 0))
882 		return ret_code;
883 	if (mtd->ecc_strength == 0)
884 		return 0;	/* device lacks ecc */
885 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
886 }
887 EXPORT_SYMBOL_GPL(mtd_read_oob);
888 
889 /*
890  * Method to access the protection register area, present in some flash
891  * devices. The user data is one time programmable but the factory data is read
892  * only.
893  */
894 int mtd_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
895 			   size_t len)
896 {
897 	if (!mtd->_get_fact_prot_info)
898 		return -EOPNOTSUPP;
899 	if (!len)
900 		return 0;
901 	return mtd->_get_fact_prot_info(mtd, buf, len);
902 }
903 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
904 
905 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
906 			   size_t *retlen, u_char *buf)
907 {
908 	*retlen = 0;
909 	if (!mtd->_read_fact_prot_reg)
910 		return -EOPNOTSUPP;
911 	if (!len)
912 		return 0;
913 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
914 }
915 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
916 
917 int mtd_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf,
918 			   size_t len)
919 {
920 	if (!mtd->_get_user_prot_info)
921 		return -EOPNOTSUPP;
922 	if (!len)
923 		return 0;
924 	return mtd->_get_user_prot_info(mtd, buf, len);
925 }
926 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
927 
928 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
929 			   size_t *retlen, u_char *buf)
930 {
931 	*retlen = 0;
932 	if (!mtd->_read_user_prot_reg)
933 		return -EOPNOTSUPP;
934 	if (!len)
935 		return 0;
936 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
937 }
938 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
939 
940 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
941 			    size_t *retlen, u_char *buf)
942 {
943 	*retlen = 0;
944 	if (!mtd->_write_user_prot_reg)
945 		return -EOPNOTSUPP;
946 	if (!len)
947 		return 0;
948 	return mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
949 }
950 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
951 
952 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
953 {
954 	if (!mtd->_lock_user_prot_reg)
955 		return -EOPNOTSUPP;
956 	if (!len)
957 		return 0;
958 	return mtd->_lock_user_prot_reg(mtd, from, len);
959 }
960 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
961 
962 /* Chip-supported device locking */
963 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
964 {
965 	if (!mtd->_lock)
966 		return -EOPNOTSUPP;
967 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
968 		return -EINVAL;
969 	if (!len)
970 		return 0;
971 	return mtd->_lock(mtd, ofs, len);
972 }
973 EXPORT_SYMBOL_GPL(mtd_lock);
974 
975 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
976 {
977 	if (!mtd->_unlock)
978 		return -EOPNOTSUPP;
979 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
980 		return -EINVAL;
981 	if (!len)
982 		return 0;
983 	return mtd->_unlock(mtd, ofs, len);
984 }
985 EXPORT_SYMBOL_GPL(mtd_unlock);
986 
987 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
988 {
989 	if (!mtd->_is_locked)
990 		return -EOPNOTSUPP;
991 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
992 		return -EINVAL;
993 	if (!len)
994 		return 0;
995 	return mtd->_is_locked(mtd, ofs, len);
996 }
997 EXPORT_SYMBOL_GPL(mtd_is_locked);
998 
999 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1000 {
1001 	if (!mtd->_block_isbad)
1002 		return 0;
1003 	if (ofs < 0 || ofs > mtd->size)
1004 		return -EINVAL;
1005 	return mtd->_block_isbad(mtd, ofs);
1006 }
1007 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1008 
1009 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1010 {
1011 	if (!mtd->_block_markbad)
1012 		return -EOPNOTSUPP;
1013 	if (ofs < 0 || ofs > mtd->size)
1014 		return -EINVAL;
1015 	if (!(mtd->flags & MTD_WRITEABLE))
1016 		return -EROFS;
1017 	return mtd->_block_markbad(mtd, ofs);
1018 }
1019 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1020 
1021 /*
1022  * default_mtd_writev - the default writev method
1023  * @mtd: mtd device description object pointer
1024  * @vecs: the vectors to write
1025  * @count: count of vectors in @vecs
1026  * @to: the MTD device offset to write to
1027  * @retlen: on exit contains the count of bytes written to the MTD device.
1028  *
1029  * This function returns zero in case of success and a negative error code in
1030  * case of failure.
1031  */
1032 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1033 			      unsigned long count, loff_t to, size_t *retlen)
1034 {
1035 	unsigned long i;
1036 	size_t totlen = 0, thislen;
1037 	int ret = 0;
1038 
1039 	for (i = 0; i < count; i++) {
1040 		if (!vecs[i].iov_len)
1041 			continue;
1042 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1043 				vecs[i].iov_base);
1044 		totlen += thislen;
1045 		if (ret || thislen != vecs[i].iov_len)
1046 			break;
1047 		to += vecs[i].iov_len;
1048 	}
1049 	*retlen = totlen;
1050 	return ret;
1051 }
1052 
1053 /*
1054  * mtd_writev - the vector-based MTD write method
1055  * @mtd: mtd device description object pointer
1056  * @vecs: the vectors to write
1057  * @count: count of vectors in @vecs
1058  * @to: the MTD device offset to write to
1059  * @retlen: on exit contains the count of bytes written to the MTD device.
1060  *
1061  * This function returns zero in case of success and a negative error code in
1062  * case of failure.
1063  */
1064 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1065 	       unsigned long count, loff_t to, size_t *retlen)
1066 {
1067 	*retlen = 0;
1068 	if (!(mtd->flags & MTD_WRITEABLE))
1069 		return -EROFS;
1070 	if (!mtd->_writev)
1071 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1072 	return mtd->_writev(mtd, vecs, count, to, retlen);
1073 }
1074 EXPORT_SYMBOL_GPL(mtd_writev);
1075 
1076 /**
1077  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1078  * @mtd: mtd device description object pointer
1079  * @size: a pointer to the ideal or maximum size of the allocation, points
1080  *        to the actual allocation size on success.
1081  *
1082  * This routine attempts to allocate a contiguous kernel buffer up to
1083  * the specified size, backing off the size of the request exponentially
1084  * until the request succeeds or until the allocation size falls below
1085  * the system page size. This attempts to make sure it does not adversely
1086  * impact system performance, so when allocating more than one page, we
1087  * ask the memory allocator to avoid re-trying, swapping, writing back
1088  * or performing I/O.
1089  *
1090  * Note, this function also makes sure that the allocated buffer is aligned to
1091  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1092  *
1093  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1094  * to handle smaller (i.e. degraded) buffer allocations under low- or
1095  * fragmented-memory situations where such reduced allocations, from a
1096  * requested ideal, are allowed.
1097  *
1098  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1099  */
1100 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1101 {
1102 	gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1103 		       __GFP_NORETRY | __GFP_NO_KSWAPD;
1104 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1105 	void *kbuf;
1106 
1107 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1108 
1109 	while (*size > min_alloc) {
1110 		kbuf = kmalloc(*size, flags);
1111 		if (kbuf)
1112 			return kbuf;
1113 
1114 		*size >>= 1;
1115 		*size = ALIGN(*size, mtd->writesize);
1116 	}
1117 
1118 	/*
1119 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1120 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1121 	 */
1122 	return kmalloc(*size, GFP_KERNEL);
1123 }
1124 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1125 
1126 #ifdef CONFIG_PROC_FS
1127 
1128 /*====================================================================*/
1129 /* Support for /proc/mtd */
1130 
1131 static int mtd_proc_show(struct seq_file *m, void *v)
1132 {
1133 	struct mtd_info *mtd;
1134 
1135 	seq_puts(m, "dev:    size   erasesize  name\n");
1136 	mutex_lock(&mtd_table_mutex);
1137 	mtd_for_each_device(mtd) {
1138 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1139 			   mtd->index, (unsigned long long)mtd->size,
1140 			   mtd->erasesize, mtd->name);
1141 	}
1142 	mutex_unlock(&mtd_table_mutex);
1143 	return 0;
1144 }
1145 
1146 static int mtd_proc_open(struct inode *inode, struct file *file)
1147 {
1148 	return single_open(file, mtd_proc_show, NULL);
1149 }
1150 
1151 static const struct file_operations mtd_proc_ops = {
1152 	.open		= mtd_proc_open,
1153 	.read		= seq_read,
1154 	.llseek		= seq_lseek,
1155 	.release	= single_release,
1156 };
1157 #endif /* CONFIG_PROC_FS */
1158 
1159 /*====================================================================*/
1160 /* Init code */
1161 
1162 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1163 {
1164 	int ret;
1165 
1166 	ret = bdi_init(bdi);
1167 	if (!ret)
1168 		ret = bdi_register(bdi, NULL, "%s", name);
1169 
1170 	if (ret)
1171 		bdi_destroy(bdi);
1172 
1173 	return ret;
1174 }
1175 
1176 static struct proc_dir_entry *proc_mtd;
1177 
1178 static int __init init_mtd(void)
1179 {
1180 	int ret;
1181 
1182 	ret = class_register(&mtd_class);
1183 	if (ret)
1184 		goto err_reg;
1185 
1186 	ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1187 	if (ret)
1188 		goto err_bdi1;
1189 
1190 	ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1191 	if (ret)
1192 		goto err_bdi2;
1193 
1194 	ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1195 	if (ret)
1196 		goto err_bdi3;
1197 
1198 	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1199 
1200 	ret = init_mtdchar();
1201 	if (ret)
1202 		goto out_procfs;
1203 
1204 	return 0;
1205 
1206 out_procfs:
1207 	if (proc_mtd)
1208 		remove_proc_entry("mtd", NULL);
1209 err_bdi3:
1210 	bdi_destroy(&mtd_bdi_ro_mappable);
1211 err_bdi2:
1212 	bdi_destroy(&mtd_bdi_unmappable);
1213 err_bdi1:
1214 	class_unregister(&mtd_class);
1215 err_reg:
1216 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1217 	return ret;
1218 }
1219 
1220 static void __exit cleanup_mtd(void)
1221 {
1222 	cleanup_mtdchar();
1223 	if (proc_mtd)
1224 		remove_proc_entry("mtd", NULL);
1225 	class_unregister(&mtd_class);
1226 	bdi_destroy(&mtd_bdi_unmappable);
1227 	bdi_destroy(&mtd_bdi_ro_mappable);
1228 	bdi_destroy(&mtd_bdi_rw_mappable);
1229 }
1230 
1231 module_init(init_mtd);
1232 module_exit(cleanup_mtd);
1233 
1234 MODULE_LICENSE("GPL");
1235 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1236 MODULE_DESCRIPTION("Core MTD registration and access routines");
1237