1 /* 2 * Core registration and callback routines for MTD 3 * drivers and users. 4 * 5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 6 * Copyright © 2006 Red Hat UK Limited 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/kernel.h> 26 #include <linux/ptrace.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/major.h> 31 #include <linux/fs.h> 32 #include <linux/err.h> 33 #include <linux/ioctl.h> 34 #include <linux/init.h> 35 #include <linux/of.h> 36 #include <linux/proc_fs.h> 37 #include <linux/idr.h> 38 #include <linux/backing-dev.h> 39 #include <linux/gfp.h> 40 #include <linux/slab.h> 41 #include <linux/reboot.h> 42 #include <linux/leds.h> 43 #include <linux/debugfs.h> 44 45 #include <linux/mtd/mtd.h> 46 #include <linux/mtd/partitions.h> 47 48 #include "mtdcore.h" 49 50 struct backing_dev_info *mtd_bdi; 51 52 #ifdef CONFIG_PM_SLEEP 53 54 static int mtd_cls_suspend(struct device *dev) 55 { 56 struct mtd_info *mtd = dev_get_drvdata(dev); 57 58 return mtd ? mtd_suspend(mtd) : 0; 59 } 60 61 static int mtd_cls_resume(struct device *dev) 62 { 63 struct mtd_info *mtd = dev_get_drvdata(dev); 64 65 if (mtd) 66 mtd_resume(mtd); 67 return 0; 68 } 69 70 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 71 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 72 #else 73 #define MTD_CLS_PM_OPS NULL 74 #endif 75 76 static struct class mtd_class = { 77 .name = "mtd", 78 .owner = THIS_MODULE, 79 .pm = MTD_CLS_PM_OPS, 80 }; 81 82 static DEFINE_IDR(mtd_idr); 83 84 /* These are exported solely for the purpose of mtd_blkdevs.c. You 85 should not use them for _anything_ else */ 86 DEFINE_MUTEX(mtd_table_mutex); 87 EXPORT_SYMBOL_GPL(mtd_table_mutex); 88 89 struct mtd_info *__mtd_next_device(int i) 90 { 91 return idr_get_next(&mtd_idr, &i); 92 } 93 EXPORT_SYMBOL_GPL(__mtd_next_device); 94 95 static LIST_HEAD(mtd_notifiers); 96 97 98 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 99 100 /* REVISIT once MTD uses the driver model better, whoever allocates 101 * the mtd_info will probably want to use the release() hook... 102 */ 103 static void mtd_release(struct device *dev) 104 { 105 struct mtd_info *mtd = dev_get_drvdata(dev); 106 dev_t index = MTD_DEVT(mtd->index); 107 108 /* remove /dev/mtdXro node */ 109 device_destroy(&mtd_class, index + 1); 110 } 111 112 static ssize_t mtd_type_show(struct device *dev, 113 struct device_attribute *attr, char *buf) 114 { 115 struct mtd_info *mtd = dev_get_drvdata(dev); 116 char *type; 117 118 switch (mtd->type) { 119 case MTD_ABSENT: 120 type = "absent"; 121 break; 122 case MTD_RAM: 123 type = "ram"; 124 break; 125 case MTD_ROM: 126 type = "rom"; 127 break; 128 case MTD_NORFLASH: 129 type = "nor"; 130 break; 131 case MTD_NANDFLASH: 132 type = "nand"; 133 break; 134 case MTD_DATAFLASH: 135 type = "dataflash"; 136 break; 137 case MTD_UBIVOLUME: 138 type = "ubi"; 139 break; 140 case MTD_MLCNANDFLASH: 141 type = "mlc-nand"; 142 break; 143 default: 144 type = "unknown"; 145 } 146 147 return snprintf(buf, PAGE_SIZE, "%s\n", type); 148 } 149 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 150 151 static ssize_t mtd_flags_show(struct device *dev, 152 struct device_attribute *attr, char *buf) 153 { 154 struct mtd_info *mtd = dev_get_drvdata(dev); 155 156 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 157 158 } 159 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 160 161 static ssize_t mtd_size_show(struct device *dev, 162 struct device_attribute *attr, char *buf) 163 { 164 struct mtd_info *mtd = dev_get_drvdata(dev); 165 166 return snprintf(buf, PAGE_SIZE, "%llu\n", 167 (unsigned long long)mtd->size); 168 169 } 170 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 171 172 static ssize_t mtd_erasesize_show(struct device *dev, 173 struct device_attribute *attr, char *buf) 174 { 175 struct mtd_info *mtd = dev_get_drvdata(dev); 176 177 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 178 179 } 180 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 181 182 static ssize_t mtd_writesize_show(struct device *dev, 183 struct device_attribute *attr, char *buf) 184 { 185 struct mtd_info *mtd = dev_get_drvdata(dev); 186 187 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 188 189 } 190 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 191 192 static ssize_t mtd_subpagesize_show(struct device *dev, 193 struct device_attribute *attr, char *buf) 194 { 195 struct mtd_info *mtd = dev_get_drvdata(dev); 196 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 197 198 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 199 200 } 201 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 202 203 static ssize_t mtd_oobsize_show(struct device *dev, 204 struct device_attribute *attr, char *buf) 205 { 206 struct mtd_info *mtd = dev_get_drvdata(dev); 207 208 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 209 210 } 211 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 212 213 static ssize_t mtd_numeraseregions_show(struct device *dev, 214 struct device_attribute *attr, char *buf) 215 { 216 struct mtd_info *mtd = dev_get_drvdata(dev); 217 218 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 219 220 } 221 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 222 NULL); 223 224 static ssize_t mtd_name_show(struct device *dev, 225 struct device_attribute *attr, char *buf) 226 { 227 struct mtd_info *mtd = dev_get_drvdata(dev); 228 229 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 230 231 } 232 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 233 234 static ssize_t mtd_ecc_strength_show(struct device *dev, 235 struct device_attribute *attr, char *buf) 236 { 237 struct mtd_info *mtd = dev_get_drvdata(dev); 238 239 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 240 } 241 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 242 243 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 244 struct device_attribute *attr, 245 char *buf) 246 { 247 struct mtd_info *mtd = dev_get_drvdata(dev); 248 249 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 250 } 251 252 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 253 struct device_attribute *attr, 254 const char *buf, size_t count) 255 { 256 struct mtd_info *mtd = dev_get_drvdata(dev); 257 unsigned int bitflip_threshold; 258 int retval; 259 260 retval = kstrtouint(buf, 0, &bitflip_threshold); 261 if (retval) 262 return retval; 263 264 mtd->bitflip_threshold = bitflip_threshold; 265 return count; 266 } 267 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 268 mtd_bitflip_threshold_show, 269 mtd_bitflip_threshold_store); 270 271 static ssize_t mtd_ecc_step_size_show(struct device *dev, 272 struct device_attribute *attr, char *buf) 273 { 274 struct mtd_info *mtd = dev_get_drvdata(dev); 275 276 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 277 278 } 279 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 280 281 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev, 282 struct device_attribute *attr, char *buf) 283 { 284 struct mtd_info *mtd = dev_get_drvdata(dev); 285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 286 287 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected); 288 } 289 static DEVICE_ATTR(corrected_bits, S_IRUGO, 290 mtd_ecc_stats_corrected_show, NULL); 291 292 static ssize_t mtd_ecc_stats_errors_show(struct device *dev, 293 struct device_attribute *attr, char *buf) 294 { 295 struct mtd_info *mtd = dev_get_drvdata(dev); 296 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 297 298 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed); 299 } 300 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL); 301 302 static ssize_t mtd_badblocks_show(struct device *dev, 303 struct device_attribute *attr, char *buf) 304 { 305 struct mtd_info *mtd = dev_get_drvdata(dev); 306 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 307 308 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks); 309 } 310 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL); 311 312 static ssize_t mtd_bbtblocks_show(struct device *dev, 313 struct device_attribute *attr, char *buf) 314 { 315 struct mtd_info *mtd = dev_get_drvdata(dev); 316 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 317 318 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks); 319 } 320 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL); 321 322 static struct attribute *mtd_attrs[] = { 323 &dev_attr_type.attr, 324 &dev_attr_flags.attr, 325 &dev_attr_size.attr, 326 &dev_attr_erasesize.attr, 327 &dev_attr_writesize.attr, 328 &dev_attr_subpagesize.attr, 329 &dev_attr_oobsize.attr, 330 &dev_attr_numeraseregions.attr, 331 &dev_attr_name.attr, 332 &dev_attr_ecc_strength.attr, 333 &dev_attr_ecc_step_size.attr, 334 &dev_attr_corrected_bits.attr, 335 &dev_attr_ecc_failures.attr, 336 &dev_attr_bad_blocks.attr, 337 &dev_attr_bbt_blocks.attr, 338 &dev_attr_bitflip_threshold.attr, 339 NULL, 340 }; 341 ATTRIBUTE_GROUPS(mtd); 342 343 static const struct device_type mtd_devtype = { 344 .name = "mtd", 345 .groups = mtd_groups, 346 .release = mtd_release, 347 }; 348 349 #ifndef CONFIG_MMU 350 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 351 { 352 switch (mtd->type) { 353 case MTD_RAM: 354 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 355 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 356 case MTD_ROM: 357 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 358 NOMMU_MAP_READ; 359 default: 360 return NOMMU_MAP_COPY; 361 } 362 } 363 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 364 #endif 365 366 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 367 void *cmd) 368 { 369 struct mtd_info *mtd; 370 371 mtd = container_of(n, struct mtd_info, reboot_notifier); 372 mtd->_reboot(mtd); 373 374 return NOTIFY_DONE; 375 } 376 377 /** 378 * mtd_wunit_to_pairing_info - get pairing information of a wunit 379 * @mtd: pointer to new MTD device info structure 380 * @wunit: write unit we are interested in 381 * @info: returned pairing information 382 * 383 * Retrieve pairing information associated to the wunit. 384 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 385 * paired together, and where programming a page may influence the page it is 386 * paired with. 387 * The notion of page is replaced by the term wunit (write-unit) to stay 388 * consistent with the ->writesize field. 389 * 390 * The @wunit argument can be extracted from an absolute offset using 391 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 392 * to @wunit. 393 * 394 * From the pairing info the MTD user can find all the wunits paired with 395 * @wunit using the following loop: 396 * 397 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 398 * info.pair = i; 399 * mtd_pairing_info_to_wunit(mtd, &info); 400 * ... 401 * } 402 */ 403 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 404 struct mtd_pairing_info *info) 405 { 406 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 407 408 if (wunit < 0 || wunit >= npairs) 409 return -EINVAL; 410 411 if (mtd->pairing && mtd->pairing->get_info) 412 return mtd->pairing->get_info(mtd, wunit, info); 413 414 info->group = 0; 415 info->pair = wunit; 416 417 return 0; 418 } 419 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 420 421 /** 422 * mtd_wunit_to_pairing_info - get wunit from pairing information 423 * @mtd: pointer to new MTD device info structure 424 * @info: pairing information struct 425 * 426 * Returns a positive number representing the wunit associated to the info 427 * struct, or a negative error code. 428 * 429 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 430 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 431 * doc). 432 * 433 * It can also be used to only program the first page of each pair (i.e. 434 * page attached to group 0), which allows one to use an MLC NAND in 435 * software-emulated SLC mode: 436 * 437 * info.group = 0; 438 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 439 * for (info.pair = 0; info.pair < npairs; info.pair++) { 440 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 441 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 442 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 443 * } 444 */ 445 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 446 const struct mtd_pairing_info *info) 447 { 448 int ngroups = mtd_pairing_groups(mtd); 449 int npairs = mtd_wunit_per_eb(mtd) / ngroups; 450 451 if (!info || info->pair < 0 || info->pair >= npairs || 452 info->group < 0 || info->group >= ngroups) 453 return -EINVAL; 454 455 if (mtd->pairing && mtd->pairing->get_wunit) 456 return mtd->pairing->get_wunit(mtd, info); 457 458 return info->pair; 459 } 460 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 461 462 /** 463 * mtd_pairing_groups - get the number of pairing groups 464 * @mtd: pointer to new MTD device info structure 465 * 466 * Returns the number of pairing groups. 467 * 468 * This number is usually equal to the number of bits exposed by a single 469 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 470 * to iterate over all pages of a given pair. 471 */ 472 int mtd_pairing_groups(struct mtd_info *mtd) 473 { 474 if (!mtd->pairing || !mtd->pairing->ngroups) 475 return 1; 476 477 return mtd->pairing->ngroups; 478 } 479 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 480 481 static struct dentry *dfs_dir_mtd; 482 483 /** 484 * add_mtd_device - register an MTD device 485 * @mtd: pointer to new MTD device info structure 486 * 487 * Add a device to the list of MTD devices present in the system, and 488 * notify each currently active MTD 'user' of its arrival. Returns 489 * zero on success or non-zero on failure. 490 */ 491 492 int add_mtd_device(struct mtd_info *mtd) 493 { 494 struct mtd_notifier *not; 495 int i, error; 496 497 /* 498 * May occur, for instance, on buggy drivers which call 499 * mtd_device_parse_register() multiple times on the same master MTD, 500 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 501 */ 502 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 503 return -EEXIST; 504 505 BUG_ON(mtd->writesize == 0); 506 mutex_lock(&mtd_table_mutex); 507 508 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 509 if (i < 0) { 510 error = i; 511 goto fail_locked; 512 } 513 514 mtd->index = i; 515 mtd->usecount = 0; 516 517 /* default value if not set by driver */ 518 if (mtd->bitflip_threshold == 0) 519 mtd->bitflip_threshold = mtd->ecc_strength; 520 521 if (is_power_of_2(mtd->erasesize)) 522 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 523 else 524 mtd->erasesize_shift = 0; 525 526 if (is_power_of_2(mtd->writesize)) 527 mtd->writesize_shift = ffs(mtd->writesize) - 1; 528 else 529 mtd->writesize_shift = 0; 530 531 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 532 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 533 534 /* Some chips always power up locked. Unlock them now */ 535 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 536 error = mtd_unlock(mtd, 0, mtd->size); 537 if (error && error != -EOPNOTSUPP) 538 printk(KERN_WARNING 539 "%s: unlock failed, writes may not work\n", 540 mtd->name); 541 /* Ignore unlock failures? */ 542 error = 0; 543 } 544 545 /* Caller should have set dev.parent to match the 546 * physical device, if appropriate. 547 */ 548 mtd->dev.type = &mtd_devtype; 549 mtd->dev.class = &mtd_class; 550 mtd->dev.devt = MTD_DEVT(i); 551 dev_set_name(&mtd->dev, "mtd%d", i); 552 dev_set_drvdata(&mtd->dev, mtd); 553 of_node_get(mtd_get_of_node(mtd)); 554 error = device_register(&mtd->dev); 555 if (error) 556 goto fail_added; 557 558 if (!IS_ERR_OR_NULL(dfs_dir_mtd)) { 559 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd); 560 if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) { 561 pr_debug("mtd device %s won't show data in debugfs\n", 562 dev_name(&mtd->dev)); 563 } 564 } 565 566 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 567 "mtd%dro", i); 568 569 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 570 /* No need to get a refcount on the module containing 571 the notifier, since we hold the mtd_table_mutex */ 572 list_for_each_entry(not, &mtd_notifiers, list) 573 not->add(mtd); 574 575 mutex_unlock(&mtd_table_mutex); 576 /* We _know_ we aren't being removed, because 577 our caller is still holding us here. So none 578 of this try_ nonsense, and no bitching about it 579 either. :) */ 580 __module_get(THIS_MODULE); 581 return 0; 582 583 fail_added: 584 of_node_put(mtd_get_of_node(mtd)); 585 idr_remove(&mtd_idr, i); 586 fail_locked: 587 mutex_unlock(&mtd_table_mutex); 588 return error; 589 } 590 591 /** 592 * del_mtd_device - unregister an MTD device 593 * @mtd: pointer to MTD device info structure 594 * 595 * Remove a device from the list of MTD devices present in the system, 596 * and notify each currently active MTD 'user' of its departure. 597 * Returns zero on success or 1 on failure, which currently will happen 598 * if the requested device does not appear to be present in the list. 599 */ 600 601 int del_mtd_device(struct mtd_info *mtd) 602 { 603 int ret; 604 struct mtd_notifier *not; 605 606 mutex_lock(&mtd_table_mutex); 607 608 debugfs_remove_recursive(mtd->dbg.dfs_dir); 609 610 if (idr_find(&mtd_idr, mtd->index) != mtd) { 611 ret = -ENODEV; 612 goto out_error; 613 } 614 615 /* No need to get a refcount on the module containing 616 the notifier, since we hold the mtd_table_mutex */ 617 list_for_each_entry(not, &mtd_notifiers, list) 618 not->remove(mtd); 619 620 if (mtd->usecount) { 621 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 622 mtd->index, mtd->name, mtd->usecount); 623 ret = -EBUSY; 624 } else { 625 device_unregister(&mtd->dev); 626 627 idr_remove(&mtd_idr, mtd->index); 628 of_node_put(mtd_get_of_node(mtd)); 629 630 module_put(THIS_MODULE); 631 ret = 0; 632 } 633 634 out_error: 635 mutex_unlock(&mtd_table_mutex); 636 return ret; 637 } 638 639 static int mtd_add_device_partitions(struct mtd_info *mtd, 640 struct mtd_partitions *parts) 641 { 642 const struct mtd_partition *real_parts = parts->parts; 643 int nbparts = parts->nr_parts; 644 int ret; 645 646 if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 647 ret = add_mtd_device(mtd); 648 if (ret) 649 return ret; 650 } 651 652 if (nbparts > 0) { 653 ret = add_mtd_partitions(mtd, real_parts, nbparts); 654 if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) 655 del_mtd_device(mtd); 656 return ret; 657 } 658 659 return 0; 660 } 661 662 /* 663 * Set a few defaults based on the parent devices, if not provided by the 664 * driver 665 */ 666 static void mtd_set_dev_defaults(struct mtd_info *mtd) 667 { 668 if (mtd->dev.parent) { 669 if (!mtd->owner && mtd->dev.parent->driver) 670 mtd->owner = mtd->dev.parent->driver->owner; 671 if (!mtd->name) 672 mtd->name = dev_name(mtd->dev.parent); 673 } else { 674 pr_debug("mtd device won't show a device symlink in sysfs\n"); 675 } 676 } 677 678 /** 679 * mtd_device_parse_register - parse partitions and register an MTD device. 680 * 681 * @mtd: the MTD device to register 682 * @types: the list of MTD partition probes to try, see 683 * 'parse_mtd_partitions()' for more information 684 * @parser_data: MTD partition parser-specific data 685 * @parts: fallback partition information to register, if parsing fails; 686 * only valid if %nr_parts > %0 687 * @nr_parts: the number of partitions in parts, if zero then the full 688 * MTD device is registered if no partition info is found 689 * 690 * This function aggregates MTD partitions parsing (done by 691 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 692 * basically follows the most common pattern found in many MTD drivers: 693 * 694 * * It first tries to probe partitions on MTD device @mtd using parsers 695 * specified in @types (if @types is %NULL, then the default list of parsers 696 * is used, see 'parse_mtd_partitions()' for more information). If none are 697 * found this functions tries to fallback to information specified in 698 * @parts/@nr_parts. 699 * * If any partitioning info was found, this function registers the found 700 * partitions. If the MTD_PARTITIONED_MASTER option is set, then the device 701 * as a whole is registered first. 702 * * If no partitions were found this function just registers the MTD device 703 * @mtd and exits. 704 * 705 * Returns zero in case of success and a negative error code in case of failure. 706 */ 707 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 708 struct mtd_part_parser_data *parser_data, 709 const struct mtd_partition *parts, 710 int nr_parts) 711 { 712 struct mtd_partitions parsed; 713 int ret; 714 715 mtd_set_dev_defaults(mtd); 716 717 memset(&parsed, 0, sizeof(parsed)); 718 719 ret = parse_mtd_partitions(mtd, types, &parsed, parser_data); 720 if ((ret < 0 || parsed.nr_parts == 0) && parts && nr_parts) { 721 /* Fall back to driver-provided partitions */ 722 parsed = (struct mtd_partitions){ 723 .parts = parts, 724 .nr_parts = nr_parts, 725 }; 726 } else if (ret < 0) { 727 /* Didn't come up with parsed OR fallback partitions */ 728 pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n", 729 ret); 730 /* Don't abort on errors; we can still use unpartitioned MTD */ 731 memset(&parsed, 0, sizeof(parsed)); 732 } 733 734 ret = mtd_add_device_partitions(mtd, &parsed); 735 if (ret) 736 goto out; 737 738 /* 739 * FIXME: some drivers unfortunately call this function more than once. 740 * So we have to check if we've already assigned the reboot notifier. 741 * 742 * Generally, we can make multiple calls work for most cases, but it 743 * does cause problems with parse_mtd_partitions() above (e.g., 744 * cmdlineparts will register partitions more than once). 745 */ 746 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 747 "MTD already registered\n"); 748 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 749 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 750 register_reboot_notifier(&mtd->reboot_notifier); 751 } 752 753 out: 754 /* Cleanup any parsed partitions */ 755 mtd_part_parser_cleanup(&parsed); 756 return ret; 757 } 758 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 759 760 /** 761 * mtd_device_unregister - unregister an existing MTD device. 762 * 763 * @master: the MTD device to unregister. This will unregister both the master 764 * and any partitions if registered. 765 */ 766 int mtd_device_unregister(struct mtd_info *master) 767 { 768 int err; 769 770 if (master->_reboot) 771 unregister_reboot_notifier(&master->reboot_notifier); 772 773 err = del_mtd_partitions(master); 774 if (err) 775 return err; 776 777 if (!device_is_registered(&master->dev)) 778 return 0; 779 780 return del_mtd_device(master); 781 } 782 EXPORT_SYMBOL_GPL(mtd_device_unregister); 783 784 /** 785 * register_mtd_user - register a 'user' of MTD devices. 786 * @new: pointer to notifier info structure 787 * 788 * Registers a pair of callbacks function to be called upon addition 789 * or removal of MTD devices. Causes the 'add' callback to be immediately 790 * invoked for each MTD device currently present in the system. 791 */ 792 void register_mtd_user (struct mtd_notifier *new) 793 { 794 struct mtd_info *mtd; 795 796 mutex_lock(&mtd_table_mutex); 797 798 list_add(&new->list, &mtd_notifiers); 799 800 __module_get(THIS_MODULE); 801 802 mtd_for_each_device(mtd) 803 new->add(mtd); 804 805 mutex_unlock(&mtd_table_mutex); 806 } 807 EXPORT_SYMBOL_GPL(register_mtd_user); 808 809 /** 810 * unregister_mtd_user - unregister a 'user' of MTD devices. 811 * @old: pointer to notifier info structure 812 * 813 * Removes a callback function pair from the list of 'users' to be 814 * notified upon addition or removal of MTD devices. Causes the 815 * 'remove' callback to be immediately invoked for each MTD device 816 * currently present in the system. 817 */ 818 int unregister_mtd_user (struct mtd_notifier *old) 819 { 820 struct mtd_info *mtd; 821 822 mutex_lock(&mtd_table_mutex); 823 824 module_put(THIS_MODULE); 825 826 mtd_for_each_device(mtd) 827 old->remove(mtd); 828 829 list_del(&old->list); 830 mutex_unlock(&mtd_table_mutex); 831 return 0; 832 } 833 EXPORT_SYMBOL_GPL(unregister_mtd_user); 834 835 /** 836 * get_mtd_device - obtain a validated handle for an MTD device 837 * @mtd: last known address of the required MTD device 838 * @num: internal device number of the required MTD device 839 * 840 * Given a number and NULL address, return the num'th entry in the device 841 * table, if any. Given an address and num == -1, search the device table 842 * for a device with that address and return if it's still present. Given 843 * both, return the num'th driver only if its address matches. Return 844 * error code if not. 845 */ 846 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 847 { 848 struct mtd_info *ret = NULL, *other; 849 int err = -ENODEV; 850 851 mutex_lock(&mtd_table_mutex); 852 853 if (num == -1) { 854 mtd_for_each_device(other) { 855 if (other == mtd) { 856 ret = mtd; 857 break; 858 } 859 } 860 } else if (num >= 0) { 861 ret = idr_find(&mtd_idr, num); 862 if (mtd && mtd != ret) 863 ret = NULL; 864 } 865 866 if (!ret) { 867 ret = ERR_PTR(err); 868 goto out; 869 } 870 871 err = __get_mtd_device(ret); 872 if (err) 873 ret = ERR_PTR(err); 874 out: 875 mutex_unlock(&mtd_table_mutex); 876 return ret; 877 } 878 EXPORT_SYMBOL_GPL(get_mtd_device); 879 880 881 int __get_mtd_device(struct mtd_info *mtd) 882 { 883 int err; 884 885 if (!try_module_get(mtd->owner)) 886 return -ENODEV; 887 888 if (mtd->_get_device) { 889 err = mtd->_get_device(mtd); 890 891 if (err) { 892 module_put(mtd->owner); 893 return err; 894 } 895 } 896 mtd->usecount++; 897 return 0; 898 } 899 EXPORT_SYMBOL_GPL(__get_mtd_device); 900 901 /** 902 * get_mtd_device_nm - obtain a validated handle for an MTD device by 903 * device name 904 * @name: MTD device name to open 905 * 906 * This function returns MTD device description structure in case of 907 * success and an error code in case of failure. 908 */ 909 struct mtd_info *get_mtd_device_nm(const char *name) 910 { 911 int err = -ENODEV; 912 struct mtd_info *mtd = NULL, *other; 913 914 mutex_lock(&mtd_table_mutex); 915 916 mtd_for_each_device(other) { 917 if (!strcmp(name, other->name)) { 918 mtd = other; 919 break; 920 } 921 } 922 923 if (!mtd) 924 goto out_unlock; 925 926 err = __get_mtd_device(mtd); 927 if (err) 928 goto out_unlock; 929 930 mutex_unlock(&mtd_table_mutex); 931 return mtd; 932 933 out_unlock: 934 mutex_unlock(&mtd_table_mutex); 935 return ERR_PTR(err); 936 } 937 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 938 939 void put_mtd_device(struct mtd_info *mtd) 940 { 941 mutex_lock(&mtd_table_mutex); 942 __put_mtd_device(mtd); 943 mutex_unlock(&mtd_table_mutex); 944 945 } 946 EXPORT_SYMBOL_GPL(put_mtd_device); 947 948 void __put_mtd_device(struct mtd_info *mtd) 949 { 950 --mtd->usecount; 951 BUG_ON(mtd->usecount < 0); 952 953 if (mtd->_put_device) 954 mtd->_put_device(mtd); 955 956 module_put(mtd->owner); 957 } 958 EXPORT_SYMBOL_GPL(__put_mtd_device); 959 960 /* 961 * Erase is an asynchronous operation. Device drivers are supposed 962 * to call instr->callback() whenever the operation completes, even 963 * if it completes with a failure. 964 * Callers are supposed to pass a callback function and wait for it 965 * to be called before writing to the block. 966 */ 967 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 968 { 969 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 970 return -EINVAL; 971 if (!(mtd->flags & MTD_WRITEABLE)) 972 return -EROFS; 973 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 974 if (!instr->len) { 975 instr->state = MTD_ERASE_DONE; 976 mtd_erase_callback(instr); 977 return 0; 978 } 979 ledtrig_mtd_activity(); 980 return mtd->_erase(mtd, instr); 981 } 982 EXPORT_SYMBOL_GPL(mtd_erase); 983 984 /* 985 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 986 */ 987 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 988 void **virt, resource_size_t *phys) 989 { 990 *retlen = 0; 991 *virt = NULL; 992 if (phys) 993 *phys = 0; 994 if (!mtd->_point) 995 return -EOPNOTSUPP; 996 if (from < 0 || from >= mtd->size || len > mtd->size - from) 997 return -EINVAL; 998 if (!len) 999 return 0; 1000 return mtd->_point(mtd, from, len, retlen, virt, phys); 1001 } 1002 EXPORT_SYMBOL_GPL(mtd_point); 1003 1004 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 1005 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1006 { 1007 if (!mtd->_unpoint) 1008 return -EOPNOTSUPP; 1009 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1010 return -EINVAL; 1011 if (!len) 1012 return 0; 1013 return mtd->_unpoint(mtd, from, len); 1014 } 1015 EXPORT_SYMBOL_GPL(mtd_unpoint); 1016 1017 /* 1018 * Allow NOMMU mmap() to directly map the device (if not NULL) 1019 * - return the address to which the offset maps 1020 * - return -ENOSYS to indicate refusal to do the mapping 1021 */ 1022 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1023 unsigned long offset, unsigned long flags) 1024 { 1025 size_t retlen; 1026 void *virt; 1027 int ret; 1028 1029 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); 1030 if (ret) 1031 return ret; 1032 if (retlen != len) { 1033 mtd_unpoint(mtd, offset, retlen); 1034 return -ENOSYS; 1035 } 1036 return (unsigned long)virt; 1037 } 1038 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1039 1040 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1041 u_char *buf) 1042 { 1043 int ret_code; 1044 *retlen = 0; 1045 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1046 return -EINVAL; 1047 if (!len) 1048 return 0; 1049 1050 ledtrig_mtd_activity(); 1051 /* 1052 * In the absence of an error, drivers return a non-negative integer 1053 * representing the maximum number of bitflips that were corrected on 1054 * any one ecc region (if applicable; zero otherwise). 1055 */ 1056 ret_code = mtd->_read(mtd, from, len, retlen, buf); 1057 if (unlikely(ret_code < 0)) 1058 return ret_code; 1059 if (mtd->ecc_strength == 0) 1060 return 0; /* device lacks ecc */ 1061 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1062 } 1063 EXPORT_SYMBOL_GPL(mtd_read); 1064 1065 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1066 const u_char *buf) 1067 { 1068 *retlen = 0; 1069 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1070 return -EINVAL; 1071 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE)) 1072 return -EROFS; 1073 if (!len) 1074 return 0; 1075 ledtrig_mtd_activity(); 1076 return mtd->_write(mtd, to, len, retlen, buf); 1077 } 1078 EXPORT_SYMBOL_GPL(mtd_write); 1079 1080 /* 1081 * In blackbox flight recorder like scenarios we want to make successful writes 1082 * in interrupt context. panic_write() is only intended to be called when its 1083 * known the kernel is about to panic and we need the write to succeed. Since 1084 * the kernel is not going to be running for much longer, this function can 1085 * break locks and delay to ensure the write succeeds (but not sleep). 1086 */ 1087 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1088 const u_char *buf) 1089 { 1090 *retlen = 0; 1091 if (!mtd->_panic_write) 1092 return -EOPNOTSUPP; 1093 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1094 return -EINVAL; 1095 if (!(mtd->flags & MTD_WRITEABLE)) 1096 return -EROFS; 1097 if (!len) 1098 return 0; 1099 return mtd->_panic_write(mtd, to, len, retlen, buf); 1100 } 1101 EXPORT_SYMBOL_GPL(mtd_panic_write); 1102 1103 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1104 struct mtd_oob_ops *ops) 1105 { 1106 /* 1107 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1108 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1109 * this case. 1110 */ 1111 if (!ops->datbuf) 1112 ops->len = 0; 1113 1114 if (!ops->oobbuf) 1115 ops->ooblen = 0; 1116 1117 if (offs < 0 || offs + ops->len > mtd->size) 1118 return -EINVAL; 1119 1120 if (ops->ooblen) { 1121 u64 maxooblen; 1122 1123 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1124 return -EINVAL; 1125 1126 maxooblen = ((mtd_div_by_ws(mtd->size, mtd) - 1127 mtd_div_by_ws(offs, mtd)) * 1128 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1129 if (ops->ooblen > maxooblen) 1130 return -EINVAL; 1131 } 1132 1133 return 0; 1134 } 1135 1136 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1137 { 1138 int ret_code; 1139 ops->retlen = ops->oobretlen = 0; 1140 if (!mtd->_read_oob) 1141 return -EOPNOTSUPP; 1142 1143 ret_code = mtd_check_oob_ops(mtd, from, ops); 1144 if (ret_code) 1145 return ret_code; 1146 1147 ledtrig_mtd_activity(); 1148 /* 1149 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1150 * similar to mtd->_read(), returning a non-negative integer 1151 * representing max bitflips. In other cases, mtd->_read_oob() may 1152 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1153 */ 1154 ret_code = mtd->_read_oob(mtd, from, ops); 1155 if (unlikely(ret_code < 0)) 1156 return ret_code; 1157 if (mtd->ecc_strength == 0) 1158 return 0; /* device lacks ecc */ 1159 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1160 } 1161 EXPORT_SYMBOL_GPL(mtd_read_oob); 1162 1163 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1164 struct mtd_oob_ops *ops) 1165 { 1166 int ret; 1167 1168 ops->retlen = ops->oobretlen = 0; 1169 if (!mtd->_write_oob) 1170 return -EOPNOTSUPP; 1171 if (!(mtd->flags & MTD_WRITEABLE)) 1172 return -EROFS; 1173 1174 ret = mtd_check_oob_ops(mtd, to, ops); 1175 if (ret) 1176 return ret; 1177 1178 ledtrig_mtd_activity(); 1179 return mtd->_write_oob(mtd, to, ops); 1180 } 1181 EXPORT_SYMBOL_GPL(mtd_write_oob); 1182 1183 /** 1184 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1185 * @mtd: MTD device structure 1186 * @section: ECC section. Depending on the layout you may have all the ECC 1187 * bytes stored in a single contiguous section, or one section 1188 * per ECC chunk (and sometime several sections for a single ECC 1189 * ECC chunk) 1190 * @oobecc: OOB region struct filled with the appropriate ECC position 1191 * information 1192 * 1193 * This function returns ECC section information in the OOB area. If you want 1194 * to get all the ECC bytes information, then you should call 1195 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1196 * 1197 * Returns zero on success, a negative error code otherwise. 1198 */ 1199 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1200 struct mtd_oob_region *oobecc) 1201 { 1202 memset(oobecc, 0, sizeof(*oobecc)); 1203 1204 if (!mtd || section < 0) 1205 return -EINVAL; 1206 1207 if (!mtd->ooblayout || !mtd->ooblayout->ecc) 1208 return -ENOTSUPP; 1209 1210 return mtd->ooblayout->ecc(mtd, section, oobecc); 1211 } 1212 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1213 1214 /** 1215 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1216 * section 1217 * @mtd: MTD device structure 1218 * @section: Free section you are interested in. Depending on the layout 1219 * you may have all the free bytes stored in a single contiguous 1220 * section, or one section per ECC chunk plus an extra section 1221 * for the remaining bytes (or other funky layout). 1222 * @oobfree: OOB region struct filled with the appropriate free position 1223 * information 1224 * 1225 * This function returns free bytes position in the OOB area. If you want 1226 * to get all the free bytes information, then you should call 1227 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1228 * 1229 * Returns zero on success, a negative error code otherwise. 1230 */ 1231 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1232 struct mtd_oob_region *oobfree) 1233 { 1234 memset(oobfree, 0, sizeof(*oobfree)); 1235 1236 if (!mtd || section < 0) 1237 return -EINVAL; 1238 1239 if (!mtd->ooblayout || !mtd->ooblayout->free) 1240 return -ENOTSUPP; 1241 1242 return mtd->ooblayout->free(mtd, section, oobfree); 1243 } 1244 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1245 1246 /** 1247 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1248 * @mtd: mtd info structure 1249 * @byte: the byte we are searching for 1250 * @sectionp: pointer where the section id will be stored 1251 * @oobregion: used to retrieve the ECC position 1252 * @iter: iterator function. Should be either mtd_ooblayout_free or 1253 * mtd_ooblayout_ecc depending on the region type you're searching for 1254 * 1255 * This function returns the section id and oobregion information of a 1256 * specific byte. For example, say you want to know where the 4th ECC byte is 1257 * stored, you'll use: 1258 * 1259 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1260 * 1261 * Returns zero on success, a negative error code otherwise. 1262 */ 1263 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1264 int *sectionp, struct mtd_oob_region *oobregion, 1265 int (*iter)(struct mtd_info *, 1266 int section, 1267 struct mtd_oob_region *oobregion)) 1268 { 1269 int pos = 0, ret, section = 0; 1270 1271 memset(oobregion, 0, sizeof(*oobregion)); 1272 1273 while (1) { 1274 ret = iter(mtd, section, oobregion); 1275 if (ret) 1276 return ret; 1277 1278 if (pos + oobregion->length > byte) 1279 break; 1280 1281 pos += oobregion->length; 1282 section++; 1283 } 1284 1285 /* 1286 * Adjust region info to make it start at the beginning at the 1287 * 'start' ECC byte. 1288 */ 1289 oobregion->offset += byte - pos; 1290 oobregion->length -= byte - pos; 1291 *sectionp = section; 1292 1293 return 0; 1294 } 1295 1296 /** 1297 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1298 * ECC byte 1299 * @mtd: mtd info structure 1300 * @eccbyte: the byte we are searching for 1301 * @sectionp: pointer where the section id will be stored 1302 * @oobregion: OOB region information 1303 * 1304 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1305 * byte. 1306 * 1307 * Returns zero on success, a negative error code otherwise. 1308 */ 1309 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1310 int *section, 1311 struct mtd_oob_region *oobregion) 1312 { 1313 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1314 mtd_ooblayout_ecc); 1315 } 1316 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1317 1318 /** 1319 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1320 * @mtd: mtd info structure 1321 * @buf: destination buffer to store OOB bytes 1322 * @oobbuf: OOB buffer 1323 * @start: first byte to retrieve 1324 * @nbytes: number of bytes to retrieve 1325 * @iter: section iterator 1326 * 1327 * Extract bytes attached to a specific category (ECC or free) 1328 * from the OOB buffer and copy them into buf. 1329 * 1330 * Returns zero on success, a negative error code otherwise. 1331 */ 1332 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1333 const u8 *oobbuf, int start, int nbytes, 1334 int (*iter)(struct mtd_info *, 1335 int section, 1336 struct mtd_oob_region *oobregion)) 1337 { 1338 struct mtd_oob_region oobregion; 1339 int section, ret; 1340 1341 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1342 &oobregion, iter); 1343 1344 while (!ret) { 1345 int cnt; 1346 1347 cnt = min_t(int, nbytes, oobregion.length); 1348 memcpy(buf, oobbuf + oobregion.offset, cnt); 1349 buf += cnt; 1350 nbytes -= cnt; 1351 1352 if (!nbytes) 1353 break; 1354 1355 ret = iter(mtd, ++section, &oobregion); 1356 } 1357 1358 return ret; 1359 } 1360 1361 /** 1362 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1363 * @mtd: mtd info structure 1364 * @buf: source buffer to get OOB bytes from 1365 * @oobbuf: OOB buffer 1366 * @start: first OOB byte to set 1367 * @nbytes: number of OOB bytes to set 1368 * @iter: section iterator 1369 * 1370 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1371 * is selected by passing the appropriate iterator. 1372 * 1373 * Returns zero on success, a negative error code otherwise. 1374 */ 1375 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1376 u8 *oobbuf, int start, int nbytes, 1377 int (*iter)(struct mtd_info *, 1378 int section, 1379 struct mtd_oob_region *oobregion)) 1380 { 1381 struct mtd_oob_region oobregion; 1382 int section, ret; 1383 1384 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1385 &oobregion, iter); 1386 1387 while (!ret) { 1388 int cnt; 1389 1390 cnt = min_t(int, nbytes, oobregion.length); 1391 memcpy(oobbuf + oobregion.offset, buf, cnt); 1392 buf += cnt; 1393 nbytes -= cnt; 1394 1395 if (!nbytes) 1396 break; 1397 1398 ret = iter(mtd, ++section, &oobregion); 1399 } 1400 1401 return ret; 1402 } 1403 1404 /** 1405 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1406 * @mtd: mtd info structure 1407 * @iter: category iterator 1408 * 1409 * Count the number of bytes in a given category. 1410 * 1411 * Returns a positive value on success, a negative error code otherwise. 1412 */ 1413 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1414 int (*iter)(struct mtd_info *, 1415 int section, 1416 struct mtd_oob_region *oobregion)) 1417 { 1418 struct mtd_oob_region oobregion; 1419 int section = 0, ret, nbytes = 0; 1420 1421 while (1) { 1422 ret = iter(mtd, section++, &oobregion); 1423 if (ret) { 1424 if (ret == -ERANGE) 1425 ret = nbytes; 1426 break; 1427 } 1428 1429 nbytes += oobregion.length; 1430 } 1431 1432 return ret; 1433 } 1434 1435 /** 1436 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1437 * @mtd: mtd info structure 1438 * @eccbuf: destination buffer to store ECC bytes 1439 * @oobbuf: OOB buffer 1440 * @start: first ECC byte to retrieve 1441 * @nbytes: number of ECC bytes to retrieve 1442 * 1443 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1444 * 1445 * Returns zero on success, a negative error code otherwise. 1446 */ 1447 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1448 const u8 *oobbuf, int start, int nbytes) 1449 { 1450 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1451 mtd_ooblayout_ecc); 1452 } 1453 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1454 1455 /** 1456 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1457 * @mtd: mtd info structure 1458 * @eccbuf: source buffer to get ECC bytes from 1459 * @oobbuf: OOB buffer 1460 * @start: first ECC byte to set 1461 * @nbytes: number of ECC bytes to set 1462 * 1463 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 1464 * 1465 * Returns zero on success, a negative error code otherwise. 1466 */ 1467 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 1468 u8 *oobbuf, int start, int nbytes) 1469 { 1470 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1471 mtd_ooblayout_ecc); 1472 } 1473 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 1474 1475 /** 1476 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 1477 * @mtd: mtd info structure 1478 * @databuf: destination buffer to store ECC bytes 1479 * @oobbuf: OOB buffer 1480 * @start: first ECC byte to retrieve 1481 * @nbytes: number of ECC bytes to retrieve 1482 * 1483 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1484 * 1485 * Returns zero on success, a negative error code otherwise. 1486 */ 1487 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 1488 const u8 *oobbuf, int start, int nbytes) 1489 { 1490 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 1491 mtd_ooblayout_free); 1492 } 1493 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 1494 1495 /** 1496 * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer 1497 * @mtd: mtd info structure 1498 * @eccbuf: source buffer to get data bytes from 1499 * @oobbuf: OOB buffer 1500 * @start: first ECC byte to set 1501 * @nbytes: number of ECC bytes to set 1502 * 1503 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1504 * 1505 * Returns zero on success, a negative error code otherwise. 1506 */ 1507 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 1508 u8 *oobbuf, int start, int nbytes) 1509 { 1510 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 1511 mtd_ooblayout_free); 1512 } 1513 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 1514 1515 /** 1516 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 1517 * @mtd: mtd info structure 1518 * 1519 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 1520 * 1521 * Returns zero on success, a negative error code otherwise. 1522 */ 1523 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 1524 { 1525 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 1526 } 1527 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 1528 1529 /** 1530 * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB 1531 * @mtd: mtd info structure 1532 * 1533 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 1534 * 1535 * Returns zero on success, a negative error code otherwise. 1536 */ 1537 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 1538 { 1539 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 1540 } 1541 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 1542 1543 /* 1544 * Method to access the protection register area, present in some flash 1545 * devices. The user data is one time programmable but the factory data is read 1546 * only. 1547 */ 1548 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1549 struct otp_info *buf) 1550 { 1551 if (!mtd->_get_fact_prot_info) 1552 return -EOPNOTSUPP; 1553 if (!len) 1554 return 0; 1555 return mtd->_get_fact_prot_info(mtd, len, retlen, buf); 1556 } 1557 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 1558 1559 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1560 size_t *retlen, u_char *buf) 1561 { 1562 *retlen = 0; 1563 if (!mtd->_read_fact_prot_reg) 1564 return -EOPNOTSUPP; 1565 if (!len) 1566 return 0; 1567 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); 1568 } 1569 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 1570 1571 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1572 struct otp_info *buf) 1573 { 1574 if (!mtd->_get_user_prot_info) 1575 return -EOPNOTSUPP; 1576 if (!len) 1577 return 0; 1578 return mtd->_get_user_prot_info(mtd, len, retlen, buf); 1579 } 1580 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 1581 1582 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1583 size_t *retlen, u_char *buf) 1584 { 1585 *retlen = 0; 1586 if (!mtd->_read_user_prot_reg) 1587 return -EOPNOTSUPP; 1588 if (!len) 1589 return 0; 1590 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); 1591 } 1592 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 1593 1594 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 1595 size_t *retlen, u_char *buf) 1596 { 1597 int ret; 1598 1599 *retlen = 0; 1600 if (!mtd->_write_user_prot_reg) 1601 return -EOPNOTSUPP; 1602 if (!len) 1603 return 0; 1604 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); 1605 if (ret) 1606 return ret; 1607 1608 /* 1609 * If no data could be written at all, we are out of memory and 1610 * must return -ENOSPC. 1611 */ 1612 return (*retlen) ? 0 : -ENOSPC; 1613 } 1614 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1615 1616 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1617 { 1618 if (!mtd->_lock_user_prot_reg) 1619 return -EOPNOTSUPP; 1620 if (!len) 1621 return 0; 1622 return mtd->_lock_user_prot_reg(mtd, from, len); 1623 } 1624 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1625 1626 /* Chip-supported device locking */ 1627 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1628 { 1629 if (!mtd->_lock) 1630 return -EOPNOTSUPP; 1631 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1632 return -EINVAL; 1633 if (!len) 1634 return 0; 1635 return mtd->_lock(mtd, ofs, len); 1636 } 1637 EXPORT_SYMBOL_GPL(mtd_lock); 1638 1639 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1640 { 1641 if (!mtd->_unlock) 1642 return -EOPNOTSUPP; 1643 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1644 return -EINVAL; 1645 if (!len) 1646 return 0; 1647 return mtd->_unlock(mtd, ofs, len); 1648 } 1649 EXPORT_SYMBOL_GPL(mtd_unlock); 1650 1651 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1652 { 1653 if (!mtd->_is_locked) 1654 return -EOPNOTSUPP; 1655 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1656 return -EINVAL; 1657 if (!len) 1658 return 0; 1659 return mtd->_is_locked(mtd, ofs, len); 1660 } 1661 EXPORT_SYMBOL_GPL(mtd_is_locked); 1662 1663 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 1664 { 1665 if (ofs < 0 || ofs >= mtd->size) 1666 return -EINVAL; 1667 if (!mtd->_block_isreserved) 1668 return 0; 1669 return mtd->_block_isreserved(mtd, ofs); 1670 } 1671 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 1672 1673 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 1674 { 1675 if (ofs < 0 || ofs >= mtd->size) 1676 return -EINVAL; 1677 if (!mtd->_block_isbad) 1678 return 0; 1679 return mtd->_block_isbad(mtd, ofs); 1680 } 1681 EXPORT_SYMBOL_GPL(mtd_block_isbad); 1682 1683 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 1684 { 1685 if (!mtd->_block_markbad) 1686 return -EOPNOTSUPP; 1687 if (ofs < 0 || ofs >= mtd->size) 1688 return -EINVAL; 1689 if (!(mtd->flags & MTD_WRITEABLE)) 1690 return -EROFS; 1691 return mtd->_block_markbad(mtd, ofs); 1692 } 1693 EXPORT_SYMBOL_GPL(mtd_block_markbad); 1694 1695 /* 1696 * default_mtd_writev - the default writev method 1697 * @mtd: mtd device description object pointer 1698 * @vecs: the vectors to write 1699 * @count: count of vectors in @vecs 1700 * @to: the MTD device offset to write to 1701 * @retlen: on exit contains the count of bytes written to the MTD device. 1702 * 1703 * This function returns zero in case of success and a negative error code in 1704 * case of failure. 1705 */ 1706 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1707 unsigned long count, loff_t to, size_t *retlen) 1708 { 1709 unsigned long i; 1710 size_t totlen = 0, thislen; 1711 int ret = 0; 1712 1713 for (i = 0; i < count; i++) { 1714 if (!vecs[i].iov_len) 1715 continue; 1716 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1717 vecs[i].iov_base); 1718 totlen += thislen; 1719 if (ret || thislen != vecs[i].iov_len) 1720 break; 1721 to += vecs[i].iov_len; 1722 } 1723 *retlen = totlen; 1724 return ret; 1725 } 1726 1727 /* 1728 * mtd_writev - the vector-based MTD write method 1729 * @mtd: mtd device description object pointer 1730 * @vecs: the vectors to write 1731 * @count: count of vectors in @vecs 1732 * @to: the MTD device offset to write to 1733 * @retlen: on exit contains the count of bytes written to the MTD device. 1734 * 1735 * This function returns zero in case of success and a negative error code in 1736 * case of failure. 1737 */ 1738 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1739 unsigned long count, loff_t to, size_t *retlen) 1740 { 1741 *retlen = 0; 1742 if (!(mtd->flags & MTD_WRITEABLE)) 1743 return -EROFS; 1744 if (!mtd->_writev) 1745 return default_mtd_writev(mtd, vecs, count, to, retlen); 1746 return mtd->_writev(mtd, vecs, count, to, retlen); 1747 } 1748 EXPORT_SYMBOL_GPL(mtd_writev); 1749 1750 /** 1751 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1752 * @mtd: mtd device description object pointer 1753 * @size: a pointer to the ideal or maximum size of the allocation, points 1754 * to the actual allocation size on success. 1755 * 1756 * This routine attempts to allocate a contiguous kernel buffer up to 1757 * the specified size, backing off the size of the request exponentially 1758 * until the request succeeds or until the allocation size falls below 1759 * the system page size. This attempts to make sure it does not adversely 1760 * impact system performance, so when allocating more than one page, we 1761 * ask the memory allocator to avoid re-trying, swapping, writing back 1762 * or performing I/O. 1763 * 1764 * Note, this function also makes sure that the allocated buffer is aligned to 1765 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1766 * 1767 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1768 * to handle smaller (i.e. degraded) buffer allocations under low- or 1769 * fragmented-memory situations where such reduced allocations, from a 1770 * requested ideal, are allowed. 1771 * 1772 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1773 */ 1774 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1775 { 1776 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 1777 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1778 void *kbuf; 1779 1780 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1781 1782 while (*size > min_alloc) { 1783 kbuf = kmalloc(*size, flags); 1784 if (kbuf) 1785 return kbuf; 1786 1787 *size >>= 1; 1788 *size = ALIGN(*size, mtd->writesize); 1789 } 1790 1791 /* 1792 * For the last resort allocation allow 'kmalloc()' to do all sorts of 1793 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 1794 */ 1795 return kmalloc(*size, GFP_KERNEL); 1796 } 1797 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 1798 1799 #ifdef CONFIG_PROC_FS 1800 1801 /*====================================================================*/ 1802 /* Support for /proc/mtd */ 1803 1804 static int mtd_proc_show(struct seq_file *m, void *v) 1805 { 1806 struct mtd_info *mtd; 1807 1808 seq_puts(m, "dev: size erasesize name\n"); 1809 mutex_lock(&mtd_table_mutex); 1810 mtd_for_each_device(mtd) { 1811 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 1812 mtd->index, (unsigned long long)mtd->size, 1813 mtd->erasesize, mtd->name); 1814 } 1815 mutex_unlock(&mtd_table_mutex); 1816 return 0; 1817 } 1818 1819 static int mtd_proc_open(struct inode *inode, struct file *file) 1820 { 1821 return single_open(file, mtd_proc_show, NULL); 1822 } 1823 1824 static const struct file_operations mtd_proc_ops = { 1825 .open = mtd_proc_open, 1826 .read = seq_read, 1827 .llseek = seq_lseek, 1828 .release = single_release, 1829 }; 1830 #endif /* CONFIG_PROC_FS */ 1831 1832 /*====================================================================*/ 1833 /* Init code */ 1834 1835 static struct backing_dev_info * __init mtd_bdi_init(char *name) 1836 { 1837 struct backing_dev_info *bdi; 1838 int ret; 1839 1840 bdi = bdi_alloc(GFP_KERNEL); 1841 if (!bdi) 1842 return ERR_PTR(-ENOMEM); 1843 1844 bdi->name = name; 1845 /* 1846 * We put '-0' suffix to the name to get the same name format as we 1847 * used to get. Since this is called only once, we get a unique name. 1848 */ 1849 ret = bdi_register(bdi, "%.28s-0", name); 1850 if (ret) 1851 bdi_put(bdi); 1852 1853 return ret ? ERR_PTR(ret) : bdi; 1854 } 1855 1856 static struct proc_dir_entry *proc_mtd; 1857 1858 static int __init init_mtd(void) 1859 { 1860 int ret; 1861 1862 ret = class_register(&mtd_class); 1863 if (ret) 1864 goto err_reg; 1865 1866 mtd_bdi = mtd_bdi_init("mtd"); 1867 if (IS_ERR(mtd_bdi)) { 1868 ret = PTR_ERR(mtd_bdi); 1869 goto err_bdi; 1870 } 1871 1872 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops); 1873 1874 ret = init_mtdchar(); 1875 if (ret) 1876 goto out_procfs; 1877 1878 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 1879 1880 return 0; 1881 1882 out_procfs: 1883 if (proc_mtd) 1884 remove_proc_entry("mtd", NULL); 1885 bdi_put(mtd_bdi); 1886 err_bdi: 1887 class_unregister(&mtd_class); 1888 err_reg: 1889 pr_err("Error registering mtd class or bdi: %d\n", ret); 1890 return ret; 1891 } 1892 1893 static void __exit cleanup_mtd(void) 1894 { 1895 debugfs_remove_recursive(dfs_dir_mtd); 1896 cleanup_mtdchar(); 1897 if (proc_mtd) 1898 remove_proc_entry("mtd", NULL); 1899 class_unregister(&mtd_class); 1900 bdi_put(mtd_bdi); 1901 idr_destroy(&mtd_idr); 1902 } 1903 1904 module_init(init_mtd); 1905 module_exit(cleanup_mtd); 1906 1907 MODULE_LICENSE("GPL"); 1908 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1909 MODULE_DESCRIPTION("Core MTD registration and access routines"); 1910