1 /* 2 * Core registration and callback routines for MTD 3 * drivers and users. 4 * 5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 6 * Copyright © 2006 Red Hat UK Limited 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/kernel.h> 26 #include <linux/ptrace.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/major.h> 31 #include <linux/fs.h> 32 #include <linux/err.h> 33 #include <linux/ioctl.h> 34 #include <linux/init.h> 35 #include <linux/of.h> 36 #include <linux/proc_fs.h> 37 #include <linux/idr.h> 38 #include <linux/backing-dev.h> 39 #include <linux/gfp.h> 40 #include <linux/slab.h> 41 #include <linux/reboot.h> 42 #include <linux/leds.h> 43 #include <linux/debugfs.h> 44 #include <linux/nvmem-provider.h> 45 46 #include <linux/mtd/mtd.h> 47 #include <linux/mtd/partitions.h> 48 49 #include "mtdcore.h" 50 51 struct backing_dev_info *mtd_bdi; 52 53 #ifdef CONFIG_PM_SLEEP 54 55 static int mtd_cls_suspend(struct device *dev) 56 { 57 struct mtd_info *mtd = dev_get_drvdata(dev); 58 59 return mtd ? mtd_suspend(mtd) : 0; 60 } 61 62 static int mtd_cls_resume(struct device *dev) 63 { 64 struct mtd_info *mtd = dev_get_drvdata(dev); 65 66 if (mtd) 67 mtd_resume(mtd); 68 return 0; 69 } 70 71 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 72 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 73 #else 74 #define MTD_CLS_PM_OPS NULL 75 #endif 76 77 static struct class mtd_class = { 78 .name = "mtd", 79 .owner = THIS_MODULE, 80 .pm = MTD_CLS_PM_OPS, 81 }; 82 83 static DEFINE_IDR(mtd_idr); 84 85 /* These are exported solely for the purpose of mtd_blkdevs.c. You 86 should not use them for _anything_ else */ 87 DEFINE_MUTEX(mtd_table_mutex); 88 EXPORT_SYMBOL_GPL(mtd_table_mutex); 89 90 struct mtd_info *__mtd_next_device(int i) 91 { 92 return idr_get_next(&mtd_idr, &i); 93 } 94 EXPORT_SYMBOL_GPL(__mtd_next_device); 95 96 static LIST_HEAD(mtd_notifiers); 97 98 99 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 100 101 /* REVISIT once MTD uses the driver model better, whoever allocates 102 * the mtd_info will probably want to use the release() hook... 103 */ 104 static void mtd_release(struct device *dev) 105 { 106 struct mtd_info *mtd = dev_get_drvdata(dev); 107 dev_t index = MTD_DEVT(mtd->index); 108 109 /* remove /dev/mtdXro node */ 110 device_destroy(&mtd_class, index + 1); 111 } 112 113 static ssize_t mtd_type_show(struct device *dev, 114 struct device_attribute *attr, char *buf) 115 { 116 struct mtd_info *mtd = dev_get_drvdata(dev); 117 char *type; 118 119 switch (mtd->type) { 120 case MTD_ABSENT: 121 type = "absent"; 122 break; 123 case MTD_RAM: 124 type = "ram"; 125 break; 126 case MTD_ROM: 127 type = "rom"; 128 break; 129 case MTD_NORFLASH: 130 type = "nor"; 131 break; 132 case MTD_NANDFLASH: 133 type = "nand"; 134 break; 135 case MTD_DATAFLASH: 136 type = "dataflash"; 137 break; 138 case MTD_UBIVOLUME: 139 type = "ubi"; 140 break; 141 case MTD_MLCNANDFLASH: 142 type = "mlc-nand"; 143 break; 144 default: 145 type = "unknown"; 146 } 147 148 return snprintf(buf, PAGE_SIZE, "%s\n", type); 149 } 150 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 151 152 static ssize_t mtd_flags_show(struct device *dev, 153 struct device_attribute *attr, char *buf) 154 { 155 struct mtd_info *mtd = dev_get_drvdata(dev); 156 157 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 158 } 159 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 160 161 static ssize_t mtd_size_show(struct device *dev, 162 struct device_attribute *attr, char *buf) 163 { 164 struct mtd_info *mtd = dev_get_drvdata(dev); 165 166 return snprintf(buf, PAGE_SIZE, "%llu\n", 167 (unsigned long long)mtd->size); 168 } 169 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 170 171 static ssize_t mtd_erasesize_show(struct device *dev, 172 struct device_attribute *attr, char *buf) 173 { 174 struct mtd_info *mtd = dev_get_drvdata(dev); 175 176 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 177 } 178 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 179 180 static ssize_t mtd_writesize_show(struct device *dev, 181 struct device_attribute *attr, char *buf) 182 { 183 struct mtd_info *mtd = dev_get_drvdata(dev); 184 185 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 186 } 187 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 188 189 static ssize_t mtd_subpagesize_show(struct device *dev, 190 struct device_attribute *attr, char *buf) 191 { 192 struct mtd_info *mtd = dev_get_drvdata(dev); 193 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 194 195 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 196 } 197 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 198 199 static ssize_t mtd_oobsize_show(struct device *dev, 200 struct device_attribute *attr, char *buf) 201 { 202 struct mtd_info *mtd = dev_get_drvdata(dev); 203 204 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 205 } 206 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 207 208 static ssize_t mtd_oobavail_show(struct device *dev, 209 struct device_attribute *attr, char *buf) 210 { 211 struct mtd_info *mtd = dev_get_drvdata(dev); 212 213 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail); 214 } 215 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL); 216 217 static ssize_t mtd_numeraseregions_show(struct device *dev, 218 struct device_attribute *attr, char *buf) 219 { 220 struct mtd_info *mtd = dev_get_drvdata(dev); 221 222 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 223 } 224 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 225 NULL); 226 227 static ssize_t mtd_name_show(struct device *dev, 228 struct device_attribute *attr, char *buf) 229 { 230 struct mtd_info *mtd = dev_get_drvdata(dev); 231 232 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 233 } 234 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 235 236 static ssize_t mtd_ecc_strength_show(struct device *dev, 237 struct device_attribute *attr, char *buf) 238 { 239 struct mtd_info *mtd = dev_get_drvdata(dev); 240 241 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 242 } 243 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 244 245 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 246 struct device_attribute *attr, 247 char *buf) 248 { 249 struct mtd_info *mtd = dev_get_drvdata(dev); 250 251 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 252 } 253 254 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 255 struct device_attribute *attr, 256 const char *buf, size_t count) 257 { 258 struct mtd_info *mtd = dev_get_drvdata(dev); 259 unsigned int bitflip_threshold; 260 int retval; 261 262 retval = kstrtouint(buf, 0, &bitflip_threshold); 263 if (retval) 264 return retval; 265 266 mtd->bitflip_threshold = bitflip_threshold; 267 return count; 268 } 269 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 270 mtd_bitflip_threshold_show, 271 mtd_bitflip_threshold_store); 272 273 static ssize_t mtd_ecc_step_size_show(struct device *dev, 274 struct device_attribute *attr, char *buf) 275 { 276 struct mtd_info *mtd = dev_get_drvdata(dev); 277 278 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 279 280 } 281 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 282 283 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev, 284 struct device_attribute *attr, char *buf) 285 { 286 struct mtd_info *mtd = dev_get_drvdata(dev); 287 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 288 289 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected); 290 } 291 static DEVICE_ATTR(corrected_bits, S_IRUGO, 292 mtd_ecc_stats_corrected_show, NULL); 293 294 static ssize_t mtd_ecc_stats_errors_show(struct device *dev, 295 struct device_attribute *attr, char *buf) 296 { 297 struct mtd_info *mtd = dev_get_drvdata(dev); 298 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 299 300 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed); 301 } 302 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL); 303 304 static ssize_t mtd_badblocks_show(struct device *dev, 305 struct device_attribute *attr, char *buf) 306 { 307 struct mtd_info *mtd = dev_get_drvdata(dev); 308 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 309 310 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks); 311 } 312 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL); 313 314 static ssize_t mtd_bbtblocks_show(struct device *dev, 315 struct device_attribute *attr, char *buf) 316 { 317 struct mtd_info *mtd = dev_get_drvdata(dev); 318 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 319 320 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks); 321 } 322 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL); 323 324 static struct attribute *mtd_attrs[] = { 325 &dev_attr_type.attr, 326 &dev_attr_flags.attr, 327 &dev_attr_size.attr, 328 &dev_attr_erasesize.attr, 329 &dev_attr_writesize.attr, 330 &dev_attr_subpagesize.attr, 331 &dev_attr_oobsize.attr, 332 &dev_attr_oobavail.attr, 333 &dev_attr_numeraseregions.attr, 334 &dev_attr_name.attr, 335 &dev_attr_ecc_strength.attr, 336 &dev_attr_ecc_step_size.attr, 337 &dev_attr_corrected_bits.attr, 338 &dev_attr_ecc_failures.attr, 339 &dev_attr_bad_blocks.attr, 340 &dev_attr_bbt_blocks.attr, 341 &dev_attr_bitflip_threshold.attr, 342 NULL, 343 }; 344 ATTRIBUTE_GROUPS(mtd); 345 346 static const struct device_type mtd_devtype = { 347 .name = "mtd", 348 .groups = mtd_groups, 349 .release = mtd_release, 350 }; 351 352 #ifndef CONFIG_MMU 353 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 354 { 355 switch (mtd->type) { 356 case MTD_RAM: 357 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 358 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 359 case MTD_ROM: 360 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 361 NOMMU_MAP_READ; 362 default: 363 return NOMMU_MAP_COPY; 364 } 365 } 366 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 367 #endif 368 369 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 370 void *cmd) 371 { 372 struct mtd_info *mtd; 373 374 mtd = container_of(n, struct mtd_info, reboot_notifier); 375 mtd->_reboot(mtd); 376 377 return NOTIFY_DONE; 378 } 379 380 /** 381 * mtd_wunit_to_pairing_info - get pairing information of a wunit 382 * @mtd: pointer to new MTD device info structure 383 * @wunit: write unit we are interested in 384 * @info: returned pairing information 385 * 386 * Retrieve pairing information associated to the wunit. 387 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 388 * paired together, and where programming a page may influence the page it is 389 * paired with. 390 * The notion of page is replaced by the term wunit (write-unit) to stay 391 * consistent with the ->writesize field. 392 * 393 * The @wunit argument can be extracted from an absolute offset using 394 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 395 * to @wunit. 396 * 397 * From the pairing info the MTD user can find all the wunits paired with 398 * @wunit using the following loop: 399 * 400 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 401 * info.pair = i; 402 * mtd_pairing_info_to_wunit(mtd, &info); 403 * ... 404 * } 405 */ 406 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 407 struct mtd_pairing_info *info) 408 { 409 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 410 411 if (wunit < 0 || wunit >= npairs) 412 return -EINVAL; 413 414 if (mtd->pairing && mtd->pairing->get_info) 415 return mtd->pairing->get_info(mtd, wunit, info); 416 417 info->group = 0; 418 info->pair = wunit; 419 420 return 0; 421 } 422 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 423 424 /** 425 * mtd_pairing_info_to_wunit - get wunit from pairing information 426 * @mtd: pointer to new MTD device info structure 427 * @info: pairing information struct 428 * 429 * Returns a positive number representing the wunit associated to the info 430 * struct, or a negative error code. 431 * 432 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 433 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 434 * doc). 435 * 436 * It can also be used to only program the first page of each pair (i.e. 437 * page attached to group 0), which allows one to use an MLC NAND in 438 * software-emulated SLC mode: 439 * 440 * info.group = 0; 441 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 442 * for (info.pair = 0; info.pair < npairs; info.pair++) { 443 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 444 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 445 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 446 * } 447 */ 448 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 449 const struct mtd_pairing_info *info) 450 { 451 int ngroups = mtd_pairing_groups(mtd); 452 int npairs = mtd_wunit_per_eb(mtd) / ngroups; 453 454 if (!info || info->pair < 0 || info->pair >= npairs || 455 info->group < 0 || info->group >= ngroups) 456 return -EINVAL; 457 458 if (mtd->pairing && mtd->pairing->get_wunit) 459 return mtd->pairing->get_wunit(mtd, info); 460 461 return info->pair; 462 } 463 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 464 465 /** 466 * mtd_pairing_groups - get the number of pairing groups 467 * @mtd: pointer to new MTD device info structure 468 * 469 * Returns the number of pairing groups. 470 * 471 * This number is usually equal to the number of bits exposed by a single 472 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 473 * to iterate over all pages of a given pair. 474 */ 475 int mtd_pairing_groups(struct mtd_info *mtd) 476 { 477 if (!mtd->pairing || !mtd->pairing->ngroups) 478 return 1; 479 480 return mtd->pairing->ngroups; 481 } 482 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 483 484 static int mtd_nvmem_reg_read(void *priv, unsigned int offset, 485 void *val, size_t bytes) 486 { 487 struct mtd_info *mtd = priv; 488 size_t retlen; 489 int err; 490 491 err = mtd_read(mtd, offset, bytes, &retlen, val); 492 if (err && err != -EUCLEAN) 493 return err; 494 495 return retlen == bytes ? 0 : -EIO; 496 } 497 498 static int mtd_nvmem_add(struct mtd_info *mtd) 499 { 500 struct nvmem_config config = {}; 501 502 config.id = -1; 503 config.dev = &mtd->dev; 504 config.name = mtd->name; 505 config.owner = THIS_MODULE; 506 config.reg_read = mtd_nvmem_reg_read; 507 config.size = mtd->size; 508 config.word_size = 1; 509 config.stride = 1; 510 config.read_only = true; 511 config.root_only = true; 512 config.no_of_node = true; 513 config.priv = mtd; 514 515 mtd->nvmem = nvmem_register(&config); 516 if (IS_ERR(mtd->nvmem)) { 517 /* Just ignore if there is no NVMEM support in the kernel */ 518 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) { 519 mtd->nvmem = NULL; 520 } else { 521 dev_err(&mtd->dev, "Failed to register NVMEM device\n"); 522 return PTR_ERR(mtd->nvmem); 523 } 524 } 525 526 return 0; 527 } 528 529 static struct dentry *dfs_dir_mtd; 530 531 /** 532 * add_mtd_device - register an MTD device 533 * @mtd: pointer to new MTD device info structure 534 * 535 * Add a device to the list of MTD devices present in the system, and 536 * notify each currently active MTD 'user' of its arrival. Returns 537 * zero on success or non-zero on failure. 538 */ 539 540 int add_mtd_device(struct mtd_info *mtd) 541 { 542 struct mtd_notifier *not; 543 int i, error; 544 545 /* 546 * May occur, for instance, on buggy drivers which call 547 * mtd_device_parse_register() multiple times on the same master MTD, 548 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 549 */ 550 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 551 return -EEXIST; 552 553 BUG_ON(mtd->writesize == 0); 554 555 /* 556 * MTD drivers should implement ->_{write,read}() or 557 * ->_{write,read}_oob(), but not both. 558 */ 559 if (WARN_ON((mtd->_write && mtd->_write_oob) || 560 (mtd->_read && mtd->_read_oob))) 561 return -EINVAL; 562 563 if (WARN_ON((!mtd->erasesize || !mtd->_erase) && 564 !(mtd->flags & MTD_NO_ERASE))) 565 return -EINVAL; 566 567 mutex_lock(&mtd_table_mutex); 568 569 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 570 if (i < 0) { 571 error = i; 572 goto fail_locked; 573 } 574 575 mtd->index = i; 576 mtd->usecount = 0; 577 578 /* default value if not set by driver */ 579 if (mtd->bitflip_threshold == 0) 580 mtd->bitflip_threshold = mtd->ecc_strength; 581 582 if (is_power_of_2(mtd->erasesize)) 583 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 584 else 585 mtd->erasesize_shift = 0; 586 587 if (is_power_of_2(mtd->writesize)) 588 mtd->writesize_shift = ffs(mtd->writesize) - 1; 589 else 590 mtd->writesize_shift = 0; 591 592 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 593 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 594 595 /* Some chips always power up locked. Unlock them now */ 596 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 597 error = mtd_unlock(mtd, 0, mtd->size); 598 if (error && error != -EOPNOTSUPP) 599 printk(KERN_WARNING 600 "%s: unlock failed, writes may not work\n", 601 mtd->name); 602 /* Ignore unlock failures? */ 603 error = 0; 604 } 605 606 /* Caller should have set dev.parent to match the 607 * physical device, if appropriate. 608 */ 609 mtd->dev.type = &mtd_devtype; 610 mtd->dev.class = &mtd_class; 611 mtd->dev.devt = MTD_DEVT(i); 612 dev_set_name(&mtd->dev, "mtd%d", i); 613 dev_set_drvdata(&mtd->dev, mtd); 614 of_node_get(mtd_get_of_node(mtd)); 615 error = device_register(&mtd->dev); 616 if (error) 617 goto fail_added; 618 619 /* Add the nvmem provider */ 620 error = mtd_nvmem_add(mtd); 621 if (error) 622 goto fail_nvmem_add; 623 624 if (!IS_ERR_OR_NULL(dfs_dir_mtd)) { 625 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd); 626 if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) { 627 pr_debug("mtd device %s won't show data in debugfs\n", 628 dev_name(&mtd->dev)); 629 } 630 } 631 632 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 633 "mtd%dro", i); 634 635 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 636 /* No need to get a refcount on the module containing 637 the notifier, since we hold the mtd_table_mutex */ 638 list_for_each_entry(not, &mtd_notifiers, list) 639 not->add(mtd); 640 641 mutex_unlock(&mtd_table_mutex); 642 /* We _know_ we aren't being removed, because 643 our caller is still holding us here. So none 644 of this try_ nonsense, and no bitching about it 645 either. :) */ 646 __module_get(THIS_MODULE); 647 return 0; 648 649 fail_nvmem_add: 650 device_unregister(&mtd->dev); 651 fail_added: 652 of_node_put(mtd_get_of_node(mtd)); 653 idr_remove(&mtd_idr, i); 654 fail_locked: 655 mutex_unlock(&mtd_table_mutex); 656 return error; 657 } 658 659 /** 660 * del_mtd_device - unregister an MTD device 661 * @mtd: pointer to MTD device info structure 662 * 663 * Remove a device from the list of MTD devices present in the system, 664 * and notify each currently active MTD 'user' of its departure. 665 * Returns zero on success or 1 on failure, which currently will happen 666 * if the requested device does not appear to be present in the list. 667 */ 668 669 int del_mtd_device(struct mtd_info *mtd) 670 { 671 int ret; 672 struct mtd_notifier *not; 673 674 mutex_lock(&mtd_table_mutex); 675 676 debugfs_remove_recursive(mtd->dbg.dfs_dir); 677 678 if (idr_find(&mtd_idr, mtd->index) != mtd) { 679 ret = -ENODEV; 680 goto out_error; 681 } 682 683 /* No need to get a refcount on the module containing 684 the notifier, since we hold the mtd_table_mutex */ 685 list_for_each_entry(not, &mtd_notifiers, list) 686 not->remove(mtd); 687 688 if (mtd->usecount) { 689 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 690 mtd->index, mtd->name, mtd->usecount); 691 ret = -EBUSY; 692 } else { 693 /* Try to remove the NVMEM provider */ 694 if (mtd->nvmem) 695 nvmem_unregister(mtd->nvmem); 696 697 device_unregister(&mtd->dev); 698 699 idr_remove(&mtd_idr, mtd->index); 700 of_node_put(mtd_get_of_node(mtd)); 701 702 module_put(THIS_MODULE); 703 ret = 0; 704 } 705 706 out_error: 707 mutex_unlock(&mtd_table_mutex); 708 return ret; 709 } 710 711 /* 712 * Set a few defaults based on the parent devices, if not provided by the 713 * driver 714 */ 715 static void mtd_set_dev_defaults(struct mtd_info *mtd) 716 { 717 if (mtd->dev.parent) { 718 if (!mtd->owner && mtd->dev.parent->driver) 719 mtd->owner = mtd->dev.parent->driver->owner; 720 if (!mtd->name) 721 mtd->name = dev_name(mtd->dev.parent); 722 } else { 723 pr_debug("mtd device won't show a device symlink in sysfs\n"); 724 } 725 726 mtd->orig_flags = mtd->flags; 727 } 728 729 /** 730 * mtd_device_parse_register - parse partitions and register an MTD device. 731 * 732 * @mtd: the MTD device to register 733 * @types: the list of MTD partition probes to try, see 734 * 'parse_mtd_partitions()' for more information 735 * @parser_data: MTD partition parser-specific data 736 * @parts: fallback partition information to register, if parsing fails; 737 * only valid if %nr_parts > %0 738 * @nr_parts: the number of partitions in parts, if zero then the full 739 * MTD device is registered if no partition info is found 740 * 741 * This function aggregates MTD partitions parsing (done by 742 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 743 * basically follows the most common pattern found in many MTD drivers: 744 * 745 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is 746 * registered first. 747 * * Then It tries to probe partitions on MTD device @mtd using parsers 748 * specified in @types (if @types is %NULL, then the default list of parsers 749 * is used, see 'parse_mtd_partitions()' for more information). If none are 750 * found this functions tries to fallback to information specified in 751 * @parts/@nr_parts. 752 * * If no partitions were found this function just registers the MTD device 753 * @mtd and exits. 754 * 755 * Returns zero in case of success and a negative error code in case of failure. 756 */ 757 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 758 struct mtd_part_parser_data *parser_data, 759 const struct mtd_partition *parts, 760 int nr_parts) 761 { 762 int ret; 763 764 mtd_set_dev_defaults(mtd); 765 766 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 767 ret = add_mtd_device(mtd); 768 if (ret) 769 return ret; 770 } 771 772 /* Prefer parsed partitions over driver-provided fallback */ 773 ret = parse_mtd_partitions(mtd, types, parser_data); 774 if (ret > 0) 775 ret = 0; 776 else if (nr_parts) 777 ret = add_mtd_partitions(mtd, parts, nr_parts); 778 else if (!device_is_registered(&mtd->dev)) 779 ret = add_mtd_device(mtd); 780 else 781 ret = 0; 782 783 if (ret) 784 goto out; 785 786 /* 787 * FIXME: some drivers unfortunately call this function more than once. 788 * So we have to check if we've already assigned the reboot notifier. 789 * 790 * Generally, we can make multiple calls work for most cases, but it 791 * does cause problems with parse_mtd_partitions() above (e.g., 792 * cmdlineparts will register partitions more than once). 793 */ 794 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 795 "MTD already registered\n"); 796 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 797 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 798 register_reboot_notifier(&mtd->reboot_notifier); 799 } 800 801 out: 802 if (ret && device_is_registered(&mtd->dev)) 803 del_mtd_device(mtd); 804 805 return ret; 806 } 807 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 808 809 /** 810 * mtd_device_unregister - unregister an existing MTD device. 811 * 812 * @master: the MTD device to unregister. This will unregister both the master 813 * and any partitions if registered. 814 */ 815 int mtd_device_unregister(struct mtd_info *master) 816 { 817 int err; 818 819 if (master->_reboot) 820 unregister_reboot_notifier(&master->reboot_notifier); 821 822 err = del_mtd_partitions(master); 823 if (err) 824 return err; 825 826 if (!device_is_registered(&master->dev)) 827 return 0; 828 829 return del_mtd_device(master); 830 } 831 EXPORT_SYMBOL_GPL(mtd_device_unregister); 832 833 /** 834 * register_mtd_user - register a 'user' of MTD devices. 835 * @new: pointer to notifier info structure 836 * 837 * Registers a pair of callbacks function to be called upon addition 838 * or removal of MTD devices. Causes the 'add' callback to be immediately 839 * invoked for each MTD device currently present in the system. 840 */ 841 void register_mtd_user (struct mtd_notifier *new) 842 { 843 struct mtd_info *mtd; 844 845 mutex_lock(&mtd_table_mutex); 846 847 list_add(&new->list, &mtd_notifiers); 848 849 __module_get(THIS_MODULE); 850 851 mtd_for_each_device(mtd) 852 new->add(mtd); 853 854 mutex_unlock(&mtd_table_mutex); 855 } 856 EXPORT_SYMBOL_GPL(register_mtd_user); 857 858 /** 859 * unregister_mtd_user - unregister a 'user' of MTD devices. 860 * @old: pointer to notifier info structure 861 * 862 * Removes a callback function pair from the list of 'users' to be 863 * notified upon addition or removal of MTD devices. Causes the 864 * 'remove' callback to be immediately invoked for each MTD device 865 * currently present in the system. 866 */ 867 int unregister_mtd_user (struct mtd_notifier *old) 868 { 869 struct mtd_info *mtd; 870 871 mutex_lock(&mtd_table_mutex); 872 873 module_put(THIS_MODULE); 874 875 mtd_for_each_device(mtd) 876 old->remove(mtd); 877 878 list_del(&old->list); 879 mutex_unlock(&mtd_table_mutex); 880 return 0; 881 } 882 EXPORT_SYMBOL_GPL(unregister_mtd_user); 883 884 /** 885 * get_mtd_device - obtain a validated handle for an MTD device 886 * @mtd: last known address of the required MTD device 887 * @num: internal device number of the required MTD device 888 * 889 * Given a number and NULL address, return the num'th entry in the device 890 * table, if any. Given an address and num == -1, search the device table 891 * for a device with that address and return if it's still present. Given 892 * both, return the num'th driver only if its address matches. Return 893 * error code if not. 894 */ 895 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 896 { 897 struct mtd_info *ret = NULL, *other; 898 int err = -ENODEV; 899 900 mutex_lock(&mtd_table_mutex); 901 902 if (num == -1) { 903 mtd_for_each_device(other) { 904 if (other == mtd) { 905 ret = mtd; 906 break; 907 } 908 } 909 } else if (num >= 0) { 910 ret = idr_find(&mtd_idr, num); 911 if (mtd && mtd != ret) 912 ret = NULL; 913 } 914 915 if (!ret) { 916 ret = ERR_PTR(err); 917 goto out; 918 } 919 920 err = __get_mtd_device(ret); 921 if (err) 922 ret = ERR_PTR(err); 923 out: 924 mutex_unlock(&mtd_table_mutex); 925 return ret; 926 } 927 EXPORT_SYMBOL_GPL(get_mtd_device); 928 929 930 int __get_mtd_device(struct mtd_info *mtd) 931 { 932 int err; 933 934 if (!try_module_get(mtd->owner)) 935 return -ENODEV; 936 937 if (mtd->_get_device) { 938 err = mtd->_get_device(mtd); 939 940 if (err) { 941 module_put(mtd->owner); 942 return err; 943 } 944 } 945 mtd->usecount++; 946 return 0; 947 } 948 EXPORT_SYMBOL_GPL(__get_mtd_device); 949 950 /** 951 * get_mtd_device_nm - obtain a validated handle for an MTD device by 952 * device name 953 * @name: MTD device name to open 954 * 955 * This function returns MTD device description structure in case of 956 * success and an error code in case of failure. 957 */ 958 struct mtd_info *get_mtd_device_nm(const char *name) 959 { 960 int err = -ENODEV; 961 struct mtd_info *mtd = NULL, *other; 962 963 mutex_lock(&mtd_table_mutex); 964 965 mtd_for_each_device(other) { 966 if (!strcmp(name, other->name)) { 967 mtd = other; 968 break; 969 } 970 } 971 972 if (!mtd) 973 goto out_unlock; 974 975 err = __get_mtd_device(mtd); 976 if (err) 977 goto out_unlock; 978 979 mutex_unlock(&mtd_table_mutex); 980 return mtd; 981 982 out_unlock: 983 mutex_unlock(&mtd_table_mutex); 984 return ERR_PTR(err); 985 } 986 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 987 988 void put_mtd_device(struct mtd_info *mtd) 989 { 990 mutex_lock(&mtd_table_mutex); 991 __put_mtd_device(mtd); 992 mutex_unlock(&mtd_table_mutex); 993 994 } 995 EXPORT_SYMBOL_GPL(put_mtd_device); 996 997 void __put_mtd_device(struct mtd_info *mtd) 998 { 999 --mtd->usecount; 1000 BUG_ON(mtd->usecount < 0); 1001 1002 if (mtd->_put_device) 1003 mtd->_put_device(mtd); 1004 1005 module_put(mtd->owner); 1006 } 1007 EXPORT_SYMBOL_GPL(__put_mtd_device); 1008 1009 /* 1010 * Erase is an synchronous operation. Device drivers are epected to return a 1011 * negative error code if the operation failed and update instr->fail_addr 1012 * to point the portion that was not properly erased. 1013 */ 1014 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 1015 { 1016 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 1017 1018 if (!mtd->erasesize || !mtd->_erase) 1019 return -ENOTSUPP; 1020 1021 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 1022 return -EINVAL; 1023 if (!(mtd->flags & MTD_WRITEABLE)) 1024 return -EROFS; 1025 1026 if (!instr->len) 1027 return 0; 1028 1029 ledtrig_mtd_activity(); 1030 return mtd->_erase(mtd, instr); 1031 } 1032 EXPORT_SYMBOL_GPL(mtd_erase); 1033 1034 /* 1035 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 1036 */ 1037 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1038 void **virt, resource_size_t *phys) 1039 { 1040 *retlen = 0; 1041 *virt = NULL; 1042 if (phys) 1043 *phys = 0; 1044 if (!mtd->_point) 1045 return -EOPNOTSUPP; 1046 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1047 return -EINVAL; 1048 if (!len) 1049 return 0; 1050 return mtd->_point(mtd, from, len, retlen, virt, phys); 1051 } 1052 EXPORT_SYMBOL_GPL(mtd_point); 1053 1054 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 1055 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1056 { 1057 if (!mtd->_unpoint) 1058 return -EOPNOTSUPP; 1059 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1060 return -EINVAL; 1061 if (!len) 1062 return 0; 1063 return mtd->_unpoint(mtd, from, len); 1064 } 1065 EXPORT_SYMBOL_GPL(mtd_unpoint); 1066 1067 /* 1068 * Allow NOMMU mmap() to directly map the device (if not NULL) 1069 * - return the address to which the offset maps 1070 * - return -ENOSYS to indicate refusal to do the mapping 1071 */ 1072 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1073 unsigned long offset, unsigned long flags) 1074 { 1075 size_t retlen; 1076 void *virt; 1077 int ret; 1078 1079 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); 1080 if (ret) 1081 return ret; 1082 if (retlen != len) { 1083 mtd_unpoint(mtd, offset, retlen); 1084 return -ENOSYS; 1085 } 1086 return (unsigned long)virt; 1087 } 1088 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1089 1090 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1091 u_char *buf) 1092 { 1093 struct mtd_oob_ops ops = { 1094 .len = len, 1095 .datbuf = buf, 1096 }; 1097 int ret; 1098 1099 ret = mtd_read_oob(mtd, from, &ops); 1100 *retlen = ops.retlen; 1101 1102 return ret; 1103 } 1104 EXPORT_SYMBOL_GPL(mtd_read); 1105 1106 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1107 const u_char *buf) 1108 { 1109 struct mtd_oob_ops ops = { 1110 .len = len, 1111 .datbuf = (u8 *)buf, 1112 }; 1113 int ret; 1114 1115 ret = mtd_write_oob(mtd, to, &ops); 1116 *retlen = ops.retlen; 1117 1118 return ret; 1119 } 1120 EXPORT_SYMBOL_GPL(mtd_write); 1121 1122 /* 1123 * In blackbox flight recorder like scenarios we want to make successful writes 1124 * in interrupt context. panic_write() is only intended to be called when its 1125 * known the kernel is about to panic and we need the write to succeed. Since 1126 * the kernel is not going to be running for much longer, this function can 1127 * break locks and delay to ensure the write succeeds (but not sleep). 1128 */ 1129 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1130 const u_char *buf) 1131 { 1132 *retlen = 0; 1133 if (!mtd->_panic_write) 1134 return -EOPNOTSUPP; 1135 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1136 return -EINVAL; 1137 if (!(mtd->flags & MTD_WRITEABLE)) 1138 return -EROFS; 1139 if (!len) 1140 return 0; 1141 return mtd->_panic_write(mtd, to, len, retlen, buf); 1142 } 1143 EXPORT_SYMBOL_GPL(mtd_panic_write); 1144 1145 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1146 struct mtd_oob_ops *ops) 1147 { 1148 /* 1149 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1150 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1151 * this case. 1152 */ 1153 if (!ops->datbuf) 1154 ops->len = 0; 1155 1156 if (!ops->oobbuf) 1157 ops->ooblen = 0; 1158 1159 if (offs < 0 || offs + ops->len > mtd->size) 1160 return -EINVAL; 1161 1162 if (ops->ooblen) { 1163 size_t maxooblen; 1164 1165 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1166 return -EINVAL; 1167 1168 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) - 1169 mtd_div_by_ws(offs, mtd)) * 1170 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1171 if (ops->ooblen > maxooblen) 1172 return -EINVAL; 1173 } 1174 1175 return 0; 1176 } 1177 1178 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1179 { 1180 int ret_code; 1181 ops->retlen = ops->oobretlen = 0; 1182 1183 ret_code = mtd_check_oob_ops(mtd, from, ops); 1184 if (ret_code) 1185 return ret_code; 1186 1187 ledtrig_mtd_activity(); 1188 1189 /* Check the validity of a potential fallback on mtd->_read */ 1190 if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf)) 1191 return -EOPNOTSUPP; 1192 1193 if (mtd->_read_oob) 1194 ret_code = mtd->_read_oob(mtd, from, ops); 1195 else 1196 ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen, 1197 ops->datbuf); 1198 1199 /* 1200 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1201 * similar to mtd->_read(), returning a non-negative integer 1202 * representing max bitflips. In other cases, mtd->_read_oob() may 1203 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1204 */ 1205 if (unlikely(ret_code < 0)) 1206 return ret_code; 1207 if (mtd->ecc_strength == 0) 1208 return 0; /* device lacks ecc */ 1209 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1210 } 1211 EXPORT_SYMBOL_GPL(mtd_read_oob); 1212 1213 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1214 struct mtd_oob_ops *ops) 1215 { 1216 int ret; 1217 1218 ops->retlen = ops->oobretlen = 0; 1219 1220 if (!(mtd->flags & MTD_WRITEABLE)) 1221 return -EROFS; 1222 1223 ret = mtd_check_oob_ops(mtd, to, ops); 1224 if (ret) 1225 return ret; 1226 1227 ledtrig_mtd_activity(); 1228 1229 /* Check the validity of a potential fallback on mtd->_write */ 1230 if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf)) 1231 return -EOPNOTSUPP; 1232 1233 if (mtd->_write_oob) 1234 return mtd->_write_oob(mtd, to, ops); 1235 else 1236 return mtd->_write(mtd, to, ops->len, &ops->retlen, 1237 ops->datbuf); 1238 } 1239 EXPORT_SYMBOL_GPL(mtd_write_oob); 1240 1241 /** 1242 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1243 * @mtd: MTD device structure 1244 * @section: ECC section. Depending on the layout you may have all the ECC 1245 * bytes stored in a single contiguous section, or one section 1246 * per ECC chunk (and sometime several sections for a single ECC 1247 * ECC chunk) 1248 * @oobecc: OOB region struct filled with the appropriate ECC position 1249 * information 1250 * 1251 * This function returns ECC section information in the OOB area. If you want 1252 * to get all the ECC bytes information, then you should call 1253 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1254 * 1255 * Returns zero on success, a negative error code otherwise. 1256 */ 1257 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1258 struct mtd_oob_region *oobecc) 1259 { 1260 memset(oobecc, 0, sizeof(*oobecc)); 1261 1262 if (!mtd || section < 0) 1263 return -EINVAL; 1264 1265 if (!mtd->ooblayout || !mtd->ooblayout->ecc) 1266 return -ENOTSUPP; 1267 1268 return mtd->ooblayout->ecc(mtd, section, oobecc); 1269 } 1270 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1271 1272 /** 1273 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1274 * section 1275 * @mtd: MTD device structure 1276 * @section: Free section you are interested in. Depending on the layout 1277 * you may have all the free bytes stored in a single contiguous 1278 * section, or one section per ECC chunk plus an extra section 1279 * for the remaining bytes (or other funky layout). 1280 * @oobfree: OOB region struct filled with the appropriate free position 1281 * information 1282 * 1283 * This function returns free bytes position in the OOB area. If you want 1284 * to get all the free bytes information, then you should call 1285 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1286 * 1287 * Returns zero on success, a negative error code otherwise. 1288 */ 1289 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1290 struct mtd_oob_region *oobfree) 1291 { 1292 memset(oobfree, 0, sizeof(*oobfree)); 1293 1294 if (!mtd || section < 0) 1295 return -EINVAL; 1296 1297 if (!mtd->ooblayout || !mtd->ooblayout->free) 1298 return -ENOTSUPP; 1299 1300 return mtd->ooblayout->free(mtd, section, oobfree); 1301 } 1302 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1303 1304 /** 1305 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1306 * @mtd: mtd info structure 1307 * @byte: the byte we are searching for 1308 * @sectionp: pointer where the section id will be stored 1309 * @oobregion: used to retrieve the ECC position 1310 * @iter: iterator function. Should be either mtd_ooblayout_free or 1311 * mtd_ooblayout_ecc depending on the region type you're searching for 1312 * 1313 * This function returns the section id and oobregion information of a 1314 * specific byte. For example, say you want to know where the 4th ECC byte is 1315 * stored, you'll use: 1316 * 1317 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1318 * 1319 * Returns zero on success, a negative error code otherwise. 1320 */ 1321 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1322 int *sectionp, struct mtd_oob_region *oobregion, 1323 int (*iter)(struct mtd_info *, 1324 int section, 1325 struct mtd_oob_region *oobregion)) 1326 { 1327 int pos = 0, ret, section = 0; 1328 1329 memset(oobregion, 0, sizeof(*oobregion)); 1330 1331 while (1) { 1332 ret = iter(mtd, section, oobregion); 1333 if (ret) 1334 return ret; 1335 1336 if (pos + oobregion->length > byte) 1337 break; 1338 1339 pos += oobregion->length; 1340 section++; 1341 } 1342 1343 /* 1344 * Adjust region info to make it start at the beginning at the 1345 * 'start' ECC byte. 1346 */ 1347 oobregion->offset += byte - pos; 1348 oobregion->length -= byte - pos; 1349 *sectionp = section; 1350 1351 return 0; 1352 } 1353 1354 /** 1355 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1356 * ECC byte 1357 * @mtd: mtd info structure 1358 * @eccbyte: the byte we are searching for 1359 * @sectionp: pointer where the section id will be stored 1360 * @oobregion: OOB region information 1361 * 1362 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1363 * byte. 1364 * 1365 * Returns zero on success, a negative error code otherwise. 1366 */ 1367 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1368 int *section, 1369 struct mtd_oob_region *oobregion) 1370 { 1371 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1372 mtd_ooblayout_ecc); 1373 } 1374 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1375 1376 /** 1377 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1378 * @mtd: mtd info structure 1379 * @buf: destination buffer to store OOB bytes 1380 * @oobbuf: OOB buffer 1381 * @start: first byte to retrieve 1382 * @nbytes: number of bytes to retrieve 1383 * @iter: section iterator 1384 * 1385 * Extract bytes attached to a specific category (ECC or free) 1386 * from the OOB buffer and copy them into buf. 1387 * 1388 * Returns zero on success, a negative error code otherwise. 1389 */ 1390 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1391 const u8 *oobbuf, int start, int nbytes, 1392 int (*iter)(struct mtd_info *, 1393 int section, 1394 struct mtd_oob_region *oobregion)) 1395 { 1396 struct mtd_oob_region oobregion; 1397 int section, ret; 1398 1399 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1400 &oobregion, iter); 1401 1402 while (!ret) { 1403 int cnt; 1404 1405 cnt = min_t(int, nbytes, oobregion.length); 1406 memcpy(buf, oobbuf + oobregion.offset, cnt); 1407 buf += cnt; 1408 nbytes -= cnt; 1409 1410 if (!nbytes) 1411 break; 1412 1413 ret = iter(mtd, ++section, &oobregion); 1414 } 1415 1416 return ret; 1417 } 1418 1419 /** 1420 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1421 * @mtd: mtd info structure 1422 * @buf: source buffer to get OOB bytes from 1423 * @oobbuf: OOB buffer 1424 * @start: first OOB byte to set 1425 * @nbytes: number of OOB bytes to set 1426 * @iter: section iterator 1427 * 1428 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1429 * is selected by passing the appropriate iterator. 1430 * 1431 * Returns zero on success, a negative error code otherwise. 1432 */ 1433 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1434 u8 *oobbuf, int start, int nbytes, 1435 int (*iter)(struct mtd_info *, 1436 int section, 1437 struct mtd_oob_region *oobregion)) 1438 { 1439 struct mtd_oob_region oobregion; 1440 int section, ret; 1441 1442 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1443 &oobregion, iter); 1444 1445 while (!ret) { 1446 int cnt; 1447 1448 cnt = min_t(int, nbytes, oobregion.length); 1449 memcpy(oobbuf + oobregion.offset, buf, cnt); 1450 buf += cnt; 1451 nbytes -= cnt; 1452 1453 if (!nbytes) 1454 break; 1455 1456 ret = iter(mtd, ++section, &oobregion); 1457 } 1458 1459 return ret; 1460 } 1461 1462 /** 1463 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1464 * @mtd: mtd info structure 1465 * @iter: category iterator 1466 * 1467 * Count the number of bytes in a given category. 1468 * 1469 * Returns a positive value on success, a negative error code otherwise. 1470 */ 1471 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1472 int (*iter)(struct mtd_info *, 1473 int section, 1474 struct mtd_oob_region *oobregion)) 1475 { 1476 struct mtd_oob_region oobregion; 1477 int section = 0, ret, nbytes = 0; 1478 1479 while (1) { 1480 ret = iter(mtd, section++, &oobregion); 1481 if (ret) { 1482 if (ret == -ERANGE) 1483 ret = nbytes; 1484 break; 1485 } 1486 1487 nbytes += oobregion.length; 1488 } 1489 1490 return ret; 1491 } 1492 1493 /** 1494 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1495 * @mtd: mtd info structure 1496 * @eccbuf: destination buffer to store ECC bytes 1497 * @oobbuf: OOB buffer 1498 * @start: first ECC byte to retrieve 1499 * @nbytes: number of ECC bytes to retrieve 1500 * 1501 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1502 * 1503 * Returns zero on success, a negative error code otherwise. 1504 */ 1505 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1506 const u8 *oobbuf, int start, int nbytes) 1507 { 1508 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1509 mtd_ooblayout_ecc); 1510 } 1511 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1512 1513 /** 1514 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1515 * @mtd: mtd info structure 1516 * @eccbuf: source buffer to get ECC bytes from 1517 * @oobbuf: OOB buffer 1518 * @start: first ECC byte to set 1519 * @nbytes: number of ECC bytes to set 1520 * 1521 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 1522 * 1523 * Returns zero on success, a negative error code otherwise. 1524 */ 1525 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 1526 u8 *oobbuf, int start, int nbytes) 1527 { 1528 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1529 mtd_ooblayout_ecc); 1530 } 1531 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 1532 1533 /** 1534 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 1535 * @mtd: mtd info structure 1536 * @databuf: destination buffer to store ECC bytes 1537 * @oobbuf: OOB buffer 1538 * @start: first ECC byte to retrieve 1539 * @nbytes: number of ECC bytes to retrieve 1540 * 1541 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1542 * 1543 * Returns zero on success, a negative error code otherwise. 1544 */ 1545 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 1546 const u8 *oobbuf, int start, int nbytes) 1547 { 1548 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 1549 mtd_ooblayout_free); 1550 } 1551 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 1552 1553 /** 1554 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer 1555 * @mtd: mtd info structure 1556 * @databuf: source buffer to get data bytes from 1557 * @oobbuf: OOB buffer 1558 * @start: first ECC byte to set 1559 * @nbytes: number of ECC bytes to set 1560 * 1561 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1562 * 1563 * Returns zero on success, a negative error code otherwise. 1564 */ 1565 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 1566 u8 *oobbuf, int start, int nbytes) 1567 { 1568 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 1569 mtd_ooblayout_free); 1570 } 1571 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 1572 1573 /** 1574 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 1575 * @mtd: mtd info structure 1576 * 1577 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 1578 * 1579 * Returns zero on success, a negative error code otherwise. 1580 */ 1581 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 1582 { 1583 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 1584 } 1585 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 1586 1587 /** 1588 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB 1589 * @mtd: mtd info structure 1590 * 1591 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 1592 * 1593 * Returns zero on success, a negative error code otherwise. 1594 */ 1595 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 1596 { 1597 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 1598 } 1599 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 1600 1601 /* 1602 * Method to access the protection register area, present in some flash 1603 * devices. The user data is one time programmable but the factory data is read 1604 * only. 1605 */ 1606 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1607 struct otp_info *buf) 1608 { 1609 if (!mtd->_get_fact_prot_info) 1610 return -EOPNOTSUPP; 1611 if (!len) 1612 return 0; 1613 return mtd->_get_fact_prot_info(mtd, len, retlen, buf); 1614 } 1615 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 1616 1617 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1618 size_t *retlen, u_char *buf) 1619 { 1620 *retlen = 0; 1621 if (!mtd->_read_fact_prot_reg) 1622 return -EOPNOTSUPP; 1623 if (!len) 1624 return 0; 1625 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); 1626 } 1627 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 1628 1629 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1630 struct otp_info *buf) 1631 { 1632 if (!mtd->_get_user_prot_info) 1633 return -EOPNOTSUPP; 1634 if (!len) 1635 return 0; 1636 return mtd->_get_user_prot_info(mtd, len, retlen, buf); 1637 } 1638 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 1639 1640 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1641 size_t *retlen, u_char *buf) 1642 { 1643 *retlen = 0; 1644 if (!mtd->_read_user_prot_reg) 1645 return -EOPNOTSUPP; 1646 if (!len) 1647 return 0; 1648 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); 1649 } 1650 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 1651 1652 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 1653 size_t *retlen, u_char *buf) 1654 { 1655 int ret; 1656 1657 *retlen = 0; 1658 if (!mtd->_write_user_prot_reg) 1659 return -EOPNOTSUPP; 1660 if (!len) 1661 return 0; 1662 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); 1663 if (ret) 1664 return ret; 1665 1666 /* 1667 * If no data could be written at all, we are out of memory and 1668 * must return -ENOSPC. 1669 */ 1670 return (*retlen) ? 0 : -ENOSPC; 1671 } 1672 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1673 1674 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1675 { 1676 if (!mtd->_lock_user_prot_reg) 1677 return -EOPNOTSUPP; 1678 if (!len) 1679 return 0; 1680 return mtd->_lock_user_prot_reg(mtd, from, len); 1681 } 1682 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1683 1684 /* Chip-supported device locking */ 1685 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1686 { 1687 if (!mtd->_lock) 1688 return -EOPNOTSUPP; 1689 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1690 return -EINVAL; 1691 if (!len) 1692 return 0; 1693 return mtd->_lock(mtd, ofs, len); 1694 } 1695 EXPORT_SYMBOL_GPL(mtd_lock); 1696 1697 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1698 { 1699 if (!mtd->_unlock) 1700 return -EOPNOTSUPP; 1701 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1702 return -EINVAL; 1703 if (!len) 1704 return 0; 1705 return mtd->_unlock(mtd, ofs, len); 1706 } 1707 EXPORT_SYMBOL_GPL(mtd_unlock); 1708 1709 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1710 { 1711 if (!mtd->_is_locked) 1712 return -EOPNOTSUPP; 1713 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1714 return -EINVAL; 1715 if (!len) 1716 return 0; 1717 return mtd->_is_locked(mtd, ofs, len); 1718 } 1719 EXPORT_SYMBOL_GPL(mtd_is_locked); 1720 1721 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 1722 { 1723 if (ofs < 0 || ofs >= mtd->size) 1724 return -EINVAL; 1725 if (!mtd->_block_isreserved) 1726 return 0; 1727 return mtd->_block_isreserved(mtd, ofs); 1728 } 1729 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 1730 1731 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 1732 { 1733 if (ofs < 0 || ofs >= mtd->size) 1734 return -EINVAL; 1735 if (!mtd->_block_isbad) 1736 return 0; 1737 return mtd->_block_isbad(mtd, ofs); 1738 } 1739 EXPORT_SYMBOL_GPL(mtd_block_isbad); 1740 1741 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 1742 { 1743 if (!mtd->_block_markbad) 1744 return -EOPNOTSUPP; 1745 if (ofs < 0 || ofs >= mtd->size) 1746 return -EINVAL; 1747 if (!(mtd->flags & MTD_WRITEABLE)) 1748 return -EROFS; 1749 return mtd->_block_markbad(mtd, ofs); 1750 } 1751 EXPORT_SYMBOL_GPL(mtd_block_markbad); 1752 1753 /* 1754 * default_mtd_writev - the default writev method 1755 * @mtd: mtd device description object pointer 1756 * @vecs: the vectors to write 1757 * @count: count of vectors in @vecs 1758 * @to: the MTD device offset to write to 1759 * @retlen: on exit contains the count of bytes written to the MTD device. 1760 * 1761 * This function returns zero in case of success and a negative error code in 1762 * case of failure. 1763 */ 1764 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1765 unsigned long count, loff_t to, size_t *retlen) 1766 { 1767 unsigned long i; 1768 size_t totlen = 0, thislen; 1769 int ret = 0; 1770 1771 for (i = 0; i < count; i++) { 1772 if (!vecs[i].iov_len) 1773 continue; 1774 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1775 vecs[i].iov_base); 1776 totlen += thislen; 1777 if (ret || thislen != vecs[i].iov_len) 1778 break; 1779 to += vecs[i].iov_len; 1780 } 1781 *retlen = totlen; 1782 return ret; 1783 } 1784 1785 /* 1786 * mtd_writev - the vector-based MTD write method 1787 * @mtd: mtd device description object pointer 1788 * @vecs: the vectors to write 1789 * @count: count of vectors in @vecs 1790 * @to: the MTD device offset to write to 1791 * @retlen: on exit contains the count of bytes written to the MTD device. 1792 * 1793 * This function returns zero in case of success and a negative error code in 1794 * case of failure. 1795 */ 1796 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1797 unsigned long count, loff_t to, size_t *retlen) 1798 { 1799 *retlen = 0; 1800 if (!(mtd->flags & MTD_WRITEABLE)) 1801 return -EROFS; 1802 if (!mtd->_writev) 1803 return default_mtd_writev(mtd, vecs, count, to, retlen); 1804 return mtd->_writev(mtd, vecs, count, to, retlen); 1805 } 1806 EXPORT_SYMBOL_GPL(mtd_writev); 1807 1808 /** 1809 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1810 * @mtd: mtd device description object pointer 1811 * @size: a pointer to the ideal or maximum size of the allocation, points 1812 * to the actual allocation size on success. 1813 * 1814 * This routine attempts to allocate a contiguous kernel buffer up to 1815 * the specified size, backing off the size of the request exponentially 1816 * until the request succeeds or until the allocation size falls below 1817 * the system page size. This attempts to make sure it does not adversely 1818 * impact system performance, so when allocating more than one page, we 1819 * ask the memory allocator to avoid re-trying, swapping, writing back 1820 * or performing I/O. 1821 * 1822 * Note, this function also makes sure that the allocated buffer is aligned to 1823 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1824 * 1825 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1826 * to handle smaller (i.e. degraded) buffer allocations under low- or 1827 * fragmented-memory situations where such reduced allocations, from a 1828 * requested ideal, are allowed. 1829 * 1830 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1831 */ 1832 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1833 { 1834 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 1835 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1836 void *kbuf; 1837 1838 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1839 1840 while (*size > min_alloc) { 1841 kbuf = kmalloc(*size, flags); 1842 if (kbuf) 1843 return kbuf; 1844 1845 *size >>= 1; 1846 *size = ALIGN(*size, mtd->writesize); 1847 } 1848 1849 /* 1850 * For the last resort allocation allow 'kmalloc()' to do all sorts of 1851 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 1852 */ 1853 return kmalloc(*size, GFP_KERNEL); 1854 } 1855 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 1856 1857 #ifdef CONFIG_PROC_FS 1858 1859 /*====================================================================*/ 1860 /* Support for /proc/mtd */ 1861 1862 static int mtd_proc_show(struct seq_file *m, void *v) 1863 { 1864 struct mtd_info *mtd; 1865 1866 seq_puts(m, "dev: size erasesize name\n"); 1867 mutex_lock(&mtd_table_mutex); 1868 mtd_for_each_device(mtd) { 1869 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 1870 mtd->index, (unsigned long long)mtd->size, 1871 mtd->erasesize, mtd->name); 1872 } 1873 mutex_unlock(&mtd_table_mutex); 1874 return 0; 1875 } 1876 #endif /* CONFIG_PROC_FS */ 1877 1878 /*====================================================================*/ 1879 /* Init code */ 1880 1881 static struct backing_dev_info * __init mtd_bdi_init(char *name) 1882 { 1883 struct backing_dev_info *bdi; 1884 int ret; 1885 1886 bdi = bdi_alloc(GFP_KERNEL); 1887 if (!bdi) 1888 return ERR_PTR(-ENOMEM); 1889 1890 bdi->name = name; 1891 /* 1892 * We put '-0' suffix to the name to get the same name format as we 1893 * used to get. Since this is called only once, we get a unique name. 1894 */ 1895 ret = bdi_register(bdi, "%.28s-0", name); 1896 if (ret) 1897 bdi_put(bdi); 1898 1899 return ret ? ERR_PTR(ret) : bdi; 1900 } 1901 1902 static struct proc_dir_entry *proc_mtd; 1903 1904 static int __init init_mtd(void) 1905 { 1906 int ret; 1907 1908 ret = class_register(&mtd_class); 1909 if (ret) 1910 goto err_reg; 1911 1912 mtd_bdi = mtd_bdi_init("mtd"); 1913 if (IS_ERR(mtd_bdi)) { 1914 ret = PTR_ERR(mtd_bdi); 1915 goto err_bdi; 1916 } 1917 1918 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show); 1919 1920 ret = init_mtdchar(); 1921 if (ret) 1922 goto out_procfs; 1923 1924 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 1925 1926 return 0; 1927 1928 out_procfs: 1929 if (proc_mtd) 1930 remove_proc_entry("mtd", NULL); 1931 bdi_put(mtd_bdi); 1932 err_bdi: 1933 class_unregister(&mtd_class); 1934 err_reg: 1935 pr_err("Error registering mtd class or bdi: %d\n", ret); 1936 return ret; 1937 } 1938 1939 static void __exit cleanup_mtd(void) 1940 { 1941 debugfs_remove_recursive(dfs_dir_mtd); 1942 cleanup_mtdchar(); 1943 if (proc_mtd) 1944 remove_proc_entry("mtd", NULL); 1945 class_unregister(&mtd_class); 1946 bdi_put(mtd_bdi); 1947 idr_destroy(&mtd_idr); 1948 } 1949 1950 module_init(init_mtd); 1951 module_exit(cleanup_mtd); 1952 1953 MODULE_LICENSE("GPL"); 1954 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1955 MODULE_DESCRIPTION("Core MTD registration and access routines"); 1956