xref: /openbmc/linux/drivers/mtd/mtdcore.c (revision bd4af432)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/slab.h>
27 #include <linux/reboot.h>
28 #include <linux/leds.h>
29 #include <linux/debugfs.h>
30 #include <linux/nvmem-provider.h>
31 
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/partitions.h>
34 
35 #include "mtdcore.h"
36 
37 struct backing_dev_info *mtd_bdi;
38 
39 #ifdef CONFIG_PM_SLEEP
40 
41 static int mtd_cls_suspend(struct device *dev)
42 {
43 	struct mtd_info *mtd = dev_get_drvdata(dev);
44 
45 	return mtd ? mtd_suspend(mtd) : 0;
46 }
47 
48 static int mtd_cls_resume(struct device *dev)
49 {
50 	struct mtd_info *mtd = dev_get_drvdata(dev);
51 
52 	if (mtd)
53 		mtd_resume(mtd);
54 	return 0;
55 }
56 
57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59 #else
60 #define MTD_CLS_PM_OPS NULL
61 #endif
62 
63 static struct class mtd_class = {
64 	.name = "mtd",
65 	.owner = THIS_MODULE,
66 	.pm = MTD_CLS_PM_OPS,
67 };
68 
69 static DEFINE_IDR(mtd_idr);
70 
71 /* These are exported solely for the purpose of mtd_blkdevs.c. You
72    should not use them for _anything_ else */
73 DEFINE_MUTEX(mtd_table_mutex);
74 EXPORT_SYMBOL_GPL(mtd_table_mutex);
75 
76 struct mtd_info *__mtd_next_device(int i)
77 {
78 	return idr_get_next(&mtd_idr, &i);
79 }
80 EXPORT_SYMBOL_GPL(__mtd_next_device);
81 
82 static LIST_HEAD(mtd_notifiers);
83 
84 
85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
86 
87 /* REVISIT once MTD uses the driver model better, whoever allocates
88  * the mtd_info will probably want to use the release() hook...
89  */
90 static void mtd_release(struct device *dev)
91 {
92 	struct mtd_info *mtd = dev_get_drvdata(dev);
93 	dev_t index = MTD_DEVT(mtd->index);
94 
95 	/* remove /dev/mtdXro node */
96 	device_destroy(&mtd_class, index + 1);
97 }
98 
99 static ssize_t mtd_type_show(struct device *dev,
100 		struct device_attribute *attr, char *buf)
101 {
102 	struct mtd_info *mtd = dev_get_drvdata(dev);
103 	char *type;
104 
105 	switch (mtd->type) {
106 	case MTD_ABSENT:
107 		type = "absent";
108 		break;
109 	case MTD_RAM:
110 		type = "ram";
111 		break;
112 	case MTD_ROM:
113 		type = "rom";
114 		break;
115 	case MTD_NORFLASH:
116 		type = "nor";
117 		break;
118 	case MTD_NANDFLASH:
119 		type = "nand";
120 		break;
121 	case MTD_DATAFLASH:
122 		type = "dataflash";
123 		break;
124 	case MTD_UBIVOLUME:
125 		type = "ubi";
126 		break;
127 	case MTD_MLCNANDFLASH:
128 		type = "mlc-nand";
129 		break;
130 	default:
131 		type = "unknown";
132 	}
133 
134 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
135 }
136 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
137 
138 static ssize_t mtd_flags_show(struct device *dev,
139 		struct device_attribute *attr, char *buf)
140 {
141 	struct mtd_info *mtd = dev_get_drvdata(dev);
142 
143 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
144 }
145 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
146 
147 static ssize_t mtd_size_show(struct device *dev,
148 		struct device_attribute *attr, char *buf)
149 {
150 	struct mtd_info *mtd = dev_get_drvdata(dev);
151 
152 	return snprintf(buf, PAGE_SIZE, "%llu\n",
153 		(unsigned long long)mtd->size);
154 }
155 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
156 
157 static ssize_t mtd_erasesize_show(struct device *dev,
158 		struct device_attribute *attr, char *buf)
159 {
160 	struct mtd_info *mtd = dev_get_drvdata(dev);
161 
162 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
163 }
164 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
165 
166 static ssize_t mtd_writesize_show(struct device *dev,
167 		struct device_attribute *attr, char *buf)
168 {
169 	struct mtd_info *mtd = dev_get_drvdata(dev);
170 
171 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
172 }
173 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
174 
175 static ssize_t mtd_subpagesize_show(struct device *dev,
176 		struct device_attribute *attr, char *buf)
177 {
178 	struct mtd_info *mtd = dev_get_drvdata(dev);
179 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
180 
181 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
182 }
183 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
184 
185 static ssize_t mtd_oobsize_show(struct device *dev,
186 		struct device_attribute *attr, char *buf)
187 {
188 	struct mtd_info *mtd = dev_get_drvdata(dev);
189 
190 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
191 }
192 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
193 
194 static ssize_t mtd_oobavail_show(struct device *dev,
195 				 struct device_attribute *attr, char *buf)
196 {
197 	struct mtd_info *mtd = dev_get_drvdata(dev);
198 
199 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
200 }
201 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
202 
203 static ssize_t mtd_numeraseregions_show(struct device *dev,
204 		struct device_attribute *attr, char *buf)
205 {
206 	struct mtd_info *mtd = dev_get_drvdata(dev);
207 
208 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
209 }
210 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
211 	NULL);
212 
213 static ssize_t mtd_name_show(struct device *dev,
214 		struct device_attribute *attr, char *buf)
215 {
216 	struct mtd_info *mtd = dev_get_drvdata(dev);
217 
218 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
219 }
220 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
221 
222 static ssize_t mtd_ecc_strength_show(struct device *dev,
223 				     struct device_attribute *attr, char *buf)
224 {
225 	struct mtd_info *mtd = dev_get_drvdata(dev);
226 
227 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
228 }
229 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
230 
231 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
232 					  struct device_attribute *attr,
233 					  char *buf)
234 {
235 	struct mtd_info *mtd = dev_get_drvdata(dev);
236 
237 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
238 }
239 
240 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
241 					   struct device_attribute *attr,
242 					   const char *buf, size_t count)
243 {
244 	struct mtd_info *mtd = dev_get_drvdata(dev);
245 	unsigned int bitflip_threshold;
246 	int retval;
247 
248 	retval = kstrtouint(buf, 0, &bitflip_threshold);
249 	if (retval)
250 		return retval;
251 
252 	mtd->bitflip_threshold = bitflip_threshold;
253 	return count;
254 }
255 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
256 		   mtd_bitflip_threshold_show,
257 		   mtd_bitflip_threshold_store);
258 
259 static ssize_t mtd_ecc_step_size_show(struct device *dev,
260 		struct device_attribute *attr, char *buf)
261 {
262 	struct mtd_info *mtd = dev_get_drvdata(dev);
263 
264 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
265 
266 }
267 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
268 
269 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
270 		struct device_attribute *attr, char *buf)
271 {
272 	struct mtd_info *mtd = dev_get_drvdata(dev);
273 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
274 
275 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
276 }
277 static DEVICE_ATTR(corrected_bits, S_IRUGO,
278 		   mtd_ecc_stats_corrected_show, NULL);
279 
280 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
281 		struct device_attribute *attr, char *buf)
282 {
283 	struct mtd_info *mtd = dev_get_drvdata(dev);
284 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
285 
286 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
287 }
288 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
289 
290 static ssize_t mtd_badblocks_show(struct device *dev,
291 		struct device_attribute *attr, char *buf)
292 {
293 	struct mtd_info *mtd = dev_get_drvdata(dev);
294 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
295 
296 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
297 }
298 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
299 
300 static ssize_t mtd_bbtblocks_show(struct device *dev,
301 		struct device_attribute *attr, char *buf)
302 {
303 	struct mtd_info *mtd = dev_get_drvdata(dev);
304 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
305 
306 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
307 }
308 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
309 
310 static struct attribute *mtd_attrs[] = {
311 	&dev_attr_type.attr,
312 	&dev_attr_flags.attr,
313 	&dev_attr_size.attr,
314 	&dev_attr_erasesize.attr,
315 	&dev_attr_writesize.attr,
316 	&dev_attr_subpagesize.attr,
317 	&dev_attr_oobsize.attr,
318 	&dev_attr_oobavail.attr,
319 	&dev_attr_numeraseregions.attr,
320 	&dev_attr_name.attr,
321 	&dev_attr_ecc_strength.attr,
322 	&dev_attr_ecc_step_size.attr,
323 	&dev_attr_corrected_bits.attr,
324 	&dev_attr_ecc_failures.attr,
325 	&dev_attr_bad_blocks.attr,
326 	&dev_attr_bbt_blocks.attr,
327 	&dev_attr_bitflip_threshold.attr,
328 	NULL,
329 };
330 ATTRIBUTE_GROUPS(mtd);
331 
332 static const struct device_type mtd_devtype = {
333 	.name		= "mtd",
334 	.groups		= mtd_groups,
335 	.release	= mtd_release,
336 };
337 
338 static int mtd_partid_show(struct seq_file *s, void *p)
339 {
340 	struct mtd_info *mtd = s->private;
341 
342 	seq_printf(s, "%s\n", mtd->dbg.partid);
343 
344 	return 0;
345 }
346 
347 static int mtd_partid_debugfs_open(struct inode *inode, struct file *file)
348 {
349 	return single_open(file, mtd_partid_show, inode->i_private);
350 }
351 
352 static const struct file_operations mtd_partid_debug_fops = {
353 	.open           = mtd_partid_debugfs_open,
354 	.read           = seq_read,
355 	.llseek         = seq_lseek,
356 	.release        = single_release,
357 };
358 
359 static int mtd_partname_show(struct seq_file *s, void *p)
360 {
361 	struct mtd_info *mtd = s->private;
362 
363 	seq_printf(s, "%s\n", mtd->dbg.partname);
364 
365 	return 0;
366 }
367 
368 static int mtd_partname_debugfs_open(struct inode *inode, struct file *file)
369 {
370 	return single_open(file, mtd_partname_show, inode->i_private);
371 }
372 
373 static const struct file_operations mtd_partname_debug_fops = {
374 	.open           = mtd_partname_debugfs_open,
375 	.read           = seq_read,
376 	.llseek         = seq_lseek,
377 	.release        = single_release,
378 };
379 
380 static struct dentry *dfs_dir_mtd;
381 
382 static void mtd_debugfs_populate(struct mtd_info *mtd)
383 {
384 	struct device *dev = &mtd->dev;
385 	struct dentry *root;
386 
387 	if (IS_ERR_OR_NULL(dfs_dir_mtd))
388 		return;
389 
390 	root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
391 	mtd->dbg.dfs_dir = root;
392 
393 	if (mtd->dbg.partid)
394 		debugfs_create_file("partid", 0400, root, mtd,
395 				    &mtd_partid_debug_fops);
396 
397 	if (mtd->dbg.partname)
398 		debugfs_create_file("partname", 0400, root, mtd,
399 				    &mtd_partname_debug_fops);
400 }
401 
402 #ifndef CONFIG_MMU
403 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
404 {
405 	switch (mtd->type) {
406 	case MTD_RAM:
407 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
408 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
409 	case MTD_ROM:
410 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
411 			NOMMU_MAP_READ;
412 	default:
413 		return NOMMU_MAP_COPY;
414 	}
415 }
416 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
417 #endif
418 
419 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
420 			       void *cmd)
421 {
422 	struct mtd_info *mtd;
423 
424 	mtd = container_of(n, struct mtd_info, reboot_notifier);
425 	mtd->_reboot(mtd);
426 
427 	return NOTIFY_DONE;
428 }
429 
430 /**
431  * mtd_wunit_to_pairing_info - get pairing information of a wunit
432  * @mtd: pointer to new MTD device info structure
433  * @wunit: write unit we are interested in
434  * @info: returned pairing information
435  *
436  * Retrieve pairing information associated to the wunit.
437  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
438  * paired together, and where programming a page may influence the page it is
439  * paired with.
440  * The notion of page is replaced by the term wunit (write-unit) to stay
441  * consistent with the ->writesize field.
442  *
443  * The @wunit argument can be extracted from an absolute offset using
444  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
445  * to @wunit.
446  *
447  * From the pairing info the MTD user can find all the wunits paired with
448  * @wunit using the following loop:
449  *
450  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
451  *	info.pair = i;
452  *	mtd_pairing_info_to_wunit(mtd, &info);
453  *	...
454  * }
455  */
456 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
457 			      struct mtd_pairing_info *info)
458 {
459 	struct mtd_info *master = mtd_get_master(mtd);
460 	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
461 
462 	if (wunit < 0 || wunit >= npairs)
463 		return -EINVAL;
464 
465 	if (master->pairing && master->pairing->get_info)
466 		return master->pairing->get_info(master, wunit, info);
467 
468 	info->group = 0;
469 	info->pair = wunit;
470 
471 	return 0;
472 }
473 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
474 
475 /**
476  * mtd_pairing_info_to_wunit - get wunit from pairing information
477  * @mtd: pointer to new MTD device info structure
478  * @info: pairing information struct
479  *
480  * Returns a positive number representing the wunit associated to the info
481  * struct, or a negative error code.
482  *
483  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
484  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
485  * doc).
486  *
487  * It can also be used to only program the first page of each pair (i.e.
488  * page attached to group 0), which allows one to use an MLC NAND in
489  * software-emulated SLC mode:
490  *
491  * info.group = 0;
492  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
493  * for (info.pair = 0; info.pair < npairs; info.pair++) {
494  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
495  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
496  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
497  * }
498  */
499 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
500 			      const struct mtd_pairing_info *info)
501 {
502 	struct mtd_info *master = mtd_get_master(mtd);
503 	int ngroups = mtd_pairing_groups(master);
504 	int npairs = mtd_wunit_per_eb(master) / ngroups;
505 
506 	if (!info || info->pair < 0 || info->pair >= npairs ||
507 	    info->group < 0 || info->group >= ngroups)
508 		return -EINVAL;
509 
510 	if (master->pairing && master->pairing->get_wunit)
511 		return mtd->pairing->get_wunit(master, info);
512 
513 	return info->pair;
514 }
515 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
516 
517 /**
518  * mtd_pairing_groups - get the number of pairing groups
519  * @mtd: pointer to new MTD device info structure
520  *
521  * Returns the number of pairing groups.
522  *
523  * This number is usually equal to the number of bits exposed by a single
524  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
525  * to iterate over all pages of a given pair.
526  */
527 int mtd_pairing_groups(struct mtd_info *mtd)
528 {
529 	struct mtd_info *master = mtd_get_master(mtd);
530 
531 	if (!master->pairing || !master->pairing->ngroups)
532 		return 1;
533 
534 	return master->pairing->ngroups;
535 }
536 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
537 
538 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
539 			      void *val, size_t bytes)
540 {
541 	struct mtd_info *mtd = priv;
542 	size_t retlen;
543 	int err;
544 
545 	err = mtd_read(mtd, offset, bytes, &retlen, val);
546 	if (err && err != -EUCLEAN)
547 		return err;
548 
549 	return retlen == bytes ? 0 : -EIO;
550 }
551 
552 static int mtd_nvmem_add(struct mtd_info *mtd)
553 {
554 	struct nvmem_config config = {};
555 
556 	config.id = -1;
557 	config.dev = &mtd->dev;
558 	config.name = mtd->name;
559 	config.owner = THIS_MODULE;
560 	config.reg_read = mtd_nvmem_reg_read;
561 	config.size = mtd->size;
562 	config.word_size = 1;
563 	config.stride = 1;
564 	config.read_only = true;
565 	config.root_only = true;
566 	config.no_of_node = true;
567 	config.priv = mtd;
568 
569 	mtd->nvmem = nvmem_register(&config);
570 	if (IS_ERR(mtd->nvmem)) {
571 		/* Just ignore if there is no NVMEM support in the kernel */
572 		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
573 			mtd->nvmem = NULL;
574 		} else {
575 			dev_err(&mtd->dev, "Failed to register NVMEM device\n");
576 			return PTR_ERR(mtd->nvmem);
577 		}
578 	}
579 
580 	return 0;
581 }
582 
583 /**
584  *	add_mtd_device - register an MTD device
585  *	@mtd: pointer to new MTD device info structure
586  *
587  *	Add a device to the list of MTD devices present in the system, and
588  *	notify each currently active MTD 'user' of its arrival. Returns
589  *	zero on success or non-zero on failure.
590  */
591 
592 int add_mtd_device(struct mtd_info *mtd)
593 {
594 	struct mtd_info *master = mtd_get_master(mtd);
595 	struct mtd_notifier *not;
596 	int i, error;
597 
598 	/*
599 	 * May occur, for instance, on buggy drivers which call
600 	 * mtd_device_parse_register() multiple times on the same master MTD,
601 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
602 	 */
603 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
604 		return -EEXIST;
605 
606 	BUG_ON(mtd->writesize == 0);
607 
608 	/*
609 	 * MTD drivers should implement ->_{write,read}() or
610 	 * ->_{write,read}_oob(), but not both.
611 	 */
612 	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
613 		    (mtd->_read && mtd->_read_oob)))
614 		return -EINVAL;
615 
616 	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
617 		    !(mtd->flags & MTD_NO_ERASE)))
618 		return -EINVAL;
619 
620 	mutex_lock(&mtd_table_mutex);
621 
622 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
623 	if (i < 0) {
624 		error = i;
625 		goto fail_locked;
626 	}
627 
628 	mtd->index = i;
629 	mtd->usecount = 0;
630 
631 	/* default value if not set by driver */
632 	if (mtd->bitflip_threshold == 0)
633 		mtd->bitflip_threshold = mtd->ecc_strength;
634 
635 	if (is_power_of_2(mtd->erasesize))
636 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
637 	else
638 		mtd->erasesize_shift = 0;
639 
640 	if (is_power_of_2(mtd->writesize))
641 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
642 	else
643 		mtd->writesize_shift = 0;
644 
645 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
646 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
647 
648 	/* Some chips always power up locked. Unlock them now */
649 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
650 		error = mtd_unlock(mtd, 0, mtd->size);
651 		if (error && error != -EOPNOTSUPP)
652 			printk(KERN_WARNING
653 			       "%s: unlock failed, writes may not work\n",
654 			       mtd->name);
655 		/* Ignore unlock failures? */
656 		error = 0;
657 	}
658 
659 	/* Caller should have set dev.parent to match the
660 	 * physical device, if appropriate.
661 	 */
662 	mtd->dev.type = &mtd_devtype;
663 	mtd->dev.class = &mtd_class;
664 	mtd->dev.devt = MTD_DEVT(i);
665 	dev_set_name(&mtd->dev, "mtd%d", i);
666 	dev_set_drvdata(&mtd->dev, mtd);
667 	of_node_get(mtd_get_of_node(mtd));
668 	error = device_register(&mtd->dev);
669 	if (error)
670 		goto fail_added;
671 
672 	/* Add the nvmem provider */
673 	error = mtd_nvmem_add(mtd);
674 	if (error)
675 		goto fail_nvmem_add;
676 
677 	mtd_debugfs_populate(mtd);
678 
679 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
680 		      "mtd%dro", i);
681 
682 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
683 	/* No need to get a refcount on the module containing
684 	   the notifier, since we hold the mtd_table_mutex */
685 	list_for_each_entry(not, &mtd_notifiers, list)
686 		not->add(mtd);
687 
688 	mutex_unlock(&mtd_table_mutex);
689 	/* We _know_ we aren't being removed, because
690 	   our caller is still holding us here. So none
691 	   of this try_ nonsense, and no bitching about it
692 	   either. :) */
693 	__module_get(THIS_MODULE);
694 	return 0;
695 
696 fail_nvmem_add:
697 	device_unregister(&mtd->dev);
698 fail_added:
699 	of_node_put(mtd_get_of_node(mtd));
700 	idr_remove(&mtd_idr, i);
701 fail_locked:
702 	mutex_unlock(&mtd_table_mutex);
703 	return error;
704 }
705 
706 /**
707  *	del_mtd_device - unregister an MTD device
708  *	@mtd: pointer to MTD device info structure
709  *
710  *	Remove a device from the list of MTD devices present in the system,
711  *	and notify each currently active MTD 'user' of its departure.
712  *	Returns zero on success or 1 on failure, which currently will happen
713  *	if the requested device does not appear to be present in the list.
714  */
715 
716 int del_mtd_device(struct mtd_info *mtd)
717 {
718 	int ret;
719 	struct mtd_notifier *not;
720 
721 	mutex_lock(&mtd_table_mutex);
722 
723 	debugfs_remove_recursive(mtd->dbg.dfs_dir);
724 
725 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
726 		ret = -ENODEV;
727 		goto out_error;
728 	}
729 
730 	/* No need to get a refcount on the module containing
731 		the notifier, since we hold the mtd_table_mutex */
732 	list_for_each_entry(not, &mtd_notifiers, list)
733 		not->remove(mtd);
734 
735 	if (mtd->usecount) {
736 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
737 		       mtd->index, mtd->name, mtd->usecount);
738 		ret = -EBUSY;
739 	} else {
740 		/* Try to remove the NVMEM provider */
741 		if (mtd->nvmem)
742 			nvmem_unregister(mtd->nvmem);
743 
744 		device_unregister(&mtd->dev);
745 
746 		idr_remove(&mtd_idr, mtd->index);
747 		of_node_put(mtd_get_of_node(mtd));
748 
749 		module_put(THIS_MODULE);
750 		ret = 0;
751 	}
752 
753 out_error:
754 	mutex_unlock(&mtd_table_mutex);
755 	return ret;
756 }
757 
758 /*
759  * Set a few defaults based on the parent devices, if not provided by the
760  * driver
761  */
762 static void mtd_set_dev_defaults(struct mtd_info *mtd)
763 {
764 	if (mtd->dev.parent) {
765 		if (!mtd->owner && mtd->dev.parent->driver)
766 			mtd->owner = mtd->dev.parent->driver->owner;
767 		if (!mtd->name)
768 			mtd->name = dev_name(mtd->dev.parent);
769 	} else {
770 		pr_debug("mtd device won't show a device symlink in sysfs\n");
771 	}
772 
773 	INIT_LIST_HEAD(&mtd->partitions);
774 	mutex_init(&mtd->master.partitions_lock);
775 }
776 
777 /**
778  * mtd_device_parse_register - parse partitions and register an MTD device.
779  *
780  * @mtd: the MTD device to register
781  * @types: the list of MTD partition probes to try, see
782  *         'parse_mtd_partitions()' for more information
783  * @parser_data: MTD partition parser-specific data
784  * @parts: fallback partition information to register, if parsing fails;
785  *         only valid if %nr_parts > %0
786  * @nr_parts: the number of partitions in parts, if zero then the full
787  *            MTD device is registered if no partition info is found
788  *
789  * This function aggregates MTD partitions parsing (done by
790  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
791  * basically follows the most common pattern found in many MTD drivers:
792  *
793  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
794  *   registered first.
795  * * Then It tries to probe partitions on MTD device @mtd using parsers
796  *   specified in @types (if @types is %NULL, then the default list of parsers
797  *   is used, see 'parse_mtd_partitions()' for more information). If none are
798  *   found this functions tries to fallback to information specified in
799  *   @parts/@nr_parts.
800  * * If no partitions were found this function just registers the MTD device
801  *   @mtd and exits.
802  *
803  * Returns zero in case of success and a negative error code in case of failure.
804  */
805 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
806 			      struct mtd_part_parser_data *parser_data,
807 			      const struct mtd_partition *parts,
808 			      int nr_parts)
809 {
810 	int ret;
811 
812 	mtd_set_dev_defaults(mtd);
813 
814 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
815 		ret = add_mtd_device(mtd);
816 		if (ret)
817 			return ret;
818 	}
819 
820 	/* Prefer parsed partitions over driver-provided fallback */
821 	ret = parse_mtd_partitions(mtd, types, parser_data);
822 	if (ret > 0)
823 		ret = 0;
824 	else if (nr_parts)
825 		ret = add_mtd_partitions(mtd, parts, nr_parts);
826 	else if (!device_is_registered(&mtd->dev))
827 		ret = add_mtd_device(mtd);
828 	else
829 		ret = 0;
830 
831 	if (ret)
832 		goto out;
833 
834 	/*
835 	 * FIXME: some drivers unfortunately call this function more than once.
836 	 * So we have to check if we've already assigned the reboot notifier.
837 	 *
838 	 * Generally, we can make multiple calls work for most cases, but it
839 	 * does cause problems with parse_mtd_partitions() above (e.g.,
840 	 * cmdlineparts will register partitions more than once).
841 	 */
842 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
843 		  "MTD already registered\n");
844 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
845 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
846 		register_reboot_notifier(&mtd->reboot_notifier);
847 	}
848 
849 out:
850 	if (ret && device_is_registered(&mtd->dev))
851 		del_mtd_device(mtd);
852 
853 	return ret;
854 }
855 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
856 
857 /**
858  * mtd_device_unregister - unregister an existing MTD device.
859  *
860  * @master: the MTD device to unregister.  This will unregister both the master
861  *          and any partitions if registered.
862  */
863 int mtd_device_unregister(struct mtd_info *master)
864 {
865 	int err;
866 
867 	if (master->_reboot)
868 		unregister_reboot_notifier(&master->reboot_notifier);
869 
870 	err = del_mtd_partitions(master);
871 	if (err)
872 		return err;
873 
874 	if (!device_is_registered(&master->dev))
875 		return 0;
876 
877 	return del_mtd_device(master);
878 }
879 EXPORT_SYMBOL_GPL(mtd_device_unregister);
880 
881 /**
882  *	register_mtd_user - register a 'user' of MTD devices.
883  *	@new: pointer to notifier info structure
884  *
885  *	Registers a pair of callbacks function to be called upon addition
886  *	or removal of MTD devices. Causes the 'add' callback to be immediately
887  *	invoked for each MTD device currently present in the system.
888  */
889 void register_mtd_user (struct mtd_notifier *new)
890 {
891 	struct mtd_info *mtd;
892 
893 	mutex_lock(&mtd_table_mutex);
894 
895 	list_add(&new->list, &mtd_notifiers);
896 
897 	__module_get(THIS_MODULE);
898 
899 	mtd_for_each_device(mtd)
900 		new->add(mtd);
901 
902 	mutex_unlock(&mtd_table_mutex);
903 }
904 EXPORT_SYMBOL_GPL(register_mtd_user);
905 
906 /**
907  *	unregister_mtd_user - unregister a 'user' of MTD devices.
908  *	@old: pointer to notifier info structure
909  *
910  *	Removes a callback function pair from the list of 'users' to be
911  *	notified upon addition or removal of MTD devices. Causes the
912  *	'remove' callback to be immediately invoked for each MTD device
913  *	currently present in the system.
914  */
915 int unregister_mtd_user (struct mtd_notifier *old)
916 {
917 	struct mtd_info *mtd;
918 
919 	mutex_lock(&mtd_table_mutex);
920 
921 	module_put(THIS_MODULE);
922 
923 	mtd_for_each_device(mtd)
924 		old->remove(mtd);
925 
926 	list_del(&old->list);
927 	mutex_unlock(&mtd_table_mutex);
928 	return 0;
929 }
930 EXPORT_SYMBOL_GPL(unregister_mtd_user);
931 
932 /**
933  *	get_mtd_device - obtain a validated handle for an MTD device
934  *	@mtd: last known address of the required MTD device
935  *	@num: internal device number of the required MTD device
936  *
937  *	Given a number and NULL address, return the num'th entry in the device
938  *	table, if any.	Given an address and num == -1, search the device table
939  *	for a device with that address and return if it's still present. Given
940  *	both, return the num'th driver only if its address matches. Return
941  *	error code if not.
942  */
943 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
944 {
945 	struct mtd_info *ret = NULL, *other;
946 	int err = -ENODEV;
947 
948 	mutex_lock(&mtd_table_mutex);
949 
950 	if (num == -1) {
951 		mtd_for_each_device(other) {
952 			if (other == mtd) {
953 				ret = mtd;
954 				break;
955 			}
956 		}
957 	} else if (num >= 0) {
958 		ret = idr_find(&mtd_idr, num);
959 		if (mtd && mtd != ret)
960 			ret = NULL;
961 	}
962 
963 	if (!ret) {
964 		ret = ERR_PTR(err);
965 		goto out;
966 	}
967 
968 	err = __get_mtd_device(ret);
969 	if (err)
970 		ret = ERR_PTR(err);
971 out:
972 	mutex_unlock(&mtd_table_mutex);
973 	return ret;
974 }
975 EXPORT_SYMBOL_GPL(get_mtd_device);
976 
977 
978 int __get_mtd_device(struct mtd_info *mtd)
979 {
980 	struct mtd_info *master = mtd_get_master(mtd);
981 	int err;
982 
983 	if (!try_module_get(master->owner))
984 		return -ENODEV;
985 
986 	if (master->_get_device) {
987 		err = master->_get_device(mtd);
988 
989 		if (err) {
990 			module_put(master->owner);
991 			return err;
992 		}
993 	}
994 
995 	while (mtd->parent) {
996 		mtd->usecount++;
997 		mtd = mtd->parent;
998 	}
999 
1000 	return 0;
1001 }
1002 EXPORT_SYMBOL_GPL(__get_mtd_device);
1003 
1004 /**
1005  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1006  *	device name
1007  *	@name: MTD device name to open
1008  *
1009  * 	This function returns MTD device description structure in case of
1010  * 	success and an error code in case of failure.
1011  */
1012 struct mtd_info *get_mtd_device_nm(const char *name)
1013 {
1014 	int err = -ENODEV;
1015 	struct mtd_info *mtd = NULL, *other;
1016 
1017 	mutex_lock(&mtd_table_mutex);
1018 
1019 	mtd_for_each_device(other) {
1020 		if (!strcmp(name, other->name)) {
1021 			mtd = other;
1022 			break;
1023 		}
1024 	}
1025 
1026 	if (!mtd)
1027 		goto out_unlock;
1028 
1029 	err = __get_mtd_device(mtd);
1030 	if (err)
1031 		goto out_unlock;
1032 
1033 	mutex_unlock(&mtd_table_mutex);
1034 	return mtd;
1035 
1036 out_unlock:
1037 	mutex_unlock(&mtd_table_mutex);
1038 	return ERR_PTR(err);
1039 }
1040 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1041 
1042 void put_mtd_device(struct mtd_info *mtd)
1043 {
1044 	mutex_lock(&mtd_table_mutex);
1045 	__put_mtd_device(mtd);
1046 	mutex_unlock(&mtd_table_mutex);
1047 
1048 }
1049 EXPORT_SYMBOL_GPL(put_mtd_device);
1050 
1051 void __put_mtd_device(struct mtd_info *mtd)
1052 {
1053 	struct mtd_info *master = mtd_get_master(mtd);
1054 
1055 	while (mtd->parent) {
1056 		--mtd->usecount;
1057 		BUG_ON(mtd->usecount < 0);
1058 		mtd = mtd->parent;
1059 	}
1060 
1061 	if (master->_put_device)
1062 		master->_put_device(master);
1063 
1064 	module_put(master->owner);
1065 }
1066 EXPORT_SYMBOL_GPL(__put_mtd_device);
1067 
1068 /*
1069  * Erase is an synchronous operation. Device drivers are epected to return a
1070  * negative error code if the operation failed and update instr->fail_addr
1071  * to point the portion that was not properly erased.
1072  */
1073 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1074 {
1075 	struct mtd_info *master = mtd_get_master(mtd);
1076 	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1077 	int ret;
1078 
1079 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1080 
1081 	if (!mtd->erasesize || !master->_erase)
1082 		return -ENOTSUPP;
1083 
1084 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1085 		return -EINVAL;
1086 	if (!(mtd->flags & MTD_WRITEABLE))
1087 		return -EROFS;
1088 
1089 	if (!instr->len)
1090 		return 0;
1091 
1092 	ledtrig_mtd_activity();
1093 
1094 	instr->addr += mst_ofs;
1095 	ret = master->_erase(master, instr);
1096 	if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
1097 		instr->fail_addr -= mst_ofs;
1098 
1099 	instr->addr -= mst_ofs;
1100 	return ret;
1101 }
1102 EXPORT_SYMBOL_GPL(mtd_erase);
1103 
1104 /*
1105  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1106  */
1107 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1108 	      void **virt, resource_size_t *phys)
1109 {
1110 	struct mtd_info *master = mtd_get_master(mtd);
1111 
1112 	*retlen = 0;
1113 	*virt = NULL;
1114 	if (phys)
1115 		*phys = 0;
1116 	if (!master->_point)
1117 		return -EOPNOTSUPP;
1118 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1119 		return -EINVAL;
1120 	if (!len)
1121 		return 0;
1122 
1123 	from = mtd_get_master_ofs(mtd, from);
1124 	return master->_point(master, from, len, retlen, virt, phys);
1125 }
1126 EXPORT_SYMBOL_GPL(mtd_point);
1127 
1128 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1129 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1130 {
1131 	struct mtd_info *master = mtd_get_master(mtd);
1132 
1133 	if (!master->_unpoint)
1134 		return -EOPNOTSUPP;
1135 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1136 		return -EINVAL;
1137 	if (!len)
1138 		return 0;
1139 	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1140 }
1141 EXPORT_SYMBOL_GPL(mtd_unpoint);
1142 
1143 /*
1144  * Allow NOMMU mmap() to directly map the device (if not NULL)
1145  * - return the address to which the offset maps
1146  * - return -ENOSYS to indicate refusal to do the mapping
1147  */
1148 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1149 				    unsigned long offset, unsigned long flags)
1150 {
1151 	size_t retlen;
1152 	void *virt;
1153 	int ret;
1154 
1155 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1156 	if (ret)
1157 		return ret;
1158 	if (retlen != len) {
1159 		mtd_unpoint(mtd, offset, retlen);
1160 		return -ENOSYS;
1161 	}
1162 	return (unsigned long)virt;
1163 }
1164 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1165 
1166 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1167 				 const struct mtd_ecc_stats *old_stats)
1168 {
1169 	struct mtd_ecc_stats diff;
1170 
1171 	if (master == mtd)
1172 		return;
1173 
1174 	diff = master->ecc_stats;
1175 	diff.failed -= old_stats->failed;
1176 	diff.corrected -= old_stats->corrected;
1177 
1178 	while (mtd->parent) {
1179 		mtd->ecc_stats.failed += diff.failed;
1180 		mtd->ecc_stats.corrected += diff.corrected;
1181 		mtd = mtd->parent;
1182 	}
1183 }
1184 
1185 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1186 	     u_char *buf)
1187 {
1188 	struct mtd_oob_ops ops = {
1189 		.len = len,
1190 		.datbuf = buf,
1191 	};
1192 	int ret;
1193 
1194 	ret = mtd_read_oob(mtd, from, &ops);
1195 	*retlen = ops.retlen;
1196 
1197 	return ret;
1198 }
1199 EXPORT_SYMBOL_GPL(mtd_read);
1200 
1201 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1202 	      const u_char *buf)
1203 {
1204 	struct mtd_oob_ops ops = {
1205 		.len = len,
1206 		.datbuf = (u8 *)buf,
1207 	};
1208 	int ret;
1209 
1210 	ret = mtd_write_oob(mtd, to, &ops);
1211 	*retlen = ops.retlen;
1212 
1213 	return ret;
1214 }
1215 EXPORT_SYMBOL_GPL(mtd_write);
1216 
1217 /*
1218  * In blackbox flight recorder like scenarios we want to make successful writes
1219  * in interrupt context. panic_write() is only intended to be called when its
1220  * known the kernel is about to panic and we need the write to succeed. Since
1221  * the kernel is not going to be running for much longer, this function can
1222  * break locks and delay to ensure the write succeeds (but not sleep).
1223  */
1224 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1225 		    const u_char *buf)
1226 {
1227 	struct mtd_info *master = mtd_get_master(mtd);
1228 
1229 	*retlen = 0;
1230 	if (!master->_panic_write)
1231 		return -EOPNOTSUPP;
1232 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1233 		return -EINVAL;
1234 	if (!(mtd->flags & MTD_WRITEABLE))
1235 		return -EROFS;
1236 	if (!len)
1237 		return 0;
1238 	if (!mtd->oops_panic_write)
1239 		mtd->oops_panic_write = true;
1240 
1241 	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1242 				    retlen, buf);
1243 }
1244 EXPORT_SYMBOL_GPL(mtd_panic_write);
1245 
1246 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1247 			     struct mtd_oob_ops *ops)
1248 {
1249 	/*
1250 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1251 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1252 	 *  this case.
1253 	 */
1254 	if (!ops->datbuf)
1255 		ops->len = 0;
1256 
1257 	if (!ops->oobbuf)
1258 		ops->ooblen = 0;
1259 
1260 	if (offs < 0 || offs + ops->len > mtd->size)
1261 		return -EINVAL;
1262 
1263 	if (ops->ooblen) {
1264 		size_t maxooblen;
1265 
1266 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1267 			return -EINVAL;
1268 
1269 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1270 				      mtd_div_by_ws(offs, mtd)) *
1271 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1272 		if (ops->ooblen > maxooblen)
1273 			return -EINVAL;
1274 	}
1275 
1276 	return 0;
1277 }
1278 
1279 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1280 {
1281 	struct mtd_info *master = mtd_get_master(mtd);
1282 	struct mtd_ecc_stats old_stats = master->ecc_stats;
1283 	int ret_code;
1284 
1285 	ops->retlen = ops->oobretlen = 0;
1286 
1287 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1288 	if (ret_code)
1289 		return ret_code;
1290 
1291 	ledtrig_mtd_activity();
1292 
1293 	/* Check the validity of a potential fallback on mtd->_read */
1294 	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1295 		return -EOPNOTSUPP;
1296 
1297 	from = mtd_get_master_ofs(mtd, from);
1298 	if (master->_read_oob)
1299 		ret_code = master->_read_oob(master, from, ops);
1300 	else
1301 		ret_code = master->_read(master, from, ops->len, &ops->retlen,
1302 					 ops->datbuf);
1303 
1304 	mtd_update_ecc_stats(mtd, master, &old_stats);
1305 
1306 	/*
1307 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1308 	 * similar to mtd->_read(), returning a non-negative integer
1309 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1310 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1311 	 */
1312 	if (unlikely(ret_code < 0))
1313 		return ret_code;
1314 	if (mtd->ecc_strength == 0)
1315 		return 0;	/* device lacks ecc */
1316 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1317 }
1318 EXPORT_SYMBOL_GPL(mtd_read_oob);
1319 
1320 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1321 				struct mtd_oob_ops *ops)
1322 {
1323 	struct mtd_info *master = mtd_get_master(mtd);
1324 	int ret;
1325 
1326 	ops->retlen = ops->oobretlen = 0;
1327 
1328 	if (!(mtd->flags & MTD_WRITEABLE))
1329 		return -EROFS;
1330 
1331 	ret = mtd_check_oob_ops(mtd, to, ops);
1332 	if (ret)
1333 		return ret;
1334 
1335 	ledtrig_mtd_activity();
1336 
1337 	/* Check the validity of a potential fallback on mtd->_write */
1338 	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1339 		return -EOPNOTSUPP;
1340 
1341 	to = mtd_get_master_ofs(mtd, to);
1342 
1343 	if (master->_write_oob)
1344 		return master->_write_oob(master, to, ops);
1345 	else
1346 		return master->_write(master, to, ops->len, &ops->retlen,
1347 				      ops->datbuf);
1348 }
1349 EXPORT_SYMBOL_GPL(mtd_write_oob);
1350 
1351 /**
1352  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1353  * @mtd: MTD device structure
1354  * @section: ECC section. Depending on the layout you may have all the ECC
1355  *	     bytes stored in a single contiguous section, or one section
1356  *	     per ECC chunk (and sometime several sections for a single ECC
1357  *	     ECC chunk)
1358  * @oobecc: OOB region struct filled with the appropriate ECC position
1359  *	    information
1360  *
1361  * This function returns ECC section information in the OOB area. If you want
1362  * to get all the ECC bytes information, then you should call
1363  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1364  *
1365  * Returns zero on success, a negative error code otherwise.
1366  */
1367 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1368 		      struct mtd_oob_region *oobecc)
1369 {
1370 	struct mtd_info *master = mtd_get_master(mtd);
1371 
1372 	memset(oobecc, 0, sizeof(*oobecc));
1373 
1374 	if (!master || section < 0)
1375 		return -EINVAL;
1376 
1377 	if (!master->ooblayout || !master->ooblayout->ecc)
1378 		return -ENOTSUPP;
1379 
1380 	return master->ooblayout->ecc(master, section, oobecc);
1381 }
1382 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1383 
1384 /**
1385  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1386  *			section
1387  * @mtd: MTD device structure
1388  * @section: Free section you are interested in. Depending on the layout
1389  *	     you may have all the free bytes stored in a single contiguous
1390  *	     section, or one section per ECC chunk plus an extra section
1391  *	     for the remaining bytes (or other funky layout).
1392  * @oobfree: OOB region struct filled with the appropriate free position
1393  *	     information
1394  *
1395  * This function returns free bytes position in the OOB area. If you want
1396  * to get all the free bytes information, then you should call
1397  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1398  *
1399  * Returns zero on success, a negative error code otherwise.
1400  */
1401 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1402 		       struct mtd_oob_region *oobfree)
1403 {
1404 	struct mtd_info *master = mtd_get_master(mtd);
1405 
1406 	memset(oobfree, 0, sizeof(*oobfree));
1407 
1408 	if (!master || section < 0)
1409 		return -EINVAL;
1410 
1411 	if (!master->ooblayout || !master->ooblayout->free)
1412 		return -ENOTSUPP;
1413 
1414 	return master->ooblayout->free(master, section, oobfree);
1415 }
1416 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1417 
1418 /**
1419  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1420  * @mtd: mtd info structure
1421  * @byte: the byte we are searching for
1422  * @sectionp: pointer where the section id will be stored
1423  * @oobregion: used to retrieve the ECC position
1424  * @iter: iterator function. Should be either mtd_ooblayout_free or
1425  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1426  *
1427  * This function returns the section id and oobregion information of a
1428  * specific byte. For example, say you want to know where the 4th ECC byte is
1429  * stored, you'll use:
1430  *
1431  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1432  *
1433  * Returns zero on success, a negative error code otherwise.
1434  */
1435 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1436 				int *sectionp, struct mtd_oob_region *oobregion,
1437 				int (*iter)(struct mtd_info *,
1438 					    int section,
1439 					    struct mtd_oob_region *oobregion))
1440 {
1441 	int pos = 0, ret, section = 0;
1442 
1443 	memset(oobregion, 0, sizeof(*oobregion));
1444 
1445 	while (1) {
1446 		ret = iter(mtd, section, oobregion);
1447 		if (ret)
1448 			return ret;
1449 
1450 		if (pos + oobregion->length > byte)
1451 			break;
1452 
1453 		pos += oobregion->length;
1454 		section++;
1455 	}
1456 
1457 	/*
1458 	 * Adjust region info to make it start at the beginning at the
1459 	 * 'start' ECC byte.
1460 	 */
1461 	oobregion->offset += byte - pos;
1462 	oobregion->length -= byte - pos;
1463 	*sectionp = section;
1464 
1465 	return 0;
1466 }
1467 
1468 /**
1469  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1470  *				  ECC byte
1471  * @mtd: mtd info structure
1472  * @eccbyte: the byte we are searching for
1473  * @sectionp: pointer where the section id will be stored
1474  * @oobregion: OOB region information
1475  *
1476  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1477  * byte.
1478  *
1479  * Returns zero on success, a negative error code otherwise.
1480  */
1481 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1482 				 int *section,
1483 				 struct mtd_oob_region *oobregion)
1484 {
1485 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1486 					 mtd_ooblayout_ecc);
1487 }
1488 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1489 
1490 /**
1491  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1492  * @mtd: mtd info structure
1493  * @buf: destination buffer to store OOB bytes
1494  * @oobbuf: OOB buffer
1495  * @start: first byte to retrieve
1496  * @nbytes: number of bytes to retrieve
1497  * @iter: section iterator
1498  *
1499  * Extract bytes attached to a specific category (ECC or free)
1500  * from the OOB buffer and copy them into buf.
1501  *
1502  * Returns zero on success, a negative error code otherwise.
1503  */
1504 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1505 				const u8 *oobbuf, int start, int nbytes,
1506 				int (*iter)(struct mtd_info *,
1507 					    int section,
1508 					    struct mtd_oob_region *oobregion))
1509 {
1510 	struct mtd_oob_region oobregion;
1511 	int section, ret;
1512 
1513 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1514 					&oobregion, iter);
1515 
1516 	while (!ret) {
1517 		int cnt;
1518 
1519 		cnt = min_t(int, nbytes, oobregion.length);
1520 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1521 		buf += cnt;
1522 		nbytes -= cnt;
1523 
1524 		if (!nbytes)
1525 			break;
1526 
1527 		ret = iter(mtd, ++section, &oobregion);
1528 	}
1529 
1530 	return ret;
1531 }
1532 
1533 /**
1534  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1535  * @mtd: mtd info structure
1536  * @buf: source buffer to get OOB bytes from
1537  * @oobbuf: OOB buffer
1538  * @start: first OOB byte to set
1539  * @nbytes: number of OOB bytes to set
1540  * @iter: section iterator
1541  *
1542  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1543  * is selected by passing the appropriate iterator.
1544  *
1545  * Returns zero on success, a negative error code otherwise.
1546  */
1547 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1548 				u8 *oobbuf, int start, int nbytes,
1549 				int (*iter)(struct mtd_info *,
1550 					    int section,
1551 					    struct mtd_oob_region *oobregion))
1552 {
1553 	struct mtd_oob_region oobregion;
1554 	int section, ret;
1555 
1556 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1557 					&oobregion, iter);
1558 
1559 	while (!ret) {
1560 		int cnt;
1561 
1562 		cnt = min_t(int, nbytes, oobregion.length);
1563 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1564 		buf += cnt;
1565 		nbytes -= cnt;
1566 
1567 		if (!nbytes)
1568 			break;
1569 
1570 		ret = iter(mtd, ++section, &oobregion);
1571 	}
1572 
1573 	return ret;
1574 }
1575 
1576 /**
1577  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1578  * @mtd: mtd info structure
1579  * @iter: category iterator
1580  *
1581  * Count the number of bytes in a given category.
1582  *
1583  * Returns a positive value on success, a negative error code otherwise.
1584  */
1585 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1586 				int (*iter)(struct mtd_info *,
1587 					    int section,
1588 					    struct mtd_oob_region *oobregion))
1589 {
1590 	struct mtd_oob_region oobregion;
1591 	int section = 0, ret, nbytes = 0;
1592 
1593 	while (1) {
1594 		ret = iter(mtd, section++, &oobregion);
1595 		if (ret) {
1596 			if (ret == -ERANGE)
1597 				ret = nbytes;
1598 			break;
1599 		}
1600 
1601 		nbytes += oobregion.length;
1602 	}
1603 
1604 	return ret;
1605 }
1606 
1607 /**
1608  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1609  * @mtd: mtd info structure
1610  * @eccbuf: destination buffer to store ECC bytes
1611  * @oobbuf: OOB buffer
1612  * @start: first ECC byte to retrieve
1613  * @nbytes: number of ECC bytes to retrieve
1614  *
1615  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1616  *
1617  * Returns zero on success, a negative error code otherwise.
1618  */
1619 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1620 			       const u8 *oobbuf, int start, int nbytes)
1621 {
1622 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1623 				       mtd_ooblayout_ecc);
1624 }
1625 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1626 
1627 /**
1628  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1629  * @mtd: mtd info structure
1630  * @eccbuf: source buffer to get ECC bytes from
1631  * @oobbuf: OOB buffer
1632  * @start: first ECC byte to set
1633  * @nbytes: number of ECC bytes to set
1634  *
1635  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1636  *
1637  * Returns zero on success, a negative error code otherwise.
1638  */
1639 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1640 			       u8 *oobbuf, int start, int nbytes)
1641 {
1642 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1643 				       mtd_ooblayout_ecc);
1644 }
1645 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1646 
1647 /**
1648  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1649  * @mtd: mtd info structure
1650  * @databuf: destination buffer to store ECC bytes
1651  * @oobbuf: OOB buffer
1652  * @start: first ECC byte to retrieve
1653  * @nbytes: number of ECC bytes to retrieve
1654  *
1655  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1656  *
1657  * Returns zero on success, a negative error code otherwise.
1658  */
1659 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1660 				const u8 *oobbuf, int start, int nbytes)
1661 {
1662 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1663 				       mtd_ooblayout_free);
1664 }
1665 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1666 
1667 /**
1668  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1669  * @mtd: mtd info structure
1670  * @databuf: source buffer to get data bytes from
1671  * @oobbuf: OOB buffer
1672  * @start: first ECC byte to set
1673  * @nbytes: number of ECC bytes to set
1674  *
1675  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1676  *
1677  * Returns zero on success, a negative error code otherwise.
1678  */
1679 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1680 				u8 *oobbuf, int start, int nbytes)
1681 {
1682 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1683 				       mtd_ooblayout_free);
1684 }
1685 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1686 
1687 /**
1688  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1689  * @mtd: mtd info structure
1690  *
1691  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1692  *
1693  * Returns zero on success, a negative error code otherwise.
1694  */
1695 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1696 {
1697 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1698 }
1699 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1700 
1701 /**
1702  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1703  * @mtd: mtd info structure
1704  *
1705  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1706  *
1707  * Returns zero on success, a negative error code otherwise.
1708  */
1709 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1710 {
1711 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1712 }
1713 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1714 
1715 /*
1716  * Method to access the protection register area, present in some flash
1717  * devices. The user data is one time programmable but the factory data is read
1718  * only.
1719  */
1720 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1721 			   struct otp_info *buf)
1722 {
1723 	struct mtd_info *master = mtd_get_master(mtd);
1724 
1725 	if (!master->_get_fact_prot_info)
1726 		return -EOPNOTSUPP;
1727 	if (!len)
1728 		return 0;
1729 	return master->_get_fact_prot_info(master, len, retlen, buf);
1730 }
1731 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1732 
1733 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1734 			   size_t *retlen, u_char *buf)
1735 {
1736 	struct mtd_info *master = mtd_get_master(mtd);
1737 
1738 	*retlen = 0;
1739 	if (!master->_read_fact_prot_reg)
1740 		return -EOPNOTSUPP;
1741 	if (!len)
1742 		return 0;
1743 	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
1744 }
1745 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1746 
1747 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1748 			   struct otp_info *buf)
1749 {
1750 	struct mtd_info *master = mtd_get_master(mtd);
1751 
1752 	if (!master->_get_user_prot_info)
1753 		return -EOPNOTSUPP;
1754 	if (!len)
1755 		return 0;
1756 	return master->_get_user_prot_info(master, len, retlen, buf);
1757 }
1758 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1759 
1760 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1761 			   size_t *retlen, u_char *buf)
1762 {
1763 	struct mtd_info *master = mtd_get_master(mtd);
1764 
1765 	*retlen = 0;
1766 	if (!master->_read_user_prot_reg)
1767 		return -EOPNOTSUPP;
1768 	if (!len)
1769 		return 0;
1770 	return master->_read_user_prot_reg(master, from, len, retlen, buf);
1771 }
1772 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1773 
1774 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1775 			    size_t *retlen, u_char *buf)
1776 {
1777 	struct mtd_info *master = mtd_get_master(mtd);
1778 	int ret;
1779 
1780 	*retlen = 0;
1781 	if (!master->_write_user_prot_reg)
1782 		return -EOPNOTSUPP;
1783 	if (!len)
1784 		return 0;
1785 	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
1786 	if (ret)
1787 		return ret;
1788 
1789 	/*
1790 	 * If no data could be written at all, we are out of memory and
1791 	 * must return -ENOSPC.
1792 	 */
1793 	return (*retlen) ? 0 : -ENOSPC;
1794 }
1795 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1796 
1797 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1798 {
1799 	struct mtd_info *master = mtd_get_master(mtd);
1800 
1801 	if (!master->_lock_user_prot_reg)
1802 		return -EOPNOTSUPP;
1803 	if (!len)
1804 		return 0;
1805 	return master->_lock_user_prot_reg(master, from, len);
1806 }
1807 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1808 
1809 /* Chip-supported device locking */
1810 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1811 {
1812 	struct mtd_info *master = mtd_get_master(mtd);
1813 
1814 	if (!master->_lock)
1815 		return -EOPNOTSUPP;
1816 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1817 		return -EINVAL;
1818 	if (!len)
1819 		return 0;
1820 	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
1821 }
1822 EXPORT_SYMBOL_GPL(mtd_lock);
1823 
1824 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1825 {
1826 	struct mtd_info *master = mtd_get_master(mtd);
1827 
1828 	if (!master->_unlock)
1829 		return -EOPNOTSUPP;
1830 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1831 		return -EINVAL;
1832 	if (!len)
1833 		return 0;
1834 	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
1835 }
1836 EXPORT_SYMBOL_GPL(mtd_unlock);
1837 
1838 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1839 {
1840 	struct mtd_info *master = mtd_get_master(mtd);
1841 
1842 	if (!master->_is_locked)
1843 		return -EOPNOTSUPP;
1844 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1845 		return -EINVAL;
1846 	if (!len)
1847 		return 0;
1848 	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
1849 }
1850 EXPORT_SYMBOL_GPL(mtd_is_locked);
1851 
1852 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1853 {
1854 	struct mtd_info *master = mtd_get_master(mtd);
1855 
1856 	if (ofs < 0 || ofs >= mtd->size)
1857 		return -EINVAL;
1858 	if (!master->_block_isreserved)
1859 		return 0;
1860 	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
1861 }
1862 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1863 
1864 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1865 {
1866 	struct mtd_info *master = mtd_get_master(mtd);
1867 
1868 	if (ofs < 0 || ofs >= mtd->size)
1869 		return -EINVAL;
1870 	if (!master->_block_isbad)
1871 		return 0;
1872 	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
1873 }
1874 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1875 
1876 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1877 {
1878 	struct mtd_info *master = mtd_get_master(mtd);
1879 	int ret;
1880 
1881 	if (!master->_block_markbad)
1882 		return -EOPNOTSUPP;
1883 	if (ofs < 0 || ofs >= mtd->size)
1884 		return -EINVAL;
1885 	if (!(mtd->flags & MTD_WRITEABLE))
1886 		return -EROFS;
1887 
1888 	ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
1889 	if (ret)
1890 		return ret;
1891 
1892 	while (mtd->parent) {
1893 		mtd->ecc_stats.badblocks++;
1894 		mtd = mtd->parent;
1895 	}
1896 
1897 	return 0;
1898 }
1899 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1900 
1901 /*
1902  * default_mtd_writev - the default writev method
1903  * @mtd: mtd device description object pointer
1904  * @vecs: the vectors to write
1905  * @count: count of vectors in @vecs
1906  * @to: the MTD device offset to write to
1907  * @retlen: on exit contains the count of bytes written to the MTD device.
1908  *
1909  * This function returns zero in case of success and a negative error code in
1910  * case of failure.
1911  */
1912 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1913 			      unsigned long count, loff_t to, size_t *retlen)
1914 {
1915 	unsigned long i;
1916 	size_t totlen = 0, thislen;
1917 	int ret = 0;
1918 
1919 	for (i = 0; i < count; i++) {
1920 		if (!vecs[i].iov_len)
1921 			continue;
1922 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1923 				vecs[i].iov_base);
1924 		totlen += thislen;
1925 		if (ret || thislen != vecs[i].iov_len)
1926 			break;
1927 		to += vecs[i].iov_len;
1928 	}
1929 	*retlen = totlen;
1930 	return ret;
1931 }
1932 
1933 /*
1934  * mtd_writev - the vector-based MTD write method
1935  * @mtd: mtd device description object pointer
1936  * @vecs: the vectors to write
1937  * @count: count of vectors in @vecs
1938  * @to: the MTD device offset to write to
1939  * @retlen: on exit contains the count of bytes written to the MTD device.
1940  *
1941  * This function returns zero in case of success and a negative error code in
1942  * case of failure.
1943  */
1944 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1945 	       unsigned long count, loff_t to, size_t *retlen)
1946 {
1947 	struct mtd_info *master = mtd_get_master(mtd);
1948 
1949 	*retlen = 0;
1950 	if (!(mtd->flags & MTD_WRITEABLE))
1951 		return -EROFS;
1952 
1953 	if (!master->_writev)
1954 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1955 
1956 	return master->_writev(master, vecs, count,
1957 			       mtd_get_master_ofs(mtd, to), retlen);
1958 }
1959 EXPORT_SYMBOL_GPL(mtd_writev);
1960 
1961 /**
1962  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1963  * @mtd: mtd device description object pointer
1964  * @size: a pointer to the ideal or maximum size of the allocation, points
1965  *        to the actual allocation size on success.
1966  *
1967  * This routine attempts to allocate a contiguous kernel buffer up to
1968  * the specified size, backing off the size of the request exponentially
1969  * until the request succeeds or until the allocation size falls below
1970  * the system page size. This attempts to make sure it does not adversely
1971  * impact system performance, so when allocating more than one page, we
1972  * ask the memory allocator to avoid re-trying, swapping, writing back
1973  * or performing I/O.
1974  *
1975  * Note, this function also makes sure that the allocated buffer is aligned to
1976  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1977  *
1978  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1979  * to handle smaller (i.e. degraded) buffer allocations under low- or
1980  * fragmented-memory situations where such reduced allocations, from a
1981  * requested ideal, are allowed.
1982  *
1983  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1984  */
1985 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1986 {
1987 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1988 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1989 	void *kbuf;
1990 
1991 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1992 
1993 	while (*size > min_alloc) {
1994 		kbuf = kmalloc(*size, flags);
1995 		if (kbuf)
1996 			return kbuf;
1997 
1998 		*size >>= 1;
1999 		*size = ALIGN(*size, mtd->writesize);
2000 	}
2001 
2002 	/*
2003 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2004 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2005 	 */
2006 	return kmalloc(*size, GFP_KERNEL);
2007 }
2008 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2009 
2010 #ifdef CONFIG_PROC_FS
2011 
2012 /*====================================================================*/
2013 /* Support for /proc/mtd */
2014 
2015 static int mtd_proc_show(struct seq_file *m, void *v)
2016 {
2017 	struct mtd_info *mtd;
2018 
2019 	seq_puts(m, "dev:    size   erasesize  name\n");
2020 	mutex_lock(&mtd_table_mutex);
2021 	mtd_for_each_device(mtd) {
2022 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2023 			   mtd->index, (unsigned long long)mtd->size,
2024 			   mtd->erasesize, mtd->name);
2025 	}
2026 	mutex_unlock(&mtd_table_mutex);
2027 	return 0;
2028 }
2029 #endif /* CONFIG_PROC_FS */
2030 
2031 /*====================================================================*/
2032 /* Init code */
2033 
2034 static struct backing_dev_info * __init mtd_bdi_init(char *name)
2035 {
2036 	struct backing_dev_info *bdi;
2037 	int ret;
2038 
2039 	bdi = bdi_alloc(GFP_KERNEL);
2040 	if (!bdi)
2041 		return ERR_PTR(-ENOMEM);
2042 
2043 	bdi->name = name;
2044 	/*
2045 	 * We put '-0' suffix to the name to get the same name format as we
2046 	 * used to get. Since this is called only once, we get a unique name.
2047 	 */
2048 	ret = bdi_register(bdi, "%.28s-0", name);
2049 	if (ret)
2050 		bdi_put(bdi);
2051 
2052 	return ret ? ERR_PTR(ret) : bdi;
2053 }
2054 
2055 static struct proc_dir_entry *proc_mtd;
2056 
2057 static int __init init_mtd(void)
2058 {
2059 	int ret;
2060 
2061 	ret = class_register(&mtd_class);
2062 	if (ret)
2063 		goto err_reg;
2064 
2065 	mtd_bdi = mtd_bdi_init("mtd");
2066 	if (IS_ERR(mtd_bdi)) {
2067 		ret = PTR_ERR(mtd_bdi);
2068 		goto err_bdi;
2069 	}
2070 
2071 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2072 
2073 	ret = init_mtdchar();
2074 	if (ret)
2075 		goto out_procfs;
2076 
2077 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2078 
2079 	return 0;
2080 
2081 out_procfs:
2082 	if (proc_mtd)
2083 		remove_proc_entry("mtd", NULL);
2084 	bdi_put(mtd_bdi);
2085 err_bdi:
2086 	class_unregister(&mtd_class);
2087 err_reg:
2088 	pr_err("Error registering mtd class or bdi: %d\n", ret);
2089 	return ret;
2090 }
2091 
2092 static void __exit cleanup_mtd(void)
2093 {
2094 	debugfs_remove_recursive(dfs_dir_mtd);
2095 	cleanup_mtdchar();
2096 	if (proc_mtd)
2097 		remove_proc_entry("mtd", NULL);
2098 	class_unregister(&mtd_class);
2099 	bdi_put(mtd_bdi);
2100 	idr_destroy(&mtd_idr);
2101 }
2102 
2103 module_init(init_mtd);
2104 module_exit(cleanup_mtd);
2105 
2106 MODULE_LICENSE("GPL");
2107 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2108 MODULE_DESCRIPTION("Core MTD registration and access routines");
2109