1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Core registration and callback routines for MTD 4 * drivers and users. 5 * 6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 7 * Copyright © 2006 Red Hat UK Limited 8 */ 9 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/ptrace.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/timer.h> 16 #include <linux/major.h> 17 #include <linux/fs.h> 18 #include <linux/err.h> 19 #include <linux/ioctl.h> 20 #include <linux/init.h> 21 #include <linux/of.h> 22 #include <linux/proc_fs.h> 23 #include <linux/idr.h> 24 #include <linux/backing-dev.h> 25 #include <linux/gfp.h> 26 #include <linux/slab.h> 27 #include <linux/reboot.h> 28 #include <linux/leds.h> 29 #include <linux/debugfs.h> 30 #include <linux/nvmem-provider.h> 31 32 #include <linux/mtd/mtd.h> 33 #include <linux/mtd/partitions.h> 34 35 #include "mtdcore.h" 36 37 struct backing_dev_info *mtd_bdi; 38 39 #ifdef CONFIG_PM_SLEEP 40 41 static int mtd_cls_suspend(struct device *dev) 42 { 43 struct mtd_info *mtd = dev_get_drvdata(dev); 44 45 return mtd ? mtd_suspend(mtd) : 0; 46 } 47 48 static int mtd_cls_resume(struct device *dev) 49 { 50 struct mtd_info *mtd = dev_get_drvdata(dev); 51 52 if (mtd) 53 mtd_resume(mtd); 54 return 0; 55 } 56 57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 59 #else 60 #define MTD_CLS_PM_OPS NULL 61 #endif 62 63 static struct class mtd_class = { 64 .name = "mtd", 65 .owner = THIS_MODULE, 66 .pm = MTD_CLS_PM_OPS, 67 }; 68 69 static DEFINE_IDR(mtd_idr); 70 71 /* These are exported solely for the purpose of mtd_blkdevs.c. You 72 should not use them for _anything_ else */ 73 DEFINE_MUTEX(mtd_table_mutex); 74 EXPORT_SYMBOL_GPL(mtd_table_mutex); 75 76 struct mtd_info *__mtd_next_device(int i) 77 { 78 return idr_get_next(&mtd_idr, &i); 79 } 80 EXPORT_SYMBOL_GPL(__mtd_next_device); 81 82 static LIST_HEAD(mtd_notifiers); 83 84 85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 86 87 /* REVISIT once MTD uses the driver model better, whoever allocates 88 * the mtd_info will probably want to use the release() hook... 89 */ 90 static void mtd_release(struct device *dev) 91 { 92 struct mtd_info *mtd = dev_get_drvdata(dev); 93 dev_t index = MTD_DEVT(mtd->index); 94 95 /* remove /dev/mtdXro node */ 96 device_destroy(&mtd_class, index + 1); 97 } 98 99 #define MTD_DEVICE_ATTR_RO(name) \ 100 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL) 101 102 #define MTD_DEVICE_ATTR_RW(name) \ 103 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store) 104 105 static ssize_t mtd_type_show(struct device *dev, 106 struct device_attribute *attr, char *buf) 107 { 108 struct mtd_info *mtd = dev_get_drvdata(dev); 109 char *type; 110 111 switch (mtd->type) { 112 case MTD_ABSENT: 113 type = "absent"; 114 break; 115 case MTD_RAM: 116 type = "ram"; 117 break; 118 case MTD_ROM: 119 type = "rom"; 120 break; 121 case MTD_NORFLASH: 122 type = "nor"; 123 break; 124 case MTD_NANDFLASH: 125 type = "nand"; 126 break; 127 case MTD_DATAFLASH: 128 type = "dataflash"; 129 break; 130 case MTD_UBIVOLUME: 131 type = "ubi"; 132 break; 133 case MTD_MLCNANDFLASH: 134 type = "mlc-nand"; 135 break; 136 default: 137 type = "unknown"; 138 } 139 140 return sysfs_emit(buf, "%s\n", type); 141 } 142 MTD_DEVICE_ATTR_RO(type); 143 144 static ssize_t mtd_flags_show(struct device *dev, 145 struct device_attribute *attr, char *buf) 146 { 147 struct mtd_info *mtd = dev_get_drvdata(dev); 148 149 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags); 150 } 151 MTD_DEVICE_ATTR_RO(flags); 152 153 static ssize_t mtd_size_show(struct device *dev, 154 struct device_attribute *attr, char *buf) 155 { 156 struct mtd_info *mtd = dev_get_drvdata(dev); 157 158 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size); 159 } 160 MTD_DEVICE_ATTR_RO(size); 161 162 static ssize_t mtd_erasesize_show(struct device *dev, 163 struct device_attribute *attr, char *buf) 164 { 165 struct mtd_info *mtd = dev_get_drvdata(dev); 166 167 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize); 168 } 169 MTD_DEVICE_ATTR_RO(erasesize); 170 171 static ssize_t mtd_writesize_show(struct device *dev, 172 struct device_attribute *attr, char *buf) 173 { 174 struct mtd_info *mtd = dev_get_drvdata(dev); 175 176 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize); 177 } 178 MTD_DEVICE_ATTR_RO(writesize); 179 180 static ssize_t mtd_subpagesize_show(struct device *dev, 181 struct device_attribute *attr, char *buf) 182 { 183 struct mtd_info *mtd = dev_get_drvdata(dev); 184 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 185 186 return sysfs_emit(buf, "%u\n", subpagesize); 187 } 188 MTD_DEVICE_ATTR_RO(subpagesize); 189 190 static ssize_t mtd_oobsize_show(struct device *dev, 191 struct device_attribute *attr, char *buf) 192 { 193 struct mtd_info *mtd = dev_get_drvdata(dev); 194 195 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize); 196 } 197 MTD_DEVICE_ATTR_RO(oobsize); 198 199 static ssize_t mtd_oobavail_show(struct device *dev, 200 struct device_attribute *attr, char *buf) 201 { 202 struct mtd_info *mtd = dev_get_drvdata(dev); 203 204 return sysfs_emit(buf, "%u\n", mtd->oobavail); 205 } 206 MTD_DEVICE_ATTR_RO(oobavail); 207 208 static ssize_t mtd_numeraseregions_show(struct device *dev, 209 struct device_attribute *attr, char *buf) 210 { 211 struct mtd_info *mtd = dev_get_drvdata(dev); 212 213 return sysfs_emit(buf, "%u\n", mtd->numeraseregions); 214 } 215 MTD_DEVICE_ATTR_RO(numeraseregions); 216 217 static ssize_t mtd_name_show(struct device *dev, 218 struct device_attribute *attr, char *buf) 219 { 220 struct mtd_info *mtd = dev_get_drvdata(dev); 221 222 return sysfs_emit(buf, "%s\n", mtd->name); 223 } 224 MTD_DEVICE_ATTR_RO(name); 225 226 static ssize_t mtd_ecc_strength_show(struct device *dev, 227 struct device_attribute *attr, char *buf) 228 { 229 struct mtd_info *mtd = dev_get_drvdata(dev); 230 231 return sysfs_emit(buf, "%u\n", mtd->ecc_strength); 232 } 233 MTD_DEVICE_ATTR_RO(ecc_strength); 234 235 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 236 struct device_attribute *attr, 237 char *buf) 238 { 239 struct mtd_info *mtd = dev_get_drvdata(dev); 240 241 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold); 242 } 243 244 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 245 struct device_attribute *attr, 246 const char *buf, size_t count) 247 { 248 struct mtd_info *mtd = dev_get_drvdata(dev); 249 unsigned int bitflip_threshold; 250 int retval; 251 252 retval = kstrtouint(buf, 0, &bitflip_threshold); 253 if (retval) 254 return retval; 255 256 mtd->bitflip_threshold = bitflip_threshold; 257 return count; 258 } 259 MTD_DEVICE_ATTR_RW(bitflip_threshold); 260 261 static ssize_t mtd_ecc_step_size_show(struct device *dev, 262 struct device_attribute *attr, char *buf) 263 { 264 struct mtd_info *mtd = dev_get_drvdata(dev); 265 266 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size); 267 268 } 269 MTD_DEVICE_ATTR_RO(ecc_step_size); 270 271 static ssize_t mtd_corrected_bits_show(struct device *dev, 272 struct device_attribute *attr, char *buf) 273 { 274 struct mtd_info *mtd = dev_get_drvdata(dev); 275 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 276 277 return sysfs_emit(buf, "%u\n", ecc_stats->corrected); 278 } 279 MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */ 280 281 static ssize_t mtd_ecc_failures_show(struct device *dev, 282 struct device_attribute *attr, char *buf) 283 { 284 struct mtd_info *mtd = dev_get_drvdata(dev); 285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 286 287 return sysfs_emit(buf, "%u\n", ecc_stats->failed); 288 } 289 MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */ 290 291 static ssize_t mtd_bad_blocks_show(struct device *dev, 292 struct device_attribute *attr, char *buf) 293 { 294 struct mtd_info *mtd = dev_get_drvdata(dev); 295 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 296 297 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks); 298 } 299 MTD_DEVICE_ATTR_RO(bad_blocks); 300 301 static ssize_t mtd_bbt_blocks_show(struct device *dev, 302 struct device_attribute *attr, char *buf) 303 { 304 struct mtd_info *mtd = dev_get_drvdata(dev); 305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 306 307 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks); 308 } 309 MTD_DEVICE_ATTR_RO(bbt_blocks); 310 311 static struct attribute *mtd_attrs[] = { 312 &dev_attr_type.attr, 313 &dev_attr_flags.attr, 314 &dev_attr_size.attr, 315 &dev_attr_erasesize.attr, 316 &dev_attr_writesize.attr, 317 &dev_attr_subpagesize.attr, 318 &dev_attr_oobsize.attr, 319 &dev_attr_oobavail.attr, 320 &dev_attr_numeraseregions.attr, 321 &dev_attr_name.attr, 322 &dev_attr_ecc_strength.attr, 323 &dev_attr_ecc_step_size.attr, 324 &dev_attr_corrected_bits.attr, 325 &dev_attr_ecc_failures.attr, 326 &dev_attr_bad_blocks.attr, 327 &dev_attr_bbt_blocks.attr, 328 &dev_attr_bitflip_threshold.attr, 329 NULL, 330 }; 331 ATTRIBUTE_GROUPS(mtd); 332 333 static const struct device_type mtd_devtype = { 334 .name = "mtd", 335 .groups = mtd_groups, 336 .release = mtd_release, 337 }; 338 339 static bool mtd_expert_analysis_mode; 340 341 #ifdef CONFIG_DEBUG_FS 342 bool mtd_check_expert_analysis_mode(void) 343 { 344 const char *mtd_expert_analysis_warning = 345 "Bad block checks have been entirely disabled.\n" 346 "This is only reserved for post-mortem forensics and debug purposes.\n" 347 "Never enable this mode if you do not know what you are doing!\n"; 348 349 return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning); 350 } 351 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode); 352 #endif 353 354 static struct dentry *dfs_dir_mtd; 355 356 static void mtd_debugfs_populate(struct mtd_info *mtd) 357 { 358 struct device *dev = &mtd->dev; 359 360 if (IS_ERR_OR_NULL(dfs_dir_mtd)) 361 return; 362 363 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd); 364 } 365 366 #ifndef CONFIG_MMU 367 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 368 { 369 switch (mtd->type) { 370 case MTD_RAM: 371 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 372 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 373 case MTD_ROM: 374 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 375 NOMMU_MAP_READ; 376 default: 377 return NOMMU_MAP_COPY; 378 } 379 } 380 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 381 #endif 382 383 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 384 void *cmd) 385 { 386 struct mtd_info *mtd; 387 388 mtd = container_of(n, struct mtd_info, reboot_notifier); 389 mtd->_reboot(mtd); 390 391 return NOTIFY_DONE; 392 } 393 394 /** 395 * mtd_wunit_to_pairing_info - get pairing information of a wunit 396 * @mtd: pointer to new MTD device info structure 397 * @wunit: write unit we are interested in 398 * @info: returned pairing information 399 * 400 * Retrieve pairing information associated to the wunit. 401 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 402 * paired together, and where programming a page may influence the page it is 403 * paired with. 404 * The notion of page is replaced by the term wunit (write-unit) to stay 405 * consistent with the ->writesize field. 406 * 407 * The @wunit argument can be extracted from an absolute offset using 408 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 409 * to @wunit. 410 * 411 * From the pairing info the MTD user can find all the wunits paired with 412 * @wunit using the following loop: 413 * 414 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 415 * info.pair = i; 416 * mtd_pairing_info_to_wunit(mtd, &info); 417 * ... 418 * } 419 */ 420 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 421 struct mtd_pairing_info *info) 422 { 423 struct mtd_info *master = mtd_get_master(mtd); 424 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master); 425 426 if (wunit < 0 || wunit >= npairs) 427 return -EINVAL; 428 429 if (master->pairing && master->pairing->get_info) 430 return master->pairing->get_info(master, wunit, info); 431 432 info->group = 0; 433 info->pair = wunit; 434 435 return 0; 436 } 437 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 438 439 /** 440 * mtd_pairing_info_to_wunit - get wunit from pairing information 441 * @mtd: pointer to new MTD device info structure 442 * @info: pairing information struct 443 * 444 * Returns a positive number representing the wunit associated to the info 445 * struct, or a negative error code. 446 * 447 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 448 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 449 * doc). 450 * 451 * It can also be used to only program the first page of each pair (i.e. 452 * page attached to group 0), which allows one to use an MLC NAND in 453 * software-emulated SLC mode: 454 * 455 * info.group = 0; 456 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 457 * for (info.pair = 0; info.pair < npairs; info.pair++) { 458 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 459 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 460 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 461 * } 462 */ 463 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 464 const struct mtd_pairing_info *info) 465 { 466 struct mtd_info *master = mtd_get_master(mtd); 467 int ngroups = mtd_pairing_groups(master); 468 int npairs = mtd_wunit_per_eb(master) / ngroups; 469 470 if (!info || info->pair < 0 || info->pair >= npairs || 471 info->group < 0 || info->group >= ngroups) 472 return -EINVAL; 473 474 if (master->pairing && master->pairing->get_wunit) 475 return mtd->pairing->get_wunit(master, info); 476 477 return info->pair; 478 } 479 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 480 481 /** 482 * mtd_pairing_groups - get the number of pairing groups 483 * @mtd: pointer to new MTD device info structure 484 * 485 * Returns the number of pairing groups. 486 * 487 * This number is usually equal to the number of bits exposed by a single 488 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 489 * to iterate over all pages of a given pair. 490 */ 491 int mtd_pairing_groups(struct mtd_info *mtd) 492 { 493 struct mtd_info *master = mtd_get_master(mtd); 494 495 if (!master->pairing || !master->pairing->ngroups) 496 return 1; 497 498 return master->pairing->ngroups; 499 } 500 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 501 502 static int mtd_nvmem_reg_read(void *priv, unsigned int offset, 503 void *val, size_t bytes) 504 { 505 struct mtd_info *mtd = priv; 506 size_t retlen; 507 int err; 508 509 err = mtd_read(mtd, offset, bytes, &retlen, val); 510 if (err && err != -EUCLEAN) 511 return err; 512 513 return retlen == bytes ? 0 : -EIO; 514 } 515 516 static int mtd_nvmem_add(struct mtd_info *mtd) 517 { 518 struct device_node *node = mtd_get_of_node(mtd); 519 struct nvmem_config config = {}; 520 521 config.id = -1; 522 config.dev = &mtd->dev; 523 config.name = dev_name(&mtd->dev); 524 config.owner = THIS_MODULE; 525 config.reg_read = mtd_nvmem_reg_read; 526 config.size = mtd->size; 527 config.word_size = 1; 528 config.stride = 1; 529 config.read_only = true; 530 config.root_only = true; 531 config.ignore_wp = true; 532 config.no_of_node = !of_device_is_compatible(node, "nvmem-cells"); 533 config.priv = mtd; 534 535 mtd->nvmem = nvmem_register(&config); 536 if (IS_ERR(mtd->nvmem)) { 537 /* Just ignore if there is no NVMEM support in the kernel */ 538 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) { 539 mtd->nvmem = NULL; 540 } else { 541 dev_err(&mtd->dev, "Failed to register NVMEM device\n"); 542 return PTR_ERR(mtd->nvmem); 543 } 544 } 545 546 return 0; 547 } 548 549 static void mtd_check_of_node(struct mtd_info *mtd) 550 { 551 struct device_node *partitions, *parent_dn, *mtd_dn = NULL; 552 const char *pname, *prefix = "partition-"; 553 int plen, mtd_name_len, offset, prefix_len; 554 struct mtd_info *parent; 555 bool found = false; 556 557 /* Check if MTD already has a device node */ 558 if (dev_of_node(&mtd->dev)) 559 return; 560 561 /* Check if a partitions node exist */ 562 if (!mtd_is_partition(mtd)) 563 return; 564 parent = mtd->parent; 565 parent_dn = dev_of_node(&parent->dev); 566 if (!parent_dn) 567 return; 568 569 partitions = of_get_child_by_name(parent_dn, "partitions"); 570 if (!partitions) 571 goto exit_parent; 572 573 prefix_len = strlen(prefix); 574 mtd_name_len = strlen(mtd->name); 575 576 /* Search if a partition is defined with the same name */ 577 for_each_child_of_node(partitions, mtd_dn) { 578 offset = 0; 579 580 /* Skip partition with no/wrong prefix */ 581 if (!of_node_name_prefix(mtd_dn, "partition-")) 582 continue; 583 584 /* Label have priority. Check that first */ 585 if (of_property_read_string(mtd_dn, "label", &pname)) { 586 of_property_read_string(mtd_dn, "name", &pname); 587 offset = prefix_len; 588 } 589 590 plen = strlen(pname) - offset; 591 if (plen == mtd_name_len && 592 !strncmp(mtd->name, pname + offset, plen)) { 593 found = true; 594 break; 595 } 596 } 597 598 if (!found) 599 goto exit_partitions; 600 601 /* Set of_node only for nvmem */ 602 if (of_device_is_compatible(mtd_dn, "nvmem-cells")) 603 mtd_set_of_node(mtd, mtd_dn); 604 605 exit_partitions: 606 of_node_put(partitions); 607 exit_parent: 608 of_node_put(parent_dn); 609 } 610 611 /** 612 * add_mtd_device - register an MTD device 613 * @mtd: pointer to new MTD device info structure 614 * 615 * Add a device to the list of MTD devices present in the system, and 616 * notify each currently active MTD 'user' of its arrival. Returns 617 * zero on success or non-zero on failure. 618 */ 619 620 int add_mtd_device(struct mtd_info *mtd) 621 { 622 struct device_node *np = mtd_get_of_node(mtd); 623 struct mtd_info *master = mtd_get_master(mtd); 624 struct mtd_notifier *not; 625 int i, error, ofidx; 626 627 /* 628 * May occur, for instance, on buggy drivers which call 629 * mtd_device_parse_register() multiple times on the same master MTD, 630 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 631 */ 632 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 633 return -EEXIST; 634 635 BUG_ON(mtd->writesize == 0); 636 637 /* 638 * MTD drivers should implement ->_{write,read}() or 639 * ->_{write,read}_oob(), but not both. 640 */ 641 if (WARN_ON((mtd->_write && mtd->_write_oob) || 642 (mtd->_read && mtd->_read_oob))) 643 return -EINVAL; 644 645 if (WARN_ON((!mtd->erasesize || !master->_erase) && 646 !(mtd->flags & MTD_NO_ERASE))) 647 return -EINVAL; 648 649 /* 650 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the 651 * master is an MLC NAND and has a proper pairing scheme defined. 652 * We also reject masters that implement ->_writev() for now, because 653 * NAND controller drivers don't implement this hook, and adding the 654 * SLC -> MLC address/length conversion to this path is useless if we 655 * don't have a user. 656 */ 657 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION && 658 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH || 659 !master->pairing || master->_writev)) 660 return -EINVAL; 661 662 mutex_lock(&mtd_table_mutex); 663 664 ofidx = -1; 665 if (np) 666 ofidx = of_alias_get_id(np, "mtd"); 667 if (ofidx >= 0) 668 i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL); 669 else 670 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 671 if (i < 0) { 672 error = i; 673 goto fail_locked; 674 } 675 676 mtd->index = i; 677 mtd->usecount = 0; 678 679 /* default value if not set by driver */ 680 if (mtd->bitflip_threshold == 0) 681 mtd->bitflip_threshold = mtd->ecc_strength; 682 683 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 684 int ngroups = mtd_pairing_groups(master); 685 686 mtd->erasesize /= ngroups; 687 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) * 688 mtd->erasesize; 689 } 690 691 if (is_power_of_2(mtd->erasesize)) 692 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 693 else 694 mtd->erasesize_shift = 0; 695 696 if (is_power_of_2(mtd->writesize)) 697 mtd->writesize_shift = ffs(mtd->writesize) - 1; 698 else 699 mtd->writesize_shift = 0; 700 701 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 702 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 703 704 /* Some chips always power up locked. Unlock them now */ 705 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 706 error = mtd_unlock(mtd, 0, mtd->size); 707 if (error && error != -EOPNOTSUPP) 708 printk(KERN_WARNING 709 "%s: unlock failed, writes may not work\n", 710 mtd->name); 711 /* Ignore unlock failures? */ 712 error = 0; 713 } 714 715 /* Caller should have set dev.parent to match the 716 * physical device, if appropriate. 717 */ 718 mtd->dev.type = &mtd_devtype; 719 mtd->dev.class = &mtd_class; 720 mtd->dev.devt = MTD_DEVT(i); 721 dev_set_name(&mtd->dev, "mtd%d", i); 722 dev_set_drvdata(&mtd->dev, mtd); 723 mtd_check_of_node(mtd); 724 of_node_get(mtd_get_of_node(mtd)); 725 error = device_register(&mtd->dev); 726 if (error) 727 goto fail_added; 728 729 /* Add the nvmem provider */ 730 error = mtd_nvmem_add(mtd); 731 if (error) 732 goto fail_nvmem_add; 733 734 mtd_debugfs_populate(mtd); 735 736 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 737 "mtd%dro", i); 738 739 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 740 /* No need to get a refcount on the module containing 741 the notifier, since we hold the mtd_table_mutex */ 742 list_for_each_entry(not, &mtd_notifiers, list) 743 not->add(mtd); 744 745 mutex_unlock(&mtd_table_mutex); 746 /* We _know_ we aren't being removed, because 747 our caller is still holding us here. So none 748 of this try_ nonsense, and no bitching about it 749 either. :) */ 750 __module_get(THIS_MODULE); 751 return 0; 752 753 fail_nvmem_add: 754 device_unregister(&mtd->dev); 755 fail_added: 756 of_node_put(mtd_get_of_node(mtd)); 757 idr_remove(&mtd_idr, i); 758 fail_locked: 759 mutex_unlock(&mtd_table_mutex); 760 return error; 761 } 762 763 /** 764 * del_mtd_device - unregister an MTD device 765 * @mtd: pointer to MTD device info structure 766 * 767 * Remove a device from the list of MTD devices present in the system, 768 * and notify each currently active MTD 'user' of its departure. 769 * Returns zero on success or 1 on failure, which currently will happen 770 * if the requested device does not appear to be present in the list. 771 */ 772 773 int del_mtd_device(struct mtd_info *mtd) 774 { 775 int ret; 776 struct mtd_notifier *not; 777 778 mutex_lock(&mtd_table_mutex); 779 780 if (idr_find(&mtd_idr, mtd->index) != mtd) { 781 ret = -ENODEV; 782 goto out_error; 783 } 784 785 /* No need to get a refcount on the module containing 786 the notifier, since we hold the mtd_table_mutex */ 787 list_for_each_entry(not, &mtd_notifiers, list) 788 not->remove(mtd); 789 790 if (mtd->usecount) { 791 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 792 mtd->index, mtd->name, mtd->usecount); 793 ret = -EBUSY; 794 } else { 795 debugfs_remove_recursive(mtd->dbg.dfs_dir); 796 797 /* Try to remove the NVMEM provider */ 798 nvmem_unregister(mtd->nvmem); 799 800 device_unregister(&mtd->dev); 801 802 /* Clear dev so mtd can be safely re-registered later if desired */ 803 memset(&mtd->dev, 0, sizeof(mtd->dev)); 804 805 idr_remove(&mtd_idr, mtd->index); 806 of_node_put(mtd_get_of_node(mtd)); 807 808 module_put(THIS_MODULE); 809 ret = 0; 810 } 811 812 out_error: 813 mutex_unlock(&mtd_table_mutex); 814 return ret; 815 } 816 817 /* 818 * Set a few defaults based on the parent devices, if not provided by the 819 * driver 820 */ 821 static void mtd_set_dev_defaults(struct mtd_info *mtd) 822 { 823 if (mtd->dev.parent) { 824 if (!mtd->owner && mtd->dev.parent->driver) 825 mtd->owner = mtd->dev.parent->driver->owner; 826 if (!mtd->name) 827 mtd->name = dev_name(mtd->dev.parent); 828 } else { 829 pr_debug("mtd device won't show a device symlink in sysfs\n"); 830 } 831 832 INIT_LIST_HEAD(&mtd->partitions); 833 mutex_init(&mtd->master.partitions_lock); 834 mutex_init(&mtd->master.chrdev_lock); 835 } 836 837 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user) 838 { 839 struct otp_info *info; 840 ssize_t size = 0; 841 unsigned int i; 842 size_t retlen; 843 int ret; 844 845 info = kmalloc(PAGE_SIZE, GFP_KERNEL); 846 if (!info) 847 return -ENOMEM; 848 849 if (is_user) 850 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info); 851 else 852 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info); 853 if (ret) 854 goto err; 855 856 for (i = 0; i < retlen / sizeof(*info); i++) 857 size += info[i].length; 858 859 kfree(info); 860 return size; 861 862 err: 863 kfree(info); 864 865 /* ENODATA means there is no OTP region. */ 866 return ret == -ENODATA ? 0 : ret; 867 } 868 869 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd, 870 const char *compatible, 871 int size, 872 nvmem_reg_read_t reg_read) 873 { 874 struct nvmem_device *nvmem = NULL; 875 struct nvmem_config config = {}; 876 struct device_node *np; 877 878 /* DT binding is optional */ 879 np = of_get_compatible_child(mtd->dev.of_node, compatible); 880 881 /* OTP nvmem will be registered on the physical device */ 882 config.dev = mtd->dev.parent; 883 config.name = kasprintf(GFP_KERNEL, "%s-%s", dev_name(&mtd->dev), compatible); 884 config.id = NVMEM_DEVID_NONE; 885 config.owner = THIS_MODULE; 886 config.type = NVMEM_TYPE_OTP; 887 config.root_only = true; 888 config.ignore_wp = true; 889 config.reg_read = reg_read; 890 config.size = size; 891 config.of_node = np; 892 config.priv = mtd; 893 894 nvmem = nvmem_register(&config); 895 /* Just ignore if there is no NVMEM support in the kernel */ 896 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP) 897 nvmem = NULL; 898 899 of_node_put(np); 900 kfree(config.name); 901 902 return nvmem; 903 } 904 905 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset, 906 void *val, size_t bytes) 907 { 908 struct mtd_info *mtd = priv; 909 size_t retlen; 910 int ret; 911 912 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val); 913 if (ret) 914 return ret; 915 916 return retlen == bytes ? 0 : -EIO; 917 } 918 919 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset, 920 void *val, size_t bytes) 921 { 922 struct mtd_info *mtd = priv; 923 size_t retlen; 924 int ret; 925 926 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val); 927 if (ret) 928 return ret; 929 930 return retlen == bytes ? 0 : -EIO; 931 } 932 933 static int mtd_otp_nvmem_add(struct mtd_info *mtd) 934 { 935 struct nvmem_device *nvmem; 936 ssize_t size; 937 int err; 938 939 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) { 940 size = mtd_otp_size(mtd, true); 941 if (size < 0) 942 return size; 943 944 if (size > 0) { 945 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size, 946 mtd_nvmem_user_otp_reg_read); 947 if (IS_ERR(nvmem)) { 948 dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n"); 949 return PTR_ERR(nvmem); 950 } 951 mtd->otp_user_nvmem = nvmem; 952 } 953 } 954 955 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) { 956 size = mtd_otp_size(mtd, false); 957 if (size < 0) { 958 err = size; 959 goto err; 960 } 961 962 if (size > 0) { 963 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size, 964 mtd_nvmem_fact_otp_reg_read); 965 if (IS_ERR(nvmem)) { 966 dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n"); 967 err = PTR_ERR(nvmem); 968 goto err; 969 } 970 mtd->otp_factory_nvmem = nvmem; 971 } 972 } 973 974 return 0; 975 976 err: 977 nvmem_unregister(mtd->otp_user_nvmem); 978 return err; 979 } 980 981 /** 982 * mtd_device_parse_register - parse partitions and register an MTD device. 983 * 984 * @mtd: the MTD device to register 985 * @types: the list of MTD partition probes to try, see 986 * 'parse_mtd_partitions()' for more information 987 * @parser_data: MTD partition parser-specific data 988 * @parts: fallback partition information to register, if parsing fails; 989 * only valid if %nr_parts > %0 990 * @nr_parts: the number of partitions in parts, if zero then the full 991 * MTD device is registered if no partition info is found 992 * 993 * This function aggregates MTD partitions parsing (done by 994 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 995 * basically follows the most common pattern found in many MTD drivers: 996 * 997 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is 998 * registered first. 999 * * Then It tries to probe partitions on MTD device @mtd using parsers 1000 * specified in @types (if @types is %NULL, then the default list of parsers 1001 * is used, see 'parse_mtd_partitions()' for more information). If none are 1002 * found this functions tries to fallback to information specified in 1003 * @parts/@nr_parts. 1004 * * If no partitions were found this function just registers the MTD device 1005 * @mtd and exits. 1006 * 1007 * Returns zero in case of success and a negative error code in case of failure. 1008 */ 1009 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 1010 struct mtd_part_parser_data *parser_data, 1011 const struct mtd_partition *parts, 1012 int nr_parts) 1013 { 1014 int ret; 1015 1016 mtd_set_dev_defaults(mtd); 1017 1018 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 1019 ret = add_mtd_device(mtd); 1020 if (ret) 1021 return ret; 1022 } 1023 1024 /* Prefer parsed partitions over driver-provided fallback */ 1025 ret = parse_mtd_partitions(mtd, types, parser_data); 1026 if (ret == -EPROBE_DEFER) 1027 goto out; 1028 1029 if (ret > 0) 1030 ret = 0; 1031 else if (nr_parts) 1032 ret = add_mtd_partitions(mtd, parts, nr_parts); 1033 else if (!device_is_registered(&mtd->dev)) 1034 ret = add_mtd_device(mtd); 1035 else 1036 ret = 0; 1037 1038 if (ret) 1039 goto out; 1040 1041 /* 1042 * FIXME: some drivers unfortunately call this function more than once. 1043 * So we have to check if we've already assigned the reboot notifier. 1044 * 1045 * Generally, we can make multiple calls work for most cases, but it 1046 * does cause problems with parse_mtd_partitions() above (e.g., 1047 * cmdlineparts will register partitions more than once). 1048 */ 1049 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 1050 "MTD already registered\n"); 1051 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 1052 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 1053 register_reboot_notifier(&mtd->reboot_notifier); 1054 } 1055 1056 ret = mtd_otp_nvmem_add(mtd); 1057 1058 out: 1059 if (ret && device_is_registered(&mtd->dev)) 1060 del_mtd_device(mtd); 1061 1062 return ret; 1063 } 1064 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 1065 1066 /** 1067 * mtd_device_unregister - unregister an existing MTD device. 1068 * 1069 * @master: the MTD device to unregister. This will unregister both the master 1070 * and any partitions if registered. 1071 */ 1072 int mtd_device_unregister(struct mtd_info *master) 1073 { 1074 int err; 1075 1076 if (master->_reboot) { 1077 unregister_reboot_notifier(&master->reboot_notifier); 1078 memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier)); 1079 } 1080 1081 nvmem_unregister(master->otp_user_nvmem); 1082 nvmem_unregister(master->otp_factory_nvmem); 1083 1084 err = del_mtd_partitions(master); 1085 if (err) 1086 return err; 1087 1088 if (!device_is_registered(&master->dev)) 1089 return 0; 1090 1091 return del_mtd_device(master); 1092 } 1093 EXPORT_SYMBOL_GPL(mtd_device_unregister); 1094 1095 /** 1096 * register_mtd_user - register a 'user' of MTD devices. 1097 * @new: pointer to notifier info structure 1098 * 1099 * Registers a pair of callbacks function to be called upon addition 1100 * or removal of MTD devices. Causes the 'add' callback to be immediately 1101 * invoked for each MTD device currently present in the system. 1102 */ 1103 void register_mtd_user (struct mtd_notifier *new) 1104 { 1105 struct mtd_info *mtd; 1106 1107 mutex_lock(&mtd_table_mutex); 1108 1109 list_add(&new->list, &mtd_notifiers); 1110 1111 __module_get(THIS_MODULE); 1112 1113 mtd_for_each_device(mtd) 1114 new->add(mtd); 1115 1116 mutex_unlock(&mtd_table_mutex); 1117 } 1118 EXPORT_SYMBOL_GPL(register_mtd_user); 1119 1120 /** 1121 * unregister_mtd_user - unregister a 'user' of MTD devices. 1122 * @old: pointer to notifier info structure 1123 * 1124 * Removes a callback function pair from the list of 'users' to be 1125 * notified upon addition or removal of MTD devices. Causes the 1126 * 'remove' callback to be immediately invoked for each MTD device 1127 * currently present in the system. 1128 */ 1129 int unregister_mtd_user (struct mtd_notifier *old) 1130 { 1131 struct mtd_info *mtd; 1132 1133 mutex_lock(&mtd_table_mutex); 1134 1135 module_put(THIS_MODULE); 1136 1137 mtd_for_each_device(mtd) 1138 old->remove(mtd); 1139 1140 list_del(&old->list); 1141 mutex_unlock(&mtd_table_mutex); 1142 return 0; 1143 } 1144 EXPORT_SYMBOL_GPL(unregister_mtd_user); 1145 1146 /** 1147 * get_mtd_device - obtain a validated handle for an MTD device 1148 * @mtd: last known address of the required MTD device 1149 * @num: internal device number of the required MTD device 1150 * 1151 * Given a number and NULL address, return the num'th entry in the device 1152 * table, if any. Given an address and num == -1, search the device table 1153 * for a device with that address and return if it's still present. Given 1154 * both, return the num'th driver only if its address matches. Return 1155 * error code if not. 1156 */ 1157 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 1158 { 1159 struct mtd_info *ret = NULL, *other; 1160 int err = -ENODEV; 1161 1162 mutex_lock(&mtd_table_mutex); 1163 1164 if (num == -1) { 1165 mtd_for_each_device(other) { 1166 if (other == mtd) { 1167 ret = mtd; 1168 break; 1169 } 1170 } 1171 } else if (num >= 0) { 1172 ret = idr_find(&mtd_idr, num); 1173 if (mtd && mtd != ret) 1174 ret = NULL; 1175 } 1176 1177 if (!ret) { 1178 ret = ERR_PTR(err); 1179 goto out; 1180 } 1181 1182 err = __get_mtd_device(ret); 1183 if (err) 1184 ret = ERR_PTR(err); 1185 out: 1186 mutex_unlock(&mtd_table_mutex); 1187 return ret; 1188 } 1189 EXPORT_SYMBOL_GPL(get_mtd_device); 1190 1191 1192 int __get_mtd_device(struct mtd_info *mtd) 1193 { 1194 struct mtd_info *master = mtd_get_master(mtd); 1195 int err; 1196 1197 if (!try_module_get(master->owner)) 1198 return -ENODEV; 1199 1200 if (master->_get_device) { 1201 err = master->_get_device(mtd); 1202 1203 if (err) { 1204 module_put(master->owner); 1205 return err; 1206 } 1207 } 1208 1209 master->usecount++; 1210 1211 while (mtd->parent) { 1212 mtd->usecount++; 1213 mtd = mtd->parent; 1214 } 1215 1216 return 0; 1217 } 1218 EXPORT_SYMBOL_GPL(__get_mtd_device); 1219 1220 /** 1221 * of_get_mtd_device_by_node - obtain an MTD device associated with a given node 1222 * 1223 * @np: device tree node 1224 */ 1225 struct mtd_info *of_get_mtd_device_by_node(struct device_node *np) 1226 { 1227 struct mtd_info *mtd = NULL; 1228 struct mtd_info *tmp; 1229 int err; 1230 1231 mutex_lock(&mtd_table_mutex); 1232 1233 err = -EPROBE_DEFER; 1234 mtd_for_each_device(tmp) { 1235 if (mtd_get_of_node(tmp) == np) { 1236 mtd = tmp; 1237 err = __get_mtd_device(mtd); 1238 break; 1239 } 1240 } 1241 1242 mutex_unlock(&mtd_table_mutex); 1243 1244 return err ? ERR_PTR(err) : mtd; 1245 } 1246 EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node); 1247 1248 /** 1249 * get_mtd_device_nm - obtain a validated handle for an MTD device by 1250 * device name 1251 * @name: MTD device name to open 1252 * 1253 * This function returns MTD device description structure in case of 1254 * success and an error code in case of failure. 1255 */ 1256 struct mtd_info *get_mtd_device_nm(const char *name) 1257 { 1258 int err = -ENODEV; 1259 struct mtd_info *mtd = NULL, *other; 1260 1261 mutex_lock(&mtd_table_mutex); 1262 1263 mtd_for_each_device(other) { 1264 if (!strcmp(name, other->name)) { 1265 mtd = other; 1266 break; 1267 } 1268 } 1269 1270 if (!mtd) 1271 goto out_unlock; 1272 1273 err = __get_mtd_device(mtd); 1274 if (err) 1275 goto out_unlock; 1276 1277 mutex_unlock(&mtd_table_mutex); 1278 return mtd; 1279 1280 out_unlock: 1281 mutex_unlock(&mtd_table_mutex); 1282 return ERR_PTR(err); 1283 } 1284 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 1285 1286 void put_mtd_device(struct mtd_info *mtd) 1287 { 1288 mutex_lock(&mtd_table_mutex); 1289 __put_mtd_device(mtd); 1290 mutex_unlock(&mtd_table_mutex); 1291 1292 } 1293 EXPORT_SYMBOL_GPL(put_mtd_device); 1294 1295 void __put_mtd_device(struct mtd_info *mtd) 1296 { 1297 struct mtd_info *master = mtd_get_master(mtd); 1298 1299 while (mtd->parent) { 1300 --mtd->usecount; 1301 BUG_ON(mtd->usecount < 0); 1302 mtd = mtd->parent; 1303 } 1304 1305 master->usecount--; 1306 1307 if (master->_put_device) 1308 master->_put_device(master); 1309 1310 module_put(master->owner); 1311 } 1312 EXPORT_SYMBOL_GPL(__put_mtd_device); 1313 1314 /* 1315 * Erase is an synchronous operation. Device drivers are epected to return a 1316 * negative error code if the operation failed and update instr->fail_addr 1317 * to point the portion that was not properly erased. 1318 */ 1319 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 1320 { 1321 struct mtd_info *master = mtd_get_master(mtd); 1322 u64 mst_ofs = mtd_get_master_ofs(mtd, 0); 1323 struct erase_info adjinstr; 1324 int ret; 1325 1326 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 1327 adjinstr = *instr; 1328 1329 if (!mtd->erasesize || !master->_erase) 1330 return -ENOTSUPP; 1331 1332 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 1333 return -EINVAL; 1334 if (!(mtd->flags & MTD_WRITEABLE)) 1335 return -EROFS; 1336 1337 if (!instr->len) 1338 return 0; 1339 1340 ledtrig_mtd_activity(); 1341 1342 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1343 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) * 1344 master->erasesize; 1345 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) * 1346 master->erasesize) - 1347 adjinstr.addr; 1348 } 1349 1350 adjinstr.addr += mst_ofs; 1351 1352 ret = master->_erase(master, &adjinstr); 1353 1354 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) { 1355 instr->fail_addr = adjinstr.fail_addr - mst_ofs; 1356 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1357 instr->fail_addr = mtd_div_by_eb(instr->fail_addr, 1358 master); 1359 instr->fail_addr *= mtd->erasesize; 1360 } 1361 } 1362 1363 return ret; 1364 } 1365 EXPORT_SYMBOL_GPL(mtd_erase); 1366 1367 /* 1368 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 1369 */ 1370 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1371 void **virt, resource_size_t *phys) 1372 { 1373 struct mtd_info *master = mtd_get_master(mtd); 1374 1375 *retlen = 0; 1376 *virt = NULL; 1377 if (phys) 1378 *phys = 0; 1379 if (!master->_point) 1380 return -EOPNOTSUPP; 1381 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1382 return -EINVAL; 1383 if (!len) 1384 return 0; 1385 1386 from = mtd_get_master_ofs(mtd, from); 1387 return master->_point(master, from, len, retlen, virt, phys); 1388 } 1389 EXPORT_SYMBOL_GPL(mtd_point); 1390 1391 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 1392 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1393 { 1394 struct mtd_info *master = mtd_get_master(mtd); 1395 1396 if (!master->_unpoint) 1397 return -EOPNOTSUPP; 1398 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1399 return -EINVAL; 1400 if (!len) 1401 return 0; 1402 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len); 1403 } 1404 EXPORT_SYMBOL_GPL(mtd_unpoint); 1405 1406 /* 1407 * Allow NOMMU mmap() to directly map the device (if not NULL) 1408 * - return the address to which the offset maps 1409 * - return -ENOSYS to indicate refusal to do the mapping 1410 */ 1411 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1412 unsigned long offset, unsigned long flags) 1413 { 1414 size_t retlen; 1415 void *virt; 1416 int ret; 1417 1418 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); 1419 if (ret) 1420 return ret; 1421 if (retlen != len) { 1422 mtd_unpoint(mtd, offset, retlen); 1423 return -ENOSYS; 1424 } 1425 return (unsigned long)virt; 1426 } 1427 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1428 1429 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master, 1430 const struct mtd_ecc_stats *old_stats) 1431 { 1432 struct mtd_ecc_stats diff; 1433 1434 if (master == mtd) 1435 return; 1436 1437 diff = master->ecc_stats; 1438 diff.failed -= old_stats->failed; 1439 diff.corrected -= old_stats->corrected; 1440 1441 while (mtd->parent) { 1442 mtd->ecc_stats.failed += diff.failed; 1443 mtd->ecc_stats.corrected += diff.corrected; 1444 mtd = mtd->parent; 1445 } 1446 } 1447 1448 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1449 u_char *buf) 1450 { 1451 struct mtd_oob_ops ops = { 1452 .len = len, 1453 .datbuf = buf, 1454 }; 1455 int ret; 1456 1457 ret = mtd_read_oob(mtd, from, &ops); 1458 *retlen = ops.retlen; 1459 1460 return ret; 1461 } 1462 EXPORT_SYMBOL_GPL(mtd_read); 1463 1464 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1465 const u_char *buf) 1466 { 1467 struct mtd_oob_ops ops = { 1468 .len = len, 1469 .datbuf = (u8 *)buf, 1470 }; 1471 int ret; 1472 1473 ret = mtd_write_oob(mtd, to, &ops); 1474 *retlen = ops.retlen; 1475 1476 return ret; 1477 } 1478 EXPORT_SYMBOL_GPL(mtd_write); 1479 1480 /* 1481 * In blackbox flight recorder like scenarios we want to make successful writes 1482 * in interrupt context. panic_write() is only intended to be called when its 1483 * known the kernel is about to panic and we need the write to succeed. Since 1484 * the kernel is not going to be running for much longer, this function can 1485 * break locks and delay to ensure the write succeeds (but not sleep). 1486 */ 1487 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1488 const u_char *buf) 1489 { 1490 struct mtd_info *master = mtd_get_master(mtd); 1491 1492 *retlen = 0; 1493 if (!master->_panic_write) 1494 return -EOPNOTSUPP; 1495 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1496 return -EINVAL; 1497 if (!(mtd->flags & MTD_WRITEABLE)) 1498 return -EROFS; 1499 if (!len) 1500 return 0; 1501 if (!master->oops_panic_write) 1502 master->oops_panic_write = true; 1503 1504 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len, 1505 retlen, buf); 1506 } 1507 EXPORT_SYMBOL_GPL(mtd_panic_write); 1508 1509 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1510 struct mtd_oob_ops *ops) 1511 { 1512 /* 1513 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1514 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1515 * this case. 1516 */ 1517 if (!ops->datbuf) 1518 ops->len = 0; 1519 1520 if (!ops->oobbuf) 1521 ops->ooblen = 0; 1522 1523 if (offs < 0 || offs + ops->len > mtd->size) 1524 return -EINVAL; 1525 1526 if (ops->ooblen) { 1527 size_t maxooblen; 1528 1529 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1530 return -EINVAL; 1531 1532 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) - 1533 mtd_div_by_ws(offs, mtd)) * 1534 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1535 if (ops->ooblen > maxooblen) 1536 return -EINVAL; 1537 } 1538 1539 return 0; 1540 } 1541 1542 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from, 1543 struct mtd_oob_ops *ops) 1544 { 1545 struct mtd_info *master = mtd_get_master(mtd); 1546 int ret; 1547 1548 from = mtd_get_master_ofs(mtd, from); 1549 if (master->_read_oob) 1550 ret = master->_read_oob(master, from, ops); 1551 else 1552 ret = master->_read(master, from, ops->len, &ops->retlen, 1553 ops->datbuf); 1554 1555 return ret; 1556 } 1557 1558 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to, 1559 struct mtd_oob_ops *ops) 1560 { 1561 struct mtd_info *master = mtd_get_master(mtd); 1562 int ret; 1563 1564 to = mtd_get_master_ofs(mtd, to); 1565 if (master->_write_oob) 1566 ret = master->_write_oob(master, to, ops); 1567 else 1568 ret = master->_write(master, to, ops->len, &ops->retlen, 1569 ops->datbuf); 1570 1571 return ret; 1572 } 1573 1574 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read, 1575 struct mtd_oob_ops *ops) 1576 { 1577 struct mtd_info *master = mtd_get_master(mtd); 1578 int ngroups = mtd_pairing_groups(master); 1579 int npairs = mtd_wunit_per_eb(master) / ngroups; 1580 struct mtd_oob_ops adjops = *ops; 1581 unsigned int wunit, oobavail; 1582 struct mtd_pairing_info info; 1583 int max_bitflips = 0; 1584 u32 ebofs, pageofs; 1585 loff_t base, pos; 1586 1587 ebofs = mtd_mod_by_eb(start, mtd); 1588 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize; 1589 info.group = 0; 1590 info.pair = mtd_div_by_ws(ebofs, mtd); 1591 pageofs = mtd_mod_by_ws(ebofs, mtd); 1592 oobavail = mtd_oobavail(mtd, ops); 1593 1594 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) { 1595 int ret; 1596 1597 if (info.pair >= npairs) { 1598 info.pair = 0; 1599 base += master->erasesize; 1600 } 1601 1602 wunit = mtd_pairing_info_to_wunit(master, &info); 1603 pos = mtd_wunit_to_offset(mtd, base, wunit); 1604 1605 adjops.len = ops->len - ops->retlen; 1606 if (adjops.len > mtd->writesize - pageofs) 1607 adjops.len = mtd->writesize - pageofs; 1608 1609 adjops.ooblen = ops->ooblen - ops->oobretlen; 1610 if (adjops.ooblen > oobavail - adjops.ooboffs) 1611 adjops.ooblen = oobavail - adjops.ooboffs; 1612 1613 if (read) { 1614 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops); 1615 if (ret > 0) 1616 max_bitflips = max(max_bitflips, ret); 1617 } else { 1618 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops); 1619 } 1620 1621 if (ret < 0) 1622 return ret; 1623 1624 max_bitflips = max(max_bitflips, ret); 1625 ops->retlen += adjops.retlen; 1626 ops->oobretlen += adjops.oobretlen; 1627 adjops.datbuf += adjops.retlen; 1628 adjops.oobbuf += adjops.oobretlen; 1629 adjops.ooboffs = 0; 1630 pageofs = 0; 1631 info.pair++; 1632 } 1633 1634 return max_bitflips; 1635 } 1636 1637 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1638 { 1639 struct mtd_info *master = mtd_get_master(mtd); 1640 struct mtd_ecc_stats old_stats = master->ecc_stats; 1641 int ret_code; 1642 1643 ops->retlen = ops->oobretlen = 0; 1644 1645 ret_code = mtd_check_oob_ops(mtd, from, ops); 1646 if (ret_code) 1647 return ret_code; 1648 1649 ledtrig_mtd_activity(); 1650 1651 /* Check the validity of a potential fallback on mtd->_read */ 1652 if (!master->_read_oob && (!master->_read || ops->oobbuf)) 1653 return -EOPNOTSUPP; 1654 1655 if (ops->stats) 1656 memset(ops->stats, 0, sizeof(*ops->stats)); 1657 1658 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1659 ret_code = mtd_io_emulated_slc(mtd, from, true, ops); 1660 else 1661 ret_code = mtd_read_oob_std(mtd, from, ops); 1662 1663 mtd_update_ecc_stats(mtd, master, &old_stats); 1664 1665 /* 1666 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1667 * similar to mtd->_read(), returning a non-negative integer 1668 * representing max bitflips. In other cases, mtd->_read_oob() may 1669 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1670 */ 1671 if (unlikely(ret_code < 0)) 1672 return ret_code; 1673 if (mtd->ecc_strength == 0) 1674 return 0; /* device lacks ecc */ 1675 if (ops->stats) 1676 ops->stats->max_bitflips = ret_code; 1677 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1678 } 1679 EXPORT_SYMBOL_GPL(mtd_read_oob); 1680 1681 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1682 struct mtd_oob_ops *ops) 1683 { 1684 struct mtd_info *master = mtd_get_master(mtd); 1685 int ret; 1686 1687 ops->retlen = ops->oobretlen = 0; 1688 1689 if (!(mtd->flags & MTD_WRITEABLE)) 1690 return -EROFS; 1691 1692 ret = mtd_check_oob_ops(mtd, to, ops); 1693 if (ret) 1694 return ret; 1695 1696 ledtrig_mtd_activity(); 1697 1698 /* Check the validity of a potential fallback on mtd->_write */ 1699 if (!master->_write_oob && (!master->_write || ops->oobbuf)) 1700 return -EOPNOTSUPP; 1701 1702 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1703 return mtd_io_emulated_slc(mtd, to, false, ops); 1704 1705 return mtd_write_oob_std(mtd, to, ops); 1706 } 1707 EXPORT_SYMBOL_GPL(mtd_write_oob); 1708 1709 /** 1710 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1711 * @mtd: MTD device structure 1712 * @section: ECC section. Depending on the layout you may have all the ECC 1713 * bytes stored in a single contiguous section, or one section 1714 * per ECC chunk (and sometime several sections for a single ECC 1715 * ECC chunk) 1716 * @oobecc: OOB region struct filled with the appropriate ECC position 1717 * information 1718 * 1719 * This function returns ECC section information in the OOB area. If you want 1720 * to get all the ECC bytes information, then you should call 1721 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1722 * 1723 * Returns zero on success, a negative error code otherwise. 1724 */ 1725 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1726 struct mtd_oob_region *oobecc) 1727 { 1728 struct mtd_info *master = mtd_get_master(mtd); 1729 1730 memset(oobecc, 0, sizeof(*oobecc)); 1731 1732 if (!master || section < 0) 1733 return -EINVAL; 1734 1735 if (!master->ooblayout || !master->ooblayout->ecc) 1736 return -ENOTSUPP; 1737 1738 return master->ooblayout->ecc(master, section, oobecc); 1739 } 1740 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1741 1742 /** 1743 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1744 * section 1745 * @mtd: MTD device structure 1746 * @section: Free section you are interested in. Depending on the layout 1747 * you may have all the free bytes stored in a single contiguous 1748 * section, or one section per ECC chunk plus an extra section 1749 * for the remaining bytes (or other funky layout). 1750 * @oobfree: OOB region struct filled with the appropriate free position 1751 * information 1752 * 1753 * This function returns free bytes position in the OOB area. If you want 1754 * to get all the free bytes information, then you should call 1755 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1756 * 1757 * Returns zero on success, a negative error code otherwise. 1758 */ 1759 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1760 struct mtd_oob_region *oobfree) 1761 { 1762 struct mtd_info *master = mtd_get_master(mtd); 1763 1764 memset(oobfree, 0, sizeof(*oobfree)); 1765 1766 if (!master || section < 0) 1767 return -EINVAL; 1768 1769 if (!master->ooblayout || !master->ooblayout->free) 1770 return -ENOTSUPP; 1771 1772 return master->ooblayout->free(master, section, oobfree); 1773 } 1774 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1775 1776 /** 1777 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1778 * @mtd: mtd info structure 1779 * @byte: the byte we are searching for 1780 * @sectionp: pointer where the section id will be stored 1781 * @oobregion: used to retrieve the ECC position 1782 * @iter: iterator function. Should be either mtd_ooblayout_free or 1783 * mtd_ooblayout_ecc depending on the region type you're searching for 1784 * 1785 * This function returns the section id and oobregion information of a 1786 * specific byte. For example, say you want to know where the 4th ECC byte is 1787 * stored, you'll use: 1788 * 1789 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1790 * 1791 * Returns zero on success, a negative error code otherwise. 1792 */ 1793 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1794 int *sectionp, struct mtd_oob_region *oobregion, 1795 int (*iter)(struct mtd_info *, 1796 int section, 1797 struct mtd_oob_region *oobregion)) 1798 { 1799 int pos = 0, ret, section = 0; 1800 1801 memset(oobregion, 0, sizeof(*oobregion)); 1802 1803 while (1) { 1804 ret = iter(mtd, section, oobregion); 1805 if (ret) 1806 return ret; 1807 1808 if (pos + oobregion->length > byte) 1809 break; 1810 1811 pos += oobregion->length; 1812 section++; 1813 } 1814 1815 /* 1816 * Adjust region info to make it start at the beginning at the 1817 * 'start' ECC byte. 1818 */ 1819 oobregion->offset += byte - pos; 1820 oobregion->length -= byte - pos; 1821 *sectionp = section; 1822 1823 return 0; 1824 } 1825 1826 /** 1827 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1828 * ECC byte 1829 * @mtd: mtd info structure 1830 * @eccbyte: the byte we are searching for 1831 * @section: pointer where the section id will be stored 1832 * @oobregion: OOB region information 1833 * 1834 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1835 * byte. 1836 * 1837 * Returns zero on success, a negative error code otherwise. 1838 */ 1839 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1840 int *section, 1841 struct mtd_oob_region *oobregion) 1842 { 1843 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1844 mtd_ooblayout_ecc); 1845 } 1846 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1847 1848 /** 1849 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1850 * @mtd: mtd info structure 1851 * @buf: destination buffer to store OOB bytes 1852 * @oobbuf: OOB buffer 1853 * @start: first byte to retrieve 1854 * @nbytes: number of bytes to retrieve 1855 * @iter: section iterator 1856 * 1857 * Extract bytes attached to a specific category (ECC or free) 1858 * from the OOB buffer and copy them into buf. 1859 * 1860 * Returns zero on success, a negative error code otherwise. 1861 */ 1862 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1863 const u8 *oobbuf, int start, int nbytes, 1864 int (*iter)(struct mtd_info *, 1865 int section, 1866 struct mtd_oob_region *oobregion)) 1867 { 1868 struct mtd_oob_region oobregion; 1869 int section, ret; 1870 1871 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1872 &oobregion, iter); 1873 1874 while (!ret) { 1875 int cnt; 1876 1877 cnt = min_t(int, nbytes, oobregion.length); 1878 memcpy(buf, oobbuf + oobregion.offset, cnt); 1879 buf += cnt; 1880 nbytes -= cnt; 1881 1882 if (!nbytes) 1883 break; 1884 1885 ret = iter(mtd, ++section, &oobregion); 1886 } 1887 1888 return ret; 1889 } 1890 1891 /** 1892 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1893 * @mtd: mtd info structure 1894 * @buf: source buffer to get OOB bytes from 1895 * @oobbuf: OOB buffer 1896 * @start: first OOB byte to set 1897 * @nbytes: number of OOB bytes to set 1898 * @iter: section iterator 1899 * 1900 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1901 * is selected by passing the appropriate iterator. 1902 * 1903 * Returns zero on success, a negative error code otherwise. 1904 */ 1905 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1906 u8 *oobbuf, int start, int nbytes, 1907 int (*iter)(struct mtd_info *, 1908 int section, 1909 struct mtd_oob_region *oobregion)) 1910 { 1911 struct mtd_oob_region oobregion; 1912 int section, ret; 1913 1914 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1915 &oobregion, iter); 1916 1917 while (!ret) { 1918 int cnt; 1919 1920 cnt = min_t(int, nbytes, oobregion.length); 1921 memcpy(oobbuf + oobregion.offset, buf, cnt); 1922 buf += cnt; 1923 nbytes -= cnt; 1924 1925 if (!nbytes) 1926 break; 1927 1928 ret = iter(mtd, ++section, &oobregion); 1929 } 1930 1931 return ret; 1932 } 1933 1934 /** 1935 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1936 * @mtd: mtd info structure 1937 * @iter: category iterator 1938 * 1939 * Count the number of bytes in a given category. 1940 * 1941 * Returns a positive value on success, a negative error code otherwise. 1942 */ 1943 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1944 int (*iter)(struct mtd_info *, 1945 int section, 1946 struct mtd_oob_region *oobregion)) 1947 { 1948 struct mtd_oob_region oobregion; 1949 int section = 0, ret, nbytes = 0; 1950 1951 while (1) { 1952 ret = iter(mtd, section++, &oobregion); 1953 if (ret) { 1954 if (ret == -ERANGE) 1955 ret = nbytes; 1956 break; 1957 } 1958 1959 nbytes += oobregion.length; 1960 } 1961 1962 return ret; 1963 } 1964 1965 /** 1966 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1967 * @mtd: mtd info structure 1968 * @eccbuf: destination buffer to store ECC bytes 1969 * @oobbuf: OOB buffer 1970 * @start: first ECC byte to retrieve 1971 * @nbytes: number of ECC bytes to retrieve 1972 * 1973 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1974 * 1975 * Returns zero on success, a negative error code otherwise. 1976 */ 1977 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1978 const u8 *oobbuf, int start, int nbytes) 1979 { 1980 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1981 mtd_ooblayout_ecc); 1982 } 1983 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1984 1985 /** 1986 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1987 * @mtd: mtd info structure 1988 * @eccbuf: source buffer to get ECC bytes from 1989 * @oobbuf: OOB buffer 1990 * @start: first ECC byte to set 1991 * @nbytes: number of ECC bytes to set 1992 * 1993 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 1994 * 1995 * Returns zero on success, a negative error code otherwise. 1996 */ 1997 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 1998 u8 *oobbuf, int start, int nbytes) 1999 { 2000 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 2001 mtd_ooblayout_ecc); 2002 } 2003 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 2004 2005 /** 2006 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 2007 * @mtd: mtd info structure 2008 * @databuf: destination buffer to store ECC bytes 2009 * @oobbuf: OOB buffer 2010 * @start: first ECC byte to retrieve 2011 * @nbytes: number of ECC bytes to retrieve 2012 * 2013 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 2014 * 2015 * Returns zero on success, a negative error code otherwise. 2016 */ 2017 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 2018 const u8 *oobbuf, int start, int nbytes) 2019 { 2020 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 2021 mtd_ooblayout_free); 2022 } 2023 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 2024 2025 /** 2026 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer 2027 * @mtd: mtd info structure 2028 * @databuf: source buffer to get data bytes from 2029 * @oobbuf: OOB buffer 2030 * @start: first ECC byte to set 2031 * @nbytes: number of ECC bytes to set 2032 * 2033 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes. 2034 * 2035 * Returns zero on success, a negative error code otherwise. 2036 */ 2037 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 2038 u8 *oobbuf, int start, int nbytes) 2039 { 2040 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 2041 mtd_ooblayout_free); 2042 } 2043 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 2044 2045 /** 2046 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 2047 * @mtd: mtd info structure 2048 * 2049 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 2050 * 2051 * Returns zero on success, a negative error code otherwise. 2052 */ 2053 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 2054 { 2055 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 2056 } 2057 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 2058 2059 /** 2060 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB 2061 * @mtd: mtd info structure 2062 * 2063 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 2064 * 2065 * Returns zero on success, a negative error code otherwise. 2066 */ 2067 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 2068 { 2069 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 2070 } 2071 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 2072 2073 /* 2074 * Method to access the protection register area, present in some flash 2075 * devices. The user data is one time programmable but the factory data is read 2076 * only. 2077 */ 2078 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 2079 struct otp_info *buf) 2080 { 2081 struct mtd_info *master = mtd_get_master(mtd); 2082 2083 if (!master->_get_fact_prot_info) 2084 return -EOPNOTSUPP; 2085 if (!len) 2086 return 0; 2087 return master->_get_fact_prot_info(master, len, retlen, buf); 2088 } 2089 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 2090 2091 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 2092 size_t *retlen, u_char *buf) 2093 { 2094 struct mtd_info *master = mtd_get_master(mtd); 2095 2096 *retlen = 0; 2097 if (!master->_read_fact_prot_reg) 2098 return -EOPNOTSUPP; 2099 if (!len) 2100 return 0; 2101 return master->_read_fact_prot_reg(master, from, len, retlen, buf); 2102 } 2103 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 2104 2105 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 2106 struct otp_info *buf) 2107 { 2108 struct mtd_info *master = mtd_get_master(mtd); 2109 2110 if (!master->_get_user_prot_info) 2111 return -EOPNOTSUPP; 2112 if (!len) 2113 return 0; 2114 return master->_get_user_prot_info(master, len, retlen, buf); 2115 } 2116 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 2117 2118 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 2119 size_t *retlen, u_char *buf) 2120 { 2121 struct mtd_info *master = mtd_get_master(mtd); 2122 2123 *retlen = 0; 2124 if (!master->_read_user_prot_reg) 2125 return -EOPNOTSUPP; 2126 if (!len) 2127 return 0; 2128 return master->_read_user_prot_reg(master, from, len, retlen, buf); 2129 } 2130 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 2131 2132 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 2133 size_t *retlen, const u_char *buf) 2134 { 2135 struct mtd_info *master = mtd_get_master(mtd); 2136 int ret; 2137 2138 *retlen = 0; 2139 if (!master->_write_user_prot_reg) 2140 return -EOPNOTSUPP; 2141 if (!len) 2142 return 0; 2143 ret = master->_write_user_prot_reg(master, to, len, retlen, buf); 2144 if (ret) 2145 return ret; 2146 2147 /* 2148 * If no data could be written at all, we are out of memory and 2149 * must return -ENOSPC. 2150 */ 2151 return (*retlen) ? 0 : -ENOSPC; 2152 } 2153 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 2154 2155 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2156 { 2157 struct mtd_info *master = mtd_get_master(mtd); 2158 2159 if (!master->_lock_user_prot_reg) 2160 return -EOPNOTSUPP; 2161 if (!len) 2162 return 0; 2163 return master->_lock_user_prot_reg(master, from, len); 2164 } 2165 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 2166 2167 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2168 { 2169 struct mtd_info *master = mtd_get_master(mtd); 2170 2171 if (!master->_erase_user_prot_reg) 2172 return -EOPNOTSUPP; 2173 if (!len) 2174 return 0; 2175 return master->_erase_user_prot_reg(master, from, len); 2176 } 2177 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg); 2178 2179 /* Chip-supported device locking */ 2180 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2181 { 2182 struct mtd_info *master = mtd_get_master(mtd); 2183 2184 if (!master->_lock) 2185 return -EOPNOTSUPP; 2186 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2187 return -EINVAL; 2188 if (!len) 2189 return 0; 2190 2191 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2192 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2193 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2194 } 2195 2196 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len); 2197 } 2198 EXPORT_SYMBOL_GPL(mtd_lock); 2199 2200 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2201 { 2202 struct mtd_info *master = mtd_get_master(mtd); 2203 2204 if (!master->_unlock) 2205 return -EOPNOTSUPP; 2206 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2207 return -EINVAL; 2208 if (!len) 2209 return 0; 2210 2211 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2212 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2213 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2214 } 2215 2216 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len); 2217 } 2218 EXPORT_SYMBOL_GPL(mtd_unlock); 2219 2220 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2221 { 2222 struct mtd_info *master = mtd_get_master(mtd); 2223 2224 if (!master->_is_locked) 2225 return -EOPNOTSUPP; 2226 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2227 return -EINVAL; 2228 if (!len) 2229 return 0; 2230 2231 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2232 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2233 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2234 } 2235 2236 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len); 2237 } 2238 EXPORT_SYMBOL_GPL(mtd_is_locked); 2239 2240 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 2241 { 2242 struct mtd_info *master = mtd_get_master(mtd); 2243 2244 if (ofs < 0 || ofs >= mtd->size) 2245 return -EINVAL; 2246 if (!master->_block_isreserved) 2247 return 0; 2248 2249 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2250 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2251 2252 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs)); 2253 } 2254 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 2255 2256 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 2257 { 2258 struct mtd_info *master = mtd_get_master(mtd); 2259 2260 if (ofs < 0 || ofs >= mtd->size) 2261 return -EINVAL; 2262 if (!master->_block_isbad) 2263 return 0; 2264 2265 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2266 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2267 2268 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs)); 2269 } 2270 EXPORT_SYMBOL_GPL(mtd_block_isbad); 2271 2272 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 2273 { 2274 struct mtd_info *master = mtd_get_master(mtd); 2275 int ret; 2276 2277 if (!master->_block_markbad) 2278 return -EOPNOTSUPP; 2279 if (ofs < 0 || ofs >= mtd->size) 2280 return -EINVAL; 2281 if (!(mtd->flags & MTD_WRITEABLE)) 2282 return -EROFS; 2283 2284 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2285 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2286 2287 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs)); 2288 if (ret) 2289 return ret; 2290 2291 while (mtd->parent) { 2292 mtd->ecc_stats.badblocks++; 2293 mtd = mtd->parent; 2294 } 2295 2296 return 0; 2297 } 2298 EXPORT_SYMBOL_GPL(mtd_block_markbad); 2299 2300 /* 2301 * default_mtd_writev - the default writev method 2302 * @mtd: mtd device description object pointer 2303 * @vecs: the vectors to write 2304 * @count: count of vectors in @vecs 2305 * @to: the MTD device offset to write to 2306 * @retlen: on exit contains the count of bytes written to the MTD device. 2307 * 2308 * This function returns zero in case of success and a negative error code in 2309 * case of failure. 2310 */ 2311 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2312 unsigned long count, loff_t to, size_t *retlen) 2313 { 2314 unsigned long i; 2315 size_t totlen = 0, thislen; 2316 int ret = 0; 2317 2318 for (i = 0; i < count; i++) { 2319 if (!vecs[i].iov_len) 2320 continue; 2321 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 2322 vecs[i].iov_base); 2323 totlen += thislen; 2324 if (ret || thislen != vecs[i].iov_len) 2325 break; 2326 to += vecs[i].iov_len; 2327 } 2328 *retlen = totlen; 2329 return ret; 2330 } 2331 2332 /* 2333 * mtd_writev - the vector-based MTD write method 2334 * @mtd: mtd device description object pointer 2335 * @vecs: the vectors to write 2336 * @count: count of vectors in @vecs 2337 * @to: the MTD device offset to write to 2338 * @retlen: on exit contains the count of bytes written to the MTD device. 2339 * 2340 * This function returns zero in case of success and a negative error code in 2341 * case of failure. 2342 */ 2343 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2344 unsigned long count, loff_t to, size_t *retlen) 2345 { 2346 struct mtd_info *master = mtd_get_master(mtd); 2347 2348 *retlen = 0; 2349 if (!(mtd->flags & MTD_WRITEABLE)) 2350 return -EROFS; 2351 2352 if (!master->_writev) 2353 return default_mtd_writev(mtd, vecs, count, to, retlen); 2354 2355 return master->_writev(master, vecs, count, 2356 mtd_get_master_ofs(mtd, to), retlen); 2357 } 2358 EXPORT_SYMBOL_GPL(mtd_writev); 2359 2360 /** 2361 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 2362 * @mtd: mtd device description object pointer 2363 * @size: a pointer to the ideal or maximum size of the allocation, points 2364 * to the actual allocation size on success. 2365 * 2366 * This routine attempts to allocate a contiguous kernel buffer up to 2367 * the specified size, backing off the size of the request exponentially 2368 * until the request succeeds or until the allocation size falls below 2369 * the system page size. This attempts to make sure it does not adversely 2370 * impact system performance, so when allocating more than one page, we 2371 * ask the memory allocator to avoid re-trying, swapping, writing back 2372 * or performing I/O. 2373 * 2374 * Note, this function also makes sure that the allocated buffer is aligned to 2375 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 2376 * 2377 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 2378 * to handle smaller (i.e. degraded) buffer allocations under low- or 2379 * fragmented-memory situations where such reduced allocations, from a 2380 * requested ideal, are allowed. 2381 * 2382 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 2383 */ 2384 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 2385 { 2386 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 2387 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 2388 void *kbuf; 2389 2390 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 2391 2392 while (*size > min_alloc) { 2393 kbuf = kmalloc(*size, flags); 2394 if (kbuf) 2395 return kbuf; 2396 2397 *size >>= 1; 2398 *size = ALIGN(*size, mtd->writesize); 2399 } 2400 2401 /* 2402 * For the last resort allocation allow 'kmalloc()' to do all sorts of 2403 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 2404 */ 2405 return kmalloc(*size, GFP_KERNEL); 2406 } 2407 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 2408 2409 #ifdef CONFIG_PROC_FS 2410 2411 /*====================================================================*/ 2412 /* Support for /proc/mtd */ 2413 2414 static int mtd_proc_show(struct seq_file *m, void *v) 2415 { 2416 struct mtd_info *mtd; 2417 2418 seq_puts(m, "dev: size erasesize name\n"); 2419 mutex_lock(&mtd_table_mutex); 2420 mtd_for_each_device(mtd) { 2421 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 2422 mtd->index, (unsigned long long)mtd->size, 2423 mtd->erasesize, mtd->name); 2424 } 2425 mutex_unlock(&mtd_table_mutex); 2426 return 0; 2427 } 2428 #endif /* CONFIG_PROC_FS */ 2429 2430 /*====================================================================*/ 2431 /* Init code */ 2432 2433 static struct backing_dev_info * __init mtd_bdi_init(const char *name) 2434 { 2435 struct backing_dev_info *bdi; 2436 int ret; 2437 2438 bdi = bdi_alloc(NUMA_NO_NODE); 2439 if (!bdi) 2440 return ERR_PTR(-ENOMEM); 2441 bdi->ra_pages = 0; 2442 bdi->io_pages = 0; 2443 2444 /* 2445 * We put '-0' suffix to the name to get the same name format as we 2446 * used to get. Since this is called only once, we get a unique name. 2447 */ 2448 ret = bdi_register(bdi, "%.28s-0", name); 2449 if (ret) 2450 bdi_put(bdi); 2451 2452 return ret ? ERR_PTR(ret) : bdi; 2453 } 2454 2455 static struct proc_dir_entry *proc_mtd; 2456 2457 static int __init init_mtd(void) 2458 { 2459 int ret; 2460 2461 ret = class_register(&mtd_class); 2462 if (ret) 2463 goto err_reg; 2464 2465 mtd_bdi = mtd_bdi_init("mtd"); 2466 if (IS_ERR(mtd_bdi)) { 2467 ret = PTR_ERR(mtd_bdi); 2468 goto err_bdi; 2469 } 2470 2471 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show); 2472 2473 ret = init_mtdchar(); 2474 if (ret) 2475 goto out_procfs; 2476 2477 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 2478 debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd, 2479 &mtd_expert_analysis_mode); 2480 2481 return 0; 2482 2483 out_procfs: 2484 if (proc_mtd) 2485 remove_proc_entry("mtd", NULL); 2486 bdi_put(mtd_bdi); 2487 err_bdi: 2488 class_unregister(&mtd_class); 2489 err_reg: 2490 pr_err("Error registering mtd class or bdi: %d\n", ret); 2491 return ret; 2492 } 2493 2494 static void __exit cleanup_mtd(void) 2495 { 2496 debugfs_remove_recursive(dfs_dir_mtd); 2497 cleanup_mtdchar(); 2498 if (proc_mtd) 2499 remove_proc_entry("mtd", NULL); 2500 class_unregister(&mtd_class); 2501 bdi_unregister(mtd_bdi); 2502 bdi_put(mtd_bdi); 2503 idr_destroy(&mtd_idr); 2504 } 2505 2506 module_init(init_mtd); 2507 module_exit(cleanup_mtd); 2508 2509 MODULE_LICENSE("GPL"); 2510 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 2511 MODULE_DESCRIPTION("Core MTD registration and access routines"); 2512