xref: /openbmc/linux/drivers/mtd/mtdcore.c (revision aaf9128a)
1 /*
2  * Core registration and callback routines for MTD
3  * drivers and users.
4  *
5  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6  * Copyright © 2006      Red Hat UK Limited
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/of.h>
36 #include <linux/proc_fs.h>
37 #include <linux/idr.h>
38 #include <linux/backing-dev.h>
39 #include <linux/gfp.h>
40 #include <linux/slab.h>
41 #include <linux/reboot.h>
42 #include <linux/leds.h>
43 #include <linux/debugfs.h>
44 
45 #include <linux/mtd/mtd.h>
46 #include <linux/mtd/partitions.h>
47 
48 #include "mtdcore.h"
49 
50 struct backing_dev_info *mtd_bdi;
51 
52 #ifdef CONFIG_PM_SLEEP
53 
54 static int mtd_cls_suspend(struct device *dev)
55 {
56 	struct mtd_info *mtd = dev_get_drvdata(dev);
57 
58 	return mtd ? mtd_suspend(mtd) : 0;
59 }
60 
61 static int mtd_cls_resume(struct device *dev)
62 {
63 	struct mtd_info *mtd = dev_get_drvdata(dev);
64 
65 	if (mtd)
66 		mtd_resume(mtd);
67 	return 0;
68 }
69 
70 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
71 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
72 #else
73 #define MTD_CLS_PM_OPS NULL
74 #endif
75 
76 static struct class mtd_class = {
77 	.name = "mtd",
78 	.owner = THIS_MODULE,
79 	.pm = MTD_CLS_PM_OPS,
80 };
81 
82 static DEFINE_IDR(mtd_idr);
83 
84 /* These are exported solely for the purpose of mtd_blkdevs.c. You
85    should not use them for _anything_ else */
86 DEFINE_MUTEX(mtd_table_mutex);
87 EXPORT_SYMBOL_GPL(mtd_table_mutex);
88 
89 struct mtd_info *__mtd_next_device(int i)
90 {
91 	return idr_get_next(&mtd_idr, &i);
92 }
93 EXPORT_SYMBOL_GPL(__mtd_next_device);
94 
95 static LIST_HEAD(mtd_notifiers);
96 
97 
98 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
99 
100 /* REVISIT once MTD uses the driver model better, whoever allocates
101  * the mtd_info will probably want to use the release() hook...
102  */
103 static void mtd_release(struct device *dev)
104 {
105 	struct mtd_info *mtd = dev_get_drvdata(dev);
106 	dev_t index = MTD_DEVT(mtd->index);
107 
108 	/* remove /dev/mtdXro node */
109 	device_destroy(&mtd_class, index + 1);
110 }
111 
112 static ssize_t mtd_type_show(struct device *dev,
113 		struct device_attribute *attr, char *buf)
114 {
115 	struct mtd_info *mtd = dev_get_drvdata(dev);
116 	char *type;
117 
118 	switch (mtd->type) {
119 	case MTD_ABSENT:
120 		type = "absent";
121 		break;
122 	case MTD_RAM:
123 		type = "ram";
124 		break;
125 	case MTD_ROM:
126 		type = "rom";
127 		break;
128 	case MTD_NORFLASH:
129 		type = "nor";
130 		break;
131 	case MTD_NANDFLASH:
132 		type = "nand";
133 		break;
134 	case MTD_DATAFLASH:
135 		type = "dataflash";
136 		break;
137 	case MTD_UBIVOLUME:
138 		type = "ubi";
139 		break;
140 	case MTD_MLCNANDFLASH:
141 		type = "mlc-nand";
142 		break;
143 	default:
144 		type = "unknown";
145 	}
146 
147 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
148 }
149 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
150 
151 static ssize_t mtd_flags_show(struct device *dev,
152 		struct device_attribute *attr, char *buf)
153 {
154 	struct mtd_info *mtd = dev_get_drvdata(dev);
155 
156 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
157 
158 }
159 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
160 
161 static ssize_t mtd_size_show(struct device *dev,
162 		struct device_attribute *attr, char *buf)
163 {
164 	struct mtd_info *mtd = dev_get_drvdata(dev);
165 
166 	return snprintf(buf, PAGE_SIZE, "%llu\n",
167 		(unsigned long long)mtd->size);
168 
169 }
170 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
171 
172 static ssize_t mtd_erasesize_show(struct device *dev,
173 		struct device_attribute *attr, char *buf)
174 {
175 	struct mtd_info *mtd = dev_get_drvdata(dev);
176 
177 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
178 
179 }
180 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
181 
182 static ssize_t mtd_writesize_show(struct device *dev,
183 		struct device_attribute *attr, char *buf)
184 {
185 	struct mtd_info *mtd = dev_get_drvdata(dev);
186 
187 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
188 
189 }
190 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
191 
192 static ssize_t mtd_subpagesize_show(struct device *dev,
193 		struct device_attribute *attr, char *buf)
194 {
195 	struct mtd_info *mtd = dev_get_drvdata(dev);
196 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
197 
198 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
199 
200 }
201 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
202 
203 static ssize_t mtd_oobsize_show(struct device *dev,
204 		struct device_attribute *attr, char *buf)
205 {
206 	struct mtd_info *mtd = dev_get_drvdata(dev);
207 
208 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
209 
210 }
211 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
212 
213 static ssize_t mtd_oobavail_show(struct device *dev,
214 				 struct device_attribute *attr, char *buf)
215 {
216 	struct mtd_info *mtd = dev_get_drvdata(dev);
217 
218 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
219 }
220 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
221 
222 static ssize_t mtd_numeraseregions_show(struct device *dev,
223 		struct device_attribute *attr, char *buf)
224 {
225 	struct mtd_info *mtd = dev_get_drvdata(dev);
226 
227 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
228 
229 }
230 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
231 	NULL);
232 
233 static ssize_t mtd_name_show(struct device *dev,
234 		struct device_attribute *attr, char *buf)
235 {
236 	struct mtd_info *mtd = dev_get_drvdata(dev);
237 
238 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
239 
240 }
241 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
242 
243 static ssize_t mtd_ecc_strength_show(struct device *dev,
244 				     struct device_attribute *attr, char *buf)
245 {
246 	struct mtd_info *mtd = dev_get_drvdata(dev);
247 
248 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
249 }
250 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
251 
252 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
253 					  struct device_attribute *attr,
254 					  char *buf)
255 {
256 	struct mtd_info *mtd = dev_get_drvdata(dev);
257 
258 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
259 }
260 
261 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
262 					   struct device_attribute *attr,
263 					   const char *buf, size_t count)
264 {
265 	struct mtd_info *mtd = dev_get_drvdata(dev);
266 	unsigned int bitflip_threshold;
267 	int retval;
268 
269 	retval = kstrtouint(buf, 0, &bitflip_threshold);
270 	if (retval)
271 		return retval;
272 
273 	mtd->bitflip_threshold = bitflip_threshold;
274 	return count;
275 }
276 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
277 		   mtd_bitflip_threshold_show,
278 		   mtd_bitflip_threshold_store);
279 
280 static ssize_t mtd_ecc_step_size_show(struct device *dev,
281 		struct device_attribute *attr, char *buf)
282 {
283 	struct mtd_info *mtd = dev_get_drvdata(dev);
284 
285 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
286 
287 }
288 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
289 
290 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
291 		struct device_attribute *attr, char *buf)
292 {
293 	struct mtd_info *mtd = dev_get_drvdata(dev);
294 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
295 
296 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
297 }
298 static DEVICE_ATTR(corrected_bits, S_IRUGO,
299 		   mtd_ecc_stats_corrected_show, NULL);
300 
301 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
302 		struct device_attribute *attr, char *buf)
303 {
304 	struct mtd_info *mtd = dev_get_drvdata(dev);
305 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306 
307 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
308 }
309 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
310 
311 static ssize_t mtd_badblocks_show(struct device *dev,
312 		struct device_attribute *attr, char *buf)
313 {
314 	struct mtd_info *mtd = dev_get_drvdata(dev);
315 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
316 
317 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
318 }
319 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
320 
321 static ssize_t mtd_bbtblocks_show(struct device *dev,
322 		struct device_attribute *attr, char *buf)
323 {
324 	struct mtd_info *mtd = dev_get_drvdata(dev);
325 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
326 
327 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
328 }
329 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
330 
331 static struct attribute *mtd_attrs[] = {
332 	&dev_attr_type.attr,
333 	&dev_attr_flags.attr,
334 	&dev_attr_size.attr,
335 	&dev_attr_erasesize.attr,
336 	&dev_attr_writesize.attr,
337 	&dev_attr_subpagesize.attr,
338 	&dev_attr_oobsize.attr,
339 	&dev_attr_oobavail.attr,
340 	&dev_attr_numeraseregions.attr,
341 	&dev_attr_name.attr,
342 	&dev_attr_ecc_strength.attr,
343 	&dev_attr_ecc_step_size.attr,
344 	&dev_attr_corrected_bits.attr,
345 	&dev_attr_ecc_failures.attr,
346 	&dev_attr_bad_blocks.attr,
347 	&dev_attr_bbt_blocks.attr,
348 	&dev_attr_bitflip_threshold.attr,
349 	NULL,
350 };
351 ATTRIBUTE_GROUPS(mtd);
352 
353 static const struct device_type mtd_devtype = {
354 	.name		= "mtd",
355 	.groups		= mtd_groups,
356 	.release	= mtd_release,
357 };
358 
359 #ifndef CONFIG_MMU
360 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
361 {
362 	switch (mtd->type) {
363 	case MTD_RAM:
364 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
365 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
366 	case MTD_ROM:
367 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
368 			NOMMU_MAP_READ;
369 	default:
370 		return NOMMU_MAP_COPY;
371 	}
372 }
373 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
374 #endif
375 
376 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
377 			       void *cmd)
378 {
379 	struct mtd_info *mtd;
380 
381 	mtd = container_of(n, struct mtd_info, reboot_notifier);
382 	mtd->_reboot(mtd);
383 
384 	return NOTIFY_DONE;
385 }
386 
387 /**
388  * mtd_wunit_to_pairing_info - get pairing information of a wunit
389  * @mtd: pointer to new MTD device info structure
390  * @wunit: write unit we are interested in
391  * @info: returned pairing information
392  *
393  * Retrieve pairing information associated to the wunit.
394  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
395  * paired together, and where programming a page may influence the page it is
396  * paired with.
397  * The notion of page is replaced by the term wunit (write-unit) to stay
398  * consistent with the ->writesize field.
399  *
400  * The @wunit argument can be extracted from an absolute offset using
401  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
402  * to @wunit.
403  *
404  * From the pairing info the MTD user can find all the wunits paired with
405  * @wunit using the following loop:
406  *
407  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
408  *	info.pair = i;
409  *	mtd_pairing_info_to_wunit(mtd, &info);
410  *	...
411  * }
412  */
413 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
414 			      struct mtd_pairing_info *info)
415 {
416 	int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
417 
418 	if (wunit < 0 || wunit >= npairs)
419 		return -EINVAL;
420 
421 	if (mtd->pairing && mtd->pairing->get_info)
422 		return mtd->pairing->get_info(mtd, wunit, info);
423 
424 	info->group = 0;
425 	info->pair = wunit;
426 
427 	return 0;
428 }
429 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
430 
431 /**
432  * mtd_pairing_info_to_wunit - get wunit from pairing information
433  * @mtd: pointer to new MTD device info structure
434  * @info: pairing information struct
435  *
436  * Returns a positive number representing the wunit associated to the info
437  * struct, or a negative error code.
438  *
439  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
440  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
441  * doc).
442  *
443  * It can also be used to only program the first page of each pair (i.e.
444  * page attached to group 0), which allows one to use an MLC NAND in
445  * software-emulated SLC mode:
446  *
447  * info.group = 0;
448  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
449  * for (info.pair = 0; info.pair < npairs; info.pair++) {
450  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
451  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
452  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
453  * }
454  */
455 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
456 			      const struct mtd_pairing_info *info)
457 {
458 	int ngroups = mtd_pairing_groups(mtd);
459 	int npairs = mtd_wunit_per_eb(mtd) / ngroups;
460 
461 	if (!info || info->pair < 0 || info->pair >= npairs ||
462 	    info->group < 0 || info->group >= ngroups)
463 		return -EINVAL;
464 
465 	if (mtd->pairing && mtd->pairing->get_wunit)
466 		return mtd->pairing->get_wunit(mtd, info);
467 
468 	return info->pair;
469 }
470 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
471 
472 /**
473  * mtd_pairing_groups - get the number of pairing groups
474  * @mtd: pointer to new MTD device info structure
475  *
476  * Returns the number of pairing groups.
477  *
478  * This number is usually equal to the number of bits exposed by a single
479  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
480  * to iterate over all pages of a given pair.
481  */
482 int mtd_pairing_groups(struct mtd_info *mtd)
483 {
484 	if (!mtd->pairing || !mtd->pairing->ngroups)
485 		return 1;
486 
487 	return mtd->pairing->ngroups;
488 }
489 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
490 
491 static struct dentry *dfs_dir_mtd;
492 
493 /**
494  *	add_mtd_device - register an MTD device
495  *	@mtd: pointer to new MTD device info structure
496  *
497  *	Add a device to the list of MTD devices present in the system, and
498  *	notify each currently active MTD 'user' of its arrival. Returns
499  *	zero on success or non-zero on failure.
500  */
501 
502 int add_mtd_device(struct mtd_info *mtd)
503 {
504 	struct mtd_notifier *not;
505 	int i, error;
506 
507 	/*
508 	 * May occur, for instance, on buggy drivers which call
509 	 * mtd_device_parse_register() multiple times on the same master MTD,
510 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
511 	 */
512 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
513 		return -EEXIST;
514 
515 	BUG_ON(mtd->writesize == 0);
516 
517 	if (WARN_ON((!mtd->erasesize || !mtd->_erase) &&
518 		    !(mtd->flags & MTD_NO_ERASE)))
519 		return -EINVAL;
520 
521 	mutex_lock(&mtd_table_mutex);
522 
523 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
524 	if (i < 0) {
525 		error = i;
526 		goto fail_locked;
527 	}
528 
529 	mtd->index = i;
530 	mtd->usecount = 0;
531 
532 	/* default value if not set by driver */
533 	if (mtd->bitflip_threshold == 0)
534 		mtd->bitflip_threshold = mtd->ecc_strength;
535 
536 	if (is_power_of_2(mtd->erasesize))
537 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
538 	else
539 		mtd->erasesize_shift = 0;
540 
541 	if (is_power_of_2(mtd->writesize))
542 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
543 	else
544 		mtd->writesize_shift = 0;
545 
546 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
547 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
548 
549 	/* Some chips always power up locked. Unlock them now */
550 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
551 		error = mtd_unlock(mtd, 0, mtd->size);
552 		if (error && error != -EOPNOTSUPP)
553 			printk(KERN_WARNING
554 			       "%s: unlock failed, writes may not work\n",
555 			       mtd->name);
556 		/* Ignore unlock failures? */
557 		error = 0;
558 	}
559 
560 	/* Caller should have set dev.parent to match the
561 	 * physical device, if appropriate.
562 	 */
563 	mtd->dev.type = &mtd_devtype;
564 	mtd->dev.class = &mtd_class;
565 	mtd->dev.devt = MTD_DEVT(i);
566 	dev_set_name(&mtd->dev, "mtd%d", i);
567 	dev_set_drvdata(&mtd->dev, mtd);
568 	of_node_get(mtd_get_of_node(mtd));
569 	error = device_register(&mtd->dev);
570 	if (error)
571 		goto fail_added;
572 
573 	if (!IS_ERR_OR_NULL(dfs_dir_mtd)) {
574 		mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd);
575 		if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) {
576 			pr_debug("mtd device %s won't show data in debugfs\n",
577 				 dev_name(&mtd->dev));
578 		}
579 	}
580 
581 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
582 		      "mtd%dro", i);
583 
584 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
585 	/* No need to get a refcount on the module containing
586 	   the notifier, since we hold the mtd_table_mutex */
587 	list_for_each_entry(not, &mtd_notifiers, list)
588 		not->add(mtd);
589 
590 	mutex_unlock(&mtd_table_mutex);
591 	/* We _know_ we aren't being removed, because
592 	   our caller is still holding us here. So none
593 	   of this try_ nonsense, and no bitching about it
594 	   either. :) */
595 	__module_get(THIS_MODULE);
596 	return 0;
597 
598 fail_added:
599 	of_node_put(mtd_get_of_node(mtd));
600 	idr_remove(&mtd_idr, i);
601 fail_locked:
602 	mutex_unlock(&mtd_table_mutex);
603 	return error;
604 }
605 
606 /**
607  *	del_mtd_device - unregister an MTD device
608  *	@mtd: pointer to MTD device info structure
609  *
610  *	Remove a device from the list of MTD devices present in the system,
611  *	and notify each currently active MTD 'user' of its departure.
612  *	Returns zero on success or 1 on failure, which currently will happen
613  *	if the requested device does not appear to be present in the list.
614  */
615 
616 int del_mtd_device(struct mtd_info *mtd)
617 {
618 	int ret;
619 	struct mtd_notifier *not;
620 
621 	mutex_lock(&mtd_table_mutex);
622 
623 	debugfs_remove_recursive(mtd->dbg.dfs_dir);
624 
625 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
626 		ret = -ENODEV;
627 		goto out_error;
628 	}
629 
630 	/* No need to get a refcount on the module containing
631 		the notifier, since we hold the mtd_table_mutex */
632 	list_for_each_entry(not, &mtd_notifiers, list)
633 		not->remove(mtd);
634 
635 	if (mtd->usecount) {
636 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
637 		       mtd->index, mtd->name, mtd->usecount);
638 		ret = -EBUSY;
639 	} else {
640 		device_unregister(&mtd->dev);
641 
642 		idr_remove(&mtd_idr, mtd->index);
643 		of_node_put(mtd_get_of_node(mtd));
644 
645 		module_put(THIS_MODULE);
646 		ret = 0;
647 	}
648 
649 out_error:
650 	mutex_unlock(&mtd_table_mutex);
651 	return ret;
652 }
653 
654 /*
655  * Set a few defaults based on the parent devices, if not provided by the
656  * driver
657  */
658 static void mtd_set_dev_defaults(struct mtd_info *mtd)
659 {
660 	if (mtd->dev.parent) {
661 		if (!mtd->owner && mtd->dev.parent->driver)
662 			mtd->owner = mtd->dev.parent->driver->owner;
663 		if (!mtd->name)
664 			mtd->name = dev_name(mtd->dev.parent);
665 	} else {
666 		pr_debug("mtd device won't show a device symlink in sysfs\n");
667 	}
668 
669 	mtd->orig_flags = mtd->flags;
670 }
671 
672 /**
673  * mtd_device_parse_register - parse partitions and register an MTD device.
674  *
675  * @mtd: the MTD device to register
676  * @types: the list of MTD partition probes to try, see
677  *         'parse_mtd_partitions()' for more information
678  * @parser_data: MTD partition parser-specific data
679  * @parts: fallback partition information to register, if parsing fails;
680  *         only valid if %nr_parts > %0
681  * @nr_parts: the number of partitions in parts, if zero then the full
682  *            MTD device is registered if no partition info is found
683  *
684  * This function aggregates MTD partitions parsing (done by
685  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
686  * basically follows the most common pattern found in many MTD drivers:
687  *
688  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
689  *   registered first.
690  * * Then It tries to probe partitions on MTD device @mtd using parsers
691  *   specified in @types (if @types is %NULL, then the default list of parsers
692  *   is used, see 'parse_mtd_partitions()' for more information). If none are
693  *   found this functions tries to fallback to information specified in
694  *   @parts/@nr_parts.
695  * * If no partitions were found this function just registers the MTD device
696  *   @mtd and exits.
697  *
698  * Returns zero in case of success and a negative error code in case of failure.
699  */
700 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
701 			      struct mtd_part_parser_data *parser_data,
702 			      const struct mtd_partition *parts,
703 			      int nr_parts)
704 {
705 	int ret;
706 
707 	mtd_set_dev_defaults(mtd);
708 
709 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
710 		ret = add_mtd_device(mtd);
711 		if (ret)
712 			return ret;
713 	}
714 
715 	/* Prefer parsed partitions over driver-provided fallback */
716 	ret = parse_mtd_partitions(mtd, types, parser_data);
717 	if (ret > 0)
718 		ret = 0;
719 	else if (nr_parts)
720 		ret = add_mtd_partitions(mtd, parts, nr_parts);
721 	else if (!device_is_registered(&mtd->dev))
722 		ret = add_mtd_device(mtd);
723 	else
724 		ret = 0;
725 
726 	if (ret)
727 		goto out;
728 
729 	/*
730 	 * FIXME: some drivers unfortunately call this function more than once.
731 	 * So we have to check if we've already assigned the reboot notifier.
732 	 *
733 	 * Generally, we can make multiple calls work for most cases, but it
734 	 * does cause problems with parse_mtd_partitions() above (e.g.,
735 	 * cmdlineparts will register partitions more than once).
736 	 */
737 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
738 		  "MTD already registered\n");
739 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
740 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
741 		register_reboot_notifier(&mtd->reboot_notifier);
742 	}
743 
744 out:
745 	if (ret && device_is_registered(&mtd->dev))
746 		del_mtd_device(mtd);
747 
748 	return ret;
749 }
750 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
751 
752 /**
753  * mtd_device_unregister - unregister an existing MTD device.
754  *
755  * @master: the MTD device to unregister.  This will unregister both the master
756  *          and any partitions if registered.
757  */
758 int mtd_device_unregister(struct mtd_info *master)
759 {
760 	int err;
761 
762 	if (master->_reboot)
763 		unregister_reboot_notifier(&master->reboot_notifier);
764 
765 	err = del_mtd_partitions(master);
766 	if (err)
767 		return err;
768 
769 	if (!device_is_registered(&master->dev))
770 		return 0;
771 
772 	return del_mtd_device(master);
773 }
774 EXPORT_SYMBOL_GPL(mtd_device_unregister);
775 
776 /**
777  *	register_mtd_user - register a 'user' of MTD devices.
778  *	@new: pointer to notifier info structure
779  *
780  *	Registers a pair of callbacks function to be called upon addition
781  *	or removal of MTD devices. Causes the 'add' callback to be immediately
782  *	invoked for each MTD device currently present in the system.
783  */
784 void register_mtd_user (struct mtd_notifier *new)
785 {
786 	struct mtd_info *mtd;
787 
788 	mutex_lock(&mtd_table_mutex);
789 
790 	list_add(&new->list, &mtd_notifiers);
791 
792 	__module_get(THIS_MODULE);
793 
794 	mtd_for_each_device(mtd)
795 		new->add(mtd);
796 
797 	mutex_unlock(&mtd_table_mutex);
798 }
799 EXPORT_SYMBOL_GPL(register_mtd_user);
800 
801 /**
802  *	unregister_mtd_user - unregister a 'user' of MTD devices.
803  *	@old: pointer to notifier info structure
804  *
805  *	Removes a callback function pair from the list of 'users' to be
806  *	notified upon addition or removal of MTD devices. Causes the
807  *	'remove' callback to be immediately invoked for each MTD device
808  *	currently present in the system.
809  */
810 int unregister_mtd_user (struct mtd_notifier *old)
811 {
812 	struct mtd_info *mtd;
813 
814 	mutex_lock(&mtd_table_mutex);
815 
816 	module_put(THIS_MODULE);
817 
818 	mtd_for_each_device(mtd)
819 		old->remove(mtd);
820 
821 	list_del(&old->list);
822 	mutex_unlock(&mtd_table_mutex);
823 	return 0;
824 }
825 EXPORT_SYMBOL_GPL(unregister_mtd_user);
826 
827 /**
828  *	get_mtd_device - obtain a validated handle for an MTD device
829  *	@mtd: last known address of the required MTD device
830  *	@num: internal device number of the required MTD device
831  *
832  *	Given a number and NULL address, return the num'th entry in the device
833  *	table, if any.	Given an address and num == -1, search the device table
834  *	for a device with that address and return if it's still present. Given
835  *	both, return the num'th driver only if its address matches. Return
836  *	error code if not.
837  */
838 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
839 {
840 	struct mtd_info *ret = NULL, *other;
841 	int err = -ENODEV;
842 
843 	mutex_lock(&mtd_table_mutex);
844 
845 	if (num == -1) {
846 		mtd_for_each_device(other) {
847 			if (other == mtd) {
848 				ret = mtd;
849 				break;
850 			}
851 		}
852 	} else if (num >= 0) {
853 		ret = idr_find(&mtd_idr, num);
854 		if (mtd && mtd != ret)
855 			ret = NULL;
856 	}
857 
858 	if (!ret) {
859 		ret = ERR_PTR(err);
860 		goto out;
861 	}
862 
863 	err = __get_mtd_device(ret);
864 	if (err)
865 		ret = ERR_PTR(err);
866 out:
867 	mutex_unlock(&mtd_table_mutex);
868 	return ret;
869 }
870 EXPORT_SYMBOL_GPL(get_mtd_device);
871 
872 
873 int __get_mtd_device(struct mtd_info *mtd)
874 {
875 	int err;
876 
877 	if (!try_module_get(mtd->owner))
878 		return -ENODEV;
879 
880 	if (mtd->_get_device) {
881 		err = mtd->_get_device(mtd);
882 
883 		if (err) {
884 			module_put(mtd->owner);
885 			return err;
886 		}
887 	}
888 	mtd->usecount++;
889 	return 0;
890 }
891 EXPORT_SYMBOL_GPL(__get_mtd_device);
892 
893 /**
894  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
895  *	device name
896  *	@name: MTD device name to open
897  *
898  * 	This function returns MTD device description structure in case of
899  * 	success and an error code in case of failure.
900  */
901 struct mtd_info *get_mtd_device_nm(const char *name)
902 {
903 	int err = -ENODEV;
904 	struct mtd_info *mtd = NULL, *other;
905 
906 	mutex_lock(&mtd_table_mutex);
907 
908 	mtd_for_each_device(other) {
909 		if (!strcmp(name, other->name)) {
910 			mtd = other;
911 			break;
912 		}
913 	}
914 
915 	if (!mtd)
916 		goto out_unlock;
917 
918 	err = __get_mtd_device(mtd);
919 	if (err)
920 		goto out_unlock;
921 
922 	mutex_unlock(&mtd_table_mutex);
923 	return mtd;
924 
925 out_unlock:
926 	mutex_unlock(&mtd_table_mutex);
927 	return ERR_PTR(err);
928 }
929 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
930 
931 void put_mtd_device(struct mtd_info *mtd)
932 {
933 	mutex_lock(&mtd_table_mutex);
934 	__put_mtd_device(mtd);
935 	mutex_unlock(&mtd_table_mutex);
936 
937 }
938 EXPORT_SYMBOL_GPL(put_mtd_device);
939 
940 void __put_mtd_device(struct mtd_info *mtd)
941 {
942 	--mtd->usecount;
943 	BUG_ON(mtd->usecount < 0);
944 
945 	if (mtd->_put_device)
946 		mtd->_put_device(mtd);
947 
948 	module_put(mtd->owner);
949 }
950 EXPORT_SYMBOL_GPL(__put_mtd_device);
951 
952 /*
953  * Erase is an synchronous operation. Device drivers are epected to return a
954  * negative error code if the operation failed and update instr->fail_addr
955  * to point the portion that was not properly erased.
956  */
957 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
958 {
959 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
960 
961 	if (!mtd->erasesize || !mtd->_erase)
962 		return -ENOTSUPP;
963 
964 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
965 		return -EINVAL;
966 	if (!(mtd->flags & MTD_WRITEABLE))
967 		return -EROFS;
968 
969 	if (!instr->len)
970 		return 0;
971 
972 	ledtrig_mtd_activity();
973 	return mtd->_erase(mtd, instr);
974 }
975 EXPORT_SYMBOL_GPL(mtd_erase);
976 
977 /*
978  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
979  */
980 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
981 	      void **virt, resource_size_t *phys)
982 {
983 	*retlen = 0;
984 	*virt = NULL;
985 	if (phys)
986 		*phys = 0;
987 	if (!mtd->_point)
988 		return -EOPNOTSUPP;
989 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
990 		return -EINVAL;
991 	if (!len)
992 		return 0;
993 	return mtd->_point(mtd, from, len, retlen, virt, phys);
994 }
995 EXPORT_SYMBOL_GPL(mtd_point);
996 
997 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
998 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
999 {
1000 	if (!mtd->_unpoint)
1001 		return -EOPNOTSUPP;
1002 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1003 		return -EINVAL;
1004 	if (!len)
1005 		return 0;
1006 	return mtd->_unpoint(mtd, from, len);
1007 }
1008 EXPORT_SYMBOL_GPL(mtd_unpoint);
1009 
1010 /*
1011  * Allow NOMMU mmap() to directly map the device (if not NULL)
1012  * - return the address to which the offset maps
1013  * - return -ENOSYS to indicate refusal to do the mapping
1014  */
1015 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1016 				    unsigned long offset, unsigned long flags)
1017 {
1018 	size_t retlen;
1019 	void *virt;
1020 	int ret;
1021 
1022 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1023 	if (ret)
1024 		return ret;
1025 	if (retlen != len) {
1026 		mtd_unpoint(mtd, offset, retlen);
1027 		return -ENOSYS;
1028 	}
1029 	return (unsigned long)virt;
1030 }
1031 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1032 
1033 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1034 	     u_char *buf)
1035 {
1036 	int ret_code;
1037 	*retlen = 0;
1038 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1039 		return -EINVAL;
1040 	if (!len)
1041 		return 0;
1042 
1043 	ledtrig_mtd_activity();
1044 	/*
1045 	 * In the absence of an error, drivers return a non-negative integer
1046 	 * representing the maximum number of bitflips that were corrected on
1047 	 * any one ecc region (if applicable; zero otherwise).
1048 	 */
1049 	if (mtd->_read) {
1050 		ret_code = mtd->_read(mtd, from, len, retlen, buf);
1051 	} else if (mtd->_read_oob) {
1052 		struct mtd_oob_ops ops = {
1053 			.len = len,
1054 			.datbuf = buf,
1055 		};
1056 
1057 		ret_code = mtd->_read_oob(mtd, from, &ops);
1058 		*retlen = ops.retlen;
1059 	} else {
1060 		return -ENOTSUPP;
1061 	}
1062 
1063 	if (unlikely(ret_code < 0))
1064 		return ret_code;
1065 	if (mtd->ecc_strength == 0)
1066 		return 0;	/* device lacks ecc */
1067 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1068 }
1069 EXPORT_SYMBOL_GPL(mtd_read);
1070 
1071 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1072 	      const u_char *buf)
1073 {
1074 	*retlen = 0;
1075 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1076 		return -EINVAL;
1077 	if ((!mtd->_write && !mtd->_write_oob) ||
1078 	    !(mtd->flags & MTD_WRITEABLE))
1079 		return -EROFS;
1080 	if (!len)
1081 		return 0;
1082 	ledtrig_mtd_activity();
1083 
1084 	if (!mtd->_write) {
1085 		struct mtd_oob_ops ops = {
1086 			.len = len,
1087 			.datbuf = (u8 *)buf,
1088 		};
1089 		int ret;
1090 
1091 		ret = mtd->_write_oob(mtd, to, &ops);
1092 		*retlen = ops.retlen;
1093 		return ret;
1094 	}
1095 
1096 	return mtd->_write(mtd, to, len, retlen, buf);
1097 }
1098 EXPORT_SYMBOL_GPL(mtd_write);
1099 
1100 /*
1101  * In blackbox flight recorder like scenarios we want to make successful writes
1102  * in interrupt context. panic_write() is only intended to be called when its
1103  * known the kernel is about to panic and we need the write to succeed. Since
1104  * the kernel is not going to be running for much longer, this function can
1105  * break locks and delay to ensure the write succeeds (but not sleep).
1106  */
1107 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1108 		    const u_char *buf)
1109 {
1110 	*retlen = 0;
1111 	if (!mtd->_panic_write)
1112 		return -EOPNOTSUPP;
1113 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1114 		return -EINVAL;
1115 	if (!(mtd->flags & MTD_WRITEABLE))
1116 		return -EROFS;
1117 	if (!len)
1118 		return 0;
1119 	return mtd->_panic_write(mtd, to, len, retlen, buf);
1120 }
1121 EXPORT_SYMBOL_GPL(mtd_panic_write);
1122 
1123 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1124 			     struct mtd_oob_ops *ops)
1125 {
1126 	/*
1127 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1128 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1129 	 *  this case.
1130 	 */
1131 	if (!ops->datbuf)
1132 		ops->len = 0;
1133 
1134 	if (!ops->oobbuf)
1135 		ops->ooblen = 0;
1136 
1137 	if (offs < 0 || offs + ops->len > mtd->size)
1138 		return -EINVAL;
1139 
1140 	if (ops->ooblen) {
1141 		size_t maxooblen;
1142 
1143 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1144 			return -EINVAL;
1145 
1146 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1147 				      mtd_div_by_ws(offs, mtd)) *
1148 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1149 		if (ops->ooblen > maxooblen)
1150 			return -EINVAL;
1151 	}
1152 
1153 	return 0;
1154 }
1155 
1156 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1157 {
1158 	int ret_code;
1159 	ops->retlen = ops->oobretlen = 0;
1160 
1161 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1162 	if (ret_code)
1163 		return ret_code;
1164 
1165 	ledtrig_mtd_activity();
1166 
1167 	/* Check the validity of a potential fallback on mtd->_read */
1168 	if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf))
1169 		return -EOPNOTSUPP;
1170 
1171 	if (mtd->_read_oob)
1172 		ret_code = mtd->_read_oob(mtd, from, ops);
1173 	else
1174 		ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen,
1175 				      ops->datbuf);
1176 
1177 	/*
1178 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1179 	 * similar to mtd->_read(), returning a non-negative integer
1180 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1181 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1182 	 */
1183 	if (unlikely(ret_code < 0))
1184 		return ret_code;
1185 	if (mtd->ecc_strength == 0)
1186 		return 0;	/* device lacks ecc */
1187 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1188 }
1189 EXPORT_SYMBOL_GPL(mtd_read_oob);
1190 
1191 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1192 				struct mtd_oob_ops *ops)
1193 {
1194 	int ret;
1195 
1196 	ops->retlen = ops->oobretlen = 0;
1197 
1198 	if (!(mtd->flags & MTD_WRITEABLE))
1199 		return -EROFS;
1200 
1201 	ret = mtd_check_oob_ops(mtd, to, ops);
1202 	if (ret)
1203 		return ret;
1204 
1205 	ledtrig_mtd_activity();
1206 
1207 	/* Check the validity of a potential fallback on mtd->_write */
1208 	if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf))
1209 		return -EOPNOTSUPP;
1210 
1211 	if (mtd->_write_oob)
1212 		return mtd->_write_oob(mtd, to, ops);
1213 	else
1214 		return mtd->_write(mtd, to, ops->len, &ops->retlen,
1215 				   ops->datbuf);
1216 }
1217 EXPORT_SYMBOL_GPL(mtd_write_oob);
1218 
1219 /**
1220  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1221  * @mtd: MTD device structure
1222  * @section: ECC section. Depending on the layout you may have all the ECC
1223  *	     bytes stored in a single contiguous section, or one section
1224  *	     per ECC chunk (and sometime several sections for a single ECC
1225  *	     ECC chunk)
1226  * @oobecc: OOB region struct filled with the appropriate ECC position
1227  *	    information
1228  *
1229  * This function returns ECC section information in the OOB area. If you want
1230  * to get all the ECC bytes information, then you should call
1231  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1232  *
1233  * Returns zero on success, a negative error code otherwise.
1234  */
1235 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1236 		      struct mtd_oob_region *oobecc)
1237 {
1238 	memset(oobecc, 0, sizeof(*oobecc));
1239 
1240 	if (!mtd || section < 0)
1241 		return -EINVAL;
1242 
1243 	if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1244 		return -ENOTSUPP;
1245 
1246 	return mtd->ooblayout->ecc(mtd, section, oobecc);
1247 }
1248 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1249 
1250 /**
1251  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1252  *			section
1253  * @mtd: MTD device structure
1254  * @section: Free section you are interested in. Depending on the layout
1255  *	     you may have all the free bytes stored in a single contiguous
1256  *	     section, or one section per ECC chunk plus an extra section
1257  *	     for the remaining bytes (or other funky layout).
1258  * @oobfree: OOB region struct filled with the appropriate free position
1259  *	     information
1260  *
1261  * This function returns free bytes position in the OOB area. If you want
1262  * to get all the free bytes information, then you should call
1263  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1264  *
1265  * Returns zero on success, a negative error code otherwise.
1266  */
1267 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1268 		       struct mtd_oob_region *oobfree)
1269 {
1270 	memset(oobfree, 0, sizeof(*oobfree));
1271 
1272 	if (!mtd || section < 0)
1273 		return -EINVAL;
1274 
1275 	if (!mtd->ooblayout || !mtd->ooblayout->free)
1276 		return -ENOTSUPP;
1277 
1278 	return mtd->ooblayout->free(mtd, section, oobfree);
1279 }
1280 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1281 
1282 /**
1283  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1284  * @mtd: mtd info structure
1285  * @byte: the byte we are searching for
1286  * @sectionp: pointer where the section id will be stored
1287  * @oobregion: used to retrieve the ECC position
1288  * @iter: iterator function. Should be either mtd_ooblayout_free or
1289  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1290  *
1291  * This function returns the section id and oobregion information of a
1292  * specific byte. For example, say you want to know where the 4th ECC byte is
1293  * stored, you'll use:
1294  *
1295  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1296  *
1297  * Returns zero on success, a negative error code otherwise.
1298  */
1299 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1300 				int *sectionp, struct mtd_oob_region *oobregion,
1301 				int (*iter)(struct mtd_info *,
1302 					    int section,
1303 					    struct mtd_oob_region *oobregion))
1304 {
1305 	int pos = 0, ret, section = 0;
1306 
1307 	memset(oobregion, 0, sizeof(*oobregion));
1308 
1309 	while (1) {
1310 		ret = iter(mtd, section, oobregion);
1311 		if (ret)
1312 			return ret;
1313 
1314 		if (pos + oobregion->length > byte)
1315 			break;
1316 
1317 		pos += oobregion->length;
1318 		section++;
1319 	}
1320 
1321 	/*
1322 	 * Adjust region info to make it start at the beginning at the
1323 	 * 'start' ECC byte.
1324 	 */
1325 	oobregion->offset += byte - pos;
1326 	oobregion->length -= byte - pos;
1327 	*sectionp = section;
1328 
1329 	return 0;
1330 }
1331 
1332 /**
1333  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1334  *				  ECC byte
1335  * @mtd: mtd info structure
1336  * @eccbyte: the byte we are searching for
1337  * @sectionp: pointer where the section id will be stored
1338  * @oobregion: OOB region information
1339  *
1340  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1341  * byte.
1342  *
1343  * Returns zero on success, a negative error code otherwise.
1344  */
1345 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1346 				 int *section,
1347 				 struct mtd_oob_region *oobregion)
1348 {
1349 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1350 					 mtd_ooblayout_ecc);
1351 }
1352 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1353 
1354 /**
1355  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1356  * @mtd: mtd info structure
1357  * @buf: destination buffer to store OOB bytes
1358  * @oobbuf: OOB buffer
1359  * @start: first byte to retrieve
1360  * @nbytes: number of bytes to retrieve
1361  * @iter: section iterator
1362  *
1363  * Extract bytes attached to a specific category (ECC or free)
1364  * from the OOB buffer and copy them into buf.
1365  *
1366  * Returns zero on success, a negative error code otherwise.
1367  */
1368 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1369 				const u8 *oobbuf, int start, int nbytes,
1370 				int (*iter)(struct mtd_info *,
1371 					    int section,
1372 					    struct mtd_oob_region *oobregion))
1373 {
1374 	struct mtd_oob_region oobregion;
1375 	int section, ret;
1376 
1377 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1378 					&oobregion, iter);
1379 
1380 	while (!ret) {
1381 		int cnt;
1382 
1383 		cnt = min_t(int, nbytes, oobregion.length);
1384 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1385 		buf += cnt;
1386 		nbytes -= cnt;
1387 
1388 		if (!nbytes)
1389 			break;
1390 
1391 		ret = iter(mtd, ++section, &oobregion);
1392 	}
1393 
1394 	return ret;
1395 }
1396 
1397 /**
1398  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1399  * @mtd: mtd info structure
1400  * @buf: source buffer to get OOB bytes from
1401  * @oobbuf: OOB buffer
1402  * @start: first OOB byte to set
1403  * @nbytes: number of OOB bytes to set
1404  * @iter: section iterator
1405  *
1406  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1407  * is selected by passing the appropriate iterator.
1408  *
1409  * Returns zero on success, a negative error code otherwise.
1410  */
1411 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1412 				u8 *oobbuf, int start, int nbytes,
1413 				int (*iter)(struct mtd_info *,
1414 					    int section,
1415 					    struct mtd_oob_region *oobregion))
1416 {
1417 	struct mtd_oob_region oobregion;
1418 	int section, ret;
1419 
1420 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1421 					&oobregion, iter);
1422 
1423 	while (!ret) {
1424 		int cnt;
1425 
1426 		cnt = min_t(int, nbytes, oobregion.length);
1427 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1428 		buf += cnt;
1429 		nbytes -= cnt;
1430 
1431 		if (!nbytes)
1432 			break;
1433 
1434 		ret = iter(mtd, ++section, &oobregion);
1435 	}
1436 
1437 	return ret;
1438 }
1439 
1440 /**
1441  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1442  * @mtd: mtd info structure
1443  * @iter: category iterator
1444  *
1445  * Count the number of bytes in a given category.
1446  *
1447  * Returns a positive value on success, a negative error code otherwise.
1448  */
1449 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1450 				int (*iter)(struct mtd_info *,
1451 					    int section,
1452 					    struct mtd_oob_region *oobregion))
1453 {
1454 	struct mtd_oob_region oobregion;
1455 	int section = 0, ret, nbytes = 0;
1456 
1457 	while (1) {
1458 		ret = iter(mtd, section++, &oobregion);
1459 		if (ret) {
1460 			if (ret == -ERANGE)
1461 				ret = nbytes;
1462 			break;
1463 		}
1464 
1465 		nbytes += oobregion.length;
1466 	}
1467 
1468 	return ret;
1469 }
1470 
1471 /**
1472  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1473  * @mtd: mtd info structure
1474  * @eccbuf: destination buffer to store ECC bytes
1475  * @oobbuf: OOB buffer
1476  * @start: first ECC byte to retrieve
1477  * @nbytes: number of ECC bytes to retrieve
1478  *
1479  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1480  *
1481  * Returns zero on success, a negative error code otherwise.
1482  */
1483 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1484 			       const u8 *oobbuf, int start, int nbytes)
1485 {
1486 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1487 				       mtd_ooblayout_ecc);
1488 }
1489 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1490 
1491 /**
1492  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1493  * @mtd: mtd info structure
1494  * @eccbuf: source buffer to get ECC bytes from
1495  * @oobbuf: OOB buffer
1496  * @start: first ECC byte to set
1497  * @nbytes: number of ECC bytes to set
1498  *
1499  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1500  *
1501  * Returns zero on success, a negative error code otherwise.
1502  */
1503 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1504 			       u8 *oobbuf, int start, int nbytes)
1505 {
1506 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1507 				       mtd_ooblayout_ecc);
1508 }
1509 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1510 
1511 /**
1512  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1513  * @mtd: mtd info structure
1514  * @databuf: destination buffer to store ECC bytes
1515  * @oobbuf: OOB buffer
1516  * @start: first ECC byte to retrieve
1517  * @nbytes: number of ECC bytes to retrieve
1518  *
1519  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1520  *
1521  * Returns zero on success, a negative error code otherwise.
1522  */
1523 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1524 				const u8 *oobbuf, int start, int nbytes)
1525 {
1526 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1527 				       mtd_ooblayout_free);
1528 }
1529 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1530 
1531 /**
1532  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1533  * @mtd: mtd info structure
1534  * @databuf: source buffer to get data bytes from
1535  * @oobbuf: OOB buffer
1536  * @start: first ECC byte to set
1537  * @nbytes: number of ECC bytes to set
1538  *
1539  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1540  *
1541  * Returns zero on success, a negative error code otherwise.
1542  */
1543 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1544 				u8 *oobbuf, int start, int nbytes)
1545 {
1546 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1547 				       mtd_ooblayout_free);
1548 }
1549 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1550 
1551 /**
1552  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1553  * @mtd: mtd info structure
1554  *
1555  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1556  *
1557  * Returns zero on success, a negative error code otherwise.
1558  */
1559 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1560 {
1561 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1562 }
1563 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1564 
1565 /**
1566  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1567  * @mtd: mtd info structure
1568  *
1569  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1570  *
1571  * Returns zero on success, a negative error code otherwise.
1572  */
1573 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1574 {
1575 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1576 }
1577 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1578 
1579 /*
1580  * Method to access the protection register area, present in some flash
1581  * devices. The user data is one time programmable but the factory data is read
1582  * only.
1583  */
1584 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1585 			   struct otp_info *buf)
1586 {
1587 	if (!mtd->_get_fact_prot_info)
1588 		return -EOPNOTSUPP;
1589 	if (!len)
1590 		return 0;
1591 	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1592 }
1593 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1594 
1595 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1596 			   size_t *retlen, u_char *buf)
1597 {
1598 	*retlen = 0;
1599 	if (!mtd->_read_fact_prot_reg)
1600 		return -EOPNOTSUPP;
1601 	if (!len)
1602 		return 0;
1603 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1604 }
1605 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1606 
1607 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1608 			   struct otp_info *buf)
1609 {
1610 	if (!mtd->_get_user_prot_info)
1611 		return -EOPNOTSUPP;
1612 	if (!len)
1613 		return 0;
1614 	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1615 }
1616 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1617 
1618 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1619 			   size_t *retlen, u_char *buf)
1620 {
1621 	*retlen = 0;
1622 	if (!mtd->_read_user_prot_reg)
1623 		return -EOPNOTSUPP;
1624 	if (!len)
1625 		return 0;
1626 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1627 }
1628 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1629 
1630 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1631 			    size_t *retlen, u_char *buf)
1632 {
1633 	int ret;
1634 
1635 	*retlen = 0;
1636 	if (!mtd->_write_user_prot_reg)
1637 		return -EOPNOTSUPP;
1638 	if (!len)
1639 		return 0;
1640 	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1641 	if (ret)
1642 		return ret;
1643 
1644 	/*
1645 	 * If no data could be written at all, we are out of memory and
1646 	 * must return -ENOSPC.
1647 	 */
1648 	return (*retlen) ? 0 : -ENOSPC;
1649 }
1650 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1651 
1652 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1653 {
1654 	if (!mtd->_lock_user_prot_reg)
1655 		return -EOPNOTSUPP;
1656 	if (!len)
1657 		return 0;
1658 	return mtd->_lock_user_prot_reg(mtd, from, len);
1659 }
1660 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1661 
1662 /* Chip-supported device locking */
1663 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1664 {
1665 	if (!mtd->_lock)
1666 		return -EOPNOTSUPP;
1667 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1668 		return -EINVAL;
1669 	if (!len)
1670 		return 0;
1671 	return mtd->_lock(mtd, ofs, len);
1672 }
1673 EXPORT_SYMBOL_GPL(mtd_lock);
1674 
1675 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1676 {
1677 	if (!mtd->_unlock)
1678 		return -EOPNOTSUPP;
1679 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1680 		return -EINVAL;
1681 	if (!len)
1682 		return 0;
1683 	return mtd->_unlock(mtd, ofs, len);
1684 }
1685 EXPORT_SYMBOL_GPL(mtd_unlock);
1686 
1687 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1688 {
1689 	if (!mtd->_is_locked)
1690 		return -EOPNOTSUPP;
1691 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1692 		return -EINVAL;
1693 	if (!len)
1694 		return 0;
1695 	return mtd->_is_locked(mtd, ofs, len);
1696 }
1697 EXPORT_SYMBOL_GPL(mtd_is_locked);
1698 
1699 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1700 {
1701 	if (ofs < 0 || ofs >= mtd->size)
1702 		return -EINVAL;
1703 	if (!mtd->_block_isreserved)
1704 		return 0;
1705 	return mtd->_block_isreserved(mtd, ofs);
1706 }
1707 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1708 
1709 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1710 {
1711 	if (ofs < 0 || ofs >= mtd->size)
1712 		return -EINVAL;
1713 	if (!mtd->_block_isbad)
1714 		return 0;
1715 	return mtd->_block_isbad(mtd, ofs);
1716 }
1717 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1718 
1719 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1720 {
1721 	if (!mtd->_block_markbad)
1722 		return -EOPNOTSUPP;
1723 	if (ofs < 0 || ofs >= mtd->size)
1724 		return -EINVAL;
1725 	if (!(mtd->flags & MTD_WRITEABLE))
1726 		return -EROFS;
1727 	return mtd->_block_markbad(mtd, ofs);
1728 }
1729 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1730 
1731 /*
1732  * default_mtd_writev - the default writev method
1733  * @mtd: mtd device description object pointer
1734  * @vecs: the vectors to write
1735  * @count: count of vectors in @vecs
1736  * @to: the MTD device offset to write to
1737  * @retlen: on exit contains the count of bytes written to the MTD device.
1738  *
1739  * This function returns zero in case of success and a negative error code in
1740  * case of failure.
1741  */
1742 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1743 			      unsigned long count, loff_t to, size_t *retlen)
1744 {
1745 	unsigned long i;
1746 	size_t totlen = 0, thislen;
1747 	int ret = 0;
1748 
1749 	for (i = 0; i < count; i++) {
1750 		if (!vecs[i].iov_len)
1751 			continue;
1752 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1753 				vecs[i].iov_base);
1754 		totlen += thislen;
1755 		if (ret || thislen != vecs[i].iov_len)
1756 			break;
1757 		to += vecs[i].iov_len;
1758 	}
1759 	*retlen = totlen;
1760 	return ret;
1761 }
1762 
1763 /*
1764  * mtd_writev - the vector-based MTD write method
1765  * @mtd: mtd device description object pointer
1766  * @vecs: the vectors to write
1767  * @count: count of vectors in @vecs
1768  * @to: the MTD device offset to write to
1769  * @retlen: on exit contains the count of bytes written to the MTD device.
1770  *
1771  * This function returns zero in case of success and a negative error code in
1772  * case of failure.
1773  */
1774 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1775 	       unsigned long count, loff_t to, size_t *retlen)
1776 {
1777 	*retlen = 0;
1778 	if (!(mtd->flags & MTD_WRITEABLE))
1779 		return -EROFS;
1780 	if (!mtd->_writev)
1781 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1782 	return mtd->_writev(mtd, vecs, count, to, retlen);
1783 }
1784 EXPORT_SYMBOL_GPL(mtd_writev);
1785 
1786 /**
1787  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1788  * @mtd: mtd device description object pointer
1789  * @size: a pointer to the ideal or maximum size of the allocation, points
1790  *        to the actual allocation size on success.
1791  *
1792  * This routine attempts to allocate a contiguous kernel buffer up to
1793  * the specified size, backing off the size of the request exponentially
1794  * until the request succeeds or until the allocation size falls below
1795  * the system page size. This attempts to make sure it does not adversely
1796  * impact system performance, so when allocating more than one page, we
1797  * ask the memory allocator to avoid re-trying, swapping, writing back
1798  * or performing I/O.
1799  *
1800  * Note, this function also makes sure that the allocated buffer is aligned to
1801  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1802  *
1803  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1804  * to handle smaller (i.e. degraded) buffer allocations under low- or
1805  * fragmented-memory situations where such reduced allocations, from a
1806  * requested ideal, are allowed.
1807  *
1808  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1809  */
1810 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1811 {
1812 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1813 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1814 	void *kbuf;
1815 
1816 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1817 
1818 	while (*size > min_alloc) {
1819 		kbuf = kmalloc(*size, flags);
1820 		if (kbuf)
1821 			return kbuf;
1822 
1823 		*size >>= 1;
1824 		*size = ALIGN(*size, mtd->writesize);
1825 	}
1826 
1827 	/*
1828 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1829 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1830 	 */
1831 	return kmalloc(*size, GFP_KERNEL);
1832 }
1833 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1834 
1835 #ifdef CONFIG_PROC_FS
1836 
1837 /*====================================================================*/
1838 /* Support for /proc/mtd */
1839 
1840 static int mtd_proc_show(struct seq_file *m, void *v)
1841 {
1842 	struct mtd_info *mtd;
1843 
1844 	seq_puts(m, "dev:    size   erasesize  name\n");
1845 	mutex_lock(&mtd_table_mutex);
1846 	mtd_for_each_device(mtd) {
1847 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1848 			   mtd->index, (unsigned long long)mtd->size,
1849 			   mtd->erasesize, mtd->name);
1850 	}
1851 	mutex_unlock(&mtd_table_mutex);
1852 	return 0;
1853 }
1854 #endif /* CONFIG_PROC_FS */
1855 
1856 /*====================================================================*/
1857 /* Init code */
1858 
1859 static struct backing_dev_info * __init mtd_bdi_init(char *name)
1860 {
1861 	struct backing_dev_info *bdi;
1862 	int ret;
1863 
1864 	bdi = bdi_alloc(GFP_KERNEL);
1865 	if (!bdi)
1866 		return ERR_PTR(-ENOMEM);
1867 
1868 	bdi->name = name;
1869 	/*
1870 	 * We put '-0' suffix to the name to get the same name format as we
1871 	 * used to get. Since this is called only once, we get a unique name.
1872 	 */
1873 	ret = bdi_register(bdi, "%.28s-0", name);
1874 	if (ret)
1875 		bdi_put(bdi);
1876 
1877 	return ret ? ERR_PTR(ret) : bdi;
1878 }
1879 
1880 static struct proc_dir_entry *proc_mtd;
1881 
1882 static int __init init_mtd(void)
1883 {
1884 	int ret;
1885 
1886 	ret = class_register(&mtd_class);
1887 	if (ret)
1888 		goto err_reg;
1889 
1890 	mtd_bdi = mtd_bdi_init("mtd");
1891 	if (IS_ERR(mtd_bdi)) {
1892 		ret = PTR_ERR(mtd_bdi);
1893 		goto err_bdi;
1894 	}
1895 
1896 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
1897 
1898 	ret = init_mtdchar();
1899 	if (ret)
1900 		goto out_procfs;
1901 
1902 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
1903 
1904 	return 0;
1905 
1906 out_procfs:
1907 	if (proc_mtd)
1908 		remove_proc_entry("mtd", NULL);
1909 	bdi_put(mtd_bdi);
1910 err_bdi:
1911 	class_unregister(&mtd_class);
1912 err_reg:
1913 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1914 	return ret;
1915 }
1916 
1917 static void __exit cleanup_mtd(void)
1918 {
1919 	debugfs_remove_recursive(dfs_dir_mtd);
1920 	cleanup_mtdchar();
1921 	if (proc_mtd)
1922 		remove_proc_entry("mtd", NULL);
1923 	class_unregister(&mtd_class);
1924 	bdi_put(mtd_bdi);
1925 	idr_destroy(&mtd_idr);
1926 }
1927 
1928 module_init(init_mtd);
1929 module_exit(cleanup_mtd);
1930 
1931 MODULE_LICENSE("GPL");
1932 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1933 MODULE_DESCRIPTION("Core MTD registration and access routines");
1934