1 /* 2 * Core registration and callback routines for MTD 3 * drivers and users. 4 * 5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 6 * Copyright © 2006 Red Hat UK Limited 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/kernel.h> 26 #include <linux/ptrace.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/major.h> 31 #include <linux/fs.h> 32 #include <linux/err.h> 33 #include <linux/ioctl.h> 34 #include <linux/init.h> 35 #include <linux/of.h> 36 #include <linux/proc_fs.h> 37 #include <linux/idr.h> 38 #include <linux/backing-dev.h> 39 #include <linux/gfp.h> 40 #include <linux/slab.h> 41 #include <linux/reboot.h> 42 #include <linux/leds.h> 43 #include <linux/debugfs.h> 44 #include <linux/nvmem-provider.h> 45 46 #include <linux/mtd/mtd.h> 47 #include <linux/mtd/partitions.h> 48 49 #include "mtdcore.h" 50 51 struct backing_dev_info *mtd_bdi; 52 53 #ifdef CONFIG_PM_SLEEP 54 55 static int mtd_cls_suspend(struct device *dev) 56 { 57 struct mtd_info *mtd = dev_get_drvdata(dev); 58 59 return mtd ? mtd_suspend(mtd) : 0; 60 } 61 62 static int mtd_cls_resume(struct device *dev) 63 { 64 struct mtd_info *mtd = dev_get_drvdata(dev); 65 66 if (mtd) 67 mtd_resume(mtd); 68 return 0; 69 } 70 71 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 72 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 73 #else 74 #define MTD_CLS_PM_OPS NULL 75 #endif 76 77 static struct class mtd_class = { 78 .name = "mtd", 79 .owner = THIS_MODULE, 80 .pm = MTD_CLS_PM_OPS, 81 }; 82 83 static DEFINE_IDR(mtd_idr); 84 85 /* These are exported solely for the purpose of mtd_blkdevs.c. You 86 should not use them for _anything_ else */ 87 DEFINE_MUTEX(mtd_table_mutex); 88 EXPORT_SYMBOL_GPL(mtd_table_mutex); 89 90 struct mtd_info *__mtd_next_device(int i) 91 { 92 return idr_get_next(&mtd_idr, &i); 93 } 94 EXPORT_SYMBOL_GPL(__mtd_next_device); 95 96 static LIST_HEAD(mtd_notifiers); 97 98 99 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 100 101 /* REVISIT once MTD uses the driver model better, whoever allocates 102 * the mtd_info will probably want to use the release() hook... 103 */ 104 static void mtd_release(struct device *dev) 105 { 106 struct mtd_info *mtd = dev_get_drvdata(dev); 107 dev_t index = MTD_DEVT(mtd->index); 108 109 /* remove /dev/mtdXro node */ 110 device_destroy(&mtd_class, index + 1); 111 } 112 113 static ssize_t mtd_type_show(struct device *dev, 114 struct device_attribute *attr, char *buf) 115 { 116 struct mtd_info *mtd = dev_get_drvdata(dev); 117 char *type; 118 119 switch (mtd->type) { 120 case MTD_ABSENT: 121 type = "absent"; 122 break; 123 case MTD_RAM: 124 type = "ram"; 125 break; 126 case MTD_ROM: 127 type = "rom"; 128 break; 129 case MTD_NORFLASH: 130 type = "nor"; 131 break; 132 case MTD_NANDFLASH: 133 type = "nand"; 134 break; 135 case MTD_DATAFLASH: 136 type = "dataflash"; 137 break; 138 case MTD_UBIVOLUME: 139 type = "ubi"; 140 break; 141 case MTD_MLCNANDFLASH: 142 type = "mlc-nand"; 143 break; 144 default: 145 type = "unknown"; 146 } 147 148 return snprintf(buf, PAGE_SIZE, "%s\n", type); 149 } 150 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 151 152 static ssize_t mtd_flags_show(struct device *dev, 153 struct device_attribute *attr, char *buf) 154 { 155 struct mtd_info *mtd = dev_get_drvdata(dev); 156 157 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 158 159 } 160 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 161 162 static ssize_t mtd_size_show(struct device *dev, 163 struct device_attribute *attr, char *buf) 164 { 165 struct mtd_info *mtd = dev_get_drvdata(dev); 166 167 return snprintf(buf, PAGE_SIZE, "%llu\n", 168 (unsigned long long)mtd->size); 169 170 } 171 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 172 173 static ssize_t mtd_erasesize_show(struct device *dev, 174 struct device_attribute *attr, char *buf) 175 { 176 struct mtd_info *mtd = dev_get_drvdata(dev); 177 178 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 179 180 } 181 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 182 183 static ssize_t mtd_writesize_show(struct device *dev, 184 struct device_attribute *attr, char *buf) 185 { 186 struct mtd_info *mtd = dev_get_drvdata(dev); 187 188 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 189 190 } 191 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 192 193 static ssize_t mtd_subpagesize_show(struct device *dev, 194 struct device_attribute *attr, char *buf) 195 { 196 struct mtd_info *mtd = dev_get_drvdata(dev); 197 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 198 199 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 200 201 } 202 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 203 204 static ssize_t mtd_oobsize_show(struct device *dev, 205 struct device_attribute *attr, char *buf) 206 { 207 struct mtd_info *mtd = dev_get_drvdata(dev); 208 209 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 210 211 } 212 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 213 214 static ssize_t mtd_oobavail_show(struct device *dev, 215 struct device_attribute *attr, char *buf) 216 { 217 struct mtd_info *mtd = dev_get_drvdata(dev); 218 219 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail); 220 } 221 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL); 222 223 static ssize_t mtd_numeraseregions_show(struct device *dev, 224 struct device_attribute *attr, char *buf) 225 { 226 struct mtd_info *mtd = dev_get_drvdata(dev); 227 228 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 229 230 } 231 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 232 NULL); 233 234 static ssize_t mtd_name_show(struct device *dev, 235 struct device_attribute *attr, char *buf) 236 { 237 struct mtd_info *mtd = dev_get_drvdata(dev); 238 239 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 240 241 } 242 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 243 244 static ssize_t mtd_ecc_strength_show(struct device *dev, 245 struct device_attribute *attr, char *buf) 246 { 247 struct mtd_info *mtd = dev_get_drvdata(dev); 248 249 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 250 } 251 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 252 253 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 254 struct device_attribute *attr, 255 char *buf) 256 { 257 struct mtd_info *mtd = dev_get_drvdata(dev); 258 259 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 260 } 261 262 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 263 struct device_attribute *attr, 264 const char *buf, size_t count) 265 { 266 struct mtd_info *mtd = dev_get_drvdata(dev); 267 unsigned int bitflip_threshold; 268 int retval; 269 270 retval = kstrtouint(buf, 0, &bitflip_threshold); 271 if (retval) 272 return retval; 273 274 mtd->bitflip_threshold = bitflip_threshold; 275 return count; 276 } 277 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 278 mtd_bitflip_threshold_show, 279 mtd_bitflip_threshold_store); 280 281 static ssize_t mtd_ecc_step_size_show(struct device *dev, 282 struct device_attribute *attr, char *buf) 283 { 284 struct mtd_info *mtd = dev_get_drvdata(dev); 285 286 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 287 288 } 289 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 290 291 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev, 292 struct device_attribute *attr, char *buf) 293 { 294 struct mtd_info *mtd = dev_get_drvdata(dev); 295 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 296 297 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected); 298 } 299 static DEVICE_ATTR(corrected_bits, S_IRUGO, 300 mtd_ecc_stats_corrected_show, NULL); 301 302 static ssize_t mtd_ecc_stats_errors_show(struct device *dev, 303 struct device_attribute *attr, char *buf) 304 { 305 struct mtd_info *mtd = dev_get_drvdata(dev); 306 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 307 308 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed); 309 } 310 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL); 311 312 static ssize_t mtd_badblocks_show(struct device *dev, 313 struct device_attribute *attr, char *buf) 314 { 315 struct mtd_info *mtd = dev_get_drvdata(dev); 316 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 317 318 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks); 319 } 320 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL); 321 322 static ssize_t mtd_bbtblocks_show(struct device *dev, 323 struct device_attribute *attr, char *buf) 324 { 325 struct mtd_info *mtd = dev_get_drvdata(dev); 326 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 327 328 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks); 329 } 330 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL); 331 332 static struct attribute *mtd_attrs[] = { 333 &dev_attr_type.attr, 334 &dev_attr_flags.attr, 335 &dev_attr_size.attr, 336 &dev_attr_erasesize.attr, 337 &dev_attr_writesize.attr, 338 &dev_attr_subpagesize.attr, 339 &dev_attr_oobsize.attr, 340 &dev_attr_oobavail.attr, 341 &dev_attr_numeraseregions.attr, 342 &dev_attr_name.attr, 343 &dev_attr_ecc_strength.attr, 344 &dev_attr_ecc_step_size.attr, 345 &dev_attr_corrected_bits.attr, 346 &dev_attr_ecc_failures.attr, 347 &dev_attr_bad_blocks.attr, 348 &dev_attr_bbt_blocks.attr, 349 &dev_attr_bitflip_threshold.attr, 350 NULL, 351 }; 352 ATTRIBUTE_GROUPS(mtd); 353 354 static const struct device_type mtd_devtype = { 355 .name = "mtd", 356 .groups = mtd_groups, 357 .release = mtd_release, 358 }; 359 360 #ifndef CONFIG_MMU 361 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 362 { 363 switch (mtd->type) { 364 case MTD_RAM: 365 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 366 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 367 case MTD_ROM: 368 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 369 NOMMU_MAP_READ; 370 default: 371 return NOMMU_MAP_COPY; 372 } 373 } 374 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 375 #endif 376 377 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 378 void *cmd) 379 { 380 struct mtd_info *mtd; 381 382 mtd = container_of(n, struct mtd_info, reboot_notifier); 383 mtd->_reboot(mtd); 384 385 return NOTIFY_DONE; 386 } 387 388 /** 389 * mtd_wunit_to_pairing_info - get pairing information of a wunit 390 * @mtd: pointer to new MTD device info structure 391 * @wunit: write unit we are interested in 392 * @info: returned pairing information 393 * 394 * Retrieve pairing information associated to the wunit. 395 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 396 * paired together, and where programming a page may influence the page it is 397 * paired with. 398 * The notion of page is replaced by the term wunit (write-unit) to stay 399 * consistent with the ->writesize field. 400 * 401 * The @wunit argument can be extracted from an absolute offset using 402 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 403 * to @wunit. 404 * 405 * From the pairing info the MTD user can find all the wunits paired with 406 * @wunit using the following loop: 407 * 408 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 409 * info.pair = i; 410 * mtd_pairing_info_to_wunit(mtd, &info); 411 * ... 412 * } 413 */ 414 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 415 struct mtd_pairing_info *info) 416 { 417 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 418 419 if (wunit < 0 || wunit >= npairs) 420 return -EINVAL; 421 422 if (mtd->pairing && mtd->pairing->get_info) 423 return mtd->pairing->get_info(mtd, wunit, info); 424 425 info->group = 0; 426 info->pair = wunit; 427 428 return 0; 429 } 430 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 431 432 /** 433 * mtd_pairing_info_to_wunit - get wunit from pairing information 434 * @mtd: pointer to new MTD device info structure 435 * @info: pairing information struct 436 * 437 * Returns a positive number representing the wunit associated to the info 438 * struct, or a negative error code. 439 * 440 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 441 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 442 * doc). 443 * 444 * It can also be used to only program the first page of each pair (i.e. 445 * page attached to group 0), which allows one to use an MLC NAND in 446 * software-emulated SLC mode: 447 * 448 * info.group = 0; 449 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 450 * for (info.pair = 0; info.pair < npairs; info.pair++) { 451 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 452 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 453 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 454 * } 455 */ 456 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 457 const struct mtd_pairing_info *info) 458 { 459 int ngroups = mtd_pairing_groups(mtd); 460 int npairs = mtd_wunit_per_eb(mtd) / ngroups; 461 462 if (!info || info->pair < 0 || info->pair >= npairs || 463 info->group < 0 || info->group >= ngroups) 464 return -EINVAL; 465 466 if (mtd->pairing && mtd->pairing->get_wunit) 467 return mtd->pairing->get_wunit(mtd, info); 468 469 return info->pair; 470 } 471 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 472 473 /** 474 * mtd_pairing_groups - get the number of pairing groups 475 * @mtd: pointer to new MTD device info structure 476 * 477 * Returns the number of pairing groups. 478 * 479 * This number is usually equal to the number of bits exposed by a single 480 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 481 * to iterate over all pages of a given pair. 482 */ 483 int mtd_pairing_groups(struct mtd_info *mtd) 484 { 485 if (!mtd->pairing || !mtd->pairing->ngroups) 486 return 1; 487 488 return mtd->pairing->ngroups; 489 } 490 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 491 492 static int mtd_nvmem_reg_read(void *priv, unsigned int offset, 493 void *val, size_t bytes) 494 { 495 struct mtd_info *mtd = priv; 496 size_t retlen; 497 int err; 498 499 err = mtd_read(mtd, offset, bytes, &retlen, val); 500 if (err && err != -EUCLEAN) 501 return err; 502 503 return retlen == bytes ? 0 : -EIO; 504 } 505 506 static int mtd_nvmem_add(struct mtd_info *mtd) 507 { 508 struct nvmem_config config = {}; 509 510 config.dev = &mtd->dev; 511 config.name = mtd->name; 512 config.owner = THIS_MODULE; 513 config.reg_read = mtd_nvmem_reg_read; 514 config.size = mtd->size; 515 config.word_size = 1; 516 config.stride = 1; 517 config.read_only = true; 518 config.root_only = true; 519 config.no_of_node = true; 520 config.priv = mtd; 521 522 mtd->nvmem = nvmem_register(&config); 523 if (IS_ERR(mtd->nvmem)) { 524 /* Just ignore if there is no NVMEM support in the kernel */ 525 if (PTR_ERR(mtd->nvmem) == -ENOSYS) { 526 mtd->nvmem = NULL; 527 } else { 528 dev_err(&mtd->dev, "Failed to register NVMEM device\n"); 529 return PTR_ERR(mtd->nvmem); 530 } 531 } 532 533 return 0; 534 } 535 536 static struct dentry *dfs_dir_mtd; 537 538 /** 539 * add_mtd_device - register an MTD device 540 * @mtd: pointer to new MTD device info structure 541 * 542 * Add a device to the list of MTD devices present in the system, and 543 * notify each currently active MTD 'user' of its arrival. Returns 544 * zero on success or non-zero on failure. 545 */ 546 547 int add_mtd_device(struct mtd_info *mtd) 548 { 549 struct mtd_notifier *not; 550 int i, error; 551 552 /* 553 * May occur, for instance, on buggy drivers which call 554 * mtd_device_parse_register() multiple times on the same master MTD, 555 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 556 */ 557 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 558 return -EEXIST; 559 560 BUG_ON(mtd->writesize == 0); 561 562 if (WARN_ON((!mtd->erasesize || !mtd->_erase) && 563 !(mtd->flags & MTD_NO_ERASE))) 564 return -EINVAL; 565 566 mutex_lock(&mtd_table_mutex); 567 568 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 569 if (i < 0) { 570 error = i; 571 goto fail_locked; 572 } 573 574 mtd->index = i; 575 mtd->usecount = 0; 576 577 /* default value if not set by driver */ 578 if (mtd->bitflip_threshold == 0) 579 mtd->bitflip_threshold = mtd->ecc_strength; 580 581 if (is_power_of_2(mtd->erasesize)) 582 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 583 else 584 mtd->erasesize_shift = 0; 585 586 if (is_power_of_2(mtd->writesize)) 587 mtd->writesize_shift = ffs(mtd->writesize) - 1; 588 else 589 mtd->writesize_shift = 0; 590 591 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 592 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 593 594 /* Some chips always power up locked. Unlock them now */ 595 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 596 error = mtd_unlock(mtd, 0, mtd->size); 597 if (error && error != -EOPNOTSUPP) 598 printk(KERN_WARNING 599 "%s: unlock failed, writes may not work\n", 600 mtd->name); 601 /* Ignore unlock failures? */ 602 error = 0; 603 } 604 605 /* Caller should have set dev.parent to match the 606 * physical device, if appropriate. 607 */ 608 mtd->dev.type = &mtd_devtype; 609 mtd->dev.class = &mtd_class; 610 mtd->dev.devt = MTD_DEVT(i); 611 dev_set_name(&mtd->dev, "mtd%d", i); 612 dev_set_drvdata(&mtd->dev, mtd); 613 of_node_get(mtd_get_of_node(mtd)); 614 error = device_register(&mtd->dev); 615 if (error) 616 goto fail_added; 617 618 /* Add the nvmem provider */ 619 error = mtd_nvmem_add(mtd); 620 if (error) 621 goto fail_nvmem_add; 622 623 if (!IS_ERR_OR_NULL(dfs_dir_mtd)) { 624 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd); 625 if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) { 626 pr_debug("mtd device %s won't show data in debugfs\n", 627 dev_name(&mtd->dev)); 628 } 629 } 630 631 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 632 "mtd%dro", i); 633 634 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 635 /* No need to get a refcount on the module containing 636 the notifier, since we hold the mtd_table_mutex */ 637 list_for_each_entry(not, &mtd_notifiers, list) 638 not->add(mtd); 639 640 mutex_unlock(&mtd_table_mutex); 641 /* We _know_ we aren't being removed, because 642 our caller is still holding us here. So none 643 of this try_ nonsense, and no bitching about it 644 either. :) */ 645 __module_get(THIS_MODULE); 646 return 0; 647 648 fail_nvmem_add: 649 device_unregister(&mtd->dev); 650 fail_added: 651 of_node_put(mtd_get_of_node(mtd)); 652 idr_remove(&mtd_idr, i); 653 fail_locked: 654 mutex_unlock(&mtd_table_mutex); 655 return error; 656 } 657 658 /** 659 * del_mtd_device - unregister an MTD device 660 * @mtd: pointer to MTD device info structure 661 * 662 * Remove a device from the list of MTD devices present in the system, 663 * and notify each currently active MTD 'user' of its departure. 664 * Returns zero on success or 1 on failure, which currently will happen 665 * if the requested device does not appear to be present in the list. 666 */ 667 668 int del_mtd_device(struct mtd_info *mtd) 669 { 670 int ret; 671 struct mtd_notifier *not; 672 673 mutex_lock(&mtd_table_mutex); 674 675 debugfs_remove_recursive(mtd->dbg.dfs_dir); 676 677 if (idr_find(&mtd_idr, mtd->index) != mtd) { 678 ret = -ENODEV; 679 goto out_error; 680 } 681 682 /* No need to get a refcount on the module containing 683 the notifier, since we hold the mtd_table_mutex */ 684 list_for_each_entry(not, &mtd_notifiers, list) 685 not->remove(mtd); 686 687 if (mtd->usecount) { 688 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 689 mtd->index, mtd->name, mtd->usecount); 690 ret = -EBUSY; 691 } else { 692 /* Try to remove the NVMEM provider */ 693 if (mtd->nvmem) 694 nvmem_unregister(mtd->nvmem); 695 696 device_unregister(&mtd->dev); 697 698 idr_remove(&mtd_idr, mtd->index); 699 of_node_put(mtd_get_of_node(mtd)); 700 701 module_put(THIS_MODULE); 702 ret = 0; 703 } 704 705 out_error: 706 mutex_unlock(&mtd_table_mutex); 707 return ret; 708 } 709 710 /* 711 * Set a few defaults based on the parent devices, if not provided by the 712 * driver 713 */ 714 static void mtd_set_dev_defaults(struct mtd_info *mtd) 715 { 716 if (mtd->dev.parent) { 717 if (!mtd->owner && mtd->dev.parent->driver) 718 mtd->owner = mtd->dev.parent->driver->owner; 719 if (!mtd->name) 720 mtd->name = dev_name(mtd->dev.parent); 721 } else { 722 pr_debug("mtd device won't show a device symlink in sysfs\n"); 723 } 724 725 mtd->orig_flags = mtd->flags; 726 } 727 728 /** 729 * mtd_device_parse_register - parse partitions and register an MTD device. 730 * 731 * @mtd: the MTD device to register 732 * @types: the list of MTD partition probes to try, see 733 * 'parse_mtd_partitions()' for more information 734 * @parser_data: MTD partition parser-specific data 735 * @parts: fallback partition information to register, if parsing fails; 736 * only valid if %nr_parts > %0 737 * @nr_parts: the number of partitions in parts, if zero then the full 738 * MTD device is registered if no partition info is found 739 * 740 * This function aggregates MTD partitions parsing (done by 741 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 742 * basically follows the most common pattern found in many MTD drivers: 743 * 744 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is 745 * registered first. 746 * * Then It tries to probe partitions on MTD device @mtd using parsers 747 * specified in @types (if @types is %NULL, then the default list of parsers 748 * is used, see 'parse_mtd_partitions()' for more information). If none are 749 * found this functions tries to fallback to information specified in 750 * @parts/@nr_parts. 751 * * If no partitions were found this function just registers the MTD device 752 * @mtd and exits. 753 * 754 * Returns zero in case of success and a negative error code in case of failure. 755 */ 756 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 757 struct mtd_part_parser_data *parser_data, 758 const struct mtd_partition *parts, 759 int nr_parts) 760 { 761 int ret; 762 763 mtd_set_dev_defaults(mtd); 764 765 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 766 ret = add_mtd_device(mtd); 767 if (ret) 768 return ret; 769 } 770 771 /* Prefer parsed partitions over driver-provided fallback */ 772 ret = parse_mtd_partitions(mtd, types, parser_data); 773 if (ret > 0) 774 ret = 0; 775 else if (nr_parts) 776 ret = add_mtd_partitions(mtd, parts, nr_parts); 777 else if (!device_is_registered(&mtd->dev)) 778 ret = add_mtd_device(mtd); 779 else 780 ret = 0; 781 782 if (ret) 783 goto out; 784 785 /* 786 * FIXME: some drivers unfortunately call this function more than once. 787 * So we have to check if we've already assigned the reboot notifier. 788 * 789 * Generally, we can make multiple calls work for most cases, but it 790 * does cause problems with parse_mtd_partitions() above (e.g., 791 * cmdlineparts will register partitions more than once). 792 */ 793 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 794 "MTD already registered\n"); 795 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 796 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 797 register_reboot_notifier(&mtd->reboot_notifier); 798 } 799 800 out: 801 if (ret && device_is_registered(&mtd->dev)) 802 del_mtd_device(mtd); 803 804 return ret; 805 } 806 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 807 808 /** 809 * mtd_device_unregister - unregister an existing MTD device. 810 * 811 * @master: the MTD device to unregister. This will unregister both the master 812 * and any partitions if registered. 813 */ 814 int mtd_device_unregister(struct mtd_info *master) 815 { 816 int err; 817 818 if (master->_reboot) 819 unregister_reboot_notifier(&master->reboot_notifier); 820 821 err = del_mtd_partitions(master); 822 if (err) 823 return err; 824 825 if (!device_is_registered(&master->dev)) 826 return 0; 827 828 return del_mtd_device(master); 829 } 830 EXPORT_SYMBOL_GPL(mtd_device_unregister); 831 832 /** 833 * register_mtd_user - register a 'user' of MTD devices. 834 * @new: pointer to notifier info structure 835 * 836 * Registers a pair of callbacks function to be called upon addition 837 * or removal of MTD devices. Causes the 'add' callback to be immediately 838 * invoked for each MTD device currently present in the system. 839 */ 840 void register_mtd_user (struct mtd_notifier *new) 841 { 842 struct mtd_info *mtd; 843 844 mutex_lock(&mtd_table_mutex); 845 846 list_add(&new->list, &mtd_notifiers); 847 848 __module_get(THIS_MODULE); 849 850 mtd_for_each_device(mtd) 851 new->add(mtd); 852 853 mutex_unlock(&mtd_table_mutex); 854 } 855 EXPORT_SYMBOL_GPL(register_mtd_user); 856 857 /** 858 * unregister_mtd_user - unregister a 'user' of MTD devices. 859 * @old: pointer to notifier info structure 860 * 861 * Removes a callback function pair from the list of 'users' to be 862 * notified upon addition or removal of MTD devices. Causes the 863 * 'remove' callback to be immediately invoked for each MTD device 864 * currently present in the system. 865 */ 866 int unregister_mtd_user (struct mtd_notifier *old) 867 { 868 struct mtd_info *mtd; 869 870 mutex_lock(&mtd_table_mutex); 871 872 module_put(THIS_MODULE); 873 874 mtd_for_each_device(mtd) 875 old->remove(mtd); 876 877 list_del(&old->list); 878 mutex_unlock(&mtd_table_mutex); 879 return 0; 880 } 881 EXPORT_SYMBOL_GPL(unregister_mtd_user); 882 883 /** 884 * get_mtd_device - obtain a validated handle for an MTD device 885 * @mtd: last known address of the required MTD device 886 * @num: internal device number of the required MTD device 887 * 888 * Given a number and NULL address, return the num'th entry in the device 889 * table, if any. Given an address and num == -1, search the device table 890 * for a device with that address and return if it's still present. Given 891 * both, return the num'th driver only if its address matches. Return 892 * error code if not. 893 */ 894 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 895 { 896 struct mtd_info *ret = NULL, *other; 897 int err = -ENODEV; 898 899 mutex_lock(&mtd_table_mutex); 900 901 if (num == -1) { 902 mtd_for_each_device(other) { 903 if (other == mtd) { 904 ret = mtd; 905 break; 906 } 907 } 908 } else if (num >= 0) { 909 ret = idr_find(&mtd_idr, num); 910 if (mtd && mtd != ret) 911 ret = NULL; 912 } 913 914 if (!ret) { 915 ret = ERR_PTR(err); 916 goto out; 917 } 918 919 err = __get_mtd_device(ret); 920 if (err) 921 ret = ERR_PTR(err); 922 out: 923 mutex_unlock(&mtd_table_mutex); 924 return ret; 925 } 926 EXPORT_SYMBOL_GPL(get_mtd_device); 927 928 929 int __get_mtd_device(struct mtd_info *mtd) 930 { 931 int err; 932 933 if (!try_module_get(mtd->owner)) 934 return -ENODEV; 935 936 if (mtd->_get_device) { 937 err = mtd->_get_device(mtd); 938 939 if (err) { 940 module_put(mtd->owner); 941 return err; 942 } 943 } 944 mtd->usecount++; 945 return 0; 946 } 947 EXPORT_SYMBOL_GPL(__get_mtd_device); 948 949 /** 950 * get_mtd_device_nm - obtain a validated handle for an MTD device by 951 * device name 952 * @name: MTD device name to open 953 * 954 * This function returns MTD device description structure in case of 955 * success and an error code in case of failure. 956 */ 957 struct mtd_info *get_mtd_device_nm(const char *name) 958 { 959 int err = -ENODEV; 960 struct mtd_info *mtd = NULL, *other; 961 962 mutex_lock(&mtd_table_mutex); 963 964 mtd_for_each_device(other) { 965 if (!strcmp(name, other->name)) { 966 mtd = other; 967 break; 968 } 969 } 970 971 if (!mtd) 972 goto out_unlock; 973 974 err = __get_mtd_device(mtd); 975 if (err) 976 goto out_unlock; 977 978 mutex_unlock(&mtd_table_mutex); 979 return mtd; 980 981 out_unlock: 982 mutex_unlock(&mtd_table_mutex); 983 return ERR_PTR(err); 984 } 985 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 986 987 void put_mtd_device(struct mtd_info *mtd) 988 { 989 mutex_lock(&mtd_table_mutex); 990 __put_mtd_device(mtd); 991 mutex_unlock(&mtd_table_mutex); 992 993 } 994 EXPORT_SYMBOL_GPL(put_mtd_device); 995 996 void __put_mtd_device(struct mtd_info *mtd) 997 { 998 --mtd->usecount; 999 BUG_ON(mtd->usecount < 0); 1000 1001 if (mtd->_put_device) 1002 mtd->_put_device(mtd); 1003 1004 module_put(mtd->owner); 1005 } 1006 EXPORT_SYMBOL_GPL(__put_mtd_device); 1007 1008 /* 1009 * Erase is an synchronous operation. Device drivers are epected to return a 1010 * negative error code if the operation failed and update instr->fail_addr 1011 * to point the portion that was not properly erased. 1012 */ 1013 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 1014 { 1015 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 1016 1017 if (!mtd->erasesize || !mtd->_erase) 1018 return -ENOTSUPP; 1019 1020 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 1021 return -EINVAL; 1022 if (!(mtd->flags & MTD_WRITEABLE)) 1023 return -EROFS; 1024 1025 if (!instr->len) 1026 return 0; 1027 1028 ledtrig_mtd_activity(); 1029 return mtd->_erase(mtd, instr); 1030 } 1031 EXPORT_SYMBOL_GPL(mtd_erase); 1032 1033 /* 1034 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 1035 */ 1036 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1037 void **virt, resource_size_t *phys) 1038 { 1039 *retlen = 0; 1040 *virt = NULL; 1041 if (phys) 1042 *phys = 0; 1043 if (!mtd->_point) 1044 return -EOPNOTSUPP; 1045 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1046 return -EINVAL; 1047 if (!len) 1048 return 0; 1049 return mtd->_point(mtd, from, len, retlen, virt, phys); 1050 } 1051 EXPORT_SYMBOL_GPL(mtd_point); 1052 1053 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 1054 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1055 { 1056 if (!mtd->_unpoint) 1057 return -EOPNOTSUPP; 1058 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1059 return -EINVAL; 1060 if (!len) 1061 return 0; 1062 return mtd->_unpoint(mtd, from, len); 1063 } 1064 EXPORT_SYMBOL_GPL(mtd_unpoint); 1065 1066 /* 1067 * Allow NOMMU mmap() to directly map the device (if not NULL) 1068 * - return the address to which the offset maps 1069 * - return -ENOSYS to indicate refusal to do the mapping 1070 */ 1071 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1072 unsigned long offset, unsigned long flags) 1073 { 1074 size_t retlen; 1075 void *virt; 1076 int ret; 1077 1078 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); 1079 if (ret) 1080 return ret; 1081 if (retlen != len) { 1082 mtd_unpoint(mtd, offset, retlen); 1083 return -ENOSYS; 1084 } 1085 return (unsigned long)virt; 1086 } 1087 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1088 1089 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1090 u_char *buf) 1091 { 1092 int ret_code; 1093 *retlen = 0; 1094 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1095 return -EINVAL; 1096 if (!len) 1097 return 0; 1098 1099 ledtrig_mtd_activity(); 1100 /* 1101 * In the absence of an error, drivers return a non-negative integer 1102 * representing the maximum number of bitflips that were corrected on 1103 * any one ecc region (if applicable; zero otherwise). 1104 */ 1105 if (mtd->_read) { 1106 ret_code = mtd->_read(mtd, from, len, retlen, buf); 1107 } else if (mtd->_read_oob) { 1108 struct mtd_oob_ops ops = { 1109 .len = len, 1110 .datbuf = buf, 1111 }; 1112 1113 ret_code = mtd->_read_oob(mtd, from, &ops); 1114 *retlen = ops.retlen; 1115 } else { 1116 return -ENOTSUPP; 1117 } 1118 1119 if (unlikely(ret_code < 0)) 1120 return ret_code; 1121 if (mtd->ecc_strength == 0) 1122 return 0; /* device lacks ecc */ 1123 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1124 } 1125 EXPORT_SYMBOL_GPL(mtd_read); 1126 1127 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1128 const u_char *buf) 1129 { 1130 *retlen = 0; 1131 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1132 return -EINVAL; 1133 if ((!mtd->_write && !mtd->_write_oob) || 1134 !(mtd->flags & MTD_WRITEABLE)) 1135 return -EROFS; 1136 if (!len) 1137 return 0; 1138 ledtrig_mtd_activity(); 1139 1140 if (!mtd->_write) { 1141 struct mtd_oob_ops ops = { 1142 .len = len, 1143 .datbuf = (u8 *)buf, 1144 }; 1145 int ret; 1146 1147 ret = mtd->_write_oob(mtd, to, &ops); 1148 *retlen = ops.retlen; 1149 return ret; 1150 } 1151 1152 return mtd->_write(mtd, to, len, retlen, buf); 1153 } 1154 EXPORT_SYMBOL_GPL(mtd_write); 1155 1156 /* 1157 * In blackbox flight recorder like scenarios we want to make successful writes 1158 * in interrupt context. panic_write() is only intended to be called when its 1159 * known the kernel is about to panic and we need the write to succeed. Since 1160 * the kernel is not going to be running for much longer, this function can 1161 * break locks and delay to ensure the write succeeds (but not sleep). 1162 */ 1163 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1164 const u_char *buf) 1165 { 1166 *retlen = 0; 1167 if (!mtd->_panic_write) 1168 return -EOPNOTSUPP; 1169 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1170 return -EINVAL; 1171 if (!(mtd->flags & MTD_WRITEABLE)) 1172 return -EROFS; 1173 if (!len) 1174 return 0; 1175 return mtd->_panic_write(mtd, to, len, retlen, buf); 1176 } 1177 EXPORT_SYMBOL_GPL(mtd_panic_write); 1178 1179 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1180 struct mtd_oob_ops *ops) 1181 { 1182 /* 1183 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1184 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1185 * this case. 1186 */ 1187 if (!ops->datbuf) 1188 ops->len = 0; 1189 1190 if (!ops->oobbuf) 1191 ops->ooblen = 0; 1192 1193 if (offs < 0 || offs + ops->len > mtd->size) 1194 return -EINVAL; 1195 1196 if (ops->ooblen) { 1197 size_t maxooblen; 1198 1199 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1200 return -EINVAL; 1201 1202 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) - 1203 mtd_div_by_ws(offs, mtd)) * 1204 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1205 if (ops->ooblen > maxooblen) 1206 return -EINVAL; 1207 } 1208 1209 return 0; 1210 } 1211 1212 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1213 { 1214 int ret_code; 1215 ops->retlen = ops->oobretlen = 0; 1216 1217 ret_code = mtd_check_oob_ops(mtd, from, ops); 1218 if (ret_code) 1219 return ret_code; 1220 1221 ledtrig_mtd_activity(); 1222 1223 /* Check the validity of a potential fallback on mtd->_read */ 1224 if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf)) 1225 return -EOPNOTSUPP; 1226 1227 if (mtd->_read_oob) 1228 ret_code = mtd->_read_oob(mtd, from, ops); 1229 else 1230 ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen, 1231 ops->datbuf); 1232 1233 /* 1234 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1235 * similar to mtd->_read(), returning a non-negative integer 1236 * representing max bitflips. In other cases, mtd->_read_oob() may 1237 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1238 */ 1239 if (unlikely(ret_code < 0)) 1240 return ret_code; 1241 if (mtd->ecc_strength == 0) 1242 return 0; /* device lacks ecc */ 1243 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1244 } 1245 EXPORT_SYMBOL_GPL(mtd_read_oob); 1246 1247 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1248 struct mtd_oob_ops *ops) 1249 { 1250 int ret; 1251 1252 ops->retlen = ops->oobretlen = 0; 1253 1254 if (!(mtd->flags & MTD_WRITEABLE)) 1255 return -EROFS; 1256 1257 ret = mtd_check_oob_ops(mtd, to, ops); 1258 if (ret) 1259 return ret; 1260 1261 ledtrig_mtd_activity(); 1262 1263 /* Check the validity of a potential fallback on mtd->_write */ 1264 if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf)) 1265 return -EOPNOTSUPP; 1266 1267 if (mtd->_write_oob) 1268 return mtd->_write_oob(mtd, to, ops); 1269 else 1270 return mtd->_write(mtd, to, ops->len, &ops->retlen, 1271 ops->datbuf); 1272 } 1273 EXPORT_SYMBOL_GPL(mtd_write_oob); 1274 1275 /** 1276 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1277 * @mtd: MTD device structure 1278 * @section: ECC section. Depending on the layout you may have all the ECC 1279 * bytes stored in a single contiguous section, or one section 1280 * per ECC chunk (and sometime several sections for a single ECC 1281 * ECC chunk) 1282 * @oobecc: OOB region struct filled with the appropriate ECC position 1283 * information 1284 * 1285 * This function returns ECC section information in the OOB area. If you want 1286 * to get all the ECC bytes information, then you should call 1287 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1288 * 1289 * Returns zero on success, a negative error code otherwise. 1290 */ 1291 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1292 struct mtd_oob_region *oobecc) 1293 { 1294 memset(oobecc, 0, sizeof(*oobecc)); 1295 1296 if (!mtd || section < 0) 1297 return -EINVAL; 1298 1299 if (!mtd->ooblayout || !mtd->ooblayout->ecc) 1300 return -ENOTSUPP; 1301 1302 return mtd->ooblayout->ecc(mtd, section, oobecc); 1303 } 1304 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1305 1306 /** 1307 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1308 * section 1309 * @mtd: MTD device structure 1310 * @section: Free section you are interested in. Depending on the layout 1311 * you may have all the free bytes stored in a single contiguous 1312 * section, or one section per ECC chunk plus an extra section 1313 * for the remaining bytes (or other funky layout). 1314 * @oobfree: OOB region struct filled with the appropriate free position 1315 * information 1316 * 1317 * This function returns free bytes position in the OOB area. If you want 1318 * to get all the free bytes information, then you should call 1319 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1320 * 1321 * Returns zero on success, a negative error code otherwise. 1322 */ 1323 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1324 struct mtd_oob_region *oobfree) 1325 { 1326 memset(oobfree, 0, sizeof(*oobfree)); 1327 1328 if (!mtd || section < 0) 1329 return -EINVAL; 1330 1331 if (!mtd->ooblayout || !mtd->ooblayout->free) 1332 return -ENOTSUPP; 1333 1334 return mtd->ooblayout->free(mtd, section, oobfree); 1335 } 1336 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1337 1338 /** 1339 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1340 * @mtd: mtd info structure 1341 * @byte: the byte we are searching for 1342 * @sectionp: pointer where the section id will be stored 1343 * @oobregion: used to retrieve the ECC position 1344 * @iter: iterator function. Should be either mtd_ooblayout_free or 1345 * mtd_ooblayout_ecc depending on the region type you're searching for 1346 * 1347 * This function returns the section id and oobregion information of a 1348 * specific byte. For example, say you want to know where the 4th ECC byte is 1349 * stored, you'll use: 1350 * 1351 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1352 * 1353 * Returns zero on success, a negative error code otherwise. 1354 */ 1355 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1356 int *sectionp, struct mtd_oob_region *oobregion, 1357 int (*iter)(struct mtd_info *, 1358 int section, 1359 struct mtd_oob_region *oobregion)) 1360 { 1361 int pos = 0, ret, section = 0; 1362 1363 memset(oobregion, 0, sizeof(*oobregion)); 1364 1365 while (1) { 1366 ret = iter(mtd, section, oobregion); 1367 if (ret) 1368 return ret; 1369 1370 if (pos + oobregion->length > byte) 1371 break; 1372 1373 pos += oobregion->length; 1374 section++; 1375 } 1376 1377 /* 1378 * Adjust region info to make it start at the beginning at the 1379 * 'start' ECC byte. 1380 */ 1381 oobregion->offset += byte - pos; 1382 oobregion->length -= byte - pos; 1383 *sectionp = section; 1384 1385 return 0; 1386 } 1387 1388 /** 1389 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1390 * ECC byte 1391 * @mtd: mtd info structure 1392 * @eccbyte: the byte we are searching for 1393 * @sectionp: pointer where the section id will be stored 1394 * @oobregion: OOB region information 1395 * 1396 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1397 * byte. 1398 * 1399 * Returns zero on success, a negative error code otherwise. 1400 */ 1401 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1402 int *section, 1403 struct mtd_oob_region *oobregion) 1404 { 1405 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1406 mtd_ooblayout_ecc); 1407 } 1408 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1409 1410 /** 1411 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1412 * @mtd: mtd info structure 1413 * @buf: destination buffer to store OOB bytes 1414 * @oobbuf: OOB buffer 1415 * @start: first byte to retrieve 1416 * @nbytes: number of bytes to retrieve 1417 * @iter: section iterator 1418 * 1419 * Extract bytes attached to a specific category (ECC or free) 1420 * from the OOB buffer and copy them into buf. 1421 * 1422 * Returns zero on success, a negative error code otherwise. 1423 */ 1424 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1425 const u8 *oobbuf, int start, int nbytes, 1426 int (*iter)(struct mtd_info *, 1427 int section, 1428 struct mtd_oob_region *oobregion)) 1429 { 1430 struct mtd_oob_region oobregion; 1431 int section, ret; 1432 1433 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1434 &oobregion, iter); 1435 1436 while (!ret) { 1437 int cnt; 1438 1439 cnt = min_t(int, nbytes, oobregion.length); 1440 memcpy(buf, oobbuf + oobregion.offset, cnt); 1441 buf += cnt; 1442 nbytes -= cnt; 1443 1444 if (!nbytes) 1445 break; 1446 1447 ret = iter(mtd, ++section, &oobregion); 1448 } 1449 1450 return ret; 1451 } 1452 1453 /** 1454 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1455 * @mtd: mtd info structure 1456 * @buf: source buffer to get OOB bytes from 1457 * @oobbuf: OOB buffer 1458 * @start: first OOB byte to set 1459 * @nbytes: number of OOB bytes to set 1460 * @iter: section iterator 1461 * 1462 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1463 * is selected by passing the appropriate iterator. 1464 * 1465 * Returns zero on success, a negative error code otherwise. 1466 */ 1467 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1468 u8 *oobbuf, int start, int nbytes, 1469 int (*iter)(struct mtd_info *, 1470 int section, 1471 struct mtd_oob_region *oobregion)) 1472 { 1473 struct mtd_oob_region oobregion; 1474 int section, ret; 1475 1476 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1477 &oobregion, iter); 1478 1479 while (!ret) { 1480 int cnt; 1481 1482 cnt = min_t(int, nbytes, oobregion.length); 1483 memcpy(oobbuf + oobregion.offset, buf, cnt); 1484 buf += cnt; 1485 nbytes -= cnt; 1486 1487 if (!nbytes) 1488 break; 1489 1490 ret = iter(mtd, ++section, &oobregion); 1491 } 1492 1493 return ret; 1494 } 1495 1496 /** 1497 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1498 * @mtd: mtd info structure 1499 * @iter: category iterator 1500 * 1501 * Count the number of bytes in a given category. 1502 * 1503 * Returns a positive value on success, a negative error code otherwise. 1504 */ 1505 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1506 int (*iter)(struct mtd_info *, 1507 int section, 1508 struct mtd_oob_region *oobregion)) 1509 { 1510 struct mtd_oob_region oobregion; 1511 int section = 0, ret, nbytes = 0; 1512 1513 while (1) { 1514 ret = iter(mtd, section++, &oobregion); 1515 if (ret) { 1516 if (ret == -ERANGE) 1517 ret = nbytes; 1518 break; 1519 } 1520 1521 nbytes += oobregion.length; 1522 } 1523 1524 return ret; 1525 } 1526 1527 /** 1528 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1529 * @mtd: mtd info structure 1530 * @eccbuf: destination buffer to store ECC bytes 1531 * @oobbuf: OOB buffer 1532 * @start: first ECC byte to retrieve 1533 * @nbytes: number of ECC bytes to retrieve 1534 * 1535 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1536 * 1537 * Returns zero on success, a negative error code otherwise. 1538 */ 1539 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1540 const u8 *oobbuf, int start, int nbytes) 1541 { 1542 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1543 mtd_ooblayout_ecc); 1544 } 1545 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1546 1547 /** 1548 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1549 * @mtd: mtd info structure 1550 * @eccbuf: source buffer to get ECC bytes from 1551 * @oobbuf: OOB buffer 1552 * @start: first ECC byte to set 1553 * @nbytes: number of ECC bytes to set 1554 * 1555 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 1556 * 1557 * Returns zero on success, a negative error code otherwise. 1558 */ 1559 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 1560 u8 *oobbuf, int start, int nbytes) 1561 { 1562 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1563 mtd_ooblayout_ecc); 1564 } 1565 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 1566 1567 /** 1568 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 1569 * @mtd: mtd info structure 1570 * @databuf: destination buffer to store ECC bytes 1571 * @oobbuf: OOB buffer 1572 * @start: first ECC byte to retrieve 1573 * @nbytes: number of ECC bytes to retrieve 1574 * 1575 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1576 * 1577 * Returns zero on success, a negative error code otherwise. 1578 */ 1579 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 1580 const u8 *oobbuf, int start, int nbytes) 1581 { 1582 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 1583 mtd_ooblayout_free); 1584 } 1585 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 1586 1587 /** 1588 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer 1589 * @mtd: mtd info structure 1590 * @databuf: source buffer to get data bytes from 1591 * @oobbuf: OOB buffer 1592 * @start: first ECC byte to set 1593 * @nbytes: number of ECC bytes to set 1594 * 1595 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1596 * 1597 * Returns zero on success, a negative error code otherwise. 1598 */ 1599 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 1600 u8 *oobbuf, int start, int nbytes) 1601 { 1602 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 1603 mtd_ooblayout_free); 1604 } 1605 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 1606 1607 /** 1608 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 1609 * @mtd: mtd info structure 1610 * 1611 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 1612 * 1613 * Returns zero on success, a negative error code otherwise. 1614 */ 1615 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 1616 { 1617 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 1618 } 1619 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 1620 1621 /** 1622 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB 1623 * @mtd: mtd info structure 1624 * 1625 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 1626 * 1627 * Returns zero on success, a negative error code otherwise. 1628 */ 1629 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 1630 { 1631 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 1632 } 1633 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 1634 1635 /* 1636 * Method to access the protection register area, present in some flash 1637 * devices. The user data is one time programmable but the factory data is read 1638 * only. 1639 */ 1640 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1641 struct otp_info *buf) 1642 { 1643 if (!mtd->_get_fact_prot_info) 1644 return -EOPNOTSUPP; 1645 if (!len) 1646 return 0; 1647 return mtd->_get_fact_prot_info(mtd, len, retlen, buf); 1648 } 1649 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 1650 1651 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1652 size_t *retlen, u_char *buf) 1653 { 1654 *retlen = 0; 1655 if (!mtd->_read_fact_prot_reg) 1656 return -EOPNOTSUPP; 1657 if (!len) 1658 return 0; 1659 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); 1660 } 1661 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 1662 1663 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1664 struct otp_info *buf) 1665 { 1666 if (!mtd->_get_user_prot_info) 1667 return -EOPNOTSUPP; 1668 if (!len) 1669 return 0; 1670 return mtd->_get_user_prot_info(mtd, len, retlen, buf); 1671 } 1672 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 1673 1674 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1675 size_t *retlen, u_char *buf) 1676 { 1677 *retlen = 0; 1678 if (!mtd->_read_user_prot_reg) 1679 return -EOPNOTSUPP; 1680 if (!len) 1681 return 0; 1682 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); 1683 } 1684 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 1685 1686 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 1687 size_t *retlen, u_char *buf) 1688 { 1689 int ret; 1690 1691 *retlen = 0; 1692 if (!mtd->_write_user_prot_reg) 1693 return -EOPNOTSUPP; 1694 if (!len) 1695 return 0; 1696 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); 1697 if (ret) 1698 return ret; 1699 1700 /* 1701 * If no data could be written at all, we are out of memory and 1702 * must return -ENOSPC. 1703 */ 1704 return (*retlen) ? 0 : -ENOSPC; 1705 } 1706 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1707 1708 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1709 { 1710 if (!mtd->_lock_user_prot_reg) 1711 return -EOPNOTSUPP; 1712 if (!len) 1713 return 0; 1714 return mtd->_lock_user_prot_reg(mtd, from, len); 1715 } 1716 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1717 1718 /* Chip-supported device locking */ 1719 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1720 { 1721 if (!mtd->_lock) 1722 return -EOPNOTSUPP; 1723 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1724 return -EINVAL; 1725 if (!len) 1726 return 0; 1727 return mtd->_lock(mtd, ofs, len); 1728 } 1729 EXPORT_SYMBOL_GPL(mtd_lock); 1730 1731 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1732 { 1733 if (!mtd->_unlock) 1734 return -EOPNOTSUPP; 1735 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1736 return -EINVAL; 1737 if (!len) 1738 return 0; 1739 return mtd->_unlock(mtd, ofs, len); 1740 } 1741 EXPORT_SYMBOL_GPL(mtd_unlock); 1742 1743 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1744 { 1745 if (!mtd->_is_locked) 1746 return -EOPNOTSUPP; 1747 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1748 return -EINVAL; 1749 if (!len) 1750 return 0; 1751 return mtd->_is_locked(mtd, ofs, len); 1752 } 1753 EXPORT_SYMBOL_GPL(mtd_is_locked); 1754 1755 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 1756 { 1757 if (ofs < 0 || ofs >= mtd->size) 1758 return -EINVAL; 1759 if (!mtd->_block_isreserved) 1760 return 0; 1761 return mtd->_block_isreserved(mtd, ofs); 1762 } 1763 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 1764 1765 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 1766 { 1767 if (ofs < 0 || ofs >= mtd->size) 1768 return -EINVAL; 1769 if (!mtd->_block_isbad) 1770 return 0; 1771 return mtd->_block_isbad(mtd, ofs); 1772 } 1773 EXPORT_SYMBOL_GPL(mtd_block_isbad); 1774 1775 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 1776 { 1777 if (!mtd->_block_markbad) 1778 return -EOPNOTSUPP; 1779 if (ofs < 0 || ofs >= mtd->size) 1780 return -EINVAL; 1781 if (!(mtd->flags & MTD_WRITEABLE)) 1782 return -EROFS; 1783 return mtd->_block_markbad(mtd, ofs); 1784 } 1785 EXPORT_SYMBOL_GPL(mtd_block_markbad); 1786 1787 /* 1788 * default_mtd_writev - the default writev method 1789 * @mtd: mtd device description object pointer 1790 * @vecs: the vectors to write 1791 * @count: count of vectors in @vecs 1792 * @to: the MTD device offset to write to 1793 * @retlen: on exit contains the count of bytes written to the MTD device. 1794 * 1795 * This function returns zero in case of success and a negative error code in 1796 * case of failure. 1797 */ 1798 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1799 unsigned long count, loff_t to, size_t *retlen) 1800 { 1801 unsigned long i; 1802 size_t totlen = 0, thislen; 1803 int ret = 0; 1804 1805 for (i = 0; i < count; i++) { 1806 if (!vecs[i].iov_len) 1807 continue; 1808 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1809 vecs[i].iov_base); 1810 totlen += thislen; 1811 if (ret || thislen != vecs[i].iov_len) 1812 break; 1813 to += vecs[i].iov_len; 1814 } 1815 *retlen = totlen; 1816 return ret; 1817 } 1818 1819 /* 1820 * mtd_writev - the vector-based MTD write method 1821 * @mtd: mtd device description object pointer 1822 * @vecs: the vectors to write 1823 * @count: count of vectors in @vecs 1824 * @to: the MTD device offset to write to 1825 * @retlen: on exit contains the count of bytes written to the MTD device. 1826 * 1827 * This function returns zero in case of success and a negative error code in 1828 * case of failure. 1829 */ 1830 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1831 unsigned long count, loff_t to, size_t *retlen) 1832 { 1833 *retlen = 0; 1834 if (!(mtd->flags & MTD_WRITEABLE)) 1835 return -EROFS; 1836 if (!mtd->_writev) 1837 return default_mtd_writev(mtd, vecs, count, to, retlen); 1838 return mtd->_writev(mtd, vecs, count, to, retlen); 1839 } 1840 EXPORT_SYMBOL_GPL(mtd_writev); 1841 1842 /** 1843 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1844 * @mtd: mtd device description object pointer 1845 * @size: a pointer to the ideal or maximum size of the allocation, points 1846 * to the actual allocation size on success. 1847 * 1848 * This routine attempts to allocate a contiguous kernel buffer up to 1849 * the specified size, backing off the size of the request exponentially 1850 * until the request succeeds or until the allocation size falls below 1851 * the system page size. This attempts to make sure it does not adversely 1852 * impact system performance, so when allocating more than one page, we 1853 * ask the memory allocator to avoid re-trying, swapping, writing back 1854 * or performing I/O. 1855 * 1856 * Note, this function also makes sure that the allocated buffer is aligned to 1857 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1858 * 1859 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1860 * to handle smaller (i.e. degraded) buffer allocations under low- or 1861 * fragmented-memory situations where such reduced allocations, from a 1862 * requested ideal, are allowed. 1863 * 1864 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1865 */ 1866 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1867 { 1868 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 1869 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1870 void *kbuf; 1871 1872 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1873 1874 while (*size > min_alloc) { 1875 kbuf = kmalloc(*size, flags); 1876 if (kbuf) 1877 return kbuf; 1878 1879 *size >>= 1; 1880 *size = ALIGN(*size, mtd->writesize); 1881 } 1882 1883 /* 1884 * For the last resort allocation allow 'kmalloc()' to do all sorts of 1885 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 1886 */ 1887 return kmalloc(*size, GFP_KERNEL); 1888 } 1889 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 1890 1891 #ifdef CONFIG_PROC_FS 1892 1893 /*====================================================================*/ 1894 /* Support for /proc/mtd */ 1895 1896 static int mtd_proc_show(struct seq_file *m, void *v) 1897 { 1898 struct mtd_info *mtd; 1899 1900 seq_puts(m, "dev: size erasesize name\n"); 1901 mutex_lock(&mtd_table_mutex); 1902 mtd_for_each_device(mtd) { 1903 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 1904 mtd->index, (unsigned long long)mtd->size, 1905 mtd->erasesize, mtd->name); 1906 } 1907 mutex_unlock(&mtd_table_mutex); 1908 return 0; 1909 } 1910 #endif /* CONFIG_PROC_FS */ 1911 1912 /*====================================================================*/ 1913 /* Init code */ 1914 1915 static struct backing_dev_info * __init mtd_bdi_init(char *name) 1916 { 1917 struct backing_dev_info *bdi; 1918 int ret; 1919 1920 bdi = bdi_alloc(GFP_KERNEL); 1921 if (!bdi) 1922 return ERR_PTR(-ENOMEM); 1923 1924 bdi->name = name; 1925 /* 1926 * We put '-0' suffix to the name to get the same name format as we 1927 * used to get. Since this is called only once, we get a unique name. 1928 */ 1929 ret = bdi_register(bdi, "%.28s-0", name); 1930 if (ret) 1931 bdi_put(bdi); 1932 1933 return ret ? ERR_PTR(ret) : bdi; 1934 } 1935 1936 static struct proc_dir_entry *proc_mtd; 1937 1938 static int __init init_mtd(void) 1939 { 1940 int ret; 1941 1942 ret = class_register(&mtd_class); 1943 if (ret) 1944 goto err_reg; 1945 1946 mtd_bdi = mtd_bdi_init("mtd"); 1947 if (IS_ERR(mtd_bdi)) { 1948 ret = PTR_ERR(mtd_bdi); 1949 goto err_bdi; 1950 } 1951 1952 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show); 1953 1954 ret = init_mtdchar(); 1955 if (ret) 1956 goto out_procfs; 1957 1958 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 1959 1960 return 0; 1961 1962 out_procfs: 1963 if (proc_mtd) 1964 remove_proc_entry("mtd", NULL); 1965 bdi_put(mtd_bdi); 1966 err_bdi: 1967 class_unregister(&mtd_class); 1968 err_reg: 1969 pr_err("Error registering mtd class or bdi: %d\n", ret); 1970 return ret; 1971 } 1972 1973 static void __exit cleanup_mtd(void) 1974 { 1975 debugfs_remove_recursive(dfs_dir_mtd); 1976 cleanup_mtdchar(); 1977 if (proc_mtd) 1978 remove_proc_entry("mtd", NULL); 1979 class_unregister(&mtd_class); 1980 bdi_put(mtd_bdi); 1981 idr_destroy(&mtd_idr); 1982 } 1983 1984 module_init(init_mtd); 1985 module_exit(cleanup_mtd); 1986 1987 MODULE_LICENSE("GPL"); 1988 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1989 MODULE_DESCRIPTION("Core MTD registration and access routines"); 1990