xref: /openbmc/linux/drivers/mtd/mtdcore.c (revision a080a92a6f89e716b8a264f6b93123b41a1c004c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/slab.h>
27 #include <linux/reboot.h>
28 #include <linux/leds.h>
29 #include <linux/debugfs.h>
30 #include <linux/nvmem-provider.h>
31 
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/partitions.h>
34 
35 #include "mtdcore.h"
36 
37 struct backing_dev_info *mtd_bdi;
38 
39 #ifdef CONFIG_PM_SLEEP
40 
41 static int mtd_cls_suspend(struct device *dev)
42 {
43 	struct mtd_info *mtd = dev_get_drvdata(dev);
44 
45 	return mtd ? mtd_suspend(mtd) : 0;
46 }
47 
48 static int mtd_cls_resume(struct device *dev)
49 {
50 	struct mtd_info *mtd = dev_get_drvdata(dev);
51 
52 	if (mtd)
53 		mtd_resume(mtd);
54 	return 0;
55 }
56 
57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59 #else
60 #define MTD_CLS_PM_OPS NULL
61 #endif
62 
63 static struct class mtd_class = {
64 	.name = "mtd",
65 	.owner = THIS_MODULE,
66 	.pm = MTD_CLS_PM_OPS,
67 };
68 
69 static DEFINE_IDR(mtd_idr);
70 
71 /* These are exported solely for the purpose of mtd_blkdevs.c. You
72    should not use them for _anything_ else */
73 DEFINE_MUTEX(mtd_table_mutex);
74 EXPORT_SYMBOL_GPL(mtd_table_mutex);
75 
76 struct mtd_info *__mtd_next_device(int i)
77 {
78 	return idr_get_next(&mtd_idr, &i);
79 }
80 EXPORT_SYMBOL_GPL(__mtd_next_device);
81 
82 static LIST_HEAD(mtd_notifiers);
83 
84 
85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
86 
87 /* REVISIT once MTD uses the driver model better, whoever allocates
88  * the mtd_info will probably want to use the release() hook...
89  */
90 static void mtd_release(struct device *dev)
91 {
92 	struct mtd_info *mtd = dev_get_drvdata(dev);
93 	dev_t index = MTD_DEVT(mtd->index);
94 
95 	/* remove /dev/mtdXro node */
96 	device_destroy(&mtd_class, index + 1);
97 }
98 
99 static ssize_t mtd_type_show(struct device *dev,
100 		struct device_attribute *attr, char *buf)
101 {
102 	struct mtd_info *mtd = dev_get_drvdata(dev);
103 	char *type;
104 
105 	switch (mtd->type) {
106 	case MTD_ABSENT:
107 		type = "absent";
108 		break;
109 	case MTD_RAM:
110 		type = "ram";
111 		break;
112 	case MTD_ROM:
113 		type = "rom";
114 		break;
115 	case MTD_NORFLASH:
116 		type = "nor";
117 		break;
118 	case MTD_NANDFLASH:
119 		type = "nand";
120 		break;
121 	case MTD_DATAFLASH:
122 		type = "dataflash";
123 		break;
124 	case MTD_UBIVOLUME:
125 		type = "ubi";
126 		break;
127 	case MTD_MLCNANDFLASH:
128 		type = "mlc-nand";
129 		break;
130 	default:
131 		type = "unknown";
132 	}
133 
134 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
135 }
136 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
137 
138 static ssize_t mtd_flags_show(struct device *dev,
139 		struct device_attribute *attr, char *buf)
140 {
141 	struct mtd_info *mtd = dev_get_drvdata(dev);
142 
143 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
144 }
145 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
146 
147 static ssize_t mtd_size_show(struct device *dev,
148 		struct device_attribute *attr, char *buf)
149 {
150 	struct mtd_info *mtd = dev_get_drvdata(dev);
151 
152 	return snprintf(buf, PAGE_SIZE, "%llu\n",
153 		(unsigned long long)mtd->size);
154 }
155 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
156 
157 static ssize_t mtd_erasesize_show(struct device *dev,
158 		struct device_attribute *attr, char *buf)
159 {
160 	struct mtd_info *mtd = dev_get_drvdata(dev);
161 
162 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
163 }
164 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
165 
166 static ssize_t mtd_writesize_show(struct device *dev,
167 		struct device_attribute *attr, char *buf)
168 {
169 	struct mtd_info *mtd = dev_get_drvdata(dev);
170 
171 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
172 }
173 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
174 
175 static ssize_t mtd_subpagesize_show(struct device *dev,
176 		struct device_attribute *attr, char *buf)
177 {
178 	struct mtd_info *mtd = dev_get_drvdata(dev);
179 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
180 
181 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
182 }
183 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
184 
185 static ssize_t mtd_oobsize_show(struct device *dev,
186 		struct device_attribute *attr, char *buf)
187 {
188 	struct mtd_info *mtd = dev_get_drvdata(dev);
189 
190 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
191 }
192 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
193 
194 static ssize_t mtd_oobavail_show(struct device *dev,
195 				 struct device_attribute *attr, char *buf)
196 {
197 	struct mtd_info *mtd = dev_get_drvdata(dev);
198 
199 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
200 }
201 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
202 
203 static ssize_t mtd_numeraseregions_show(struct device *dev,
204 		struct device_attribute *attr, char *buf)
205 {
206 	struct mtd_info *mtd = dev_get_drvdata(dev);
207 
208 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
209 }
210 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
211 	NULL);
212 
213 static ssize_t mtd_name_show(struct device *dev,
214 		struct device_attribute *attr, char *buf)
215 {
216 	struct mtd_info *mtd = dev_get_drvdata(dev);
217 
218 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
219 }
220 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
221 
222 static ssize_t mtd_ecc_strength_show(struct device *dev,
223 				     struct device_attribute *attr, char *buf)
224 {
225 	struct mtd_info *mtd = dev_get_drvdata(dev);
226 
227 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
228 }
229 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
230 
231 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
232 					  struct device_attribute *attr,
233 					  char *buf)
234 {
235 	struct mtd_info *mtd = dev_get_drvdata(dev);
236 
237 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
238 }
239 
240 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
241 					   struct device_attribute *attr,
242 					   const char *buf, size_t count)
243 {
244 	struct mtd_info *mtd = dev_get_drvdata(dev);
245 	unsigned int bitflip_threshold;
246 	int retval;
247 
248 	retval = kstrtouint(buf, 0, &bitflip_threshold);
249 	if (retval)
250 		return retval;
251 
252 	mtd->bitflip_threshold = bitflip_threshold;
253 	return count;
254 }
255 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
256 		   mtd_bitflip_threshold_show,
257 		   mtd_bitflip_threshold_store);
258 
259 static ssize_t mtd_ecc_step_size_show(struct device *dev,
260 		struct device_attribute *attr, char *buf)
261 {
262 	struct mtd_info *mtd = dev_get_drvdata(dev);
263 
264 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
265 
266 }
267 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
268 
269 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
270 		struct device_attribute *attr, char *buf)
271 {
272 	struct mtd_info *mtd = dev_get_drvdata(dev);
273 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
274 
275 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
276 }
277 static DEVICE_ATTR(corrected_bits, S_IRUGO,
278 		   mtd_ecc_stats_corrected_show, NULL);
279 
280 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
281 		struct device_attribute *attr, char *buf)
282 {
283 	struct mtd_info *mtd = dev_get_drvdata(dev);
284 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
285 
286 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
287 }
288 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
289 
290 static ssize_t mtd_badblocks_show(struct device *dev,
291 		struct device_attribute *attr, char *buf)
292 {
293 	struct mtd_info *mtd = dev_get_drvdata(dev);
294 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
295 
296 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
297 }
298 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
299 
300 static ssize_t mtd_bbtblocks_show(struct device *dev,
301 		struct device_attribute *attr, char *buf)
302 {
303 	struct mtd_info *mtd = dev_get_drvdata(dev);
304 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
305 
306 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
307 }
308 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
309 
310 static struct attribute *mtd_attrs[] = {
311 	&dev_attr_type.attr,
312 	&dev_attr_flags.attr,
313 	&dev_attr_size.attr,
314 	&dev_attr_erasesize.attr,
315 	&dev_attr_writesize.attr,
316 	&dev_attr_subpagesize.attr,
317 	&dev_attr_oobsize.attr,
318 	&dev_attr_oobavail.attr,
319 	&dev_attr_numeraseregions.attr,
320 	&dev_attr_name.attr,
321 	&dev_attr_ecc_strength.attr,
322 	&dev_attr_ecc_step_size.attr,
323 	&dev_attr_corrected_bits.attr,
324 	&dev_attr_ecc_failures.attr,
325 	&dev_attr_bad_blocks.attr,
326 	&dev_attr_bbt_blocks.attr,
327 	&dev_attr_bitflip_threshold.attr,
328 	NULL,
329 };
330 ATTRIBUTE_GROUPS(mtd);
331 
332 static const struct device_type mtd_devtype = {
333 	.name		= "mtd",
334 	.groups		= mtd_groups,
335 	.release	= mtd_release,
336 };
337 
338 static int mtd_partid_show(struct seq_file *s, void *p)
339 {
340 	struct mtd_info *mtd = s->private;
341 
342 	seq_printf(s, "%s\n", mtd->dbg.partid);
343 
344 	return 0;
345 }
346 
347 static int mtd_partid_debugfs_open(struct inode *inode, struct file *file)
348 {
349 	return single_open(file, mtd_partid_show, inode->i_private);
350 }
351 
352 static const struct file_operations mtd_partid_debug_fops = {
353 	.open           = mtd_partid_debugfs_open,
354 	.read           = seq_read,
355 	.llseek         = seq_lseek,
356 	.release        = single_release,
357 };
358 
359 static int mtd_partname_show(struct seq_file *s, void *p)
360 {
361 	struct mtd_info *mtd = s->private;
362 
363 	seq_printf(s, "%s\n", mtd->dbg.partname);
364 
365 	return 0;
366 }
367 
368 static int mtd_partname_debugfs_open(struct inode *inode, struct file *file)
369 {
370 	return single_open(file, mtd_partname_show, inode->i_private);
371 }
372 
373 static const struct file_operations mtd_partname_debug_fops = {
374 	.open           = mtd_partname_debugfs_open,
375 	.read           = seq_read,
376 	.llseek         = seq_lseek,
377 	.release        = single_release,
378 };
379 
380 static struct dentry *dfs_dir_mtd;
381 
382 static void mtd_debugfs_populate(struct mtd_info *mtd)
383 {
384 	struct device *dev = &mtd->dev;
385 	struct dentry *root;
386 
387 	if (IS_ERR_OR_NULL(dfs_dir_mtd))
388 		return;
389 
390 	root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
391 	mtd->dbg.dfs_dir = root;
392 
393 	if (mtd->dbg.partid)
394 		debugfs_create_file("partid", 0400, root, mtd,
395 				    &mtd_partid_debug_fops);
396 
397 	if (mtd->dbg.partname)
398 		debugfs_create_file("partname", 0400, root, mtd,
399 				    &mtd_partname_debug_fops);
400 }
401 
402 #ifndef CONFIG_MMU
403 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
404 {
405 	switch (mtd->type) {
406 	case MTD_RAM:
407 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
408 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
409 	case MTD_ROM:
410 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
411 			NOMMU_MAP_READ;
412 	default:
413 		return NOMMU_MAP_COPY;
414 	}
415 }
416 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
417 #endif
418 
419 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
420 			       void *cmd)
421 {
422 	struct mtd_info *mtd;
423 
424 	mtd = container_of(n, struct mtd_info, reboot_notifier);
425 	mtd->_reboot(mtd);
426 
427 	return NOTIFY_DONE;
428 }
429 
430 /**
431  * mtd_wunit_to_pairing_info - get pairing information of a wunit
432  * @mtd: pointer to new MTD device info structure
433  * @wunit: write unit we are interested in
434  * @info: returned pairing information
435  *
436  * Retrieve pairing information associated to the wunit.
437  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
438  * paired together, and where programming a page may influence the page it is
439  * paired with.
440  * The notion of page is replaced by the term wunit (write-unit) to stay
441  * consistent with the ->writesize field.
442  *
443  * The @wunit argument can be extracted from an absolute offset using
444  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
445  * to @wunit.
446  *
447  * From the pairing info the MTD user can find all the wunits paired with
448  * @wunit using the following loop:
449  *
450  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
451  *	info.pair = i;
452  *	mtd_pairing_info_to_wunit(mtd, &info);
453  *	...
454  * }
455  */
456 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
457 			      struct mtd_pairing_info *info)
458 {
459 	int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
460 
461 	if (wunit < 0 || wunit >= npairs)
462 		return -EINVAL;
463 
464 	if (mtd->pairing && mtd->pairing->get_info)
465 		return mtd->pairing->get_info(mtd, wunit, info);
466 
467 	info->group = 0;
468 	info->pair = wunit;
469 
470 	return 0;
471 }
472 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
473 
474 /**
475  * mtd_pairing_info_to_wunit - get wunit from pairing information
476  * @mtd: pointer to new MTD device info structure
477  * @info: pairing information struct
478  *
479  * Returns a positive number representing the wunit associated to the info
480  * struct, or a negative error code.
481  *
482  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
483  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
484  * doc).
485  *
486  * It can also be used to only program the first page of each pair (i.e.
487  * page attached to group 0), which allows one to use an MLC NAND in
488  * software-emulated SLC mode:
489  *
490  * info.group = 0;
491  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
492  * for (info.pair = 0; info.pair < npairs; info.pair++) {
493  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
494  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
495  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
496  * }
497  */
498 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
499 			      const struct mtd_pairing_info *info)
500 {
501 	int ngroups = mtd_pairing_groups(mtd);
502 	int npairs = mtd_wunit_per_eb(mtd) / ngroups;
503 
504 	if (!info || info->pair < 0 || info->pair >= npairs ||
505 	    info->group < 0 || info->group >= ngroups)
506 		return -EINVAL;
507 
508 	if (mtd->pairing && mtd->pairing->get_wunit)
509 		return mtd->pairing->get_wunit(mtd, info);
510 
511 	return info->pair;
512 }
513 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
514 
515 /**
516  * mtd_pairing_groups - get the number of pairing groups
517  * @mtd: pointer to new MTD device info structure
518  *
519  * Returns the number of pairing groups.
520  *
521  * This number is usually equal to the number of bits exposed by a single
522  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
523  * to iterate over all pages of a given pair.
524  */
525 int mtd_pairing_groups(struct mtd_info *mtd)
526 {
527 	if (!mtd->pairing || !mtd->pairing->ngroups)
528 		return 1;
529 
530 	return mtd->pairing->ngroups;
531 }
532 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
533 
534 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
535 			      void *val, size_t bytes)
536 {
537 	struct mtd_info *mtd = priv;
538 	size_t retlen;
539 	int err;
540 
541 	err = mtd_read(mtd, offset, bytes, &retlen, val);
542 	if (err && err != -EUCLEAN)
543 		return err;
544 
545 	return retlen == bytes ? 0 : -EIO;
546 }
547 
548 static int mtd_nvmem_add(struct mtd_info *mtd)
549 {
550 	struct nvmem_config config = {};
551 
552 	config.id = -1;
553 	config.dev = &mtd->dev;
554 	config.name = mtd->name;
555 	config.owner = THIS_MODULE;
556 	config.reg_read = mtd_nvmem_reg_read;
557 	config.size = mtd->size;
558 	config.word_size = 1;
559 	config.stride = 1;
560 	config.read_only = true;
561 	config.root_only = true;
562 	config.no_of_node = true;
563 	config.priv = mtd;
564 
565 	mtd->nvmem = nvmem_register(&config);
566 	if (IS_ERR(mtd->nvmem)) {
567 		/* Just ignore if there is no NVMEM support in the kernel */
568 		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
569 			mtd->nvmem = NULL;
570 		} else {
571 			dev_err(&mtd->dev, "Failed to register NVMEM device\n");
572 			return PTR_ERR(mtd->nvmem);
573 		}
574 	}
575 
576 	return 0;
577 }
578 
579 /**
580  *	add_mtd_device - register an MTD device
581  *	@mtd: pointer to new MTD device info structure
582  *
583  *	Add a device to the list of MTD devices present in the system, and
584  *	notify each currently active MTD 'user' of its arrival. Returns
585  *	zero on success or non-zero on failure.
586  */
587 
588 int add_mtd_device(struct mtd_info *mtd)
589 {
590 	struct mtd_notifier *not;
591 	int i, error;
592 
593 	/*
594 	 * May occur, for instance, on buggy drivers which call
595 	 * mtd_device_parse_register() multiple times on the same master MTD,
596 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
597 	 */
598 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
599 		return -EEXIST;
600 
601 	BUG_ON(mtd->writesize == 0);
602 
603 	/*
604 	 * MTD drivers should implement ->_{write,read}() or
605 	 * ->_{write,read}_oob(), but not both.
606 	 */
607 	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
608 		    (mtd->_read && mtd->_read_oob)))
609 		return -EINVAL;
610 
611 	if (WARN_ON((!mtd->erasesize || !mtd->_erase) &&
612 		    !(mtd->flags & MTD_NO_ERASE)))
613 		return -EINVAL;
614 
615 	mutex_lock(&mtd_table_mutex);
616 
617 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
618 	if (i < 0) {
619 		error = i;
620 		goto fail_locked;
621 	}
622 
623 	mtd->index = i;
624 	mtd->usecount = 0;
625 
626 	/* default value if not set by driver */
627 	if (mtd->bitflip_threshold == 0)
628 		mtd->bitflip_threshold = mtd->ecc_strength;
629 
630 	if (is_power_of_2(mtd->erasesize))
631 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
632 	else
633 		mtd->erasesize_shift = 0;
634 
635 	if (is_power_of_2(mtd->writesize))
636 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
637 	else
638 		mtd->writesize_shift = 0;
639 
640 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
641 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
642 
643 	/* Some chips always power up locked. Unlock them now */
644 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
645 		error = mtd_unlock(mtd, 0, mtd->size);
646 		if (error && error != -EOPNOTSUPP)
647 			printk(KERN_WARNING
648 			       "%s: unlock failed, writes may not work\n",
649 			       mtd->name);
650 		/* Ignore unlock failures? */
651 		error = 0;
652 	}
653 
654 	/* Caller should have set dev.parent to match the
655 	 * physical device, if appropriate.
656 	 */
657 	mtd->dev.type = &mtd_devtype;
658 	mtd->dev.class = &mtd_class;
659 	mtd->dev.devt = MTD_DEVT(i);
660 	dev_set_name(&mtd->dev, "mtd%d", i);
661 	dev_set_drvdata(&mtd->dev, mtd);
662 	of_node_get(mtd_get_of_node(mtd));
663 	error = device_register(&mtd->dev);
664 	if (error)
665 		goto fail_added;
666 
667 	/* Add the nvmem provider */
668 	error = mtd_nvmem_add(mtd);
669 	if (error)
670 		goto fail_nvmem_add;
671 
672 	mtd_debugfs_populate(mtd);
673 
674 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
675 		      "mtd%dro", i);
676 
677 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
678 	/* No need to get a refcount on the module containing
679 	   the notifier, since we hold the mtd_table_mutex */
680 	list_for_each_entry(not, &mtd_notifiers, list)
681 		not->add(mtd);
682 
683 	mutex_unlock(&mtd_table_mutex);
684 	/* We _know_ we aren't being removed, because
685 	   our caller is still holding us here. So none
686 	   of this try_ nonsense, and no bitching about it
687 	   either. :) */
688 	__module_get(THIS_MODULE);
689 	return 0;
690 
691 fail_nvmem_add:
692 	device_unregister(&mtd->dev);
693 fail_added:
694 	of_node_put(mtd_get_of_node(mtd));
695 	idr_remove(&mtd_idr, i);
696 fail_locked:
697 	mutex_unlock(&mtd_table_mutex);
698 	return error;
699 }
700 
701 /**
702  *	del_mtd_device - unregister an MTD device
703  *	@mtd: pointer to MTD device info structure
704  *
705  *	Remove a device from the list of MTD devices present in the system,
706  *	and notify each currently active MTD 'user' of its departure.
707  *	Returns zero on success or 1 on failure, which currently will happen
708  *	if the requested device does not appear to be present in the list.
709  */
710 
711 int del_mtd_device(struct mtd_info *mtd)
712 {
713 	int ret;
714 	struct mtd_notifier *not;
715 
716 	mutex_lock(&mtd_table_mutex);
717 
718 	debugfs_remove_recursive(mtd->dbg.dfs_dir);
719 
720 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
721 		ret = -ENODEV;
722 		goto out_error;
723 	}
724 
725 	/* No need to get a refcount on the module containing
726 		the notifier, since we hold the mtd_table_mutex */
727 	list_for_each_entry(not, &mtd_notifiers, list)
728 		not->remove(mtd);
729 
730 	if (mtd->usecount) {
731 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
732 		       mtd->index, mtd->name, mtd->usecount);
733 		ret = -EBUSY;
734 	} else {
735 		/* Try to remove the NVMEM provider */
736 		if (mtd->nvmem)
737 			nvmem_unregister(mtd->nvmem);
738 
739 		device_unregister(&mtd->dev);
740 
741 		idr_remove(&mtd_idr, mtd->index);
742 		of_node_put(mtd_get_of_node(mtd));
743 
744 		module_put(THIS_MODULE);
745 		ret = 0;
746 	}
747 
748 out_error:
749 	mutex_unlock(&mtd_table_mutex);
750 	return ret;
751 }
752 
753 /*
754  * Set a few defaults based on the parent devices, if not provided by the
755  * driver
756  */
757 static void mtd_set_dev_defaults(struct mtd_info *mtd)
758 {
759 	if (mtd->dev.parent) {
760 		if (!mtd->owner && mtd->dev.parent->driver)
761 			mtd->owner = mtd->dev.parent->driver->owner;
762 		if (!mtd->name)
763 			mtd->name = dev_name(mtd->dev.parent);
764 	} else {
765 		pr_debug("mtd device won't show a device symlink in sysfs\n");
766 	}
767 
768 	mtd->orig_flags = mtd->flags;
769 }
770 
771 /**
772  * mtd_device_parse_register - parse partitions and register an MTD device.
773  *
774  * @mtd: the MTD device to register
775  * @types: the list of MTD partition probes to try, see
776  *         'parse_mtd_partitions()' for more information
777  * @parser_data: MTD partition parser-specific data
778  * @parts: fallback partition information to register, if parsing fails;
779  *         only valid if %nr_parts > %0
780  * @nr_parts: the number of partitions in parts, if zero then the full
781  *            MTD device is registered if no partition info is found
782  *
783  * This function aggregates MTD partitions parsing (done by
784  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
785  * basically follows the most common pattern found in many MTD drivers:
786  *
787  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
788  *   registered first.
789  * * Then It tries to probe partitions on MTD device @mtd using parsers
790  *   specified in @types (if @types is %NULL, then the default list of parsers
791  *   is used, see 'parse_mtd_partitions()' for more information). If none are
792  *   found this functions tries to fallback to information specified in
793  *   @parts/@nr_parts.
794  * * If no partitions were found this function just registers the MTD device
795  *   @mtd and exits.
796  *
797  * Returns zero in case of success and a negative error code in case of failure.
798  */
799 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
800 			      struct mtd_part_parser_data *parser_data,
801 			      const struct mtd_partition *parts,
802 			      int nr_parts)
803 {
804 	int ret;
805 
806 	mtd_set_dev_defaults(mtd);
807 
808 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
809 		ret = add_mtd_device(mtd);
810 		if (ret)
811 			return ret;
812 	}
813 
814 	/* Prefer parsed partitions over driver-provided fallback */
815 	ret = parse_mtd_partitions(mtd, types, parser_data);
816 	if (ret > 0)
817 		ret = 0;
818 	else if (nr_parts)
819 		ret = add_mtd_partitions(mtd, parts, nr_parts);
820 	else if (!device_is_registered(&mtd->dev))
821 		ret = add_mtd_device(mtd);
822 	else
823 		ret = 0;
824 
825 	if (ret)
826 		goto out;
827 
828 	/*
829 	 * FIXME: some drivers unfortunately call this function more than once.
830 	 * So we have to check if we've already assigned the reboot notifier.
831 	 *
832 	 * Generally, we can make multiple calls work for most cases, but it
833 	 * does cause problems with parse_mtd_partitions() above (e.g.,
834 	 * cmdlineparts will register partitions more than once).
835 	 */
836 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
837 		  "MTD already registered\n");
838 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
839 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
840 		register_reboot_notifier(&mtd->reboot_notifier);
841 	}
842 
843 out:
844 	if (ret && device_is_registered(&mtd->dev))
845 		del_mtd_device(mtd);
846 
847 	return ret;
848 }
849 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
850 
851 /**
852  * mtd_device_unregister - unregister an existing MTD device.
853  *
854  * @master: the MTD device to unregister.  This will unregister both the master
855  *          and any partitions if registered.
856  */
857 int mtd_device_unregister(struct mtd_info *master)
858 {
859 	int err;
860 
861 	if (master->_reboot)
862 		unregister_reboot_notifier(&master->reboot_notifier);
863 
864 	err = del_mtd_partitions(master);
865 	if (err)
866 		return err;
867 
868 	if (!device_is_registered(&master->dev))
869 		return 0;
870 
871 	return del_mtd_device(master);
872 }
873 EXPORT_SYMBOL_GPL(mtd_device_unregister);
874 
875 /**
876  *	register_mtd_user - register a 'user' of MTD devices.
877  *	@new: pointer to notifier info structure
878  *
879  *	Registers a pair of callbacks function to be called upon addition
880  *	or removal of MTD devices. Causes the 'add' callback to be immediately
881  *	invoked for each MTD device currently present in the system.
882  */
883 void register_mtd_user (struct mtd_notifier *new)
884 {
885 	struct mtd_info *mtd;
886 
887 	mutex_lock(&mtd_table_mutex);
888 
889 	list_add(&new->list, &mtd_notifiers);
890 
891 	__module_get(THIS_MODULE);
892 
893 	mtd_for_each_device(mtd)
894 		new->add(mtd);
895 
896 	mutex_unlock(&mtd_table_mutex);
897 }
898 EXPORT_SYMBOL_GPL(register_mtd_user);
899 
900 /**
901  *	unregister_mtd_user - unregister a 'user' of MTD devices.
902  *	@old: pointer to notifier info structure
903  *
904  *	Removes a callback function pair from the list of 'users' to be
905  *	notified upon addition or removal of MTD devices. Causes the
906  *	'remove' callback to be immediately invoked for each MTD device
907  *	currently present in the system.
908  */
909 int unregister_mtd_user (struct mtd_notifier *old)
910 {
911 	struct mtd_info *mtd;
912 
913 	mutex_lock(&mtd_table_mutex);
914 
915 	module_put(THIS_MODULE);
916 
917 	mtd_for_each_device(mtd)
918 		old->remove(mtd);
919 
920 	list_del(&old->list);
921 	mutex_unlock(&mtd_table_mutex);
922 	return 0;
923 }
924 EXPORT_SYMBOL_GPL(unregister_mtd_user);
925 
926 /**
927  *	get_mtd_device - obtain a validated handle for an MTD device
928  *	@mtd: last known address of the required MTD device
929  *	@num: internal device number of the required MTD device
930  *
931  *	Given a number and NULL address, return the num'th entry in the device
932  *	table, if any.	Given an address and num == -1, search the device table
933  *	for a device with that address and return if it's still present. Given
934  *	both, return the num'th driver only if its address matches. Return
935  *	error code if not.
936  */
937 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
938 {
939 	struct mtd_info *ret = NULL, *other;
940 	int err = -ENODEV;
941 
942 	mutex_lock(&mtd_table_mutex);
943 
944 	if (num == -1) {
945 		mtd_for_each_device(other) {
946 			if (other == mtd) {
947 				ret = mtd;
948 				break;
949 			}
950 		}
951 	} else if (num >= 0) {
952 		ret = idr_find(&mtd_idr, num);
953 		if (mtd && mtd != ret)
954 			ret = NULL;
955 	}
956 
957 	if (!ret) {
958 		ret = ERR_PTR(err);
959 		goto out;
960 	}
961 
962 	err = __get_mtd_device(ret);
963 	if (err)
964 		ret = ERR_PTR(err);
965 out:
966 	mutex_unlock(&mtd_table_mutex);
967 	return ret;
968 }
969 EXPORT_SYMBOL_GPL(get_mtd_device);
970 
971 
972 int __get_mtd_device(struct mtd_info *mtd)
973 {
974 	int err;
975 
976 	if (!try_module_get(mtd->owner))
977 		return -ENODEV;
978 
979 	if (mtd->_get_device) {
980 		err = mtd->_get_device(mtd);
981 
982 		if (err) {
983 			module_put(mtd->owner);
984 			return err;
985 		}
986 	}
987 	mtd->usecount++;
988 	return 0;
989 }
990 EXPORT_SYMBOL_GPL(__get_mtd_device);
991 
992 /**
993  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
994  *	device name
995  *	@name: MTD device name to open
996  *
997  * 	This function returns MTD device description structure in case of
998  * 	success and an error code in case of failure.
999  */
1000 struct mtd_info *get_mtd_device_nm(const char *name)
1001 {
1002 	int err = -ENODEV;
1003 	struct mtd_info *mtd = NULL, *other;
1004 
1005 	mutex_lock(&mtd_table_mutex);
1006 
1007 	mtd_for_each_device(other) {
1008 		if (!strcmp(name, other->name)) {
1009 			mtd = other;
1010 			break;
1011 		}
1012 	}
1013 
1014 	if (!mtd)
1015 		goto out_unlock;
1016 
1017 	err = __get_mtd_device(mtd);
1018 	if (err)
1019 		goto out_unlock;
1020 
1021 	mutex_unlock(&mtd_table_mutex);
1022 	return mtd;
1023 
1024 out_unlock:
1025 	mutex_unlock(&mtd_table_mutex);
1026 	return ERR_PTR(err);
1027 }
1028 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1029 
1030 void put_mtd_device(struct mtd_info *mtd)
1031 {
1032 	mutex_lock(&mtd_table_mutex);
1033 	__put_mtd_device(mtd);
1034 	mutex_unlock(&mtd_table_mutex);
1035 
1036 }
1037 EXPORT_SYMBOL_GPL(put_mtd_device);
1038 
1039 void __put_mtd_device(struct mtd_info *mtd)
1040 {
1041 	--mtd->usecount;
1042 	BUG_ON(mtd->usecount < 0);
1043 
1044 	if (mtd->_put_device)
1045 		mtd->_put_device(mtd);
1046 
1047 	module_put(mtd->owner);
1048 }
1049 EXPORT_SYMBOL_GPL(__put_mtd_device);
1050 
1051 /*
1052  * Erase is an synchronous operation. Device drivers are epected to return a
1053  * negative error code if the operation failed and update instr->fail_addr
1054  * to point the portion that was not properly erased.
1055  */
1056 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1057 {
1058 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1059 
1060 	if (!mtd->erasesize || !mtd->_erase)
1061 		return -ENOTSUPP;
1062 
1063 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1064 		return -EINVAL;
1065 	if (!(mtd->flags & MTD_WRITEABLE))
1066 		return -EROFS;
1067 
1068 	if (!instr->len)
1069 		return 0;
1070 
1071 	ledtrig_mtd_activity();
1072 	return mtd->_erase(mtd, instr);
1073 }
1074 EXPORT_SYMBOL_GPL(mtd_erase);
1075 
1076 /*
1077  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1078  */
1079 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1080 	      void **virt, resource_size_t *phys)
1081 {
1082 	*retlen = 0;
1083 	*virt = NULL;
1084 	if (phys)
1085 		*phys = 0;
1086 	if (!mtd->_point)
1087 		return -EOPNOTSUPP;
1088 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1089 		return -EINVAL;
1090 	if (!len)
1091 		return 0;
1092 	return mtd->_point(mtd, from, len, retlen, virt, phys);
1093 }
1094 EXPORT_SYMBOL_GPL(mtd_point);
1095 
1096 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1097 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1098 {
1099 	if (!mtd->_unpoint)
1100 		return -EOPNOTSUPP;
1101 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1102 		return -EINVAL;
1103 	if (!len)
1104 		return 0;
1105 	return mtd->_unpoint(mtd, from, len);
1106 }
1107 EXPORT_SYMBOL_GPL(mtd_unpoint);
1108 
1109 /*
1110  * Allow NOMMU mmap() to directly map the device (if not NULL)
1111  * - return the address to which the offset maps
1112  * - return -ENOSYS to indicate refusal to do the mapping
1113  */
1114 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1115 				    unsigned long offset, unsigned long flags)
1116 {
1117 	size_t retlen;
1118 	void *virt;
1119 	int ret;
1120 
1121 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1122 	if (ret)
1123 		return ret;
1124 	if (retlen != len) {
1125 		mtd_unpoint(mtd, offset, retlen);
1126 		return -ENOSYS;
1127 	}
1128 	return (unsigned long)virt;
1129 }
1130 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1131 
1132 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1133 	     u_char *buf)
1134 {
1135 	struct mtd_oob_ops ops = {
1136 		.len = len,
1137 		.datbuf = buf,
1138 	};
1139 	int ret;
1140 
1141 	ret = mtd_read_oob(mtd, from, &ops);
1142 	*retlen = ops.retlen;
1143 
1144 	return ret;
1145 }
1146 EXPORT_SYMBOL_GPL(mtd_read);
1147 
1148 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1149 	      const u_char *buf)
1150 {
1151 	struct mtd_oob_ops ops = {
1152 		.len = len,
1153 		.datbuf = (u8 *)buf,
1154 	};
1155 	int ret;
1156 
1157 	ret = mtd_write_oob(mtd, to, &ops);
1158 	*retlen = ops.retlen;
1159 
1160 	return ret;
1161 }
1162 EXPORT_SYMBOL_GPL(mtd_write);
1163 
1164 /*
1165  * In blackbox flight recorder like scenarios we want to make successful writes
1166  * in interrupt context. panic_write() is only intended to be called when its
1167  * known the kernel is about to panic and we need the write to succeed. Since
1168  * the kernel is not going to be running for much longer, this function can
1169  * break locks and delay to ensure the write succeeds (but not sleep).
1170  */
1171 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1172 		    const u_char *buf)
1173 {
1174 	*retlen = 0;
1175 	if (!mtd->_panic_write)
1176 		return -EOPNOTSUPP;
1177 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1178 		return -EINVAL;
1179 	if (!(mtd->flags & MTD_WRITEABLE))
1180 		return -EROFS;
1181 	if (!len)
1182 		return 0;
1183 	if (!mtd->oops_panic_write)
1184 		mtd->oops_panic_write = true;
1185 
1186 	return mtd->_panic_write(mtd, to, len, retlen, buf);
1187 }
1188 EXPORT_SYMBOL_GPL(mtd_panic_write);
1189 
1190 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1191 			     struct mtd_oob_ops *ops)
1192 {
1193 	/*
1194 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1195 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1196 	 *  this case.
1197 	 */
1198 	if (!ops->datbuf)
1199 		ops->len = 0;
1200 
1201 	if (!ops->oobbuf)
1202 		ops->ooblen = 0;
1203 
1204 	if (offs < 0 || offs + ops->len > mtd->size)
1205 		return -EINVAL;
1206 
1207 	if (ops->ooblen) {
1208 		size_t maxooblen;
1209 
1210 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1211 			return -EINVAL;
1212 
1213 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1214 				      mtd_div_by_ws(offs, mtd)) *
1215 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1216 		if (ops->ooblen > maxooblen)
1217 			return -EINVAL;
1218 	}
1219 
1220 	return 0;
1221 }
1222 
1223 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1224 {
1225 	int ret_code;
1226 	ops->retlen = ops->oobretlen = 0;
1227 
1228 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1229 	if (ret_code)
1230 		return ret_code;
1231 
1232 	ledtrig_mtd_activity();
1233 
1234 	/* Check the validity of a potential fallback on mtd->_read */
1235 	if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf))
1236 		return -EOPNOTSUPP;
1237 
1238 	if (mtd->_read_oob)
1239 		ret_code = mtd->_read_oob(mtd, from, ops);
1240 	else
1241 		ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen,
1242 				      ops->datbuf);
1243 
1244 	/*
1245 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1246 	 * similar to mtd->_read(), returning a non-negative integer
1247 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1248 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1249 	 */
1250 	if (unlikely(ret_code < 0))
1251 		return ret_code;
1252 	if (mtd->ecc_strength == 0)
1253 		return 0;	/* device lacks ecc */
1254 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1255 }
1256 EXPORT_SYMBOL_GPL(mtd_read_oob);
1257 
1258 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1259 				struct mtd_oob_ops *ops)
1260 {
1261 	int ret;
1262 
1263 	ops->retlen = ops->oobretlen = 0;
1264 
1265 	if (!(mtd->flags & MTD_WRITEABLE))
1266 		return -EROFS;
1267 
1268 	ret = mtd_check_oob_ops(mtd, to, ops);
1269 	if (ret)
1270 		return ret;
1271 
1272 	ledtrig_mtd_activity();
1273 
1274 	/* Check the validity of a potential fallback on mtd->_write */
1275 	if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf))
1276 		return -EOPNOTSUPP;
1277 
1278 	if (mtd->_write_oob)
1279 		return mtd->_write_oob(mtd, to, ops);
1280 	else
1281 		return mtd->_write(mtd, to, ops->len, &ops->retlen,
1282 				   ops->datbuf);
1283 }
1284 EXPORT_SYMBOL_GPL(mtd_write_oob);
1285 
1286 /**
1287  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1288  * @mtd: MTD device structure
1289  * @section: ECC section. Depending on the layout you may have all the ECC
1290  *	     bytes stored in a single contiguous section, or one section
1291  *	     per ECC chunk (and sometime several sections for a single ECC
1292  *	     ECC chunk)
1293  * @oobecc: OOB region struct filled with the appropriate ECC position
1294  *	    information
1295  *
1296  * This function returns ECC section information in the OOB area. If you want
1297  * to get all the ECC bytes information, then you should call
1298  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1299  *
1300  * Returns zero on success, a negative error code otherwise.
1301  */
1302 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1303 		      struct mtd_oob_region *oobecc)
1304 {
1305 	memset(oobecc, 0, sizeof(*oobecc));
1306 
1307 	if (!mtd || section < 0)
1308 		return -EINVAL;
1309 
1310 	if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1311 		return -ENOTSUPP;
1312 
1313 	return mtd->ooblayout->ecc(mtd, section, oobecc);
1314 }
1315 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1316 
1317 /**
1318  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1319  *			section
1320  * @mtd: MTD device structure
1321  * @section: Free section you are interested in. Depending on the layout
1322  *	     you may have all the free bytes stored in a single contiguous
1323  *	     section, or one section per ECC chunk plus an extra section
1324  *	     for the remaining bytes (or other funky layout).
1325  * @oobfree: OOB region struct filled with the appropriate free position
1326  *	     information
1327  *
1328  * This function returns free bytes position in the OOB area. If you want
1329  * to get all the free bytes information, then you should call
1330  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1331  *
1332  * Returns zero on success, a negative error code otherwise.
1333  */
1334 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1335 		       struct mtd_oob_region *oobfree)
1336 {
1337 	memset(oobfree, 0, sizeof(*oobfree));
1338 
1339 	if (!mtd || section < 0)
1340 		return -EINVAL;
1341 
1342 	if (!mtd->ooblayout || !mtd->ooblayout->free)
1343 		return -ENOTSUPP;
1344 
1345 	return mtd->ooblayout->free(mtd, section, oobfree);
1346 }
1347 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1348 
1349 /**
1350  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1351  * @mtd: mtd info structure
1352  * @byte: the byte we are searching for
1353  * @sectionp: pointer where the section id will be stored
1354  * @oobregion: used to retrieve the ECC position
1355  * @iter: iterator function. Should be either mtd_ooblayout_free or
1356  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1357  *
1358  * This function returns the section id and oobregion information of a
1359  * specific byte. For example, say you want to know where the 4th ECC byte is
1360  * stored, you'll use:
1361  *
1362  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1363  *
1364  * Returns zero on success, a negative error code otherwise.
1365  */
1366 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1367 				int *sectionp, struct mtd_oob_region *oobregion,
1368 				int (*iter)(struct mtd_info *,
1369 					    int section,
1370 					    struct mtd_oob_region *oobregion))
1371 {
1372 	int pos = 0, ret, section = 0;
1373 
1374 	memset(oobregion, 0, sizeof(*oobregion));
1375 
1376 	while (1) {
1377 		ret = iter(mtd, section, oobregion);
1378 		if (ret)
1379 			return ret;
1380 
1381 		if (pos + oobregion->length > byte)
1382 			break;
1383 
1384 		pos += oobregion->length;
1385 		section++;
1386 	}
1387 
1388 	/*
1389 	 * Adjust region info to make it start at the beginning at the
1390 	 * 'start' ECC byte.
1391 	 */
1392 	oobregion->offset += byte - pos;
1393 	oobregion->length -= byte - pos;
1394 	*sectionp = section;
1395 
1396 	return 0;
1397 }
1398 
1399 /**
1400  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1401  *				  ECC byte
1402  * @mtd: mtd info structure
1403  * @eccbyte: the byte we are searching for
1404  * @sectionp: pointer where the section id will be stored
1405  * @oobregion: OOB region information
1406  *
1407  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1408  * byte.
1409  *
1410  * Returns zero on success, a negative error code otherwise.
1411  */
1412 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1413 				 int *section,
1414 				 struct mtd_oob_region *oobregion)
1415 {
1416 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1417 					 mtd_ooblayout_ecc);
1418 }
1419 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1420 
1421 /**
1422  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1423  * @mtd: mtd info structure
1424  * @buf: destination buffer to store OOB bytes
1425  * @oobbuf: OOB buffer
1426  * @start: first byte to retrieve
1427  * @nbytes: number of bytes to retrieve
1428  * @iter: section iterator
1429  *
1430  * Extract bytes attached to a specific category (ECC or free)
1431  * from the OOB buffer and copy them into buf.
1432  *
1433  * Returns zero on success, a negative error code otherwise.
1434  */
1435 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1436 				const u8 *oobbuf, int start, int nbytes,
1437 				int (*iter)(struct mtd_info *,
1438 					    int section,
1439 					    struct mtd_oob_region *oobregion))
1440 {
1441 	struct mtd_oob_region oobregion;
1442 	int section, ret;
1443 
1444 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1445 					&oobregion, iter);
1446 
1447 	while (!ret) {
1448 		int cnt;
1449 
1450 		cnt = min_t(int, nbytes, oobregion.length);
1451 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1452 		buf += cnt;
1453 		nbytes -= cnt;
1454 
1455 		if (!nbytes)
1456 			break;
1457 
1458 		ret = iter(mtd, ++section, &oobregion);
1459 	}
1460 
1461 	return ret;
1462 }
1463 
1464 /**
1465  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1466  * @mtd: mtd info structure
1467  * @buf: source buffer to get OOB bytes from
1468  * @oobbuf: OOB buffer
1469  * @start: first OOB byte to set
1470  * @nbytes: number of OOB bytes to set
1471  * @iter: section iterator
1472  *
1473  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1474  * is selected by passing the appropriate iterator.
1475  *
1476  * Returns zero on success, a negative error code otherwise.
1477  */
1478 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1479 				u8 *oobbuf, int start, int nbytes,
1480 				int (*iter)(struct mtd_info *,
1481 					    int section,
1482 					    struct mtd_oob_region *oobregion))
1483 {
1484 	struct mtd_oob_region oobregion;
1485 	int section, ret;
1486 
1487 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1488 					&oobregion, iter);
1489 
1490 	while (!ret) {
1491 		int cnt;
1492 
1493 		cnt = min_t(int, nbytes, oobregion.length);
1494 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1495 		buf += cnt;
1496 		nbytes -= cnt;
1497 
1498 		if (!nbytes)
1499 			break;
1500 
1501 		ret = iter(mtd, ++section, &oobregion);
1502 	}
1503 
1504 	return ret;
1505 }
1506 
1507 /**
1508  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1509  * @mtd: mtd info structure
1510  * @iter: category iterator
1511  *
1512  * Count the number of bytes in a given category.
1513  *
1514  * Returns a positive value on success, a negative error code otherwise.
1515  */
1516 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1517 				int (*iter)(struct mtd_info *,
1518 					    int section,
1519 					    struct mtd_oob_region *oobregion))
1520 {
1521 	struct mtd_oob_region oobregion;
1522 	int section = 0, ret, nbytes = 0;
1523 
1524 	while (1) {
1525 		ret = iter(mtd, section++, &oobregion);
1526 		if (ret) {
1527 			if (ret == -ERANGE)
1528 				ret = nbytes;
1529 			break;
1530 		}
1531 
1532 		nbytes += oobregion.length;
1533 	}
1534 
1535 	return ret;
1536 }
1537 
1538 /**
1539  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1540  * @mtd: mtd info structure
1541  * @eccbuf: destination buffer to store ECC bytes
1542  * @oobbuf: OOB buffer
1543  * @start: first ECC byte to retrieve
1544  * @nbytes: number of ECC bytes to retrieve
1545  *
1546  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1547  *
1548  * Returns zero on success, a negative error code otherwise.
1549  */
1550 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1551 			       const u8 *oobbuf, int start, int nbytes)
1552 {
1553 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1554 				       mtd_ooblayout_ecc);
1555 }
1556 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1557 
1558 /**
1559  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1560  * @mtd: mtd info structure
1561  * @eccbuf: source buffer to get ECC bytes from
1562  * @oobbuf: OOB buffer
1563  * @start: first ECC byte to set
1564  * @nbytes: number of ECC bytes to set
1565  *
1566  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1567  *
1568  * Returns zero on success, a negative error code otherwise.
1569  */
1570 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1571 			       u8 *oobbuf, int start, int nbytes)
1572 {
1573 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1574 				       mtd_ooblayout_ecc);
1575 }
1576 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1577 
1578 /**
1579  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1580  * @mtd: mtd info structure
1581  * @databuf: destination buffer to store ECC bytes
1582  * @oobbuf: OOB buffer
1583  * @start: first ECC byte to retrieve
1584  * @nbytes: number of ECC bytes to retrieve
1585  *
1586  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1587  *
1588  * Returns zero on success, a negative error code otherwise.
1589  */
1590 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1591 				const u8 *oobbuf, int start, int nbytes)
1592 {
1593 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1594 				       mtd_ooblayout_free);
1595 }
1596 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1597 
1598 /**
1599  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1600  * @mtd: mtd info structure
1601  * @databuf: source buffer to get data bytes from
1602  * @oobbuf: OOB buffer
1603  * @start: first ECC byte to set
1604  * @nbytes: number of ECC bytes to set
1605  *
1606  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1607  *
1608  * Returns zero on success, a negative error code otherwise.
1609  */
1610 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1611 				u8 *oobbuf, int start, int nbytes)
1612 {
1613 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1614 				       mtd_ooblayout_free);
1615 }
1616 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1617 
1618 /**
1619  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1620  * @mtd: mtd info structure
1621  *
1622  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1623  *
1624  * Returns zero on success, a negative error code otherwise.
1625  */
1626 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1627 {
1628 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1629 }
1630 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1631 
1632 /**
1633  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1634  * @mtd: mtd info structure
1635  *
1636  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1637  *
1638  * Returns zero on success, a negative error code otherwise.
1639  */
1640 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1641 {
1642 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1643 }
1644 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1645 
1646 /*
1647  * Method to access the protection register area, present in some flash
1648  * devices. The user data is one time programmable but the factory data is read
1649  * only.
1650  */
1651 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1652 			   struct otp_info *buf)
1653 {
1654 	if (!mtd->_get_fact_prot_info)
1655 		return -EOPNOTSUPP;
1656 	if (!len)
1657 		return 0;
1658 	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1659 }
1660 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1661 
1662 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1663 			   size_t *retlen, u_char *buf)
1664 {
1665 	*retlen = 0;
1666 	if (!mtd->_read_fact_prot_reg)
1667 		return -EOPNOTSUPP;
1668 	if (!len)
1669 		return 0;
1670 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1671 }
1672 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1673 
1674 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1675 			   struct otp_info *buf)
1676 {
1677 	if (!mtd->_get_user_prot_info)
1678 		return -EOPNOTSUPP;
1679 	if (!len)
1680 		return 0;
1681 	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1682 }
1683 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1684 
1685 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1686 			   size_t *retlen, u_char *buf)
1687 {
1688 	*retlen = 0;
1689 	if (!mtd->_read_user_prot_reg)
1690 		return -EOPNOTSUPP;
1691 	if (!len)
1692 		return 0;
1693 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1694 }
1695 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1696 
1697 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1698 			    size_t *retlen, u_char *buf)
1699 {
1700 	int ret;
1701 
1702 	*retlen = 0;
1703 	if (!mtd->_write_user_prot_reg)
1704 		return -EOPNOTSUPP;
1705 	if (!len)
1706 		return 0;
1707 	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1708 	if (ret)
1709 		return ret;
1710 
1711 	/*
1712 	 * If no data could be written at all, we are out of memory and
1713 	 * must return -ENOSPC.
1714 	 */
1715 	return (*retlen) ? 0 : -ENOSPC;
1716 }
1717 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1718 
1719 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1720 {
1721 	if (!mtd->_lock_user_prot_reg)
1722 		return -EOPNOTSUPP;
1723 	if (!len)
1724 		return 0;
1725 	return mtd->_lock_user_prot_reg(mtd, from, len);
1726 }
1727 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1728 
1729 /* Chip-supported device locking */
1730 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1731 {
1732 	if (!mtd->_lock)
1733 		return -EOPNOTSUPP;
1734 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1735 		return -EINVAL;
1736 	if (!len)
1737 		return 0;
1738 	return mtd->_lock(mtd, ofs, len);
1739 }
1740 EXPORT_SYMBOL_GPL(mtd_lock);
1741 
1742 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1743 {
1744 	if (!mtd->_unlock)
1745 		return -EOPNOTSUPP;
1746 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1747 		return -EINVAL;
1748 	if (!len)
1749 		return 0;
1750 	return mtd->_unlock(mtd, ofs, len);
1751 }
1752 EXPORT_SYMBOL_GPL(mtd_unlock);
1753 
1754 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1755 {
1756 	if (!mtd->_is_locked)
1757 		return -EOPNOTSUPP;
1758 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1759 		return -EINVAL;
1760 	if (!len)
1761 		return 0;
1762 	return mtd->_is_locked(mtd, ofs, len);
1763 }
1764 EXPORT_SYMBOL_GPL(mtd_is_locked);
1765 
1766 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1767 {
1768 	if (ofs < 0 || ofs >= mtd->size)
1769 		return -EINVAL;
1770 	if (!mtd->_block_isreserved)
1771 		return 0;
1772 	return mtd->_block_isreserved(mtd, ofs);
1773 }
1774 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1775 
1776 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1777 {
1778 	if (ofs < 0 || ofs >= mtd->size)
1779 		return -EINVAL;
1780 	if (!mtd->_block_isbad)
1781 		return 0;
1782 	return mtd->_block_isbad(mtd, ofs);
1783 }
1784 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1785 
1786 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1787 {
1788 	if (!mtd->_block_markbad)
1789 		return -EOPNOTSUPP;
1790 	if (ofs < 0 || ofs >= mtd->size)
1791 		return -EINVAL;
1792 	if (!(mtd->flags & MTD_WRITEABLE))
1793 		return -EROFS;
1794 	return mtd->_block_markbad(mtd, ofs);
1795 }
1796 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1797 
1798 /*
1799  * default_mtd_writev - the default writev method
1800  * @mtd: mtd device description object pointer
1801  * @vecs: the vectors to write
1802  * @count: count of vectors in @vecs
1803  * @to: the MTD device offset to write to
1804  * @retlen: on exit contains the count of bytes written to the MTD device.
1805  *
1806  * This function returns zero in case of success and a negative error code in
1807  * case of failure.
1808  */
1809 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1810 			      unsigned long count, loff_t to, size_t *retlen)
1811 {
1812 	unsigned long i;
1813 	size_t totlen = 0, thislen;
1814 	int ret = 0;
1815 
1816 	for (i = 0; i < count; i++) {
1817 		if (!vecs[i].iov_len)
1818 			continue;
1819 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1820 				vecs[i].iov_base);
1821 		totlen += thislen;
1822 		if (ret || thislen != vecs[i].iov_len)
1823 			break;
1824 		to += vecs[i].iov_len;
1825 	}
1826 	*retlen = totlen;
1827 	return ret;
1828 }
1829 
1830 /*
1831  * mtd_writev - the vector-based MTD write method
1832  * @mtd: mtd device description object pointer
1833  * @vecs: the vectors to write
1834  * @count: count of vectors in @vecs
1835  * @to: the MTD device offset to write to
1836  * @retlen: on exit contains the count of bytes written to the MTD device.
1837  *
1838  * This function returns zero in case of success and a negative error code in
1839  * case of failure.
1840  */
1841 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1842 	       unsigned long count, loff_t to, size_t *retlen)
1843 {
1844 	*retlen = 0;
1845 	if (!(mtd->flags & MTD_WRITEABLE))
1846 		return -EROFS;
1847 	if (!mtd->_writev)
1848 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1849 	return mtd->_writev(mtd, vecs, count, to, retlen);
1850 }
1851 EXPORT_SYMBOL_GPL(mtd_writev);
1852 
1853 /**
1854  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1855  * @mtd: mtd device description object pointer
1856  * @size: a pointer to the ideal or maximum size of the allocation, points
1857  *        to the actual allocation size on success.
1858  *
1859  * This routine attempts to allocate a contiguous kernel buffer up to
1860  * the specified size, backing off the size of the request exponentially
1861  * until the request succeeds or until the allocation size falls below
1862  * the system page size. This attempts to make sure it does not adversely
1863  * impact system performance, so when allocating more than one page, we
1864  * ask the memory allocator to avoid re-trying, swapping, writing back
1865  * or performing I/O.
1866  *
1867  * Note, this function also makes sure that the allocated buffer is aligned to
1868  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1869  *
1870  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1871  * to handle smaller (i.e. degraded) buffer allocations under low- or
1872  * fragmented-memory situations where such reduced allocations, from a
1873  * requested ideal, are allowed.
1874  *
1875  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1876  */
1877 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1878 {
1879 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1880 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1881 	void *kbuf;
1882 
1883 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1884 
1885 	while (*size > min_alloc) {
1886 		kbuf = kmalloc(*size, flags);
1887 		if (kbuf)
1888 			return kbuf;
1889 
1890 		*size >>= 1;
1891 		*size = ALIGN(*size, mtd->writesize);
1892 	}
1893 
1894 	/*
1895 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1896 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1897 	 */
1898 	return kmalloc(*size, GFP_KERNEL);
1899 }
1900 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1901 
1902 #ifdef CONFIG_PROC_FS
1903 
1904 /*====================================================================*/
1905 /* Support for /proc/mtd */
1906 
1907 static int mtd_proc_show(struct seq_file *m, void *v)
1908 {
1909 	struct mtd_info *mtd;
1910 
1911 	seq_puts(m, "dev:    size   erasesize  name\n");
1912 	mutex_lock(&mtd_table_mutex);
1913 	mtd_for_each_device(mtd) {
1914 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1915 			   mtd->index, (unsigned long long)mtd->size,
1916 			   mtd->erasesize, mtd->name);
1917 	}
1918 	mutex_unlock(&mtd_table_mutex);
1919 	return 0;
1920 }
1921 #endif /* CONFIG_PROC_FS */
1922 
1923 /*====================================================================*/
1924 /* Init code */
1925 
1926 static struct backing_dev_info * __init mtd_bdi_init(char *name)
1927 {
1928 	struct backing_dev_info *bdi;
1929 	int ret;
1930 
1931 	bdi = bdi_alloc(GFP_KERNEL);
1932 	if (!bdi)
1933 		return ERR_PTR(-ENOMEM);
1934 
1935 	bdi->name = name;
1936 	/*
1937 	 * We put '-0' suffix to the name to get the same name format as we
1938 	 * used to get. Since this is called only once, we get a unique name.
1939 	 */
1940 	ret = bdi_register(bdi, "%.28s-0", name);
1941 	if (ret)
1942 		bdi_put(bdi);
1943 
1944 	return ret ? ERR_PTR(ret) : bdi;
1945 }
1946 
1947 static struct proc_dir_entry *proc_mtd;
1948 
1949 static int __init init_mtd(void)
1950 {
1951 	int ret;
1952 
1953 	ret = class_register(&mtd_class);
1954 	if (ret)
1955 		goto err_reg;
1956 
1957 	mtd_bdi = mtd_bdi_init("mtd");
1958 	if (IS_ERR(mtd_bdi)) {
1959 		ret = PTR_ERR(mtd_bdi);
1960 		goto err_bdi;
1961 	}
1962 
1963 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
1964 
1965 	ret = init_mtdchar();
1966 	if (ret)
1967 		goto out_procfs;
1968 
1969 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
1970 
1971 	return 0;
1972 
1973 out_procfs:
1974 	if (proc_mtd)
1975 		remove_proc_entry("mtd", NULL);
1976 	bdi_put(mtd_bdi);
1977 err_bdi:
1978 	class_unregister(&mtd_class);
1979 err_reg:
1980 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1981 	return ret;
1982 }
1983 
1984 static void __exit cleanup_mtd(void)
1985 {
1986 	debugfs_remove_recursive(dfs_dir_mtd);
1987 	cleanup_mtdchar();
1988 	if (proc_mtd)
1989 		remove_proc_entry("mtd", NULL);
1990 	class_unregister(&mtd_class);
1991 	bdi_put(mtd_bdi);
1992 	idr_destroy(&mtd_idr);
1993 }
1994 
1995 module_init(init_mtd);
1996 module_exit(cleanup_mtd);
1997 
1998 MODULE_LICENSE("GPL");
1999 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2000 MODULE_DESCRIPTION("Core MTD registration and access routines");
2001