xref: /openbmc/linux/drivers/mtd/mtdcore.c (revision 95c96174)
1 /*
2  * Core registration and callback routines for MTD
3  * drivers and users.
4  *
5  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6  * Copyright © 2006      Red Hat UK Limited
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/proc_fs.h>
36 #include <linux/idr.h>
37 #include <linux/backing-dev.h>
38 #include <linux/gfp.h>
39 
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/partitions.h>
42 
43 #include "mtdcore.h"
44 /*
45  * backing device capabilities for non-mappable devices (such as NAND flash)
46  * - permits private mappings, copies are taken of the data
47  */
48 static struct backing_dev_info mtd_bdi_unmappable = {
49 	.capabilities	= BDI_CAP_MAP_COPY,
50 };
51 
52 /*
53  * backing device capabilities for R/O mappable devices (such as ROM)
54  * - permits private mappings, copies are taken of the data
55  * - permits non-writable shared mappings
56  */
57 static struct backing_dev_info mtd_bdi_ro_mappable = {
58 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
59 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
60 };
61 
62 /*
63  * backing device capabilities for writable mappable devices (such as RAM)
64  * - permits private mappings, copies are taken of the data
65  * - permits non-writable shared mappings
66  */
67 static struct backing_dev_info mtd_bdi_rw_mappable = {
68 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
69 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
70 			   BDI_CAP_WRITE_MAP),
71 };
72 
73 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
74 static int mtd_cls_resume(struct device *dev);
75 
76 static struct class mtd_class = {
77 	.name = "mtd",
78 	.owner = THIS_MODULE,
79 	.suspend = mtd_cls_suspend,
80 	.resume = mtd_cls_resume,
81 };
82 
83 static DEFINE_IDR(mtd_idr);
84 
85 /* These are exported solely for the purpose of mtd_blkdevs.c. You
86    should not use them for _anything_ else */
87 DEFINE_MUTEX(mtd_table_mutex);
88 EXPORT_SYMBOL_GPL(mtd_table_mutex);
89 
90 struct mtd_info *__mtd_next_device(int i)
91 {
92 	return idr_get_next(&mtd_idr, &i);
93 }
94 EXPORT_SYMBOL_GPL(__mtd_next_device);
95 
96 static LIST_HEAD(mtd_notifiers);
97 
98 
99 #if defined(CONFIG_MTD_CHAR) || defined(CONFIG_MTD_CHAR_MODULE)
100 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
101 #else
102 #define MTD_DEVT(index) 0
103 #endif
104 
105 /* REVISIT once MTD uses the driver model better, whoever allocates
106  * the mtd_info will probably want to use the release() hook...
107  */
108 static void mtd_release(struct device *dev)
109 {
110 	struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
111 	dev_t index = MTD_DEVT(mtd->index);
112 
113 	/* remove /dev/mtdXro node if needed */
114 	if (index)
115 		device_destroy(&mtd_class, index + 1);
116 }
117 
118 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
119 {
120 	struct mtd_info *mtd = dev_get_drvdata(dev);
121 
122 	return mtd ? mtd_suspend(mtd) : 0;
123 }
124 
125 static int mtd_cls_resume(struct device *dev)
126 {
127 	struct mtd_info *mtd = dev_get_drvdata(dev);
128 
129 	if (mtd)
130 		mtd_resume(mtd);
131 	return 0;
132 }
133 
134 static ssize_t mtd_type_show(struct device *dev,
135 		struct device_attribute *attr, char *buf)
136 {
137 	struct mtd_info *mtd = dev_get_drvdata(dev);
138 	char *type;
139 
140 	switch (mtd->type) {
141 	case MTD_ABSENT:
142 		type = "absent";
143 		break;
144 	case MTD_RAM:
145 		type = "ram";
146 		break;
147 	case MTD_ROM:
148 		type = "rom";
149 		break;
150 	case MTD_NORFLASH:
151 		type = "nor";
152 		break;
153 	case MTD_NANDFLASH:
154 		type = "nand";
155 		break;
156 	case MTD_DATAFLASH:
157 		type = "dataflash";
158 		break;
159 	case MTD_UBIVOLUME:
160 		type = "ubi";
161 		break;
162 	default:
163 		type = "unknown";
164 	}
165 
166 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
167 }
168 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
169 
170 static ssize_t mtd_flags_show(struct device *dev,
171 		struct device_attribute *attr, char *buf)
172 {
173 	struct mtd_info *mtd = dev_get_drvdata(dev);
174 
175 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
176 
177 }
178 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
179 
180 static ssize_t mtd_size_show(struct device *dev,
181 		struct device_attribute *attr, char *buf)
182 {
183 	struct mtd_info *mtd = dev_get_drvdata(dev);
184 
185 	return snprintf(buf, PAGE_SIZE, "%llu\n",
186 		(unsigned long long)mtd->size);
187 
188 }
189 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
190 
191 static ssize_t mtd_erasesize_show(struct device *dev,
192 		struct device_attribute *attr, char *buf)
193 {
194 	struct mtd_info *mtd = dev_get_drvdata(dev);
195 
196 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
197 
198 }
199 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
200 
201 static ssize_t mtd_writesize_show(struct device *dev,
202 		struct device_attribute *attr, char *buf)
203 {
204 	struct mtd_info *mtd = dev_get_drvdata(dev);
205 
206 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
207 
208 }
209 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
210 
211 static ssize_t mtd_subpagesize_show(struct device *dev,
212 		struct device_attribute *attr, char *buf)
213 {
214 	struct mtd_info *mtd = dev_get_drvdata(dev);
215 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
216 
217 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
218 
219 }
220 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
221 
222 static ssize_t mtd_oobsize_show(struct device *dev,
223 		struct device_attribute *attr, char *buf)
224 {
225 	struct mtd_info *mtd = dev_get_drvdata(dev);
226 
227 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
228 
229 }
230 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
231 
232 static ssize_t mtd_numeraseregions_show(struct device *dev,
233 		struct device_attribute *attr, char *buf)
234 {
235 	struct mtd_info *mtd = dev_get_drvdata(dev);
236 
237 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
238 
239 }
240 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
241 	NULL);
242 
243 static ssize_t mtd_name_show(struct device *dev,
244 		struct device_attribute *attr, char *buf)
245 {
246 	struct mtd_info *mtd = dev_get_drvdata(dev);
247 
248 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
249 
250 }
251 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
252 
253 static struct attribute *mtd_attrs[] = {
254 	&dev_attr_type.attr,
255 	&dev_attr_flags.attr,
256 	&dev_attr_size.attr,
257 	&dev_attr_erasesize.attr,
258 	&dev_attr_writesize.attr,
259 	&dev_attr_subpagesize.attr,
260 	&dev_attr_oobsize.attr,
261 	&dev_attr_numeraseregions.attr,
262 	&dev_attr_name.attr,
263 	NULL,
264 };
265 
266 static struct attribute_group mtd_group = {
267 	.attrs		= mtd_attrs,
268 };
269 
270 static const struct attribute_group *mtd_groups[] = {
271 	&mtd_group,
272 	NULL,
273 };
274 
275 static struct device_type mtd_devtype = {
276 	.name		= "mtd",
277 	.groups		= mtd_groups,
278 	.release	= mtd_release,
279 };
280 
281 /**
282  *	add_mtd_device - register an MTD device
283  *	@mtd: pointer to new MTD device info structure
284  *
285  *	Add a device to the list of MTD devices present in the system, and
286  *	notify each currently active MTD 'user' of its arrival. Returns
287  *	zero on success or 1 on failure, which currently will only happen
288  *	if there is insufficient memory or a sysfs error.
289  */
290 
291 int add_mtd_device(struct mtd_info *mtd)
292 {
293 	struct mtd_notifier *not;
294 	int i, error;
295 
296 	if (!mtd->backing_dev_info) {
297 		switch (mtd->type) {
298 		case MTD_RAM:
299 			mtd->backing_dev_info = &mtd_bdi_rw_mappable;
300 			break;
301 		case MTD_ROM:
302 			mtd->backing_dev_info = &mtd_bdi_ro_mappable;
303 			break;
304 		default:
305 			mtd->backing_dev_info = &mtd_bdi_unmappable;
306 			break;
307 		}
308 	}
309 
310 	BUG_ON(mtd->writesize == 0);
311 	mutex_lock(&mtd_table_mutex);
312 
313 	do {
314 		if (!idr_pre_get(&mtd_idr, GFP_KERNEL))
315 			goto fail_locked;
316 		error = idr_get_new(&mtd_idr, mtd, &i);
317 	} while (error == -EAGAIN);
318 
319 	if (error)
320 		goto fail_locked;
321 
322 	mtd->index = i;
323 	mtd->usecount = 0;
324 
325 	if (is_power_of_2(mtd->erasesize))
326 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
327 	else
328 		mtd->erasesize_shift = 0;
329 
330 	if (is_power_of_2(mtd->writesize))
331 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
332 	else
333 		mtd->writesize_shift = 0;
334 
335 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
336 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
337 
338 	/* Some chips always power up locked. Unlock them now */
339 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
340 		error = mtd_unlock(mtd, 0, mtd->size);
341 		if (error && error != -EOPNOTSUPP)
342 			printk(KERN_WARNING
343 			       "%s: unlock failed, writes may not work\n",
344 			       mtd->name);
345 	}
346 
347 	/* Caller should have set dev.parent to match the
348 	 * physical device.
349 	 */
350 	mtd->dev.type = &mtd_devtype;
351 	mtd->dev.class = &mtd_class;
352 	mtd->dev.devt = MTD_DEVT(i);
353 	dev_set_name(&mtd->dev, "mtd%d", i);
354 	dev_set_drvdata(&mtd->dev, mtd);
355 	if (device_register(&mtd->dev) != 0)
356 		goto fail_added;
357 
358 	if (MTD_DEVT(i))
359 		device_create(&mtd_class, mtd->dev.parent,
360 			      MTD_DEVT(i) + 1,
361 			      NULL, "mtd%dro", i);
362 
363 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
364 	/* No need to get a refcount on the module containing
365 	   the notifier, since we hold the mtd_table_mutex */
366 	list_for_each_entry(not, &mtd_notifiers, list)
367 		not->add(mtd);
368 
369 	mutex_unlock(&mtd_table_mutex);
370 	/* We _know_ we aren't being removed, because
371 	   our caller is still holding us here. So none
372 	   of this try_ nonsense, and no bitching about it
373 	   either. :) */
374 	__module_get(THIS_MODULE);
375 	return 0;
376 
377 fail_added:
378 	idr_remove(&mtd_idr, i);
379 fail_locked:
380 	mutex_unlock(&mtd_table_mutex);
381 	return 1;
382 }
383 
384 /**
385  *	del_mtd_device - unregister an MTD device
386  *	@mtd: pointer to MTD device info structure
387  *
388  *	Remove a device from the list of MTD devices present in the system,
389  *	and notify each currently active MTD 'user' of its departure.
390  *	Returns zero on success or 1 on failure, which currently will happen
391  *	if the requested device does not appear to be present in the list.
392  */
393 
394 int del_mtd_device(struct mtd_info *mtd)
395 {
396 	int ret;
397 	struct mtd_notifier *not;
398 
399 	mutex_lock(&mtd_table_mutex);
400 
401 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
402 		ret = -ENODEV;
403 		goto out_error;
404 	}
405 
406 	/* No need to get a refcount on the module containing
407 		the notifier, since we hold the mtd_table_mutex */
408 	list_for_each_entry(not, &mtd_notifiers, list)
409 		not->remove(mtd);
410 
411 	if (mtd->usecount) {
412 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
413 		       mtd->index, mtd->name, mtd->usecount);
414 		ret = -EBUSY;
415 	} else {
416 		device_unregister(&mtd->dev);
417 
418 		idr_remove(&mtd_idr, mtd->index);
419 
420 		module_put(THIS_MODULE);
421 		ret = 0;
422 	}
423 
424 out_error:
425 	mutex_unlock(&mtd_table_mutex);
426 	return ret;
427 }
428 
429 /**
430  * mtd_device_parse_register - parse partitions and register an MTD device.
431  *
432  * @mtd: the MTD device to register
433  * @types: the list of MTD partition probes to try, see
434  *         'parse_mtd_partitions()' for more information
435  * @parser_data: MTD partition parser-specific data
436  * @parts: fallback partition information to register, if parsing fails;
437  *         only valid if %nr_parts > %0
438  * @nr_parts: the number of partitions in parts, if zero then the full
439  *            MTD device is registered if no partition info is found
440  *
441  * This function aggregates MTD partitions parsing (done by
442  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
443  * basically follows the most common pattern found in many MTD drivers:
444  *
445  * * It first tries to probe partitions on MTD device @mtd using parsers
446  *   specified in @types (if @types is %NULL, then the default list of parsers
447  *   is used, see 'parse_mtd_partitions()' for more information). If none are
448  *   found this functions tries to fallback to information specified in
449  *   @parts/@nr_parts.
450  * * If any partitioning info was found, this function registers the found
451  *   partitions.
452  * * If no partitions were found this function just registers the MTD device
453  *   @mtd and exits.
454  *
455  * Returns zero in case of success and a negative error code in case of failure.
456  */
457 int mtd_device_parse_register(struct mtd_info *mtd, const char **types,
458 			      struct mtd_part_parser_data *parser_data,
459 			      const struct mtd_partition *parts,
460 			      int nr_parts)
461 {
462 	int err;
463 	struct mtd_partition *real_parts;
464 
465 	err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
466 	if (err <= 0 && nr_parts && parts) {
467 		real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
468 				     GFP_KERNEL);
469 		if (!real_parts)
470 			err = -ENOMEM;
471 		else
472 			err = nr_parts;
473 	}
474 
475 	if (err > 0) {
476 		err = add_mtd_partitions(mtd, real_parts, err);
477 		kfree(real_parts);
478 	} else if (err == 0) {
479 		err = add_mtd_device(mtd);
480 		if (err == 1)
481 			err = -ENODEV;
482 	}
483 
484 	return err;
485 }
486 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
487 
488 /**
489  * mtd_device_unregister - unregister an existing MTD device.
490  *
491  * @master: the MTD device to unregister.  This will unregister both the master
492  *          and any partitions if registered.
493  */
494 int mtd_device_unregister(struct mtd_info *master)
495 {
496 	int err;
497 
498 	err = del_mtd_partitions(master);
499 	if (err)
500 		return err;
501 
502 	if (!device_is_registered(&master->dev))
503 		return 0;
504 
505 	return del_mtd_device(master);
506 }
507 EXPORT_SYMBOL_GPL(mtd_device_unregister);
508 
509 /**
510  *	register_mtd_user - register a 'user' of MTD devices.
511  *	@new: pointer to notifier info structure
512  *
513  *	Registers a pair of callbacks function to be called upon addition
514  *	or removal of MTD devices. Causes the 'add' callback to be immediately
515  *	invoked for each MTD device currently present in the system.
516  */
517 void register_mtd_user (struct mtd_notifier *new)
518 {
519 	struct mtd_info *mtd;
520 
521 	mutex_lock(&mtd_table_mutex);
522 
523 	list_add(&new->list, &mtd_notifiers);
524 
525 	__module_get(THIS_MODULE);
526 
527 	mtd_for_each_device(mtd)
528 		new->add(mtd);
529 
530 	mutex_unlock(&mtd_table_mutex);
531 }
532 EXPORT_SYMBOL_GPL(register_mtd_user);
533 
534 /**
535  *	unregister_mtd_user - unregister a 'user' of MTD devices.
536  *	@old: pointer to notifier info structure
537  *
538  *	Removes a callback function pair from the list of 'users' to be
539  *	notified upon addition or removal of MTD devices. Causes the
540  *	'remove' callback to be immediately invoked for each MTD device
541  *	currently present in the system.
542  */
543 int unregister_mtd_user (struct mtd_notifier *old)
544 {
545 	struct mtd_info *mtd;
546 
547 	mutex_lock(&mtd_table_mutex);
548 
549 	module_put(THIS_MODULE);
550 
551 	mtd_for_each_device(mtd)
552 		old->remove(mtd);
553 
554 	list_del(&old->list);
555 	mutex_unlock(&mtd_table_mutex);
556 	return 0;
557 }
558 EXPORT_SYMBOL_GPL(unregister_mtd_user);
559 
560 /**
561  *	get_mtd_device - obtain a validated handle for an MTD device
562  *	@mtd: last known address of the required MTD device
563  *	@num: internal device number of the required MTD device
564  *
565  *	Given a number and NULL address, return the num'th entry in the device
566  *	table, if any.	Given an address and num == -1, search the device table
567  *	for a device with that address and return if it's still present. Given
568  *	both, return the num'th driver only if its address matches. Return
569  *	error code if not.
570  */
571 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
572 {
573 	struct mtd_info *ret = NULL, *other;
574 	int err = -ENODEV;
575 
576 	mutex_lock(&mtd_table_mutex);
577 
578 	if (num == -1) {
579 		mtd_for_each_device(other) {
580 			if (other == mtd) {
581 				ret = mtd;
582 				break;
583 			}
584 		}
585 	} else if (num >= 0) {
586 		ret = idr_find(&mtd_idr, num);
587 		if (mtd && mtd != ret)
588 			ret = NULL;
589 	}
590 
591 	if (!ret) {
592 		ret = ERR_PTR(err);
593 		goto out;
594 	}
595 
596 	err = __get_mtd_device(ret);
597 	if (err)
598 		ret = ERR_PTR(err);
599 out:
600 	mutex_unlock(&mtd_table_mutex);
601 	return ret;
602 }
603 EXPORT_SYMBOL_GPL(get_mtd_device);
604 
605 
606 int __get_mtd_device(struct mtd_info *mtd)
607 {
608 	int err;
609 
610 	if (!try_module_get(mtd->owner))
611 		return -ENODEV;
612 
613 	if (mtd->_get_device) {
614 		err = mtd->_get_device(mtd);
615 
616 		if (err) {
617 			module_put(mtd->owner);
618 			return err;
619 		}
620 	}
621 	mtd->usecount++;
622 	return 0;
623 }
624 EXPORT_SYMBOL_GPL(__get_mtd_device);
625 
626 /**
627  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
628  *	device name
629  *	@name: MTD device name to open
630  *
631  * 	This function returns MTD device description structure in case of
632  * 	success and an error code in case of failure.
633  */
634 struct mtd_info *get_mtd_device_nm(const char *name)
635 {
636 	int err = -ENODEV;
637 	struct mtd_info *mtd = NULL, *other;
638 
639 	mutex_lock(&mtd_table_mutex);
640 
641 	mtd_for_each_device(other) {
642 		if (!strcmp(name, other->name)) {
643 			mtd = other;
644 			break;
645 		}
646 	}
647 
648 	if (!mtd)
649 		goto out_unlock;
650 
651 	err = __get_mtd_device(mtd);
652 	if (err)
653 		goto out_unlock;
654 
655 	mutex_unlock(&mtd_table_mutex);
656 	return mtd;
657 
658 out_unlock:
659 	mutex_unlock(&mtd_table_mutex);
660 	return ERR_PTR(err);
661 }
662 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
663 
664 void put_mtd_device(struct mtd_info *mtd)
665 {
666 	mutex_lock(&mtd_table_mutex);
667 	__put_mtd_device(mtd);
668 	mutex_unlock(&mtd_table_mutex);
669 
670 }
671 EXPORT_SYMBOL_GPL(put_mtd_device);
672 
673 void __put_mtd_device(struct mtd_info *mtd)
674 {
675 	--mtd->usecount;
676 	BUG_ON(mtd->usecount < 0);
677 
678 	if (mtd->_put_device)
679 		mtd->_put_device(mtd);
680 
681 	module_put(mtd->owner);
682 }
683 EXPORT_SYMBOL_GPL(__put_mtd_device);
684 
685 /*
686  * Erase is an asynchronous operation.  Device drivers are supposed
687  * to call instr->callback() whenever the operation completes, even
688  * if it completes with a failure.
689  * Callers are supposed to pass a callback function and wait for it
690  * to be called before writing to the block.
691  */
692 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
693 {
694 	if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
695 		return -EINVAL;
696 	if (!(mtd->flags & MTD_WRITEABLE))
697 		return -EROFS;
698 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
699 	if (!instr->len) {
700 		instr->state = MTD_ERASE_DONE;
701 		mtd_erase_callback(instr);
702 		return 0;
703 	}
704 	return mtd->_erase(mtd, instr);
705 }
706 EXPORT_SYMBOL_GPL(mtd_erase);
707 
708 /*
709  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
710  */
711 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
712 	      void **virt, resource_size_t *phys)
713 {
714 	*retlen = 0;
715 	*virt = NULL;
716 	if (phys)
717 		*phys = 0;
718 	if (!mtd->_point)
719 		return -EOPNOTSUPP;
720 	if (from < 0 || from > mtd->size || len > mtd->size - from)
721 		return -EINVAL;
722 	if (!len)
723 		return 0;
724 	return mtd->_point(mtd, from, len, retlen, virt, phys);
725 }
726 EXPORT_SYMBOL_GPL(mtd_point);
727 
728 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
729 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
730 {
731 	if (!mtd->_point)
732 		return -EOPNOTSUPP;
733 	if (from < 0 || from > mtd->size || len > mtd->size - from)
734 		return -EINVAL;
735 	if (!len)
736 		return 0;
737 	return mtd->_unpoint(mtd, from, len);
738 }
739 EXPORT_SYMBOL_GPL(mtd_unpoint);
740 
741 /*
742  * Allow NOMMU mmap() to directly map the device (if not NULL)
743  * - return the address to which the offset maps
744  * - return -ENOSYS to indicate refusal to do the mapping
745  */
746 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
747 				    unsigned long offset, unsigned long flags)
748 {
749 	if (!mtd->_get_unmapped_area)
750 		return -EOPNOTSUPP;
751 	if (offset > mtd->size || len > mtd->size - offset)
752 		return -EINVAL;
753 	return mtd->_get_unmapped_area(mtd, len, offset, flags);
754 }
755 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
756 
757 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
758 	     u_char *buf)
759 {
760 	*retlen = 0;
761 	if (from < 0 || from > mtd->size || len > mtd->size - from)
762 		return -EINVAL;
763 	if (!len)
764 		return 0;
765 	return mtd->_read(mtd, from, len, retlen, buf);
766 }
767 EXPORT_SYMBOL_GPL(mtd_read);
768 
769 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
770 	      const u_char *buf)
771 {
772 	*retlen = 0;
773 	if (to < 0 || to > mtd->size || len > mtd->size - to)
774 		return -EINVAL;
775 	if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
776 		return -EROFS;
777 	if (!len)
778 		return 0;
779 	return mtd->_write(mtd, to, len, retlen, buf);
780 }
781 EXPORT_SYMBOL_GPL(mtd_write);
782 
783 /*
784  * In blackbox flight recorder like scenarios we want to make successful writes
785  * in interrupt context. panic_write() is only intended to be called when its
786  * known the kernel is about to panic and we need the write to succeed. Since
787  * the kernel is not going to be running for much longer, this function can
788  * break locks and delay to ensure the write succeeds (but not sleep).
789  */
790 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
791 		    const u_char *buf)
792 {
793 	*retlen = 0;
794 	if (!mtd->_panic_write)
795 		return -EOPNOTSUPP;
796 	if (to < 0 || to > mtd->size || len > mtd->size - to)
797 		return -EINVAL;
798 	if (!(mtd->flags & MTD_WRITEABLE))
799 		return -EROFS;
800 	if (!len)
801 		return 0;
802 	return mtd->_panic_write(mtd, to, len, retlen, buf);
803 }
804 EXPORT_SYMBOL_GPL(mtd_panic_write);
805 
806 /*
807  * Method to access the protection register area, present in some flash
808  * devices. The user data is one time programmable but the factory data is read
809  * only.
810  */
811 int mtd_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
812 			   size_t len)
813 {
814 	if (!mtd->_get_fact_prot_info)
815 		return -EOPNOTSUPP;
816 	if (!len)
817 		return 0;
818 	return mtd->_get_fact_prot_info(mtd, buf, len);
819 }
820 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
821 
822 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
823 			   size_t *retlen, u_char *buf)
824 {
825 	*retlen = 0;
826 	if (!mtd->_read_fact_prot_reg)
827 		return -EOPNOTSUPP;
828 	if (!len)
829 		return 0;
830 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
831 }
832 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
833 
834 int mtd_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf,
835 			   size_t len)
836 {
837 	if (!mtd->_get_user_prot_info)
838 		return -EOPNOTSUPP;
839 	if (!len)
840 		return 0;
841 	return mtd->_get_user_prot_info(mtd, buf, len);
842 }
843 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
844 
845 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
846 			   size_t *retlen, u_char *buf)
847 {
848 	*retlen = 0;
849 	if (!mtd->_read_user_prot_reg)
850 		return -EOPNOTSUPP;
851 	if (!len)
852 		return 0;
853 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
854 }
855 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
856 
857 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
858 			    size_t *retlen, u_char *buf)
859 {
860 	*retlen = 0;
861 	if (!mtd->_write_user_prot_reg)
862 		return -EOPNOTSUPP;
863 	if (!len)
864 		return 0;
865 	return mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
866 }
867 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
868 
869 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
870 {
871 	if (!mtd->_lock_user_prot_reg)
872 		return -EOPNOTSUPP;
873 	if (!len)
874 		return 0;
875 	return mtd->_lock_user_prot_reg(mtd, from, len);
876 }
877 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
878 
879 /* Chip-supported device locking */
880 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
881 {
882 	if (!mtd->_lock)
883 		return -EOPNOTSUPP;
884 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
885 		return -EINVAL;
886 	if (!len)
887 		return 0;
888 	return mtd->_lock(mtd, ofs, len);
889 }
890 EXPORT_SYMBOL_GPL(mtd_lock);
891 
892 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
893 {
894 	if (!mtd->_unlock)
895 		return -EOPNOTSUPP;
896 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
897 		return -EINVAL;
898 	if (!len)
899 		return 0;
900 	return mtd->_unlock(mtd, ofs, len);
901 }
902 EXPORT_SYMBOL_GPL(mtd_unlock);
903 
904 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
905 {
906 	if (!mtd->_is_locked)
907 		return -EOPNOTSUPP;
908 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
909 		return -EINVAL;
910 	if (!len)
911 		return 0;
912 	return mtd->_is_locked(mtd, ofs, len);
913 }
914 EXPORT_SYMBOL_GPL(mtd_is_locked);
915 
916 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
917 {
918 	if (!mtd->_block_isbad)
919 		return 0;
920 	if (ofs < 0 || ofs > mtd->size)
921 		return -EINVAL;
922 	return mtd->_block_isbad(mtd, ofs);
923 }
924 EXPORT_SYMBOL_GPL(mtd_block_isbad);
925 
926 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
927 {
928 	if (!mtd->_block_markbad)
929 		return -EOPNOTSUPP;
930 	if (ofs < 0 || ofs > mtd->size)
931 		return -EINVAL;
932 	if (!(mtd->flags & MTD_WRITEABLE))
933 		return -EROFS;
934 	return mtd->_block_markbad(mtd, ofs);
935 }
936 EXPORT_SYMBOL_GPL(mtd_block_markbad);
937 
938 /*
939  * default_mtd_writev - the default writev method
940  * @mtd: mtd device description object pointer
941  * @vecs: the vectors to write
942  * @count: count of vectors in @vecs
943  * @to: the MTD device offset to write to
944  * @retlen: on exit contains the count of bytes written to the MTD device.
945  *
946  * This function returns zero in case of success and a negative error code in
947  * case of failure.
948  */
949 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
950 			      unsigned long count, loff_t to, size_t *retlen)
951 {
952 	unsigned long i;
953 	size_t totlen = 0, thislen;
954 	int ret = 0;
955 
956 	for (i = 0; i < count; i++) {
957 		if (!vecs[i].iov_len)
958 			continue;
959 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
960 				vecs[i].iov_base);
961 		totlen += thislen;
962 		if (ret || thislen != vecs[i].iov_len)
963 			break;
964 		to += vecs[i].iov_len;
965 	}
966 	*retlen = totlen;
967 	return ret;
968 }
969 
970 /*
971  * mtd_writev - the vector-based MTD write method
972  * @mtd: mtd device description object pointer
973  * @vecs: the vectors to write
974  * @count: count of vectors in @vecs
975  * @to: the MTD device offset to write to
976  * @retlen: on exit contains the count of bytes written to the MTD device.
977  *
978  * This function returns zero in case of success and a negative error code in
979  * case of failure.
980  */
981 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
982 	       unsigned long count, loff_t to, size_t *retlen)
983 {
984 	*retlen = 0;
985 	if (!(mtd->flags & MTD_WRITEABLE))
986 		return -EROFS;
987 	if (!mtd->_writev)
988 		return default_mtd_writev(mtd, vecs, count, to, retlen);
989 	return mtd->_writev(mtd, vecs, count, to, retlen);
990 }
991 EXPORT_SYMBOL_GPL(mtd_writev);
992 
993 /**
994  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
995  * @mtd: mtd device description object pointer
996  * @size: a pointer to the ideal or maximum size of the allocation, points
997  *        to the actual allocation size on success.
998  *
999  * This routine attempts to allocate a contiguous kernel buffer up to
1000  * the specified size, backing off the size of the request exponentially
1001  * until the request succeeds or until the allocation size falls below
1002  * the system page size. This attempts to make sure it does not adversely
1003  * impact system performance, so when allocating more than one page, we
1004  * ask the memory allocator to avoid re-trying, swapping, writing back
1005  * or performing I/O.
1006  *
1007  * Note, this function also makes sure that the allocated buffer is aligned to
1008  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1009  *
1010  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1011  * to handle smaller (i.e. degraded) buffer allocations under low- or
1012  * fragmented-memory situations where such reduced allocations, from a
1013  * requested ideal, are allowed.
1014  *
1015  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1016  */
1017 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1018 {
1019 	gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1020 		       __GFP_NORETRY | __GFP_NO_KSWAPD;
1021 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1022 	void *kbuf;
1023 
1024 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1025 
1026 	while (*size > min_alloc) {
1027 		kbuf = kmalloc(*size, flags);
1028 		if (kbuf)
1029 			return kbuf;
1030 
1031 		*size >>= 1;
1032 		*size = ALIGN(*size, mtd->writesize);
1033 	}
1034 
1035 	/*
1036 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1037 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1038 	 */
1039 	return kmalloc(*size, GFP_KERNEL);
1040 }
1041 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1042 
1043 #ifdef CONFIG_PROC_FS
1044 
1045 /*====================================================================*/
1046 /* Support for /proc/mtd */
1047 
1048 static struct proc_dir_entry *proc_mtd;
1049 
1050 static int mtd_proc_show(struct seq_file *m, void *v)
1051 {
1052 	struct mtd_info *mtd;
1053 
1054 	seq_puts(m, "dev:    size   erasesize  name\n");
1055 	mutex_lock(&mtd_table_mutex);
1056 	mtd_for_each_device(mtd) {
1057 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1058 			   mtd->index, (unsigned long long)mtd->size,
1059 			   mtd->erasesize, mtd->name);
1060 	}
1061 	mutex_unlock(&mtd_table_mutex);
1062 	return 0;
1063 }
1064 
1065 static int mtd_proc_open(struct inode *inode, struct file *file)
1066 {
1067 	return single_open(file, mtd_proc_show, NULL);
1068 }
1069 
1070 static const struct file_operations mtd_proc_ops = {
1071 	.open		= mtd_proc_open,
1072 	.read		= seq_read,
1073 	.llseek		= seq_lseek,
1074 	.release	= single_release,
1075 };
1076 #endif /* CONFIG_PROC_FS */
1077 
1078 /*====================================================================*/
1079 /* Init code */
1080 
1081 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1082 {
1083 	int ret;
1084 
1085 	ret = bdi_init(bdi);
1086 	if (!ret)
1087 		ret = bdi_register(bdi, NULL, name);
1088 
1089 	if (ret)
1090 		bdi_destroy(bdi);
1091 
1092 	return ret;
1093 }
1094 
1095 static int __init init_mtd(void)
1096 {
1097 	int ret;
1098 
1099 	ret = class_register(&mtd_class);
1100 	if (ret)
1101 		goto err_reg;
1102 
1103 	ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1104 	if (ret)
1105 		goto err_bdi1;
1106 
1107 	ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1108 	if (ret)
1109 		goto err_bdi2;
1110 
1111 	ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1112 	if (ret)
1113 		goto err_bdi3;
1114 
1115 #ifdef CONFIG_PROC_FS
1116 	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1117 #endif /* CONFIG_PROC_FS */
1118 	return 0;
1119 
1120 err_bdi3:
1121 	bdi_destroy(&mtd_bdi_ro_mappable);
1122 err_bdi2:
1123 	bdi_destroy(&mtd_bdi_unmappable);
1124 err_bdi1:
1125 	class_unregister(&mtd_class);
1126 err_reg:
1127 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1128 	return ret;
1129 }
1130 
1131 static void __exit cleanup_mtd(void)
1132 {
1133 #ifdef CONFIG_PROC_FS
1134 	if (proc_mtd)
1135 		remove_proc_entry( "mtd", NULL);
1136 #endif /* CONFIG_PROC_FS */
1137 	class_unregister(&mtd_class);
1138 	bdi_destroy(&mtd_bdi_unmappable);
1139 	bdi_destroy(&mtd_bdi_ro_mappable);
1140 	bdi_destroy(&mtd_bdi_rw_mappable);
1141 }
1142 
1143 module_init(init_mtd);
1144 module_exit(cleanup_mtd);
1145 
1146 MODULE_LICENSE("GPL");
1147 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1148 MODULE_DESCRIPTION("Core MTD registration and access routines");
1149