1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Core registration and callback routines for MTD 4 * drivers and users. 5 * 6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 7 * Copyright © 2006 Red Hat UK Limited 8 */ 9 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/ptrace.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/timer.h> 16 #include <linux/major.h> 17 #include <linux/fs.h> 18 #include <linux/err.h> 19 #include <linux/ioctl.h> 20 #include <linux/init.h> 21 #include <linux/of.h> 22 #include <linux/proc_fs.h> 23 #include <linux/idr.h> 24 #include <linux/backing-dev.h> 25 #include <linux/gfp.h> 26 #include <linux/slab.h> 27 #include <linux/reboot.h> 28 #include <linux/leds.h> 29 #include <linux/debugfs.h> 30 #include <linux/nvmem-provider.h> 31 32 #include <linux/mtd/mtd.h> 33 #include <linux/mtd/partitions.h> 34 35 #include "mtdcore.h" 36 37 struct backing_dev_info *mtd_bdi; 38 39 #ifdef CONFIG_PM_SLEEP 40 41 static int mtd_cls_suspend(struct device *dev) 42 { 43 struct mtd_info *mtd = dev_get_drvdata(dev); 44 45 return mtd ? mtd_suspend(mtd) : 0; 46 } 47 48 static int mtd_cls_resume(struct device *dev) 49 { 50 struct mtd_info *mtd = dev_get_drvdata(dev); 51 52 if (mtd) 53 mtd_resume(mtd); 54 return 0; 55 } 56 57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 59 #else 60 #define MTD_CLS_PM_OPS NULL 61 #endif 62 63 static struct class mtd_class = { 64 .name = "mtd", 65 .owner = THIS_MODULE, 66 .pm = MTD_CLS_PM_OPS, 67 }; 68 69 static DEFINE_IDR(mtd_idr); 70 71 /* These are exported solely for the purpose of mtd_blkdevs.c. You 72 should not use them for _anything_ else */ 73 DEFINE_MUTEX(mtd_table_mutex); 74 EXPORT_SYMBOL_GPL(mtd_table_mutex); 75 76 struct mtd_info *__mtd_next_device(int i) 77 { 78 return idr_get_next(&mtd_idr, &i); 79 } 80 EXPORT_SYMBOL_GPL(__mtd_next_device); 81 82 static LIST_HEAD(mtd_notifiers); 83 84 85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 86 87 /* REVISIT once MTD uses the driver model better, whoever allocates 88 * the mtd_info will probably want to use the release() hook... 89 */ 90 static void mtd_release(struct device *dev) 91 { 92 struct mtd_info *mtd = dev_get_drvdata(dev); 93 dev_t index = MTD_DEVT(mtd->index); 94 95 /* remove /dev/mtdXro node */ 96 device_destroy(&mtd_class, index + 1); 97 } 98 99 #define MTD_DEVICE_ATTR_RO(name) \ 100 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL) 101 102 #define MTD_DEVICE_ATTR_RW(name) \ 103 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store) 104 105 static ssize_t mtd_type_show(struct device *dev, 106 struct device_attribute *attr, char *buf) 107 { 108 struct mtd_info *mtd = dev_get_drvdata(dev); 109 char *type; 110 111 switch (mtd->type) { 112 case MTD_ABSENT: 113 type = "absent"; 114 break; 115 case MTD_RAM: 116 type = "ram"; 117 break; 118 case MTD_ROM: 119 type = "rom"; 120 break; 121 case MTD_NORFLASH: 122 type = "nor"; 123 break; 124 case MTD_NANDFLASH: 125 type = "nand"; 126 break; 127 case MTD_DATAFLASH: 128 type = "dataflash"; 129 break; 130 case MTD_UBIVOLUME: 131 type = "ubi"; 132 break; 133 case MTD_MLCNANDFLASH: 134 type = "mlc-nand"; 135 break; 136 default: 137 type = "unknown"; 138 } 139 140 return sysfs_emit(buf, "%s\n", type); 141 } 142 MTD_DEVICE_ATTR_RO(type); 143 144 static ssize_t mtd_flags_show(struct device *dev, 145 struct device_attribute *attr, char *buf) 146 { 147 struct mtd_info *mtd = dev_get_drvdata(dev); 148 149 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags); 150 } 151 MTD_DEVICE_ATTR_RO(flags); 152 153 static ssize_t mtd_size_show(struct device *dev, 154 struct device_attribute *attr, char *buf) 155 { 156 struct mtd_info *mtd = dev_get_drvdata(dev); 157 158 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size); 159 } 160 MTD_DEVICE_ATTR_RO(size); 161 162 static ssize_t mtd_erasesize_show(struct device *dev, 163 struct device_attribute *attr, char *buf) 164 { 165 struct mtd_info *mtd = dev_get_drvdata(dev); 166 167 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize); 168 } 169 MTD_DEVICE_ATTR_RO(erasesize); 170 171 static ssize_t mtd_writesize_show(struct device *dev, 172 struct device_attribute *attr, char *buf) 173 { 174 struct mtd_info *mtd = dev_get_drvdata(dev); 175 176 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize); 177 } 178 MTD_DEVICE_ATTR_RO(writesize); 179 180 static ssize_t mtd_subpagesize_show(struct device *dev, 181 struct device_attribute *attr, char *buf) 182 { 183 struct mtd_info *mtd = dev_get_drvdata(dev); 184 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 185 186 return sysfs_emit(buf, "%u\n", subpagesize); 187 } 188 MTD_DEVICE_ATTR_RO(subpagesize); 189 190 static ssize_t mtd_oobsize_show(struct device *dev, 191 struct device_attribute *attr, char *buf) 192 { 193 struct mtd_info *mtd = dev_get_drvdata(dev); 194 195 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize); 196 } 197 MTD_DEVICE_ATTR_RO(oobsize); 198 199 static ssize_t mtd_oobavail_show(struct device *dev, 200 struct device_attribute *attr, char *buf) 201 { 202 struct mtd_info *mtd = dev_get_drvdata(dev); 203 204 return sysfs_emit(buf, "%u\n", mtd->oobavail); 205 } 206 MTD_DEVICE_ATTR_RO(oobavail); 207 208 static ssize_t mtd_numeraseregions_show(struct device *dev, 209 struct device_attribute *attr, char *buf) 210 { 211 struct mtd_info *mtd = dev_get_drvdata(dev); 212 213 return sysfs_emit(buf, "%u\n", mtd->numeraseregions); 214 } 215 MTD_DEVICE_ATTR_RO(numeraseregions); 216 217 static ssize_t mtd_name_show(struct device *dev, 218 struct device_attribute *attr, char *buf) 219 { 220 struct mtd_info *mtd = dev_get_drvdata(dev); 221 222 return sysfs_emit(buf, "%s\n", mtd->name); 223 } 224 MTD_DEVICE_ATTR_RO(name); 225 226 static ssize_t mtd_ecc_strength_show(struct device *dev, 227 struct device_attribute *attr, char *buf) 228 { 229 struct mtd_info *mtd = dev_get_drvdata(dev); 230 231 return sysfs_emit(buf, "%u\n", mtd->ecc_strength); 232 } 233 MTD_DEVICE_ATTR_RO(ecc_strength); 234 235 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 236 struct device_attribute *attr, 237 char *buf) 238 { 239 struct mtd_info *mtd = dev_get_drvdata(dev); 240 241 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold); 242 } 243 244 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 245 struct device_attribute *attr, 246 const char *buf, size_t count) 247 { 248 struct mtd_info *mtd = dev_get_drvdata(dev); 249 unsigned int bitflip_threshold; 250 int retval; 251 252 retval = kstrtouint(buf, 0, &bitflip_threshold); 253 if (retval) 254 return retval; 255 256 mtd->bitflip_threshold = bitflip_threshold; 257 return count; 258 } 259 MTD_DEVICE_ATTR_RW(bitflip_threshold); 260 261 static ssize_t mtd_ecc_step_size_show(struct device *dev, 262 struct device_attribute *attr, char *buf) 263 { 264 struct mtd_info *mtd = dev_get_drvdata(dev); 265 266 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size); 267 268 } 269 MTD_DEVICE_ATTR_RO(ecc_step_size); 270 271 static ssize_t mtd_corrected_bits_show(struct device *dev, 272 struct device_attribute *attr, char *buf) 273 { 274 struct mtd_info *mtd = dev_get_drvdata(dev); 275 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 276 277 return sysfs_emit(buf, "%u\n", ecc_stats->corrected); 278 } 279 MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */ 280 281 static ssize_t mtd_ecc_failures_show(struct device *dev, 282 struct device_attribute *attr, char *buf) 283 { 284 struct mtd_info *mtd = dev_get_drvdata(dev); 285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 286 287 return sysfs_emit(buf, "%u\n", ecc_stats->failed); 288 } 289 MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */ 290 291 static ssize_t mtd_bad_blocks_show(struct device *dev, 292 struct device_attribute *attr, char *buf) 293 { 294 struct mtd_info *mtd = dev_get_drvdata(dev); 295 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 296 297 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks); 298 } 299 MTD_DEVICE_ATTR_RO(bad_blocks); 300 301 static ssize_t mtd_bbt_blocks_show(struct device *dev, 302 struct device_attribute *attr, char *buf) 303 { 304 struct mtd_info *mtd = dev_get_drvdata(dev); 305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 306 307 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks); 308 } 309 MTD_DEVICE_ATTR_RO(bbt_blocks); 310 311 static struct attribute *mtd_attrs[] = { 312 &dev_attr_type.attr, 313 &dev_attr_flags.attr, 314 &dev_attr_size.attr, 315 &dev_attr_erasesize.attr, 316 &dev_attr_writesize.attr, 317 &dev_attr_subpagesize.attr, 318 &dev_attr_oobsize.attr, 319 &dev_attr_oobavail.attr, 320 &dev_attr_numeraseregions.attr, 321 &dev_attr_name.attr, 322 &dev_attr_ecc_strength.attr, 323 &dev_attr_ecc_step_size.attr, 324 &dev_attr_corrected_bits.attr, 325 &dev_attr_ecc_failures.attr, 326 &dev_attr_bad_blocks.attr, 327 &dev_attr_bbt_blocks.attr, 328 &dev_attr_bitflip_threshold.attr, 329 NULL, 330 }; 331 ATTRIBUTE_GROUPS(mtd); 332 333 static const struct device_type mtd_devtype = { 334 .name = "mtd", 335 .groups = mtd_groups, 336 .release = mtd_release, 337 }; 338 339 static int mtd_partid_debug_show(struct seq_file *s, void *p) 340 { 341 struct mtd_info *mtd = s->private; 342 343 seq_printf(s, "%s\n", mtd->dbg.partid); 344 345 return 0; 346 } 347 348 DEFINE_SHOW_ATTRIBUTE(mtd_partid_debug); 349 350 static int mtd_partname_debug_show(struct seq_file *s, void *p) 351 { 352 struct mtd_info *mtd = s->private; 353 354 seq_printf(s, "%s\n", mtd->dbg.partname); 355 356 return 0; 357 } 358 359 DEFINE_SHOW_ATTRIBUTE(mtd_partname_debug); 360 361 static struct dentry *dfs_dir_mtd; 362 363 static void mtd_debugfs_populate(struct mtd_info *mtd) 364 { 365 struct mtd_info *master = mtd_get_master(mtd); 366 struct device *dev = &mtd->dev; 367 struct dentry *root; 368 369 if (IS_ERR_OR_NULL(dfs_dir_mtd)) 370 return; 371 372 root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd); 373 mtd->dbg.dfs_dir = root; 374 375 if (master->dbg.partid) 376 debugfs_create_file("partid", 0400, root, master, 377 &mtd_partid_debug_fops); 378 379 if (master->dbg.partname) 380 debugfs_create_file("partname", 0400, root, master, 381 &mtd_partname_debug_fops); 382 } 383 384 #ifndef CONFIG_MMU 385 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 386 { 387 switch (mtd->type) { 388 case MTD_RAM: 389 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 390 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 391 case MTD_ROM: 392 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 393 NOMMU_MAP_READ; 394 default: 395 return NOMMU_MAP_COPY; 396 } 397 } 398 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 399 #endif 400 401 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 402 void *cmd) 403 { 404 struct mtd_info *mtd; 405 406 mtd = container_of(n, struct mtd_info, reboot_notifier); 407 mtd->_reboot(mtd); 408 409 return NOTIFY_DONE; 410 } 411 412 /** 413 * mtd_wunit_to_pairing_info - get pairing information of a wunit 414 * @mtd: pointer to new MTD device info structure 415 * @wunit: write unit we are interested in 416 * @info: returned pairing information 417 * 418 * Retrieve pairing information associated to the wunit. 419 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 420 * paired together, and where programming a page may influence the page it is 421 * paired with. 422 * The notion of page is replaced by the term wunit (write-unit) to stay 423 * consistent with the ->writesize field. 424 * 425 * The @wunit argument can be extracted from an absolute offset using 426 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 427 * to @wunit. 428 * 429 * From the pairing info the MTD user can find all the wunits paired with 430 * @wunit using the following loop: 431 * 432 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 433 * info.pair = i; 434 * mtd_pairing_info_to_wunit(mtd, &info); 435 * ... 436 * } 437 */ 438 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 439 struct mtd_pairing_info *info) 440 { 441 struct mtd_info *master = mtd_get_master(mtd); 442 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master); 443 444 if (wunit < 0 || wunit >= npairs) 445 return -EINVAL; 446 447 if (master->pairing && master->pairing->get_info) 448 return master->pairing->get_info(master, wunit, info); 449 450 info->group = 0; 451 info->pair = wunit; 452 453 return 0; 454 } 455 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 456 457 /** 458 * mtd_pairing_info_to_wunit - get wunit from pairing information 459 * @mtd: pointer to new MTD device info structure 460 * @info: pairing information struct 461 * 462 * Returns a positive number representing the wunit associated to the info 463 * struct, or a negative error code. 464 * 465 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 466 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 467 * doc). 468 * 469 * It can also be used to only program the first page of each pair (i.e. 470 * page attached to group 0), which allows one to use an MLC NAND in 471 * software-emulated SLC mode: 472 * 473 * info.group = 0; 474 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 475 * for (info.pair = 0; info.pair < npairs; info.pair++) { 476 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 477 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 478 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 479 * } 480 */ 481 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 482 const struct mtd_pairing_info *info) 483 { 484 struct mtd_info *master = mtd_get_master(mtd); 485 int ngroups = mtd_pairing_groups(master); 486 int npairs = mtd_wunit_per_eb(master) / ngroups; 487 488 if (!info || info->pair < 0 || info->pair >= npairs || 489 info->group < 0 || info->group >= ngroups) 490 return -EINVAL; 491 492 if (master->pairing && master->pairing->get_wunit) 493 return mtd->pairing->get_wunit(master, info); 494 495 return info->pair; 496 } 497 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 498 499 /** 500 * mtd_pairing_groups - get the number of pairing groups 501 * @mtd: pointer to new MTD device info structure 502 * 503 * Returns the number of pairing groups. 504 * 505 * This number is usually equal to the number of bits exposed by a single 506 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 507 * to iterate over all pages of a given pair. 508 */ 509 int mtd_pairing_groups(struct mtd_info *mtd) 510 { 511 struct mtd_info *master = mtd_get_master(mtd); 512 513 if (!master->pairing || !master->pairing->ngroups) 514 return 1; 515 516 return master->pairing->ngroups; 517 } 518 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 519 520 static int mtd_nvmem_reg_read(void *priv, unsigned int offset, 521 void *val, size_t bytes) 522 { 523 struct mtd_info *mtd = priv; 524 size_t retlen; 525 int err; 526 527 err = mtd_read(mtd, offset, bytes, &retlen, val); 528 if (err && err != -EUCLEAN) 529 return err; 530 531 return retlen == bytes ? 0 : -EIO; 532 } 533 534 static int mtd_nvmem_add(struct mtd_info *mtd) 535 { 536 struct device_node *node = mtd_get_of_node(mtd); 537 struct nvmem_config config = {}; 538 539 config.id = -1; 540 config.dev = &mtd->dev; 541 config.name = dev_name(&mtd->dev); 542 config.owner = THIS_MODULE; 543 config.reg_read = mtd_nvmem_reg_read; 544 config.size = mtd->size; 545 config.word_size = 1; 546 config.stride = 1; 547 config.read_only = true; 548 config.root_only = true; 549 config.no_of_node = !of_device_is_compatible(node, "nvmem-cells"); 550 config.priv = mtd; 551 552 mtd->nvmem = nvmem_register(&config); 553 if (IS_ERR(mtd->nvmem)) { 554 /* Just ignore if there is no NVMEM support in the kernel */ 555 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) { 556 mtd->nvmem = NULL; 557 } else { 558 dev_err(&mtd->dev, "Failed to register NVMEM device\n"); 559 return PTR_ERR(mtd->nvmem); 560 } 561 } 562 563 return 0; 564 } 565 566 /** 567 * add_mtd_device - register an MTD device 568 * @mtd: pointer to new MTD device info structure 569 * 570 * Add a device to the list of MTD devices present in the system, and 571 * notify each currently active MTD 'user' of its arrival. Returns 572 * zero on success or non-zero on failure. 573 */ 574 575 int add_mtd_device(struct mtd_info *mtd) 576 { 577 struct mtd_info *master = mtd_get_master(mtd); 578 struct mtd_notifier *not; 579 int i, error; 580 581 /* 582 * May occur, for instance, on buggy drivers which call 583 * mtd_device_parse_register() multiple times on the same master MTD, 584 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 585 */ 586 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 587 return -EEXIST; 588 589 BUG_ON(mtd->writesize == 0); 590 591 /* 592 * MTD drivers should implement ->_{write,read}() or 593 * ->_{write,read}_oob(), but not both. 594 */ 595 if (WARN_ON((mtd->_write && mtd->_write_oob) || 596 (mtd->_read && mtd->_read_oob))) 597 return -EINVAL; 598 599 if (WARN_ON((!mtd->erasesize || !master->_erase) && 600 !(mtd->flags & MTD_NO_ERASE))) 601 return -EINVAL; 602 603 /* 604 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the 605 * master is an MLC NAND and has a proper pairing scheme defined. 606 * We also reject masters that implement ->_writev() for now, because 607 * NAND controller drivers don't implement this hook, and adding the 608 * SLC -> MLC address/length conversion to this path is useless if we 609 * don't have a user. 610 */ 611 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION && 612 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH || 613 !master->pairing || master->_writev)) 614 return -EINVAL; 615 616 mutex_lock(&mtd_table_mutex); 617 618 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 619 if (i < 0) { 620 error = i; 621 goto fail_locked; 622 } 623 624 mtd->index = i; 625 mtd->usecount = 0; 626 627 /* default value if not set by driver */ 628 if (mtd->bitflip_threshold == 0) 629 mtd->bitflip_threshold = mtd->ecc_strength; 630 631 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 632 int ngroups = mtd_pairing_groups(master); 633 634 mtd->erasesize /= ngroups; 635 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) * 636 mtd->erasesize; 637 } 638 639 if (is_power_of_2(mtd->erasesize)) 640 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 641 else 642 mtd->erasesize_shift = 0; 643 644 if (is_power_of_2(mtd->writesize)) 645 mtd->writesize_shift = ffs(mtd->writesize) - 1; 646 else 647 mtd->writesize_shift = 0; 648 649 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 650 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 651 652 /* Some chips always power up locked. Unlock them now */ 653 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 654 error = mtd_unlock(mtd, 0, mtd->size); 655 if (error && error != -EOPNOTSUPP) 656 printk(KERN_WARNING 657 "%s: unlock failed, writes may not work\n", 658 mtd->name); 659 /* Ignore unlock failures? */ 660 error = 0; 661 } 662 663 /* Caller should have set dev.parent to match the 664 * physical device, if appropriate. 665 */ 666 mtd->dev.type = &mtd_devtype; 667 mtd->dev.class = &mtd_class; 668 mtd->dev.devt = MTD_DEVT(i); 669 dev_set_name(&mtd->dev, "mtd%d", i); 670 dev_set_drvdata(&mtd->dev, mtd); 671 of_node_get(mtd_get_of_node(mtd)); 672 error = device_register(&mtd->dev); 673 if (error) 674 goto fail_added; 675 676 /* Add the nvmem provider */ 677 error = mtd_nvmem_add(mtd); 678 if (error) 679 goto fail_nvmem_add; 680 681 mtd_debugfs_populate(mtd); 682 683 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 684 "mtd%dro", i); 685 686 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 687 /* No need to get a refcount on the module containing 688 the notifier, since we hold the mtd_table_mutex */ 689 list_for_each_entry(not, &mtd_notifiers, list) 690 not->add(mtd); 691 692 mutex_unlock(&mtd_table_mutex); 693 /* We _know_ we aren't being removed, because 694 our caller is still holding us here. So none 695 of this try_ nonsense, and no bitching about it 696 either. :) */ 697 __module_get(THIS_MODULE); 698 return 0; 699 700 fail_nvmem_add: 701 device_unregister(&mtd->dev); 702 fail_added: 703 of_node_put(mtd_get_of_node(mtd)); 704 idr_remove(&mtd_idr, i); 705 fail_locked: 706 mutex_unlock(&mtd_table_mutex); 707 return error; 708 } 709 710 /** 711 * del_mtd_device - unregister an MTD device 712 * @mtd: pointer to MTD device info structure 713 * 714 * Remove a device from the list of MTD devices present in the system, 715 * and notify each currently active MTD 'user' of its departure. 716 * Returns zero on success or 1 on failure, which currently will happen 717 * if the requested device does not appear to be present in the list. 718 */ 719 720 int del_mtd_device(struct mtd_info *mtd) 721 { 722 int ret; 723 struct mtd_notifier *not; 724 725 mutex_lock(&mtd_table_mutex); 726 727 if (idr_find(&mtd_idr, mtd->index) != mtd) { 728 ret = -ENODEV; 729 goto out_error; 730 } 731 732 /* No need to get a refcount on the module containing 733 the notifier, since we hold the mtd_table_mutex */ 734 list_for_each_entry(not, &mtd_notifiers, list) 735 not->remove(mtd); 736 737 if (mtd->usecount) { 738 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 739 mtd->index, mtd->name, mtd->usecount); 740 ret = -EBUSY; 741 } else { 742 debugfs_remove_recursive(mtd->dbg.dfs_dir); 743 744 /* Try to remove the NVMEM provider */ 745 if (mtd->nvmem) 746 nvmem_unregister(mtd->nvmem); 747 748 device_unregister(&mtd->dev); 749 750 /* Clear dev so mtd can be safely re-registered later if desired */ 751 memset(&mtd->dev, 0, sizeof(mtd->dev)); 752 753 idr_remove(&mtd_idr, mtd->index); 754 of_node_put(mtd_get_of_node(mtd)); 755 756 module_put(THIS_MODULE); 757 ret = 0; 758 } 759 760 out_error: 761 mutex_unlock(&mtd_table_mutex); 762 return ret; 763 } 764 765 /* 766 * Set a few defaults based on the parent devices, if not provided by the 767 * driver 768 */ 769 static void mtd_set_dev_defaults(struct mtd_info *mtd) 770 { 771 if (mtd->dev.parent) { 772 if (!mtd->owner && mtd->dev.parent->driver) 773 mtd->owner = mtd->dev.parent->driver->owner; 774 if (!mtd->name) 775 mtd->name = dev_name(mtd->dev.parent); 776 } else { 777 pr_debug("mtd device won't show a device symlink in sysfs\n"); 778 } 779 780 INIT_LIST_HEAD(&mtd->partitions); 781 mutex_init(&mtd->master.partitions_lock); 782 mutex_init(&mtd->master.chrdev_lock); 783 } 784 785 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user) 786 { 787 struct otp_info *info; 788 ssize_t size = 0; 789 unsigned int i; 790 size_t retlen; 791 int ret; 792 793 info = kmalloc(PAGE_SIZE, GFP_KERNEL); 794 if (!info) 795 return -ENOMEM; 796 797 if (is_user) 798 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info); 799 else 800 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info); 801 if (ret) 802 goto err; 803 804 for (i = 0; i < retlen / sizeof(*info); i++) 805 size += info[i].length; 806 807 kfree(info); 808 return size; 809 810 err: 811 kfree(info); 812 813 /* ENODATA means there is no OTP region. */ 814 return ret == -ENODATA ? 0 : ret; 815 } 816 817 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd, 818 const char *compatible, 819 int size, 820 nvmem_reg_read_t reg_read) 821 { 822 struct nvmem_device *nvmem = NULL; 823 struct nvmem_config config = {}; 824 struct device_node *np; 825 826 /* DT binding is optional */ 827 np = of_get_compatible_child(mtd->dev.of_node, compatible); 828 829 /* OTP nvmem will be registered on the physical device */ 830 config.dev = mtd->dev.parent; 831 config.name = kasprintf(GFP_KERNEL, "%s-%s", dev_name(&mtd->dev), compatible); 832 config.id = NVMEM_DEVID_NONE; 833 config.owner = THIS_MODULE; 834 config.type = NVMEM_TYPE_OTP; 835 config.root_only = true; 836 config.reg_read = reg_read; 837 config.size = size; 838 config.of_node = np; 839 config.priv = mtd; 840 841 nvmem = nvmem_register(&config); 842 /* Just ignore if there is no NVMEM support in the kernel */ 843 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP) 844 nvmem = NULL; 845 846 of_node_put(np); 847 kfree(config.name); 848 849 return nvmem; 850 } 851 852 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset, 853 void *val, size_t bytes) 854 { 855 struct mtd_info *mtd = priv; 856 size_t retlen; 857 int ret; 858 859 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val); 860 if (ret) 861 return ret; 862 863 return retlen == bytes ? 0 : -EIO; 864 } 865 866 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset, 867 void *val, size_t bytes) 868 { 869 struct mtd_info *mtd = priv; 870 size_t retlen; 871 int ret; 872 873 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val); 874 if (ret) 875 return ret; 876 877 return retlen == bytes ? 0 : -EIO; 878 } 879 880 static int mtd_otp_nvmem_add(struct mtd_info *mtd) 881 { 882 struct nvmem_device *nvmem; 883 ssize_t size; 884 int err; 885 886 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) { 887 size = mtd_otp_size(mtd, true); 888 if (size < 0) 889 return size; 890 891 if (size > 0) { 892 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size, 893 mtd_nvmem_user_otp_reg_read); 894 if (IS_ERR(nvmem)) { 895 dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n"); 896 return PTR_ERR(nvmem); 897 } 898 mtd->otp_user_nvmem = nvmem; 899 } 900 } 901 902 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) { 903 size = mtd_otp_size(mtd, false); 904 if (size < 0) { 905 err = size; 906 goto err; 907 } 908 909 if (size > 0) { 910 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size, 911 mtd_nvmem_fact_otp_reg_read); 912 if (IS_ERR(nvmem)) { 913 dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n"); 914 err = PTR_ERR(nvmem); 915 goto err; 916 } 917 mtd->otp_factory_nvmem = nvmem; 918 } 919 } 920 921 return 0; 922 923 err: 924 if (mtd->otp_user_nvmem) 925 nvmem_unregister(mtd->otp_user_nvmem); 926 return err; 927 } 928 929 /** 930 * mtd_device_parse_register - parse partitions and register an MTD device. 931 * 932 * @mtd: the MTD device to register 933 * @types: the list of MTD partition probes to try, see 934 * 'parse_mtd_partitions()' for more information 935 * @parser_data: MTD partition parser-specific data 936 * @parts: fallback partition information to register, if parsing fails; 937 * only valid if %nr_parts > %0 938 * @nr_parts: the number of partitions in parts, if zero then the full 939 * MTD device is registered if no partition info is found 940 * 941 * This function aggregates MTD partitions parsing (done by 942 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 943 * basically follows the most common pattern found in many MTD drivers: 944 * 945 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is 946 * registered first. 947 * * Then It tries to probe partitions on MTD device @mtd using parsers 948 * specified in @types (if @types is %NULL, then the default list of parsers 949 * is used, see 'parse_mtd_partitions()' for more information). If none are 950 * found this functions tries to fallback to information specified in 951 * @parts/@nr_parts. 952 * * If no partitions were found this function just registers the MTD device 953 * @mtd and exits. 954 * 955 * Returns zero in case of success and a negative error code in case of failure. 956 */ 957 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 958 struct mtd_part_parser_data *parser_data, 959 const struct mtd_partition *parts, 960 int nr_parts) 961 { 962 int ret; 963 964 mtd_set_dev_defaults(mtd); 965 966 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 967 ret = add_mtd_device(mtd); 968 if (ret) 969 return ret; 970 } 971 972 /* Prefer parsed partitions over driver-provided fallback */ 973 ret = parse_mtd_partitions(mtd, types, parser_data); 974 if (ret == -EPROBE_DEFER) 975 goto out; 976 977 if (ret > 0) 978 ret = 0; 979 else if (nr_parts) 980 ret = add_mtd_partitions(mtd, parts, nr_parts); 981 else if (!device_is_registered(&mtd->dev)) 982 ret = add_mtd_device(mtd); 983 else 984 ret = 0; 985 986 if (ret) 987 goto out; 988 989 /* 990 * FIXME: some drivers unfortunately call this function more than once. 991 * So we have to check if we've already assigned the reboot notifier. 992 * 993 * Generally, we can make multiple calls work for most cases, but it 994 * does cause problems with parse_mtd_partitions() above (e.g., 995 * cmdlineparts will register partitions more than once). 996 */ 997 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 998 "MTD already registered\n"); 999 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 1000 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 1001 register_reboot_notifier(&mtd->reboot_notifier); 1002 } 1003 1004 ret = mtd_otp_nvmem_add(mtd); 1005 1006 out: 1007 if (ret && device_is_registered(&mtd->dev)) 1008 del_mtd_device(mtd); 1009 1010 return ret; 1011 } 1012 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 1013 1014 /** 1015 * mtd_device_unregister - unregister an existing MTD device. 1016 * 1017 * @master: the MTD device to unregister. This will unregister both the master 1018 * and any partitions if registered. 1019 */ 1020 int mtd_device_unregister(struct mtd_info *master) 1021 { 1022 int err; 1023 1024 if (master->_reboot) { 1025 unregister_reboot_notifier(&master->reboot_notifier); 1026 memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier)); 1027 } 1028 1029 if (master->otp_user_nvmem) 1030 nvmem_unregister(master->otp_user_nvmem); 1031 1032 if (master->otp_factory_nvmem) 1033 nvmem_unregister(master->otp_factory_nvmem); 1034 1035 err = del_mtd_partitions(master); 1036 if (err) 1037 return err; 1038 1039 if (!device_is_registered(&master->dev)) 1040 return 0; 1041 1042 return del_mtd_device(master); 1043 } 1044 EXPORT_SYMBOL_GPL(mtd_device_unregister); 1045 1046 /** 1047 * register_mtd_user - register a 'user' of MTD devices. 1048 * @new: pointer to notifier info structure 1049 * 1050 * Registers a pair of callbacks function to be called upon addition 1051 * or removal of MTD devices. Causes the 'add' callback to be immediately 1052 * invoked for each MTD device currently present in the system. 1053 */ 1054 void register_mtd_user (struct mtd_notifier *new) 1055 { 1056 struct mtd_info *mtd; 1057 1058 mutex_lock(&mtd_table_mutex); 1059 1060 list_add(&new->list, &mtd_notifiers); 1061 1062 __module_get(THIS_MODULE); 1063 1064 mtd_for_each_device(mtd) 1065 new->add(mtd); 1066 1067 mutex_unlock(&mtd_table_mutex); 1068 } 1069 EXPORT_SYMBOL_GPL(register_mtd_user); 1070 1071 /** 1072 * unregister_mtd_user - unregister a 'user' of MTD devices. 1073 * @old: pointer to notifier info structure 1074 * 1075 * Removes a callback function pair from the list of 'users' to be 1076 * notified upon addition or removal of MTD devices. Causes the 1077 * 'remove' callback to be immediately invoked for each MTD device 1078 * currently present in the system. 1079 */ 1080 int unregister_mtd_user (struct mtd_notifier *old) 1081 { 1082 struct mtd_info *mtd; 1083 1084 mutex_lock(&mtd_table_mutex); 1085 1086 module_put(THIS_MODULE); 1087 1088 mtd_for_each_device(mtd) 1089 old->remove(mtd); 1090 1091 list_del(&old->list); 1092 mutex_unlock(&mtd_table_mutex); 1093 return 0; 1094 } 1095 EXPORT_SYMBOL_GPL(unregister_mtd_user); 1096 1097 /** 1098 * get_mtd_device - obtain a validated handle for an MTD device 1099 * @mtd: last known address of the required MTD device 1100 * @num: internal device number of the required MTD device 1101 * 1102 * Given a number and NULL address, return the num'th entry in the device 1103 * table, if any. Given an address and num == -1, search the device table 1104 * for a device with that address and return if it's still present. Given 1105 * both, return the num'th driver only if its address matches. Return 1106 * error code if not. 1107 */ 1108 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 1109 { 1110 struct mtd_info *ret = NULL, *other; 1111 int err = -ENODEV; 1112 1113 mutex_lock(&mtd_table_mutex); 1114 1115 if (num == -1) { 1116 mtd_for_each_device(other) { 1117 if (other == mtd) { 1118 ret = mtd; 1119 break; 1120 } 1121 } 1122 } else if (num >= 0) { 1123 ret = idr_find(&mtd_idr, num); 1124 if (mtd && mtd != ret) 1125 ret = NULL; 1126 } 1127 1128 if (!ret) { 1129 ret = ERR_PTR(err); 1130 goto out; 1131 } 1132 1133 err = __get_mtd_device(ret); 1134 if (err) 1135 ret = ERR_PTR(err); 1136 out: 1137 mutex_unlock(&mtd_table_mutex); 1138 return ret; 1139 } 1140 EXPORT_SYMBOL_GPL(get_mtd_device); 1141 1142 1143 int __get_mtd_device(struct mtd_info *mtd) 1144 { 1145 struct mtd_info *master = mtd_get_master(mtd); 1146 int err; 1147 1148 if (!try_module_get(master->owner)) 1149 return -ENODEV; 1150 1151 if (master->_get_device) { 1152 err = master->_get_device(mtd); 1153 1154 if (err) { 1155 module_put(master->owner); 1156 return err; 1157 } 1158 } 1159 1160 master->usecount++; 1161 1162 while (mtd->parent) { 1163 mtd->usecount++; 1164 mtd = mtd->parent; 1165 } 1166 1167 return 0; 1168 } 1169 EXPORT_SYMBOL_GPL(__get_mtd_device); 1170 1171 /** 1172 * get_mtd_device_nm - obtain a validated handle for an MTD device by 1173 * device name 1174 * @name: MTD device name to open 1175 * 1176 * This function returns MTD device description structure in case of 1177 * success and an error code in case of failure. 1178 */ 1179 struct mtd_info *get_mtd_device_nm(const char *name) 1180 { 1181 int err = -ENODEV; 1182 struct mtd_info *mtd = NULL, *other; 1183 1184 mutex_lock(&mtd_table_mutex); 1185 1186 mtd_for_each_device(other) { 1187 if (!strcmp(name, other->name)) { 1188 mtd = other; 1189 break; 1190 } 1191 } 1192 1193 if (!mtd) 1194 goto out_unlock; 1195 1196 err = __get_mtd_device(mtd); 1197 if (err) 1198 goto out_unlock; 1199 1200 mutex_unlock(&mtd_table_mutex); 1201 return mtd; 1202 1203 out_unlock: 1204 mutex_unlock(&mtd_table_mutex); 1205 return ERR_PTR(err); 1206 } 1207 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 1208 1209 void put_mtd_device(struct mtd_info *mtd) 1210 { 1211 mutex_lock(&mtd_table_mutex); 1212 __put_mtd_device(mtd); 1213 mutex_unlock(&mtd_table_mutex); 1214 1215 } 1216 EXPORT_SYMBOL_GPL(put_mtd_device); 1217 1218 void __put_mtd_device(struct mtd_info *mtd) 1219 { 1220 struct mtd_info *master = mtd_get_master(mtd); 1221 1222 while (mtd->parent) { 1223 --mtd->usecount; 1224 BUG_ON(mtd->usecount < 0); 1225 mtd = mtd->parent; 1226 } 1227 1228 master->usecount--; 1229 1230 if (master->_put_device) 1231 master->_put_device(master); 1232 1233 module_put(master->owner); 1234 } 1235 EXPORT_SYMBOL_GPL(__put_mtd_device); 1236 1237 /* 1238 * Erase is an synchronous operation. Device drivers are epected to return a 1239 * negative error code if the operation failed and update instr->fail_addr 1240 * to point the portion that was not properly erased. 1241 */ 1242 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 1243 { 1244 struct mtd_info *master = mtd_get_master(mtd); 1245 u64 mst_ofs = mtd_get_master_ofs(mtd, 0); 1246 struct erase_info adjinstr; 1247 int ret; 1248 1249 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 1250 adjinstr = *instr; 1251 1252 if (!mtd->erasesize || !master->_erase) 1253 return -ENOTSUPP; 1254 1255 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 1256 return -EINVAL; 1257 if (!(mtd->flags & MTD_WRITEABLE)) 1258 return -EROFS; 1259 1260 if (!instr->len) 1261 return 0; 1262 1263 ledtrig_mtd_activity(); 1264 1265 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1266 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) * 1267 master->erasesize; 1268 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) * 1269 master->erasesize) - 1270 adjinstr.addr; 1271 } 1272 1273 adjinstr.addr += mst_ofs; 1274 1275 ret = master->_erase(master, &adjinstr); 1276 1277 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) { 1278 instr->fail_addr = adjinstr.fail_addr - mst_ofs; 1279 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1280 instr->fail_addr = mtd_div_by_eb(instr->fail_addr, 1281 master); 1282 instr->fail_addr *= mtd->erasesize; 1283 } 1284 } 1285 1286 return ret; 1287 } 1288 EXPORT_SYMBOL_GPL(mtd_erase); 1289 1290 /* 1291 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 1292 */ 1293 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1294 void **virt, resource_size_t *phys) 1295 { 1296 struct mtd_info *master = mtd_get_master(mtd); 1297 1298 *retlen = 0; 1299 *virt = NULL; 1300 if (phys) 1301 *phys = 0; 1302 if (!master->_point) 1303 return -EOPNOTSUPP; 1304 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1305 return -EINVAL; 1306 if (!len) 1307 return 0; 1308 1309 from = mtd_get_master_ofs(mtd, from); 1310 return master->_point(master, from, len, retlen, virt, phys); 1311 } 1312 EXPORT_SYMBOL_GPL(mtd_point); 1313 1314 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 1315 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1316 { 1317 struct mtd_info *master = mtd_get_master(mtd); 1318 1319 if (!master->_unpoint) 1320 return -EOPNOTSUPP; 1321 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1322 return -EINVAL; 1323 if (!len) 1324 return 0; 1325 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len); 1326 } 1327 EXPORT_SYMBOL_GPL(mtd_unpoint); 1328 1329 /* 1330 * Allow NOMMU mmap() to directly map the device (if not NULL) 1331 * - return the address to which the offset maps 1332 * - return -ENOSYS to indicate refusal to do the mapping 1333 */ 1334 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1335 unsigned long offset, unsigned long flags) 1336 { 1337 size_t retlen; 1338 void *virt; 1339 int ret; 1340 1341 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); 1342 if (ret) 1343 return ret; 1344 if (retlen != len) { 1345 mtd_unpoint(mtd, offset, retlen); 1346 return -ENOSYS; 1347 } 1348 return (unsigned long)virt; 1349 } 1350 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1351 1352 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master, 1353 const struct mtd_ecc_stats *old_stats) 1354 { 1355 struct mtd_ecc_stats diff; 1356 1357 if (master == mtd) 1358 return; 1359 1360 diff = master->ecc_stats; 1361 diff.failed -= old_stats->failed; 1362 diff.corrected -= old_stats->corrected; 1363 1364 while (mtd->parent) { 1365 mtd->ecc_stats.failed += diff.failed; 1366 mtd->ecc_stats.corrected += diff.corrected; 1367 mtd = mtd->parent; 1368 } 1369 } 1370 1371 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1372 u_char *buf) 1373 { 1374 struct mtd_oob_ops ops = { 1375 .len = len, 1376 .datbuf = buf, 1377 }; 1378 int ret; 1379 1380 ret = mtd_read_oob(mtd, from, &ops); 1381 *retlen = ops.retlen; 1382 1383 return ret; 1384 } 1385 EXPORT_SYMBOL_GPL(mtd_read); 1386 1387 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1388 const u_char *buf) 1389 { 1390 struct mtd_oob_ops ops = { 1391 .len = len, 1392 .datbuf = (u8 *)buf, 1393 }; 1394 int ret; 1395 1396 ret = mtd_write_oob(mtd, to, &ops); 1397 *retlen = ops.retlen; 1398 1399 return ret; 1400 } 1401 EXPORT_SYMBOL_GPL(mtd_write); 1402 1403 /* 1404 * In blackbox flight recorder like scenarios we want to make successful writes 1405 * in interrupt context. panic_write() is only intended to be called when its 1406 * known the kernel is about to panic and we need the write to succeed. Since 1407 * the kernel is not going to be running for much longer, this function can 1408 * break locks and delay to ensure the write succeeds (but not sleep). 1409 */ 1410 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1411 const u_char *buf) 1412 { 1413 struct mtd_info *master = mtd_get_master(mtd); 1414 1415 *retlen = 0; 1416 if (!master->_panic_write) 1417 return -EOPNOTSUPP; 1418 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1419 return -EINVAL; 1420 if (!(mtd->flags & MTD_WRITEABLE)) 1421 return -EROFS; 1422 if (!len) 1423 return 0; 1424 if (!master->oops_panic_write) 1425 master->oops_panic_write = true; 1426 1427 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len, 1428 retlen, buf); 1429 } 1430 EXPORT_SYMBOL_GPL(mtd_panic_write); 1431 1432 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1433 struct mtd_oob_ops *ops) 1434 { 1435 /* 1436 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1437 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1438 * this case. 1439 */ 1440 if (!ops->datbuf) 1441 ops->len = 0; 1442 1443 if (!ops->oobbuf) 1444 ops->ooblen = 0; 1445 1446 if (offs < 0 || offs + ops->len > mtd->size) 1447 return -EINVAL; 1448 1449 if (ops->ooblen) { 1450 size_t maxooblen; 1451 1452 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1453 return -EINVAL; 1454 1455 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) - 1456 mtd_div_by_ws(offs, mtd)) * 1457 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1458 if (ops->ooblen > maxooblen) 1459 return -EINVAL; 1460 } 1461 1462 return 0; 1463 } 1464 1465 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from, 1466 struct mtd_oob_ops *ops) 1467 { 1468 struct mtd_info *master = mtd_get_master(mtd); 1469 int ret; 1470 1471 from = mtd_get_master_ofs(mtd, from); 1472 if (master->_read_oob) 1473 ret = master->_read_oob(master, from, ops); 1474 else 1475 ret = master->_read(master, from, ops->len, &ops->retlen, 1476 ops->datbuf); 1477 1478 return ret; 1479 } 1480 1481 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to, 1482 struct mtd_oob_ops *ops) 1483 { 1484 struct mtd_info *master = mtd_get_master(mtd); 1485 int ret; 1486 1487 to = mtd_get_master_ofs(mtd, to); 1488 if (master->_write_oob) 1489 ret = master->_write_oob(master, to, ops); 1490 else 1491 ret = master->_write(master, to, ops->len, &ops->retlen, 1492 ops->datbuf); 1493 1494 return ret; 1495 } 1496 1497 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read, 1498 struct mtd_oob_ops *ops) 1499 { 1500 struct mtd_info *master = mtd_get_master(mtd); 1501 int ngroups = mtd_pairing_groups(master); 1502 int npairs = mtd_wunit_per_eb(master) / ngroups; 1503 struct mtd_oob_ops adjops = *ops; 1504 unsigned int wunit, oobavail; 1505 struct mtd_pairing_info info; 1506 int max_bitflips = 0; 1507 u32 ebofs, pageofs; 1508 loff_t base, pos; 1509 1510 ebofs = mtd_mod_by_eb(start, mtd); 1511 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize; 1512 info.group = 0; 1513 info.pair = mtd_div_by_ws(ebofs, mtd); 1514 pageofs = mtd_mod_by_ws(ebofs, mtd); 1515 oobavail = mtd_oobavail(mtd, ops); 1516 1517 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) { 1518 int ret; 1519 1520 if (info.pair >= npairs) { 1521 info.pair = 0; 1522 base += master->erasesize; 1523 } 1524 1525 wunit = mtd_pairing_info_to_wunit(master, &info); 1526 pos = mtd_wunit_to_offset(mtd, base, wunit); 1527 1528 adjops.len = ops->len - ops->retlen; 1529 if (adjops.len > mtd->writesize - pageofs) 1530 adjops.len = mtd->writesize - pageofs; 1531 1532 adjops.ooblen = ops->ooblen - ops->oobretlen; 1533 if (adjops.ooblen > oobavail - adjops.ooboffs) 1534 adjops.ooblen = oobavail - adjops.ooboffs; 1535 1536 if (read) { 1537 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops); 1538 if (ret > 0) 1539 max_bitflips = max(max_bitflips, ret); 1540 } else { 1541 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops); 1542 } 1543 1544 if (ret < 0) 1545 return ret; 1546 1547 max_bitflips = max(max_bitflips, ret); 1548 ops->retlen += adjops.retlen; 1549 ops->oobretlen += adjops.oobretlen; 1550 adjops.datbuf += adjops.retlen; 1551 adjops.oobbuf += adjops.oobretlen; 1552 adjops.ooboffs = 0; 1553 pageofs = 0; 1554 info.pair++; 1555 } 1556 1557 return max_bitflips; 1558 } 1559 1560 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1561 { 1562 struct mtd_info *master = mtd_get_master(mtd); 1563 struct mtd_ecc_stats old_stats = master->ecc_stats; 1564 int ret_code; 1565 1566 ops->retlen = ops->oobretlen = 0; 1567 1568 ret_code = mtd_check_oob_ops(mtd, from, ops); 1569 if (ret_code) 1570 return ret_code; 1571 1572 ledtrig_mtd_activity(); 1573 1574 /* Check the validity of a potential fallback on mtd->_read */ 1575 if (!master->_read_oob && (!master->_read || ops->oobbuf)) 1576 return -EOPNOTSUPP; 1577 1578 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1579 ret_code = mtd_io_emulated_slc(mtd, from, true, ops); 1580 else 1581 ret_code = mtd_read_oob_std(mtd, from, ops); 1582 1583 mtd_update_ecc_stats(mtd, master, &old_stats); 1584 1585 /* 1586 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1587 * similar to mtd->_read(), returning a non-negative integer 1588 * representing max bitflips. In other cases, mtd->_read_oob() may 1589 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1590 */ 1591 if (unlikely(ret_code < 0)) 1592 return ret_code; 1593 if (mtd->ecc_strength == 0) 1594 return 0; /* device lacks ecc */ 1595 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1596 } 1597 EXPORT_SYMBOL_GPL(mtd_read_oob); 1598 1599 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1600 struct mtd_oob_ops *ops) 1601 { 1602 struct mtd_info *master = mtd_get_master(mtd); 1603 int ret; 1604 1605 ops->retlen = ops->oobretlen = 0; 1606 1607 if (!(mtd->flags & MTD_WRITEABLE)) 1608 return -EROFS; 1609 1610 ret = mtd_check_oob_ops(mtd, to, ops); 1611 if (ret) 1612 return ret; 1613 1614 ledtrig_mtd_activity(); 1615 1616 /* Check the validity of a potential fallback on mtd->_write */ 1617 if (!master->_write_oob && (!master->_write || ops->oobbuf)) 1618 return -EOPNOTSUPP; 1619 1620 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1621 return mtd_io_emulated_slc(mtd, to, false, ops); 1622 1623 return mtd_write_oob_std(mtd, to, ops); 1624 } 1625 EXPORT_SYMBOL_GPL(mtd_write_oob); 1626 1627 /** 1628 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1629 * @mtd: MTD device structure 1630 * @section: ECC section. Depending on the layout you may have all the ECC 1631 * bytes stored in a single contiguous section, or one section 1632 * per ECC chunk (and sometime several sections for a single ECC 1633 * ECC chunk) 1634 * @oobecc: OOB region struct filled with the appropriate ECC position 1635 * information 1636 * 1637 * This function returns ECC section information in the OOB area. If you want 1638 * to get all the ECC bytes information, then you should call 1639 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1640 * 1641 * Returns zero on success, a negative error code otherwise. 1642 */ 1643 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1644 struct mtd_oob_region *oobecc) 1645 { 1646 struct mtd_info *master = mtd_get_master(mtd); 1647 1648 memset(oobecc, 0, sizeof(*oobecc)); 1649 1650 if (!master || section < 0) 1651 return -EINVAL; 1652 1653 if (!master->ooblayout || !master->ooblayout->ecc) 1654 return -ENOTSUPP; 1655 1656 return master->ooblayout->ecc(master, section, oobecc); 1657 } 1658 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1659 1660 /** 1661 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1662 * section 1663 * @mtd: MTD device structure 1664 * @section: Free section you are interested in. Depending on the layout 1665 * you may have all the free bytes stored in a single contiguous 1666 * section, or one section per ECC chunk plus an extra section 1667 * for the remaining bytes (or other funky layout). 1668 * @oobfree: OOB region struct filled with the appropriate free position 1669 * information 1670 * 1671 * This function returns free bytes position in the OOB area. If you want 1672 * to get all the free bytes information, then you should call 1673 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1674 * 1675 * Returns zero on success, a negative error code otherwise. 1676 */ 1677 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1678 struct mtd_oob_region *oobfree) 1679 { 1680 struct mtd_info *master = mtd_get_master(mtd); 1681 1682 memset(oobfree, 0, sizeof(*oobfree)); 1683 1684 if (!master || section < 0) 1685 return -EINVAL; 1686 1687 if (!master->ooblayout || !master->ooblayout->free) 1688 return -ENOTSUPP; 1689 1690 return master->ooblayout->free(master, section, oobfree); 1691 } 1692 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1693 1694 /** 1695 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1696 * @mtd: mtd info structure 1697 * @byte: the byte we are searching for 1698 * @sectionp: pointer where the section id will be stored 1699 * @oobregion: used to retrieve the ECC position 1700 * @iter: iterator function. Should be either mtd_ooblayout_free or 1701 * mtd_ooblayout_ecc depending on the region type you're searching for 1702 * 1703 * This function returns the section id and oobregion information of a 1704 * specific byte. For example, say you want to know where the 4th ECC byte is 1705 * stored, you'll use: 1706 * 1707 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1708 * 1709 * Returns zero on success, a negative error code otherwise. 1710 */ 1711 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1712 int *sectionp, struct mtd_oob_region *oobregion, 1713 int (*iter)(struct mtd_info *, 1714 int section, 1715 struct mtd_oob_region *oobregion)) 1716 { 1717 int pos = 0, ret, section = 0; 1718 1719 memset(oobregion, 0, sizeof(*oobregion)); 1720 1721 while (1) { 1722 ret = iter(mtd, section, oobregion); 1723 if (ret) 1724 return ret; 1725 1726 if (pos + oobregion->length > byte) 1727 break; 1728 1729 pos += oobregion->length; 1730 section++; 1731 } 1732 1733 /* 1734 * Adjust region info to make it start at the beginning at the 1735 * 'start' ECC byte. 1736 */ 1737 oobregion->offset += byte - pos; 1738 oobregion->length -= byte - pos; 1739 *sectionp = section; 1740 1741 return 0; 1742 } 1743 1744 /** 1745 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1746 * ECC byte 1747 * @mtd: mtd info structure 1748 * @eccbyte: the byte we are searching for 1749 * @section: pointer where the section id will be stored 1750 * @oobregion: OOB region information 1751 * 1752 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1753 * byte. 1754 * 1755 * Returns zero on success, a negative error code otherwise. 1756 */ 1757 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1758 int *section, 1759 struct mtd_oob_region *oobregion) 1760 { 1761 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1762 mtd_ooblayout_ecc); 1763 } 1764 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1765 1766 /** 1767 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1768 * @mtd: mtd info structure 1769 * @buf: destination buffer to store OOB bytes 1770 * @oobbuf: OOB buffer 1771 * @start: first byte to retrieve 1772 * @nbytes: number of bytes to retrieve 1773 * @iter: section iterator 1774 * 1775 * Extract bytes attached to a specific category (ECC or free) 1776 * from the OOB buffer and copy them into buf. 1777 * 1778 * Returns zero on success, a negative error code otherwise. 1779 */ 1780 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1781 const u8 *oobbuf, int start, int nbytes, 1782 int (*iter)(struct mtd_info *, 1783 int section, 1784 struct mtd_oob_region *oobregion)) 1785 { 1786 struct mtd_oob_region oobregion; 1787 int section, ret; 1788 1789 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1790 &oobregion, iter); 1791 1792 while (!ret) { 1793 int cnt; 1794 1795 cnt = min_t(int, nbytes, oobregion.length); 1796 memcpy(buf, oobbuf + oobregion.offset, cnt); 1797 buf += cnt; 1798 nbytes -= cnt; 1799 1800 if (!nbytes) 1801 break; 1802 1803 ret = iter(mtd, ++section, &oobregion); 1804 } 1805 1806 return ret; 1807 } 1808 1809 /** 1810 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1811 * @mtd: mtd info structure 1812 * @buf: source buffer to get OOB bytes from 1813 * @oobbuf: OOB buffer 1814 * @start: first OOB byte to set 1815 * @nbytes: number of OOB bytes to set 1816 * @iter: section iterator 1817 * 1818 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1819 * is selected by passing the appropriate iterator. 1820 * 1821 * Returns zero on success, a negative error code otherwise. 1822 */ 1823 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1824 u8 *oobbuf, int start, int nbytes, 1825 int (*iter)(struct mtd_info *, 1826 int section, 1827 struct mtd_oob_region *oobregion)) 1828 { 1829 struct mtd_oob_region oobregion; 1830 int section, ret; 1831 1832 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1833 &oobregion, iter); 1834 1835 while (!ret) { 1836 int cnt; 1837 1838 cnt = min_t(int, nbytes, oobregion.length); 1839 memcpy(oobbuf + oobregion.offset, buf, cnt); 1840 buf += cnt; 1841 nbytes -= cnt; 1842 1843 if (!nbytes) 1844 break; 1845 1846 ret = iter(mtd, ++section, &oobregion); 1847 } 1848 1849 return ret; 1850 } 1851 1852 /** 1853 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1854 * @mtd: mtd info structure 1855 * @iter: category iterator 1856 * 1857 * Count the number of bytes in a given category. 1858 * 1859 * Returns a positive value on success, a negative error code otherwise. 1860 */ 1861 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1862 int (*iter)(struct mtd_info *, 1863 int section, 1864 struct mtd_oob_region *oobregion)) 1865 { 1866 struct mtd_oob_region oobregion; 1867 int section = 0, ret, nbytes = 0; 1868 1869 while (1) { 1870 ret = iter(mtd, section++, &oobregion); 1871 if (ret) { 1872 if (ret == -ERANGE) 1873 ret = nbytes; 1874 break; 1875 } 1876 1877 nbytes += oobregion.length; 1878 } 1879 1880 return ret; 1881 } 1882 1883 /** 1884 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1885 * @mtd: mtd info structure 1886 * @eccbuf: destination buffer to store ECC bytes 1887 * @oobbuf: OOB buffer 1888 * @start: first ECC byte to retrieve 1889 * @nbytes: number of ECC bytes to retrieve 1890 * 1891 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1892 * 1893 * Returns zero on success, a negative error code otherwise. 1894 */ 1895 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1896 const u8 *oobbuf, int start, int nbytes) 1897 { 1898 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1899 mtd_ooblayout_ecc); 1900 } 1901 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1902 1903 /** 1904 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1905 * @mtd: mtd info structure 1906 * @eccbuf: source buffer to get ECC bytes from 1907 * @oobbuf: OOB buffer 1908 * @start: first ECC byte to set 1909 * @nbytes: number of ECC bytes to set 1910 * 1911 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 1912 * 1913 * Returns zero on success, a negative error code otherwise. 1914 */ 1915 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 1916 u8 *oobbuf, int start, int nbytes) 1917 { 1918 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1919 mtd_ooblayout_ecc); 1920 } 1921 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 1922 1923 /** 1924 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 1925 * @mtd: mtd info structure 1926 * @databuf: destination buffer to store ECC bytes 1927 * @oobbuf: OOB buffer 1928 * @start: first ECC byte to retrieve 1929 * @nbytes: number of ECC bytes to retrieve 1930 * 1931 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1932 * 1933 * Returns zero on success, a negative error code otherwise. 1934 */ 1935 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 1936 const u8 *oobbuf, int start, int nbytes) 1937 { 1938 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 1939 mtd_ooblayout_free); 1940 } 1941 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 1942 1943 /** 1944 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer 1945 * @mtd: mtd info structure 1946 * @databuf: source buffer to get data bytes from 1947 * @oobbuf: OOB buffer 1948 * @start: first ECC byte to set 1949 * @nbytes: number of ECC bytes to set 1950 * 1951 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes. 1952 * 1953 * Returns zero on success, a negative error code otherwise. 1954 */ 1955 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 1956 u8 *oobbuf, int start, int nbytes) 1957 { 1958 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 1959 mtd_ooblayout_free); 1960 } 1961 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 1962 1963 /** 1964 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 1965 * @mtd: mtd info structure 1966 * 1967 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 1968 * 1969 * Returns zero on success, a negative error code otherwise. 1970 */ 1971 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 1972 { 1973 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 1974 } 1975 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 1976 1977 /** 1978 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB 1979 * @mtd: mtd info structure 1980 * 1981 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 1982 * 1983 * Returns zero on success, a negative error code otherwise. 1984 */ 1985 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 1986 { 1987 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 1988 } 1989 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 1990 1991 /* 1992 * Method to access the protection register area, present in some flash 1993 * devices. The user data is one time programmable but the factory data is read 1994 * only. 1995 */ 1996 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1997 struct otp_info *buf) 1998 { 1999 struct mtd_info *master = mtd_get_master(mtd); 2000 2001 if (!master->_get_fact_prot_info) 2002 return -EOPNOTSUPP; 2003 if (!len) 2004 return 0; 2005 return master->_get_fact_prot_info(master, len, retlen, buf); 2006 } 2007 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 2008 2009 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 2010 size_t *retlen, u_char *buf) 2011 { 2012 struct mtd_info *master = mtd_get_master(mtd); 2013 2014 *retlen = 0; 2015 if (!master->_read_fact_prot_reg) 2016 return -EOPNOTSUPP; 2017 if (!len) 2018 return 0; 2019 return master->_read_fact_prot_reg(master, from, len, retlen, buf); 2020 } 2021 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 2022 2023 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 2024 struct otp_info *buf) 2025 { 2026 struct mtd_info *master = mtd_get_master(mtd); 2027 2028 if (!master->_get_user_prot_info) 2029 return -EOPNOTSUPP; 2030 if (!len) 2031 return 0; 2032 return master->_get_user_prot_info(master, len, retlen, buf); 2033 } 2034 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 2035 2036 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 2037 size_t *retlen, u_char *buf) 2038 { 2039 struct mtd_info *master = mtd_get_master(mtd); 2040 2041 *retlen = 0; 2042 if (!master->_read_user_prot_reg) 2043 return -EOPNOTSUPP; 2044 if (!len) 2045 return 0; 2046 return master->_read_user_prot_reg(master, from, len, retlen, buf); 2047 } 2048 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 2049 2050 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 2051 size_t *retlen, const u_char *buf) 2052 { 2053 struct mtd_info *master = mtd_get_master(mtd); 2054 int ret; 2055 2056 *retlen = 0; 2057 if (!master->_write_user_prot_reg) 2058 return -EOPNOTSUPP; 2059 if (!len) 2060 return 0; 2061 ret = master->_write_user_prot_reg(master, to, len, retlen, buf); 2062 if (ret) 2063 return ret; 2064 2065 /* 2066 * If no data could be written at all, we are out of memory and 2067 * must return -ENOSPC. 2068 */ 2069 return (*retlen) ? 0 : -ENOSPC; 2070 } 2071 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 2072 2073 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2074 { 2075 struct mtd_info *master = mtd_get_master(mtd); 2076 2077 if (!master->_lock_user_prot_reg) 2078 return -EOPNOTSUPP; 2079 if (!len) 2080 return 0; 2081 return master->_lock_user_prot_reg(master, from, len); 2082 } 2083 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 2084 2085 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2086 { 2087 struct mtd_info *master = mtd_get_master(mtd); 2088 2089 if (!master->_erase_user_prot_reg) 2090 return -EOPNOTSUPP; 2091 if (!len) 2092 return 0; 2093 return master->_erase_user_prot_reg(master, from, len); 2094 } 2095 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg); 2096 2097 /* Chip-supported device locking */ 2098 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2099 { 2100 struct mtd_info *master = mtd_get_master(mtd); 2101 2102 if (!master->_lock) 2103 return -EOPNOTSUPP; 2104 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2105 return -EINVAL; 2106 if (!len) 2107 return 0; 2108 2109 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2110 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2111 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2112 } 2113 2114 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len); 2115 } 2116 EXPORT_SYMBOL_GPL(mtd_lock); 2117 2118 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2119 { 2120 struct mtd_info *master = mtd_get_master(mtd); 2121 2122 if (!master->_unlock) 2123 return -EOPNOTSUPP; 2124 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2125 return -EINVAL; 2126 if (!len) 2127 return 0; 2128 2129 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2130 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2131 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2132 } 2133 2134 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len); 2135 } 2136 EXPORT_SYMBOL_GPL(mtd_unlock); 2137 2138 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2139 { 2140 struct mtd_info *master = mtd_get_master(mtd); 2141 2142 if (!master->_is_locked) 2143 return -EOPNOTSUPP; 2144 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2145 return -EINVAL; 2146 if (!len) 2147 return 0; 2148 2149 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2150 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2151 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2152 } 2153 2154 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len); 2155 } 2156 EXPORT_SYMBOL_GPL(mtd_is_locked); 2157 2158 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 2159 { 2160 struct mtd_info *master = mtd_get_master(mtd); 2161 2162 if (ofs < 0 || ofs >= mtd->size) 2163 return -EINVAL; 2164 if (!master->_block_isreserved) 2165 return 0; 2166 2167 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2168 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2169 2170 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs)); 2171 } 2172 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 2173 2174 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 2175 { 2176 struct mtd_info *master = mtd_get_master(mtd); 2177 2178 if (ofs < 0 || ofs >= mtd->size) 2179 return -EINVAL; 2180 if (!master->_block_isbad) 2181 return 0; 2182 2183 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2184 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2185 2186 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs)); 2187 } 2188 EXPORT_SYMBOL_GPL(mtd_block_isbad); 2189 2190 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 2191 { 2192 struct mtd_info *master = mtd_get_master(mtd); 2193 int ret; 2194 2195 if (!master->_block_markbad) 2196 return -EOPNOTSUPP; 2197 if (ofs < 0 || ofs >= mtd->size) 2198 return -EINVAL; 2199 if (!(mtd->flags & MTD_WRITEABLE)) 2200 return -EROFS; 2201 2202 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2203 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2204 2205 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs)); 2206 if (ret) 2207 return ret; 2208 2209 while (mtd->parent) { 2210 mtd->ecc_stats.badblocks++; 2211 mtd = mtd->parent; 2212 } 2213 2214 return 0; 2215 } 2216 EXPORT_SYMBOL_GPL(mtd_block_markbad); 2217 2218 /* 2219 * default_mtd_writev - the default writev method 2220 * @mtd: mtd device description object pointer 2221 * @vecs: the vectors to write 2222 * @count: count of vectors in @vecs 2223 * @to: the MTD device offset to write to 2224 * @retlen: on exit contains the count of bytes written to the MTD device. 2225 * 2226 * This function returns zero in case of success and a negative error code in 2227 * case of failure. 2228 */ 2229 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2230 unsigned long count, loff_t to, size_t *retlen) 2231 { 2232 unsigned long i; 2233 size_t totlen = 0, thislen; 2234 int ret = 0; 2235 2236 for (i = 0; i < count; i++) { 2237 if (!vecs[i].iov_len) 2238 continue; 2239 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 2240 vecs[i].iov_base); 2241 totlen += thislen; 2242 if (ret || thislen != vecs[i].iov_len) 2243 break; 2244 to += vecs[i].iov_len; 2245 } 2246 *retlen = totlen; 2247 return ret; 2248 } 2249 2250 /* 2251 * mtd_writev - the vector-based MTD write method 2252 * @mtd: mtd device description object pointer 2253 * @vecs: the vectors to write 2254 * @count: count of vectors in @vecs 2255 * @to: the MTD device offset to write to 2256 * @retlen: on exit contains the count of bytes written to the MTD device. 2257 * 2258 * This function returns zero in case of success and a negative error code in 2259 * case of failure. 2260 */ 2261 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2262 unsigned long count, loff_t to, size_t *retlen) 2263 { 2264 struct mtd_info *master = mtd_get_master(mtd); 2265 2266 *retlen = 0; 2267 if (!(mtd->flags & MTD_WRITEABLE)) 2268 return -EROFS; 2269 2270 if (!master->_writev) 2271 return default_mtd_writev(mtd, vecs, count, to, retlen); 2272 2273 return master->_writev(master, vecs, count, 2274 mtd_get_master_ofs(mtd, to), retlen); 2275 } 2276 EXPORT_SYMBOL_GPL(mtd_writev); 2277 2278 /** 2279 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 2280 * @mtd: mtd device description object pointer 2281 * @size: a pointer to the ideal or maximum size of the allocation, points 2282 * to the actual allocation size on success. 2283 * 2284 * This routine attempts to allocate a contiguous kernel buffer up to 2285 * the specified size, backing off the size of the request exponentially 2286 * until the request succeeds or until the allocation size falls below 2287 * the system page size. This attempts to make sure it does not adversely 2288 * impact system performance, so when allocating more than one page, we 2289 * ask the memory allocator to avoid re-trying, swapping, writing back 2290 * or performing I/O. 2291 * 2292 * Note, this function also makes sure that the allocated buffer is aligned to 2293 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 2294 * 2295 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 2296 * to handle smaller (i.e. degraded) buffer allocations under low- or 2297 * fragmented-memory situations where such reduced allocations, from a 2298 * requested ideal, are allowed. 2299 * 2300 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 2301 */ 2302 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 2303 { 2304 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 2305 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 2306 void *kbuf; 2307 2308 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 2309 2310 while (*size > min_alloc) { 2311 kbuf = kmalloc(*size, flags); 2312 if (kbuf) 2313 return kbuf; 2314 2315 *size >>= 1; 2316 *size = ALIGN(*size, mtd->writesize); 2317 } 2318 2319 /* 2320 * For the last resort allocation allow 'kmalloc()' to do all sorts of 2321 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 2322 */ 2323 return kmalloc(*size, GFP_KERNEL); 2324 } 2325 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 2326 2327 #ifdef CONFIG_PROC_FS 2328 2329 /*====================================================================*/ 2330 /* Support for /proc/mtd */ 2331 2332 static int mtd_proc_show(struct seq_file *m, void *v) 2333 { 2334 struct mtd_info *mtd; 2335 2336 seq_puts(m, "dev: size erasesize name\n"); 2337 mutex_lock(&mtd_table_mutex); 2338 mtd_for_each_device(mtd) { 2339 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 2340 mtd->index, (unsigned long long)mtd->size, 2341 mtd->erasesize, mtd->name); 2342 } 2343 mutex_unlock(&mtd_table_mutex); 2344 return 0; 2345 } 2346 #endif /* CONFIG_PROC_FS */ 2347 2348 /*====================================================================*/ 2349 /* Init code */ 2350 2351 static struct backing_dev_info * __init mtd_bdi_init(const char *name) 2352 { 2353 struct backing_dev_info *bdi; 2354 int ret; 2355 2356 bdi = bdi_alloc(NUMA_NO_NODE); 2357 if (!bdi) 2358 return ERR_PTR(-ENOMEM); 2359 bdi->ra_pages = 0; 2360 bdi->io_pages = 0; 2361 2362 /* 2363 * We put '-0' suffix to the name to get the same name format as we 2364 * used to get. Since this is called only once, we get a unique name. 2365 */ 2366 ret = bdi_register(bdi, "%.28s-0", name); 2367 if (ret) 2368 bdi_put(bdi); 2369 2370 return ret ? ERR_PTR(ret) : bdi; 2371 } 2372 2373 char *mtd_expert_analysis_warning = 2374 "Bad block checks have been entirely disabled.\n" 2375 "This is only reserved for post-mortem forensics and debug purposes.\n" 2376 "Never enable this mode if you do not know what you are doing!\n"; 2377 EXPORT_SYMBOL_GPL(mtd_expert_analysis_warning); 2378 bool mtd_expert_analysis_mode; 2379 EXPORT_SYMBOL_GPL(mtd_expert_analysis_mode); 2380 2381 static struct proc_dir_entry *proc_mtd; 2382 2383 static int __init init_mtd(void) 2384 { 2385 int ret; 2386 2387 ret = class_register(&mtd_class); 2388 if (ret) 2389 goto err_reg; 2390 2391 mtd_bdi = mtd_bdi_init("mtd"); 2392 if (IS_ERR(mtd_bdi)) { 2393 ret = PTR_ERR(mtd_bdi); 2394 goto err_bdi; 2395 } 2396 2397 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show); 2398 2399 ret = init_mtdchar(); 2400 if (ret) 2401 goto out_procfs; 2402 2403 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 2404 debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd, 2405 &mtd_expert_analysis_mode); 2406 2407 return 0; 2408 2409 out_procfs: 2410 if (proc_mtd) 2411 remove_proc_entry("mtd", NULL); 2412 bdi_put(mtd_bdi); 2413 err_bdi: 2414 class_unregister(&mtd_class); 2415 err_reg: 2416 pr_err("Error registering mtd class or bdi: %d\n", ret); 2417 return ret; 2418 } 2419 2420 static void __exit cleanup_mtd(void) 2421 { 2422 debugfs_remove_recursive(dfs_dir_mtd); 2423 cleanup_mtdchar(); 2424 if (proc_mtd) 2425 remove_proc_entry("mtd", NULL); 2426 class_unregister(&mtd_class); 2427 bdi_unregister(mtd_bdi); 2428 bdi_put(mtd_bdi); 2429 idr_destroy(&mtd_idr); 2430 } 2431 2432 module_init(init_mtd); 2433 module_exit(cleanup_mtd); 2434 2435 MODULE_LICENSE("GPL"); 2436 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 2437 MODULE_DESCRIPTION("Core MTD registration and access routines"); 2438