xref: /openbmc/linux/drivers/mtd/mtdcore.c (revision 94d964e5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/slab.h>
27 #include <linux/reboot.h>
28 #include <linux/leds.h>
29 #include <linux/debugfs.h>
30 #include <linux/nvmem-provider.h>
31 
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/partitions.h>
34 
35 #include "mtdcore.h"
36 
37 struct backing_dev_info *mtd_bdi;
38 
39 #ifdef CONFIG_PM_SLEEP
40 
41 static int mtd_cls_suspend(struct device *dev)
42 {
43 	struct mtd_info *mtd = dev_get_drvdata(dev);
44 
45 	return mtd ? mtd_suspend(mtd) : 0;
46 }
47 
48 static int mtd_cls_resume(struct device *dev)
49 {
50 	struct mtd_info *mtd = dev_get_drvdata(dev);
51 
52 	if (mtd)
53 		mtd_resume(mtd);
54 	return 0;
55 }
56 
57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59 #else
60 #define MTD_CLS_PM_OPS NULL
61 #endif
62 
63 static struct class mtd_class = {
64 	.name = "mtd",
65 	.owner = THIS_MODULE,
66 	.pm = MTD_CLS_PM_OPS,
67 };
68 
69 static DEFINE_IDR(mtd_idr);
70 
71 /* These are exported solely for the purpose of mtd_blkdevs.c. You
72    should not use them for _anything_ else */
73 DEFINE_MUTEX(mtd_table_mutex);
74 EXPORT_SYMBOL_GPL(mtd_table_mutex);
75 
76 struct mtd_info *__mtd_next_device(int i)
77 {
78 	return idr_get_next(&mtd_idr, &i);
79 }
80 EXPORT_SYMBOL_GPL(__mtd_next_device);
81 
82 static LIST_HEAD(mtd_notifiers);
83 
84 
85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
86 
87 /* REVISIT once MTD uses the driver model better, whoever allocates
88  * the mtd_info will probably want to use the release() hook...
89  */
90 static void mtd_release(struct device *dev)
91 {
92 	struct mtd_info *mtd = dev_get_drvdata(dev);
93 	dev_t index = MTD_DEVT(mtd->index);
94 
95 	/* remove /dev/mtdXro node */
96 	device_destroy(&mtd_class, index + 1);
97 }
98 
99 #define MTD_DEVICE_ATTR_RO(name) \
100 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
101 
102 #define MTD_DEVICE_ATTR_RW(name) \
103 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
104 
105 static ssize_t mtd_type_show(struct device *dev,
106 		struct device_attribute *attr, char *buf)
107 {
108 	struct mtd_info *mtd = dev_get_drvdata(dev);
109 	char *type;
110 
111 	switch (mtd->type) {
112 	case MTD_ABSENT:
113 		type = "absent";
114 		break;
115 	case MTD_RAM:
116 		type = "ram";
117 		break;
118 	case MTD_ROM:
119 		type = "rom";
120 		break;
121 	case MTD_NORFLASH:
122 		type = "nor";
123 		break;
124 	case MTD_NANDFLASH:
125 		type = "nand";
126 		break;
127 	case MTD_DATAFLASH:
128 		type = "dataflash";
129 		break;
130 	case MTD_UBIVOLUME:
131 		type = "ubi";
132 		break;
133 	case MTD_MLCNANDFLASH:
134 		type = "mlc-nand";
135 		break;
136 	default:
137 		type = "unknown";
138 	}
139 
140 	return sysfs_emit(buf, "%s\n", type);
141 }
142 MTD_DEVICE_ATTR_RO(type);
143 
144 static ssize_t mtd_flags_show(struct device *dev,
145 		struct device_attribute *attr, char *buf)
146 {
147 	struct mtd_info *mtd = dev_get_drvdata(dev);
148 
149 	return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
150 }
151 MTD_DEVICE_ATTR_RO(flags);
152 
153 static ssize_t mtd_size_show(struct device *dev,
154 		struct device_attribute *attr, char *buf)
155 {
156 	struct mtd_info *mtd = dev_get_drvdata(dev);
157 
158 	return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
159 }
160 MTD_DEVICE_ATTR_RO(size);
161 
162 static ssize_t mtd_erasesize_show(struct device *dev,
163 		struct device_attribute *attr, char *buf)
164 {
165 	struct mtd_info *mtd = dev_get_drvdata(dev);
166 
167 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
168 }
169 MTD_DEVICE_ATTR_RO(erasesize);
170 
171 static ssize_t mtd_writesize_show(struct device *dev,
172 		struct device_attribute *attr, char *buf)
173 {
174 	struct mtd_info *mtd = dev_get_drvdata(dev);
175 
176 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
177 }
178 MTD_DEVICE_ATTR_RO(writesize);
179 
180 static ssize_t mtd_subpagesize_show(struct device *dev,
181 		struct device_attribute *attr, char *buf)
182 {
183 	struct mtd_info *mtd = dev_get_drvdata(dev);
184 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
185 
186 	return sysfs_emit(buf, "%u\n", subpagesize);
187 }
188 MTD_DEVICE_ATTR_RO(subpagesize);
189 
190 static ssize_t mtd_oobsize_show(struct device *dev,
191 		struct device_attribute *attr, char *buf)
192 {
193 	struct mtd_info *mtd = dev_get_drvdata(dev);
194 
195 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
196 }
197 MTD_DEVICE_ATTR_RO(oobsize);
198 
199 static ssize_t mtd_oobavail_show(struct device *dev,
200 				 struct device_attribute *attr, char *buf)
201 {
202 	struct mtd_info *mtd = dev_get_drvdata(dev);
203 
204 	return sysfs_emit(buf, "%u\n", mtd->oobavail);
205 }
206 MTD_DEVICE_ATTR_RO(oobavail);
207 
208 static ssize_t mtd_numeraseregions_show(struct device *dev,
209 		struct device_attribute *attr, char *buf)
210 {
211 	struct mtd_info *mtd = dev_get_drvdata(dev);
212 
213 	return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
214 }
215 MTD_DEVICE_ATTR_RO(numeraseregions);
216 
217 static ssize_t mtd_name_show(struct device *dev,
218 		struct device_attribute *attr, char *buf)
219 {
220 	struct mtd_info *mtd = dev_get_drvdata(dev);
221 
222 	return sysfs_emit(buf, "%s\n", mtd->name);
223 }
224 MTD_DEVICE_ATTR_RO(name);
225 
226 static ssize_t mtd_ecc_strength_show(struct device *dev,
227 				     struct device_attribute *attr, char *buf)
228 {
229 	struct mtd_info *mtd = dev_get_drvdata(dev);
230 
231 	return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
232 }
233 MTD_DEVICE_ATTR_RO(ecc_strength);
234 
235 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
236 					  struct device_attribute *attr,
237 					  char *buf)
238 {
239 	struct mtd_info *mtd = dev_get_drvdata(dev);
240 
241 	return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
242 }
243 
244 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
245 					   struct device_attribute *attr,
246 					   const char *buf, size_t count)
247 {
248 	struct mtd_info *mtd = dev_get_drvdata(dev);
249 	unsigned int bitflip_threshold;
250 	int retval;
251 
252 	retval = kstrtouint(buf, 0, &bitflip_threshold);
253 	if (retval)
254 		return retval;
255 
256 	mtd->bitflip_threshold = bitflip_threshold;
257 	return count;
258 }
259 MTD_DEVICE_ATTR_RW(bitflip_threshold);
260 
261 static ssize_t mtd_ecc_step_size_show(struct device *dev,
262 		struct device_attribute *attr, char *buf)
263 {
264 	struct mtd_info *mtd = dev_get_drvdata(dev);
265 
266 	return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
267 
268 }
269 MTD_DEVICE_ATTR_RO(ecc_step_size);
270 
271 static ssize_t mtd_corrected_bits_show(struct device *dev,
272 		struct device_attribute *attr, char *buf)
273 {
274 	struct mtd_info *mtd = dev_get_drvdata(dev);
275 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
276 
277 	return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
278 }
279 MTD_DEVICE_ATTR_RO(corrected_bits);	/* ecc stats corrected */
280 
281 static ssize_t mtd_ecc_failures_show(struct device *dev,
282 		struct device_attribute *attr, char *buf)
283 {
284 	struct mtd_info *mtd = dev_get_drvdata(dev);
285 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
286 
287 	return sysfs_emit(buf, "%u\n", ecc_stats->failed);
288 }
289 MTD_DEVICE_ATTR_RO(ecc_failures);	/* ecc stats errors */
290 
291 static ssize_t mtd_bad_blocks_show(struct device *dev,
292 		struct device_attribute *attr, char *buf)
293 {
294 	struct mtd_info *mtd = dev_get_drvdata(dev);
295 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
296 
297 	return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
298 }
299 MTD_DEVICE_ATTR_RO(bad_blocks);
300 
301 static ssize_t mtd_bbt_blocks_show(struct device *dev,
302 		struct device_attribute *attr, char *buf)
303 {
304 	struct mtd_info *mtd = dev_get_drvdata(dev);
305 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306 
307 	return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
308 }
309 MTD_DEVICE_ATTR_RO(bbt_blocks);
310 
311 static struct attribute *mtd_attrs[] = {
312 	&dev_attr_type.attr,
313 	&dev_attr_flags.attr,
314 	&dev_attr_size.attr,
315 	&dev_attr_erasesize.attr,
316 	&dev_attr_writesize.attr,
317 	&dev_attr_subpagesize.attr,
318 	&dev_attr_oobsize.attr,
319 	&dev_attr_oobavail.attr,
320 	&dev_attr_numeraseregions.attr,
321 	&dev_attr_name.attr,
322 	&dev_attr_ecc_strength.attr,
323 	&dev_attr_ecc_step_size.attr,
324 	&dev_attr_corrected_bits.attr,
325 	&dev_attr_ecc_failures.attr,
326 	&dev_attr_bad_blocks.attr,
327 	&dev_attr_bbt_blocks.attr,
328 	&dev_attr_bitflip_threshold.attr,
329 	NULL,
330 };
331 ATTRIBUTE_GROUPS(mtd);
332 
333 static const struct device_type mtd_devtype = {
334 	.name		= "mtd",
335 	.groups		= mtd_groups,
336 	.release	= mtd_release,
337 };
338 
339 static int mtd_partid_debug_show(struct seq_file *s, void *p)
340 {
341 	struct mtd_info *mtd = s->private;
342 
343 	seq_printf(s, "%s\n", mtd->dbg.partid);
344 
345 	return 0;
346 }
347 
348 DEFINE_SHOW_ATTRIBUTE(mtd_partid_debug);
349 
350 static int mtd_partname_debug_show(struct seq_file *s, void *p)
351 {
352 	struct mtd_info *mtd = s->private;
353 
354 	seq_printf(s, "%s\n", mtd->dbg.partname);
355 
356 	return 0;
357 }
358 
359 DEFINE_SHOW_ATTRIBUTE(mtd_partname_debug);
360 
361 static struct dentry *dfs_dir_mtd;
362 
363 static void mtd_debugfs_populate(struct mtd_info *mtd)
364 {
365 	struct mtd_info *master = mtd_get_master(mtd);
366 	struct device *dev = &mtd->dev;
367 	struct dentry *root;
368 
369 	if (IS_ERR_OR_NULL(dfs_dir_mtd))
370 		return;
371 
372 	root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
373 	mtd->dbg.dfs_dir = root;
374 
375 	if (master->dbg.partid)
376 		debugfs_create_file("partid", 0400, root, master,
377 				    &mtd_partid_debug_fops);
378 
379 	if (master->dbg.partname)
380 		debugfs_create_file("partname", 0400, root, master,
381 				    &mtd_partname_debug_fops);
382 }
383 
384 #ifndef CONFIG_MMU
385 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
386 {
387 	switch (mtd->type) {
388 	case MTD_RAM:
389 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
390 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
391 	case MTD_ROM:
392 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
393 			NOMMU_MAP_READ;
394 	default:
395 		return NOMMU_MAP_COPY;
396 	}
397 }
398 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
399 #endif
400 
401 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
402 			       void *cmd)
403 {
404 	struct mtd_info *mtd;
405 
406 	mtd = container_of(n, struct mtd_info, reboot_notifier);
407 	mtd->_reboot(mtd);
408 
409 	return NOTIFY_DONE;
410 }
411 
412 /**
413  * mtd_wunit_to_pairing_info - get pairing information of a wunit
414  * @mtd: pointer to new MTD device info structure
415  * @wunit: write unit we are interested in
416  * @info: returned pairing information
417  *
418  * Retrieve pairing information associated to the wunit.
419  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
420  * paired together, and where programming a page may influence the page it is
421  * paired with.
422  * The notion of page is replaced by the term wunit (write-unit) to stay
423  * consistent with the ->writesize field.
424  *
425  * The @wunit argument can be extracted from an absolute offset using
426  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
427  * to @wunit.
428  *
429  * From the pairing info the MTD user can find all the wunits paired with
430  * @wunit using the following loop:
431  *
432  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
433  *	info.pair = i;
434  *	mtd_pairing_info_to_wunit(mtd, &info);
435  *	...
436  * }
437  */
438 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
439 			      struct mtd_pairing_info *info)
440 {
441 	struct mtd_info *master = mtd_get_master(mtd);
442 	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
443 
444 	if (wunit < 0 || wunit >= npairs)
445 		return -EINVAL;
446 
447 	if (master->pairing && master->pairing->get_info)
448 		return master->pairing->get_info(master, wunit, info);
449 
450 	info->group = 0;
451 	info->pair = wunit;
452 
453 	return 0;
454 }
455 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
456 
457 /**
458  * mtd_pairing_info_to_wunit - get wunit from pairing information
459  * @mtd: pointer to new MTD device info structure
460  * @info: pairing information struct
461  *
462  * Returns a positive number representing the wunit associated to the info
463  * struct, or a negative error code.
464  *
465  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
466  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
467  * doc).
468  *
469  * It can also be used to only program the first page of each pair (i.e.
470  * page attached to group 0), which allows one to use an MLC NAND in
471  * software-emulated SLC mode:
472  *
473  * info.group = 0;
474  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
475  * for (info.pair = 0; info.pair < npairs; info.pair++) {
476  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
477  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
478  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
479  * }
480  */
481 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
482 			      const struct mtd_pairing_info *info)
483 {
484 	struct mtd_info *master = mtd_get_master(mtd);
485 	int ngroups = mtd_pairing_groups(master);
486 	int npairs = mtd_wunit_per_eb(master) / ngroups;
487 
488 	if (!info || info->pair < 0 || info->pair >= npairs ||
489 	    info->group < 0 || info->group >= ngroups)
490 		return -EINVAL;
491 
492 	if (master->pairing && master->pairing->get_wunit)
493 		return mtd->pairing->get_wunit(master, info);
494 
495 	return info->pair;
496 }
497 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
498 
499 /**
500  * mtd_pairing_groups - get the number of pairing groups
501  * @mtd: pointer to new MTD device info structure
502  *
503  * Returns the number of pairing groups.
504  *
505  * This number is usually equal to the number of bits exposed by a single
506  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
507  * to iterate over all pages of a given pair.
508  */
509 int mtd_pairing_groups(struct mtd_info *mtd)
510 {
511 	struct mtd_info *master = mtd_get_master(mtd);
512 
513 	if (!master->pairing || !master->pairing->ngroups)
514 		return 1;
515 
516 	return master->pairing->ngroups;
517 }
518 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
519 
520 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
521 			      void *val, size_t bytes)
522 {
523 	struct mtd_info *mtd = priv;
524 	size_t retlen;
525 	int err;
526 
527 	err = mtd_read(mtd, offset, bytes, &retlen, val);
528 	if (err && err != -EUCLEAN)
529 		return err;
530 
531 	return retlen == bytes ? 0 : -EIO;
532 }
533 
534 static int mtd_nvmem_add(struct mtd_info *mtd)
535 {
536 	struct device_node *node = mtd_get_of_node(mtd);
537 	struct nvmem_config config = {};
538 
539 	config.id = -1;
540 	config.dev = &mtd->dev;
541 	config.name = dev_name(&mtd->dev);
542 	config.owner = THIS_MODULE;
543 	config.reg_read = mtd_nvmem_reg_read;
544 	config.size = mtd->size;
545 	config.word_size = 1;
546 	config.stride = 1;
547 	config.read_only = true;
548 	config.root_only = true;
549 	config.no_of_node = !of_device_is_compatible(node, "nvmem-cells");
550 	config.priv = mtd;
551 
552 	mtd->nvmem = nvmem_register(&config);
553 	if (IS_ERR(mtd->nvmem)) {
554 		/* Just ignore if there is no NVMEM support in the kernel */
555 		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
556 			mtd->nvmem = NULL;
557 		} else {
558 			dev_err(&mtd->dev, "Failed to register NVMEM device\n");
559 			return PTR_ERR(mtd->nvmem);
560 		}
561 	}
562 
563 	return 0;
564 }
565 
566 /**
567  *	add_mtd_device - register an MTD device
568  *	@mtd: pointer to new MTD device info structure
569  *
570  *	Add a device to the list of MTD devices present in the system, and
571  *	notify each currently active MTD 'user' of its arrival. Returns
572  *	zero on success or non-zero on failure.
573  */
574 
575 int add_mtd_device(struct mtd_info *mtd)
576 {
577 	struct mtd_info *master = mtd_get_master(mtd);
578 	struct mtd_notifier *not;
579 	int i, error;
580 
581 	/*
582 	 * May occur, for instance, on buggy drivers which call
583 	 * mtd_device_parse_register() multiple times on the same master MTD,
584 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
585 	 */
586 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
587 		return -EEXIST;
588 
589 	BUG_ON(mtd->writesize == 0);
590 
591 	/*
592 	 * MTD drivers should implement ->_{write,read}() or
593 	 * ->_{write,read}_oob(), but not both.
594 	 */
595 	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
596 		    (mtd->_read && mtd->_read_oob)))
597 		return -EINVAL;
598 
599 	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
600 		    !(mtd->flags & MTD_NO_ERASE)))
601 		return -EINVAL;
602 
603 	/*
604 	 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
605 	 * master is an MLC NAND and has a proper pairing scheme defined.
606 	 * We also reject masters that implement ->_writev() for now, because
607 	 * NAND controller drivers don't implement this hook, and adding the
608 	 * SLC -> MLC address/length conversion to this path is useless if we
609 	 * don't have a user.
610 	 */
611 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
612 	    (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
613 	     !master->pairing || master->_writev))
614 		return -EINVAL;
615 
616 	mutex_lock(&mtd_table_mutex);
617 
618 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
619 	if (i < 0) {
620 		error = i;
621 		goto fail_locked;
622 	}
623 
624 	mtd->index = i;
625 	mtd->usecount = 0;
626 
627 	/* default value if not set by driver */
628 	if (mtd->bitflip_threshold == 0)
629 		mtd->bitflip_threshold = mtd->ecc_strength;
630 
631 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
632 		int ngroups = mtd_pairing_groups(master);
633 
634 		mtd->erasesize /= ngroups;
635 		mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
636 			    mtd->erasesize;
637 	}
638 
639 	if (is_power_of_2(mtd->erasesize))
640 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
641 	else
642 		mtd->erasesize_shift = 0;
643 
644 	if (is_power_of_2(mtd->writesize))
645 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
646 	else
647 		mtd->writesize_shift = 0;
648 
649 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
650 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
651 
652 	/* Some chips always power up locked. Unlock them now */
653 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
654 		error = mtd_unlock(mtd, 0, mtd->size);
655 		if (error && error != -EOPNOTSUPP)
656 			printk(KERN_WARNING
657 			       "%s: unlock failed, writes may not work\n",
658 			       mtd->name);
659 		/* Ignore unlock failures? */
660 		error = 0;
661 	}
662 
663 	/* Caller should have set dev.parent to match the
664 	 * physical device, if appropriate.
665 	 */
666 	mtd->dev.type = &mtd_devtype;
667 	mtd->dev.class = &mtd_class;
668 	mtd->dev.devt = MTD_DEVT(i);
669 	dev_set_name(&mtd->dev, "mtd%d", i);
670 	dev_set_drvdata(&mtd->dev, mtd);
671 	of_node_get(mtd_get_of_node(mtd));
672 	error = device_register(&mtd->dev);
673 	if (error)
674 		goto fail_added;
675 
676 	/* Add the nvmem provider */
677 	error = mtd_nvmem_add(mtd);
678 	if (error)
679 		goto fail_nvmem_add;
680 
681 	mtd_debugfs_populate(mtd);
682 
683 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
684 		      "mtd%dro", i);
685 
686 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
687 	/* No need to get a refcount on the module containing
688 	   the notifier, since we hold the mtd_table_mutex */
689 	list_for_each_entry(not, &mtd_notifiers, list)
690 		not->add(mtd);
691 
692 	mutex_unlock(&mtd_table_mutex);
693 	/* We _know_ we aren't being removed, because
694 	   our caller is still holding us here. So none
695 	   of this try_ nonsense, and no bitching about it
696 	   either. :) */
697 	__module_get(THIS_MODULE);
698 	return 0;
699 
700 fail_nvmem_add:
701 	device_unregister(&mtd->dev);
702 fail_added:
703 	of_node_put(mtd_get_of_node(mtd));
704 	idr_remove(&mtd_idr, i);
705 fail_locked:
706 	mutex_unlock(&mtd_table_mutex);
707 	return error;
708 }
709 
710 /**
711  *	del_mtd_device - unregister an MTD device
712  *	@mtd: pointer to MTD device info structure
713  *
714  *	Remove a device from the list of MTD devices present in the system,
715  *	and notify each currently active MTD 'user' of its departure.
716  *	Returns zero on success or 1 on failure, which currently will happen
717  *	if the requested device does not appear to be present in the list.
718  */
719 
720 int del_mtd_device(struct mtd_info *mtd)
721 {
722 	int ret;
723 	struct mtd_notifier *not;
724 
725 	mutex_lock(&mtd_table_mutex);
726 
727 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
728 		ret = -ENODEV;
729 		goto out_error;
730 	}
731 
732 	/* No need to get a refcount on the module containing
733 		the notifier, since we hold the mtd_table_mutex */
734 	list_for_each_entry(not, &mtd_notifiers, list)
735 		not->remove(mtd);
736 
737 	if (mtd->usecount) {
738 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
739 		       mtd->index, mtd->name, mtd->usecount);
740 		ret = -EBUSY;
741 	} else {
742 		debugfs_remove_recursive(mtd->dbg.dfs_dir);
743 
744 		/* Try to remove the NVMEM provider */
745 		if (mtd->nvmem)
746 			nvmem_unregister(mtd->nvmem);
747 
748 		device_unregister(&mtd->dev);
749 
750 		/* Clear dev so mtd can be safely re-registered later if desired */
751 		memset(&mtd->dev, 0, sizeof(mtd->dev));
752 
753 		idr_remove(&mtd_idr, mtd->index);
754 		of_node_put(mtd_get_of_node(mtd));
755 
756 		module_put(THIS_MODULE);
757 		ret = 0;
758 	}
759 
760 out_error:
761 	mutex_unlock(&mtd_table_mutex);
762 	return ret;
763 }
764 
765 /*
766  * Set a few defaults based on the parent devices, if not provided by the
767  * driver
768  */
769 static void mtd_set_dev_defaults(struct mtd_info *mtd)
770 {
771 	if (mtd->dev.parent) {
772 		if (!mtd->owner && mtd->dev.parent->driver)
773 			mtd->owner = mtd->dev.parent->driver->owner;
774 		if (!mtd->name)
775 			mtd->name = dev_name(mtd->dev.parent);
776 	} else {
777 		pr_debug("mtd device won't show a device symlink in sysfs\n");
778 	}
779 
780 	INIT_LIST_HEAD(&mtd->partitions);
781 	mutex_init(&mtd->master.partitions_lock);
782 	mutex_init(&mtd->master.chrdev_lock);
783 }
784 
785 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
786 {
787 	struct otp_info *info;
788 	ssize_t size = 0;
789 	unsigned int i;
790 	size_t retlen;
791 	int ret;
792 
793 	info = kmalloc(PAGE_SIZE, GFP_KERNEL);
794 	if (!info)
795 		return -ENOMEM;
796 
797 	if (is_user)
798 		ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
799 	else
800 		ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
801 	if (ret)
802 		goto err;
803 
804 	for (i = 0; i < retlen / sizeof(*info); i++)
805 		size += info[i].length;
806 
807 	kfree(info);
808 	return size;
809 
810 err:
811 	kfree(info);
812 
813 	/* ENODATA means there is no OTP region. */
814 	return ret == -ENODATA ? 0 : ret;
815 }
816 
817 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
818 						   const char *compatible,
819 						   int size,
820 						   nvmem_reg_read_t reg_read)
821 {
822 	struct nvmem_device *nvmem = NULL;
823 	struct nvmem_config config = {};
824 	struct device_node *np;
825 
826 	/* DT binding is optional */
827 	np = of_get_compatible_child(mtd->dev.of_node, compatible);
828 
829 	/* OTP nvmem will be registered on the physical device */
830 	config.dev = mtd->dev.parent;
831 	config.name = kasprintf(GFP_KERNEL, "%s-%s", dev_name(&mtd->dev), compatible);
832 	config.id = NVMEM_DEVID_NONE;
833 	config.owner = THIS_MODULE;
834 	config.type = NVMEM_TYPE_OTP;
835 	config.root_only = true;
836 	config.reg_read = reg_read;
837 	config.size = size;
838 	config.of_node = np;
839 	config.priv = mtd;
840 
841 	nvmem = nvmem_register(&config);
842 	/* Just ignore if there is no NVMEM support in the kernel */
843 	if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
844 		nvmem = NULL;
845 
846 	of_node_put(np);
847 	kfree(config.name);
848 
849 	return nvmem;
850 }
851 
852 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
853 				       void *val, size_t bytes)
854 {
855 	struct mtd_info *mtd = priv;
856 	size_t retlen;
857 	int ret;
858 
859 	ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
860 	if (ret)
861 		return ret;
862 
863 	return retlen == bytes ? 0 : -EIO;
864 }
865 
866 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
867 				       void *val, size_t bytes)
868 {
869 	struct mtd_info *mtd = priv;
870 	size_t retlen;
871 	int ret;
872 
873 	ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
874 	if (ret)
875 		return ret;
876 
877 	return retlen == bytes ? 0 : -EIO;
878 }
879 
880 static int mtd_otp_nvmem_add(struct mtd_info *mtd)
881 {
882 	struct nvmem_device *nvmem;
883 	ssize_t size;
884 	int err;
885 
886 	if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
887 		size = mtd_otp_size(mtd, true);
888 		if (size < 0)
889 			return size;
890 
891 		if (size > 0) {
892 			nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
893 						       mtd_nvmem_user_otp_reg_read);
894 			if (IS_ERR(nvmem)) {
895 				dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n");
896 				return PTR_ERR(nvmem);
897 			}
898 			mtd->otp_user_nvmem = nvmem;
899 		}
900 	}
901 
902 	if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
903 		size = mtd_otp_size(mtd, false);
904 		if (size < 0) {
905 			err = size;
906 			goto err;
907 		}
908 
909 		if (size > 0) {
910 			nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
911 						       mtd_nvmem_fact_otp_reg_read);
912 			if (IS_ERR(nvmem)) {
913 				dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n");
914 				err = PTR_ERR(nvmem);
915 				goto err;
916 			}
917 			mtd->otp_factory_nvmem = nvmem;
918 		}
919 	}
920 
921 	return 0;
922 
923 err:
924 	if (mtd->otp_user_nvmem)
925 		nvmem_unregister(mtd->otp_user_nvmem);
926 	return err;
927 }
928 
929 /**
930  * mtd_device_parse_register - parse partitions and register an MTD device.
931  *
932  * @mtd: the MTD device to register
933  * @types: the list of MTD partition probes to try, see
934  *         'parse_mtd_partitions()' for more information
935  * @parser_data: MTD partition parser-specific data
936  * @parts: fallback partition information to register, if parsing fails;
937  *         only valid if %nr_parts > %0
938  * @nr_parts: the number of partitions in parts, if zero then the full
939  *            MTD device is registered if no partition info is found
940  *
941  * This function aggregates MTD partitions parsing (done by
942  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
943  * basically follows the most common pattern found in many MTD drivers:
944  *
945  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
946  *   registered first.
947  * * Then It tries to probe partitions on MTD device @mtd using parsers
948  *   specified in @types (if @types is %NULL, then the default list of parsers
949  *   is used, see 'parse_mtd_partitions()' for more information). If none are
950  *   found this functions tries to fallback to information specified in
951  *   @parts/@nr_parts.
952  * * If no partitions were found this function just registers the MTD device
953  *   @mtd and exits.
954  *
955  * Returns zero in case of success and a negative error code in case of failure.
956  */
957 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
958 			      struct mtd_part_parser_data *parser_data,
959 			      const struct mtd_partition *parts,
960 			      int nr_parts)
961 {
962 	int ret;
963 
964 	mtd_set_dev_defaults(mtd);
965 
966 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
967 		ret = add_mtd_device(mtd);
968 		if (ret)
969 			return ret;
970 	}
971 
972 	/* Prefer parsed partitions over driver-provided fallback */
973 	ret = parse_mtd_partitions(mtd, types, parser_data);
974 	if (ret == -EPROBE_DEFER)
975 		goto out;
976 
977 	if (ret > 0)
978 		ret = 0;
979 	else if (nr_parts)
980 		ret = add_mtd_partitions(mtd, parts, nr_parts);
981 	else if (!device_is_registered(&mtd->dev))
982 		ret = add_mtd_device(mtd);
983 	else
984 		ret = 0;
985 
986 	if (ret)
987 		goto out;
988 
989 	/*
990 	 * FIXME: some drivers unfortunately call this function more than once.
991 	 * So we have to check if we've already assigned the reboot notifier.
992 	 *
993 	 * Generally, we can make multiple calls work for most cases, but it
994 	 * does cause problems with parse_mtd_partitions() above (e.g.,
995 	 * cmdlineparts will register partitions more than once).
996 	 */
997 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
998 		  "MTD already registered\n");
999 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
1000 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1001 		register_reboot_notifier(&mtd->reboot_notifier);
1002 	}
1003 
1004 	ret = mtd_otp_nvmem_add(mtd);
1005 
1006 out:
1007 	if (ret && device_is_registered(&mtd->dev))
1008 		del_mtd_device(mtd);
1009 
1010 	return ret;
1011 }
1012 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1013 
1014 /**
1015  * mtd_device_unregister - unregister an existing MTD device.
1016  *
1017  * @master: the MTD device to unregister.  This will unregister both the master
1018  *          and any partitions if registered.
1019  */
1020 int mtd_device_unregister(struct mtd_info *master)
1021 {
1022 	int err;
1023 
1024 	if (master->_reboot) {
1025 		unregister_reboot_notifier(&master->reboot_notifier);
1026 		memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1027 	}
1028 
1029 	if (master->otp_user_nvmem)
1030 		nvmem_unregister(master->otp_user_nvmem);
1031 
1032 	if (master->otp_factory_nvmem)
1033 		nvmem_unregister(master->otp_factory_nvmem);
1034 
1035 	err = del_mtd_partitions(master);
1036 	if (err)
1037 		return err;
1038 
1039 	if (!device_is_registered(&master->dev))
1040 		return 0;
1041 
1042 	return del_mtd_device(master);
1043 }
1044 EXPORT_SYMBOL_GPL(mtd_device_unregister);
1045 
1046 /**
1047  *	register_mtd_user - register a 'user' of MTD devices.
1048  *	@new: pointer to notifier info structure
1049  *
1050  *	Registers a pair of callbacks function to be called upon addition
1051  *	or removal of MTD devices. Causes the 'add' callback to be immediately
1052  *	invoked for each MTD device currently present in the system.
1053  */
1054 void register_mtd_user (struct mtd_notifier *new)
1055 {
1056 	struct mtd_info *mtd;
1057 
1058 	mutex_lock(&mtd_table_mutex);
1059 
1060 	list_add(&new->list, &mtd_notifiers);
1061 
1062 	__module_get(THIS_MODULE);
1063 
1064 	mtd_for_each_device(mtd)
1065 		new->add(mtd);
1066 
1067 	mutex_unlock(&mtd_table_mutex);
1068 }
1069 EXPORT_SYMBOL_GPL(register_mtd_user);
1070 
1071 /**
1072  *	unregister_mtd_user - unregister a 'user' of MTD devices.
1073  *	@old: pointer to notifier info structure
1074  *
1075  *	Removes a callback function pair from the list of 'users' to be
1076  *	notified upon addition or removal of MTD devices. Causes the
1077  *	'remove' callback to be immediately invoked for each MTD device
1078  *	currently present in the system.
1079  */
1080 int unregister_mtd_user (struct mtd_notifier *old)
1081 {
1082 	struct mtd_info *mtd;
1083 
1084 	mutex_lock(&mtd_table_mutex);
1085 
1086 	module_put(THIS_MODULE);
1087 
1088 	mtd_for_each_device(mtd)
1089 		old->remove(mtd);
1090 
1091 	list_del(&old->list);
1092 	mutex_unlock(&mtd_table_mutex);
1093 	return 0;
1094 }
1095 EXPORT_SYMBOL_GPL(unregister_mtd_user);
1096 
1097 /**
1098  *	get_mtd_device - obtain a validated handle for an MTD device
1099  *	@mtd: last known address of the required MTD device
1100  *	@num: internal device number of the required MTD device
1101  *
1102  *	Given a number and NULL address, return the num'th entry in the device
1103  *	table, if any.	Given an address and num == -1, search the device table
1104  *	for a device with that address and return if it's still present. Given
1105  *	both, return the num'th driver only if its address matches. Return
1106  *	error code if not.
1107  */
1108 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1109 {
1110 	struct mtd_info *ret = NULL, *other;
1111 	int err = -ENODEV;
1112 
1113 	mutex_lock(&mtd_table_mutex);
1114 
1115 	if (num == -1) {
1116 		mtd_for_each_device(other) {
1117 			if (other == mtd) {
1118 				ret = mtd;
1119 				break;
1120 			}
1121 		}
1122 	} else if (num >= 0) {
1123 		ret = idr_find(&mtd_idr, num);
1124 		if (mtd && mtd != ret)
1125 			ret = NULL;
1126 	}
1127 
1128 	if (!ret) {
1129 		ret = ERR_PTR(err);
1130 		goto out;
1131 	}
1132 
1133 	err = __get_mtd_device(ret);
1134 	if (err)
1135 		ret = ERR_PTR(err);
1136 out:
1137 	mutex_unlock(&mtd_table_mutex);
1138 	return ret;
1139 }
1140 EXPORT_SYMBOL_GPL(get_mtd_device);
1141 
1142 
1143 int __get_mtd_device(struct mtd_info *mtd)
1144 {
1145 	struct mtd_info *master = mtd_get_master(mtd);
1146 	int err;
1147 
1148 	if (!try_module_get(master->owner))
1149 		return -ENODEV;
1150 
1151 	if (master->_get_device) {
1152 		err = master->_get_device(mtd);
1153 
1154 		if (err) {
1155 			module_put(master->owner);
1156 			return err;
1157 		}
1158 	}
1159 
1160 	master->usecount++;
1161 
1162 	while (mtd->parent) {
1163 		mtd->usecount++;
1164 		mtd = mtd->parent;
1165 	}
1166 
1167 	return 0;
1168 }
1169 EXPORT_SYMBOL_GPL(__get_mtd_device);
1170 
1171 /**
1172  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1173  *	device name
1174  *	@name: MTD device name to open
1175  *
1176  * 	This function returns MTD device description structure in case of
1177  * 	success and an error code in case of failure.
1178  */
1179 struct mtd_info *get_mtd_device_nm(const char *name)
1180 {
1181 	int err = -ENODEV;
1182 	struct mtd_info *mtd = NULL, *other;
1183 
1184 	mutex_lock(&mtd_table_mutex);
1185 
1186 	mtd_for_each_device(other) {
1187 		if (!strcmp(name, other->name)) {
1188 			mtd = other;
1189 			break;
1190 		}
1191 	}
1192 
1193 	if (!mtd)
1194 		goto out_unlock;
1195 
1196 	err = __get_mtd_device(mtd);
1197 	if (err)
1198 		goto out_unlock;
1199 
1200 	mutex_unlock(&mtd_table_mutex);
1201 	return mtd;
1202 
1203 out_unlock:
1204 	mutex_unlock(&mtd_table_mutex);
1205 	return ERR_PTR(err);
1206 }
1207 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1208 
1209 void put_mtd_device(struct mtd_info *mtd)
1210 {
1211 	mutex_lock(&mtd_table_mutex);
1212 	__put_mtd_device(mtd);
1213 	mutex_unlock(&mtd_table_mutex);
1214 
1215 }
1216 EXPORT_SYMBOL_GPL(put_mtd_device);
1217 
1218 void __put_mtd_device(struct mtd_info *mtd)
1219 {
1220 	struct mtd_info *master = mtd_get_master(mtd);
1221 
1222 	while (mtd->parent) {
1223 		--mtd->usecount;
1224 		BUG_ON(mtd->usecount < 0);
1225 		mtd = mtd->parent;
1226 	}
1227 
1228 	master->usecount--;
1229 
1230 	if (master->_put_device)
1231 		master->_put_device(master);
1232 
1233 	module_put(master->owner);
1234 }
1235 EXPORT_SYMBOL_GPL(__put_mtd_device);
1236 
1237 /*
1238  * Erase is an synchronous operation. Device drivers are epected to return a
1239  * negative error code if the operation failed and update instr->fail_addr
1240  * to point the portion that was not properly erased.
1241  */
1242 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1243 {
1244 	struct mtd_info *master = mtd_get_master(mtd);
1245 	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1246 	struct erase_info adjinstr;
1247 	int ret;
1248 
1249 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1250 	adjinstr = *instr;
1251 
1252 	if (!mtd->erasesize || !master->_erase)
1253 		return -ENOTSUPP;
1254 
1255 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1256 		return -EINVAL;
1257 	if (!(mtd->flags & MTD_WRITEABLE))
1258 		return -EROFS;
1259 
1260 	if (!instr->len)
1261 		return 0;
1262 
1263 	ledtrig_mtd_activity();
1264 
1265 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1266 		adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1267 				master->erasesize;
1268 		adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1269 				master->erasesize) -
1270 			       adjinstr.addr;
1271 	}
1272 
1273 	adjinstr.addr += mst_ofs;
1274 
1275 	ret = master->_erase(master, &adjinstr);
1276 
1277 	if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1278 		instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1279 		if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1280 			instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1281 							 master);
1282 			instr->fail_addr *= mtd->erasesize;
1283 		}
1284 	}
1285 
1286 	return ret;
1287 }
1288 EXPORT_SYMBOL_GPL(mtd_erase);
1289 
1290 /*
1291  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1292  */
1293 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1294 	      void **virt, resource_size_t *phys)
1295 {
1296 	struct mtd_info *master = mtd_get_master(mtd);
1297 
1298 	*retlen = 0;
1299 	*virt = NULL;
1300 	if (phys)
1301 		*phys = 0;
1302 	if (!master->_point)
1303 		return -EOPNOTSUPP;
1304 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1305 		return -EINVAL;
1306 	if (!len)
1307 		return 0;
1308 
1309 	from = mtd_get_master_ofs(mtd, from);
1310 	return master->_point(master, from, len, retlen, virt, phys);
1311 }
1312 EXPORT_SYMBOL_GPL(mtd_point);
1313 
1314 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1315 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1316 {
1317 	struct mtd_info *master = mtd_get_master(mtd);
1318 
1319 	if (!master->_unpoint)
1320 		return -EOPNOTSUPP;
1321 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1322 		return -EINVAL;
1323 	if (!len)
1324 		return 0;
1325 	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1326 }
1327 EXPORT_SYMBOL_GPL(mtd_unpoint);
1328 
1329 /*
1330  * Allow NOMMU mmap() to directly map the device (if not NULL)
1331  * - return the address to which the offset maps
1332  * - return -ENOSYS to indicate refusal to do the mapping
1333  */
1334 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1335 				    unsigned long offset, unsigned long flags)
1336 {
1337 	size_t retlen;
1338 	void *virt;
1339 	int ret;
1340 
1341 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1342 	if (ret)
1343 		return ret;
1344 	if (retlen != len) {
1345 		mtd_unpoint(mtd, offset, retlen);
1346 		return -ENOSYS;
1347 	}
1348 	return (unsigned long)virt;
1349 }
1350 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1351 
1352 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1353 				 const struct mtd_ecc_stats *old_stats)
1354 {
1355 	struct mtd_ecc_stats diff;
1356 
1357 	if (master == mtd)
1358 		return;
1359 
1360 	diff = master->ecc_stats;
1361 	diff.failed -= old_stats->failed;
1362 	diff.corrected -= old_stats->corrected;
1363 
1364 	while (mtd->parent) {
1365 		mtd->ecc_stats.failed += diff.failed;
1366 		mtd->ecc_stats.corrected += diff.corrected;
1367 		mtd = mtd->parent;
1368 	}
1369 }
1370 
1371 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1372 	     u_char *buf)
1373 {
1374 	struct mtd_oob_ops ops = {
1375 		.len = len,
1376 		.datbuf = buf,
1377 	};
1378 	int ret;
1379 
1380 	ret = mtd_read_oob(mtd, from, &ops);
1381 	*retlen = ops.retlen;
1382 
1383 	return ret;
1384 }
1385 EXPORT_SYMBOL_GPL(mtd_read);
1386 
1387 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1388 	      const u_char *buf)
1389 {
1390 	struct mtd_oob_ops ops = {
1391 		.len = len,
1392 		.datbuf = (u8 *)buf,
1393 	};
1394 	int ret;
1395 
1396 	ret = mtd_write_oob(mtd, to, &ops);
1397 	*retlen = ops.retlen;
1398 
1399 	return ret;
1400 }
1401 EXPORT_SYMBOL_GPL(mtd_write);
1402 
1403 /*
1404  * In blackbox flight recorder like scenarios we want to make successful writes
1405  * in interrupt context. panic_write() is only intended to be called when its
1406  * known the kernel is about to panic and we need the write to succeed. Since
1407  * the kernel is not going to be running for much longer, this function can
1408  * break locks and delay to ensure the write succeeds (but not sleep).
1409  */
1410 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1411 		    const u_char *buf)
1412 {
1413 	struct mtd_info *master = mtd_get_master(mtd);
1414 
1415 	*retlen = 0;
1416 	if (!master->_panic_write)
1417 		return -EOPNOTSUPP;
1418 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1419 		return -EINVAL;
1420 	if (!(mtd->flags & MTD_WRITEABLE))
1421 		return -EROFS;
1422 	if (!len)
1423 		return 0;
1424 	if (!master->oops_panic_write)
1425 		master->oops_panic_write = true;
1426 
1427 	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1428 				    retlen, buf);
1429 }
1430 EXPORT_SYMBOL_GPL(mtd_panic_write);
1431 
1432 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1433 			     struct mtd_oob_ops *ops)
1434 {
1435 	/*
1436 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1437 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1438 	 *  this case.
1439 	 */
1440 	if (!ops->datbuf)
1441 		ops->len = 0;
1442 
1443 	if (!ops->oobbuf)
1444 		ops->ooblen = 0;
1445 
1446 	if (offs < 0 || offs + ops->len > mtd->size)
1447 		return -EINVAL;
1448 
1449 	if (ops->ooblen) {
1450 		size_t maxooblen;
1451 
1452 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1453 			return -EINVAL;
1454 
1455 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1456 				      mtd_div_by_ws(offs, mtd)) *
1457 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1458 		if (ops->ooblen > maxooblen)
1459 			return -EINVAL;
1460 	}
1461 
1462 	return 0;
1463 }
1464 
1465 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1466 			    struct mtd_oob_ops *ops)
1467 {
1468 	struct mtd_info *master = mtd_get_master(mtd);
1469 	int ret;
1470 
1471 	from = mtd_get_master_ofs(mtd, from);
1472 	if (master->_read_oob)
1473 		ret = master->_read_oob(master, from, ops);
1474 	else
1475 		ret = master->_read(master, from, ops->len, &ops->retlen,
1476 				    ops->datbuf);
1477 
1478 	return ret;
1479 }
1480 
1481 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1482 			     struct mtd_oob_ops *ops)
1483 {
1484 	struct mtd_info *master = mtd_get_master(mtd);
1485 	int ret;
1486 
1487 	to = mtd_get_master_ofs(mtd, to);
1488 	if (master->_write_oob)
1489 		ret = master->_write_oob(master, to, ops);
1490 	else
1491 		ret = master->_write(master, to, ops->len, &ops->retlen,
1492 				     ops->datbuf);
1493 
1494 	return ret;
1495 }
1496 
1497 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1498 			       struct mtd_oob_ops *ops)
1499 {
1500 	struct mtd_info *master = mtd_get_master(mtd);
1501 	int ngroups = mtd_pairing_groups(master);
1502 	int npairs = mtd_wunit_per_eb(master) / ngroups;
1503 	struct mtd_oob_ops adjops = *ops;
1504 	unsigned int wunit, oobavail;
1505 	struct mtd_pairing_info info;
1506 	int max_bitflips = 0;
1507 	u32 ebofs, pageofs;
1508 	loff_t base, pos;
1509 
1510 	ebofs = mtd_mod_by_eb(start, mtd);
1511 	base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1512 	info.group = 0;
1513 	info.pair = mtd_div_by_ws(ebofs, mtd);
1514 	pageofs = mtd_mod_by_ws(ebofs, mtd);
1515 	oobavail = mtd_oobavail(mtd, ops);
1516 
1517 	while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1518 		int ret;
1519 
1520 		if (info.pair >= npairs) {
1521 			info.pair = 0;
1522 			base += master->erasesize;
1523 		}
1524 
1525 		wunit = mtd_pairing_info_to_wunit(master, &info);
1526 		pos = mtd_wunit_to_offset(mtd, base, wunit);
1527 
1528 		adjops.len = ops->len - ops->retlen;
1529 		if (adjops.len > mtd->writesize - pageofs)
1530 			adjops.len = mtd->writesize - pageofs;
1531 
1532 		adjops.ooblen = ops->ooblen - ops->oobretlen;
1533 		if (adjops.ooblen > oobavail - adjops.ooboffs)
1534 			adjops.ooblen = oobavail - adjops.ooboffs;
1535 
1536 		if (read) {
1537 			ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1538 			if (ret > 0)
1539 				max_bitflips = max(max_bitflips, ret);
1540 		} else {
1541 			ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1542 		}
1543 
1544 		if (ret < 0)
1545 			return ret;
1546 
1547 		max_bitflips = max(max_bitflips, ret);
1548 		ops->retlen += adjops.retlen;
1549 		ops->oobretlen += adjops.oobretlen;
1550 		adjops.datbuf += adjops.retlen;
1551 		adjops.oobbuf += adjops.oobretlen;
1552 		adjops.ooboffs = 0;
1553 		pageofs = 0;
1554 		info.pair++;
1555 	}
1556 
1557 	return max_bitflips;
1558 }
1559 
1560 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1561 {
1562 	struct mtd_info *master = mtd_get_master(mtd);
1563 	struct mtd_ecc_stats old_stats = master->ecc_stats;
1564 	int ret_code;
1565 
1566 	ops->retlen = ops->oobretlen = 0;
1567 
1568 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1569 	if (ret_code)
1570 		return ret_code;
1571 
1572 	ledtrig_mtd_activity();
1573 
1574 	/* Check the validity of a potential fallback on mtd->_read */
1575 	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1576 		return -EOPNOTSUPP;
1577 
1578 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1579 		ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1580 	else
1581 		ret_code = mtd_read_oob_std(mtd, from, ops);
1582 
1583 	mtd_update_ecc_stats(mtd, master, &old_stats);
1584 
1585 	/*
1586 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1587 	 * similar to mtd->_read(), returning a non-negative integer
1588 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1589 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1590 	 */
1591 	if (unlikely(ret_code < 0))
1592 		return ret_code;
1593 	if (mtd->ecc_strength == 0)
1594 		return 0;	/* device lacks ecc */
1595 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1596 }
1597 EXPORT_SYMBOL_GPL(mtd_read_oob);
1598 
1599 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1600 				struct mtd_oob_ops *ops)
1601 {
1602 	struct mtd_info *master = mtd_get_master(mtd);
1603 	int ret;
1604 
1605 	ops->retlen = ops->oobretlen = 0;
1606 
1607 	if (!(mtd->flags & MTD_WRITEABLE))
1608 		return -EROFS;
1609 
1610 	ret = mtd_check_oob_ops(mtd, to, ops);
1611 	if (ret)
1612 		return ret;
1613 
1614 	ledtrig_mtd_activity();
1615 
1616 	/* Check the validity of a potential fallback on mtd->_write */
1617 	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1618 		return -EOPNOTSUPP;
1619 
1620 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1621 		return mtd_io_emulated_slc(mtd, to, false, ops);
1622 
1623 	return mtd_write_oob_std(mtd, to, ops);
1624 }
1625 EXPORT_SYMBOL_GPL(mtd_write_oob);
1626 
1627 /**
1628  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1629  * @mtd: MTD device structure
1630  * @section: ECC section. Depending on the layout you may have all the ECC
1631  *	     bytes stored in a single contiguous section, or one section
1632  *	     per ECC chunk (and sometime several sections for a single ECC
1633  *	     ECC chunk)
1634  * @oobecc: OOB region struct filled with the appropriate ECC position
1635  *	    information
1636  *
1637  * This function returns ECC section information in the OOB area. If you want
1638  * to get all the ECC bytes information, then you should call
1639  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1640  *
1641  * Returns zero on success, a negative error code otherwise.
1642  */
1643 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1644 		      struct mtd_oob_region *oobecc)
1645 {
1646 	struct mtd_info *master = mtd_get_master(mtd);
1647 
1648 	memset(oobecc, 0, sizeof(*oobecc));
1649 
1650 	if (!master || section < 0)
1651 		return -EINVAL;
1652 
1653 	if (!master->ooblayout || !master->ooblayout->ecc)
1654 		return -ENOTSUPP;
1655 
1656 	return master->ooblayout->ecc(master, section, oobecc);
1657 }
1658 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1659 
1660 /**
1661  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1662  *			section
1663  * @mtd: MTD device structure
1664  * @section: Free section you are interested in. Depending on the layout
1665  *	     you may have all the free bytes stored in a single contiguous
1666  *	     section, or one section per ECC chunk plus an extra section
1667  *	     for the remaining bytes (or other funky layout).
1668  * @oobfree: OOB region struct filled with the appropriate free position
1669  *	     information
1670  *
1671  * This function returns free bytes position in the OOB area. If you want
1672  * to get all the free bytes information, then you should call
1673  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1674  *
1675  * Returns zero on success, a negative error code otherwise.
1676  */
1677 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1678 		       struct mtd_oob_region *oobfree)
1679 {
1680 	struct mtd_info *master = mtd_get_master(mtd);
1681 
1682 	memset(oobfree, 0, sizeof(*oobfree));
1683 
1684 	if (!master || section < 0)
1685 		return -EINVAL;
1686 
1687 	if (!master->ooblayout || !master->ooblayout->free)
1688 		return -ENOTSUPP;
1689 
1690 	return master->ooblayout->free(master, section, oobfree);
1691 }
1692 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1693 
1694 /**
1695  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1696  * @mtd: mtd info structure
1697  * @byte: the byte we are searching for
1698  * @sectionp: pointer where the section id will be stored
1699  * @oobregion: used to retrieve the ECC position
1700  * @iter: iterator function. Should be either mtd_ooblayout_free or
1701  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1702  *
1703  * This function returns the section id and oobregion information of a
1704  * specific byte. For example, say you want to know where the 4th ECC byte is
1705  * stored, you'll use:
1706  *
1707  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1708  *
1709  * Returns zero on success, a negative error code otherwise.
1710  */
1711 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1712 				int *sectionp, struct mtd_oob_region *oobregion,
1713 				int (*iter)(struct mtd_info *,
1714 					    int section,
1715 					    struct mtd_oob_region *oobregion))
1716 {
1717 	int pos = 0, ret, section = 0;
1718 
1719 	memset(oobregion, 0, sizeof(*oobregion));
1720 
1721 	while (1) {
1722 		ret = iter(mtd, section, oobregion);
1723 		if (ret)
1724 			return ret;
1725 
1726 		if (pos + oobregion->length > byte)
1727 			break;
1728 
1729 		pos += oobregion->length;
1730 		section++;
1731 	}
1732 
1733 	/*
1734 	 * Adjust region info to make it start at the beginning at the
1735 	 * 'start' ECC byte.
1736 	 */
1737 	oobregion->offset += byte - pos;
1738 	oobregion->length -= byte - pos;
1739 	*sectionp = section;
1740 
1741 	return 0;
1742 }
1743 
1744 /**
1745  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1746  *				  ECC byte
1747  * @mtd: mtd info structure
1748  * @eccbyte: the byte we are searching for
1749  * @section: pointer where the section id will be stored
1750  * @oobregion: OOB region information
1751  *
1752  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1753  * byte.
1754  *
1755  * Returns zero on success, a negative error code otherwise.
1756  */
1757 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1758 				 int *section,
1759 				 struct mtd_oob_region *oobregion)
1760 {
1761 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1762 					 mtd_ooblayout_ecc);
1763 }
1764 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1765 
1766 /**
1767  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1768  * @mtd: mtd info structure
1769  * @buf: destination buffer to store OOB bytes
1770  * @oobbuf: OOB buffer
1771  * @start: first byte to retrieve
1772  * @nbytes: number of bytes to retrieve
1773  * @iter: section iterator
1774  *
1775  * Extract bytes attached to a specific category (ECC or free)
1776  * from the OOB buffer and copy them into buf.
1777  *
1778  * Returns zero on success, a negative error code otherwise.
1779  */
1780 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1781 				const u8 *oobbuf, int start, int nbytes,
1782 				int (*iter)(struct mtd_info *,
1783 					    int section,
1784 					    struct mtd_oob_region *oobregion))
1785 {
1786 	struct mtd_oob_region oobregion;
1787 	int section, ret;
1788 
1789 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1790 					&oobregion, iter);
1791 
1792 	while (!ret) {
1793 		int cnt;
1794 
1795 		cnt = min_t(int, nbytes, oobregion.length);
1796 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1797 		buf += cnt;
1798 		nbytes -= cnt;
1799 
1800 		if (!nbytes)
1801 			break;
1802 
1803 		ret = iter(mtd, ++section, &oobregion);
1804 	}
1805 
1806 	return ret;
1807 }
1808 
1809 /**
1810  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1811  * @mtd: mtd info structure
1812  * @buf: source buffer to get OOB bytes from
1813  * @oobbuf: OOB buffer
1814  * @start: first OOB byte to set
1815  * @nbytes: number of OOB bytes to set
1816  * @iter: section iterator
1817  *
1818  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1819  * is selected by passing the appropriate iterator.
1820  *
1821  * Returns zero on success, a negative error code otherwise.
1822  */
1823 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1824 				u8 *oobbuf, int start, int nbytes,
1825 				int (*iter)(struct mtd_info *,
1826 					    int section,
1827 					    struct mtd_oob_region *oobregion))
1828 {
1829 	struct mtd_oob_region oobregion;
1830 	int section, ret;
1831 
1832 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1833 					&oobregion, iter);
1834 
1835 	while (!ret) {
1836 		int cnt;
1837 
1838 		cnt = min_t(int, nbytes, oobregion.length);
1839 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1840 		buf += cnt;
1841 		nbytes -= cnt;
1842 
1843 		if (!nbytes)
1844 			break;
1845 
1846 		ret = iter(mtd, ++section, &oobregion);
1847 	}
1848 
1849 	return ret;
1850 }
1851 
1852 /**
1853  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1854  * @mtd: mtd info structure
1855  * @iter: category iterator
1856  *
1857  * Count the number of bytes in a given category.
1858  *
1859  * Returns a positive value on success, a negative error code otherwise.
1860  */
1861 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1862 				int (*iter)(struct mtd_info *,
1863 					    int section,
1864 					    struct mtd_oob_region *oobregion))
1865 {
1866 	struct mtd_oob_region oobregion;
1867 	int section = 0, ret, nbytes = 0;
1868 
1869 	while (1) {
1870 		ret = iter(mtd, section++, &oobregion);
1871 		if (ret) {
1872 			if (ret == -ERANGE)
1873 				ret = nbytes;
1874 			break;
1875 		}
1876 
1877 		nbytes += oobregion.length;
1878 	}
1879 
1880 	return ret;
1881 }
1882 
1883 /**
1884  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1885  * @mtd: mtd info structure
1886  * @eccbuf: destination buffer to store ECC bytes
1887  * @oobbuf: OOB buffer
1888  * @start: first ECC byte to retrieve
1889  * @nbytes: number of ECC bytes to retrieve
1890  *
1891  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1892  *
1893  * Returns zero on success, a negative error code otherwise.
1894  */
1895 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1896 			       const u8 *oobbuf, int start, int nbytes)
1897 {
1898 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1899 				       mtd_ooblayout_ecc);
1900 }
1901 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1902 
1903 /**
1904  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1905  * @mtd: mtd info structure
1906  * @eccbuf: source buffer to get ECC bytes from
1907  * @oobbuf: OOB buffer
1908  * @start: first ECC byte to set
1909  * @nbytes: number of ECC bytes to set
1910  *
1911  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1912  *
1913  * Returns zero on success, a negative error code otherwise.
1914  */
1915 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1916 			       u8 *oobbuf, int start, int nbytes)
1917 {
1918 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1919 				       mtd_ooblayout_ecc);
1920 }
1921 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1922 
1923 /**
1924  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1925  * @mtd: mtd info structure
1926  * @databuf: destination buffer to store ECC bytes
1927  * @oobbuf: OOB buffer
1928  * @start: first ECC byte to retrieve
1929  * @nbytes: number of ECC bytes to retrieve
1930  *
1931  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1932  *
1933  * Returns zero on success, a negative error code otherwise.
1934  */
1935 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1936 				const u8 *oobbuf, int start, int nbytes)
1937 {
1938 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1939 				       mtd_ooblayout_free);
1940 }
1941 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1942 
1943 /**
1944  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1945  * @mtd: mtd info structure
1946  * @databuf: source buffer to get data bytes from
1947  * @oobbuf: OOB buffer
1948  * @start: first ECC byte to set
1949  * @nbytes: number of ECC bytes to set
1950  *
1951  * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
1952  *
1953  * Returns zero on success, a negative error code otherwise.
1954  */
1955 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1956 				u8 *oobbuf, int start, int nbytes)
1957 {
1958 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1959 				       mtd_ooblayout_free);
1960 }
1961 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1962 
1963 /**
1964  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1965  * @mtd: mtd info structure
1966  *
1967  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1968  *
1969  * Returns zero on success, a negative error code otherwise.
1970  */
1971 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1972 {
1973 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1974 }
1975 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1976 
1977 /**
1978  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1979  * @mtd: mtd info structure
1980  *
1981  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1982  *
1983  * Returns zero on success, a negative error code otherwise.
1984  */
1985 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1986 {
1987 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1988 }
1989 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1990 
1991 /*
1992  * Method to access the protection register area, present in some flash
1993  * devices. The user data is one time programmable but the factory data is read
1994  * only.
1995  */
1996 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1997 			   struct otp_info *buf)
1998 {
1999 	struct mtd_info *master = mtd_get_master(mtd);
2000 
2001 	if (!master->_get_fact_prot_info)
2002 		return -EOPNOTSUPP;
2003 	if (!len)
2004 		return 0;
2005 	return master->_get_fact_prot_info(master, len, retlen, buf);
2006 }
2007 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2008 
2009 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2010 			   size_t *retlen, u_char *buf)
2011 {
2012 	struct mtd_info *master = mtd_get_master(mtd);
2013 
2014 	*retlen = 0;
2015 	if (!master->_read_fact_prot_reg)
2016 		return -EOPNOTSUPP;
2017 	if (!len)
2018 		return 0;
2019 	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2020 }
2021 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2022 
2023 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2024 			   struct otp_info *buf)
2025 {
2026 	struct mtd_info *master = mtd_get_master(mtd);
2027 
2028 	if (!master->_get_user_prot_info)
2029 		return -EOPNOTSUPP;
2030 	if (!len)
2031 		return 0;
2032 	return master->_get_user_prot_info(master, len, retlen, buf);
2033 }
2034 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2035 
2036 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2037 			   size_t *retlen, u_char *buf)
2038 {
2039 	struct mtd_info *master = mtd_get_master(mtd);
2040 
2041 	*retlen = 0;
2042 	if (!master->_read_user_prot_reg)
2043 		return -EOPNOTSUPP;
2044 	if (!len)
2045 		return 0;
2046 	return master->_read_user_prot_reg(master, from, len, retlen, buf);
2047 }
2048 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2049 
2050 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2051 			    size_t *retlen, const u_char *buf)
2052 {
2053 	struct mtd_info *master = mtd_get_master(mtd);
2054 	int ret;
2055 
2056 	*retlen = 0;
2057 	if (!master->_write_user_prot_reg)
2058 		return -EOPNOTSUPP;
2059 	if (!len)
2060 		return 0;
2061 	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2062 	if (ret)
2063 		return ret;
2064 
2065 	/*
2066 	 * If no data could be written at all, we are out of memory and
2067 	 * must return -ENOSPC.
2068 	 */
2069 	return (*retlen) ? 0 : -ENOSPC;
2070 }
2071 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2072 
2073 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2074 {
2075 	struct mtd_info *master = mtd_get_master(mtd);
2076 
2077 	if (!master->_lock_user_prot_reg)
2078 		return -EOPNOTSUPP;
2079 	if (!len)
2080 		return 0;
2081 	return master->_lock_user_prot_reg(master, from, len);
2082 }
2083 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2084 
2085 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2086 {
2087 	struct mtd_info *master = mtd_get_master(mtd);
2088 
2089 	if (!master->_erase_user_prot_reg)
2090 		return -EOPNOTSUPP;
2091 	if (!len)
2092 		return 0;
2093 	return master->_erase_user_prot_reg(master, from, len);
2094 }
2095 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2096 
2097 /* Chip-supported device locking */
2098 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2099 {
2100 	struct mtd_info *master = mtd_get_master(mtd);
2101 
2102 	if (!master->_lock)
2103 		return -EOPNOTSUPP;
2104 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2105 		return -EINVAL;
2106 	if (!len)
2107 		return 0;
2108 
2109 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2110 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2111 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2112 	}
2113 
2114 	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2115 }
2116 EXPORT_SYMBOL_GPL(mtd_lock);
2117 
2118 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2119 {
2120 	struct mtd_info *master = mtd_get_master(mtd);
2121 
2122 	if (!master->_unlock)
2123 		return -EOPNOTSUPP;
2124 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2125 		return -EINVAL;
2126 	if (!len)
2127 		return 0;
2128 
2129 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2130 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2131 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2132 	}
2133 
2134 	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2135 }
2136 EXPORT_SYMBOL_GPL(mtd_unlock);
2137 
2138 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2139 {
2140 	struct mtd_info *master = mtd_get_master(mtd);
2141 
2142 	if (!master->_is_locked)
2143 		return -EOPNOTSUPP;
2144 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2145 		return -EINVAL;
2146 	if (!len)
2147 		return 0;
2148 
2149 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2150 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2151 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2152 	}
2153 
2154 	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2155 }
2156 EXPORT_SYMBOL_GPL(mtd_is_locked);
2157 
2158 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2159 {
2160 	struct mtd_info *master = mtd_get_master(mtd);
2161 
2162 	if (ofs < 0 || ofs >= mtd->size)
2163 		return -EINVAL;
2164 	if (!master->_block_isreserved)
2165 		return 0;
2166 
2167 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2168 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2169 
2170 	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2171 }
2172 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2173 
2174 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2175 {
2176 	struct mtd_info *master = mtd_get_master(mtd);
2177 
2178 	if (ofs < 0 || ofs >= mtd->size)
2179 		return -EINVAL;
2180 	if (!master->_block_isbad)
2181 		return 0;
2182 
2183 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2184 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2185 
2186 	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2187 }
2188 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2189 
2190 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2191 {
2192 	struct mtd_info *master = mtd_get_master(mtd);
2193 	int ret;
2194 
2195 	if (!master->_block_markbad)
2196 		return -EOPNOTSUPP;
2197 	if (ofs < 0 || ofs >= mtd->size)
2198 		return -EINVAL;
2199 	if (!(mtd->flags & MTD_WRITEABLE))
2200 		return -EROFS;
2201 
2202 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2203 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2204 
2205 	ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2206 	if (ret)
2207 		return ret;
2208 
2209 	while (mtd->parent) {
2210 		mtd->ecc_stats.badblocks++;
2211 		mtd = mtd->parent;
2212 	}
2213 
2214 	return 0;
2215 }
2216 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2217 
2218 /*
2219  * default_mtd_writev - the default writev method
2220  * @mtd: mtd device description object pointer
2221  * @vecs: the vectors to write
2222  * @count: count of vectors in @vecs
2223  * @to: the MTD device offset to write to
2224  * @retlen: on exit contains the count of bytes written to the MTD device.
2225  *
2226  * This function returns zero in case of success and a negative error code in
2227  * case of failure.
2228  */
2229 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2230 			      unsigned long count, loff_t to, size_t *retlen)
2231 {
2232 	unsigned long i;
2233 	size_t totlen = 0, thislen;
2234 	int ret = 0;
2235 
2236 	for (i = 0; i < count; i++) {
2237 		if (!vecs[i].iov_len)
2238 			continue;
2239 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2240 				vecs[i].iov_base);
2241 		totlen += thislen;
2242 		if (ret || thislen != vecs[i].iov_len)
2243 			break;
2244 		to += vecs[i].iov_len;
2245 	}
2246 	*retlen = totlen;
2247 	return ret;
2248 }
2249 
2250 /*
2251  * mtd_writev - the vector-based MTD write method
2252  * @mtd: mtd device description object pointer
2253  * @vecs: the vectors to write
2254  * @count: count of vectors in @vecs
2255  * @to: the MTD device offset to write to
2256  * @retlen: on exit contains the count of bytes written to the MTD device.
2257  *
2258  * This function returns zero in case of success and a negative error code in
2259  * case of failure.
2260  */
2261 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2262 	       unsigned long count, loff_t to, size_t *retlen)
2263 {
2264 	struct mtd_info *master = mtd_get_master(mtd);
2265 
2266 	*retlen = 0;
2267 	if (!(mtd->flags & MTD_WRITEABLE))
2268 		return -EROFS;
2269 
2270 	if (!master->_writev)
2271 		return default_mtd_writev(mtd, vecs, count, to, retlen);
2272 
2273 	return master->_writev(master, vecs, count,
2274 			       mtd_get_master_ofs(mtd, to), retlen);
2275 }
2276 EXPORT_SYMBOL_GPL(mtd_writev);
2277 
2278 /**
2279  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2280  * @mtd: mtd device description object pointer
2281  * @size: a pointer to the ideal or maximum size of the allocation, points
2282  *        to the actual allocation size on success.
2283  *
2284  * This routine attempts to allocate a contiguous kernel buffer up to
2285  * the specified size, backing off the size of the request exponentially
2286  * until the request succeeds or until the allocation size falls below
2287  * the system page size. This attempts to make sure it does not adversely
2288  * impact system performance, so when allocating more than one page, we
2289  * ask the memory allocator to avoid re-trying, swapping, writing back
2290  * or performing I/O.
2291  *
2292  * Note, this function also makes sure that the allocated buffer is aligned to
2293  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2294  *
2295  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2296  * to handle smaller (i.e. degraded) buffer allocations under low- or
2297  * fragmented-memory situations where such reduced allocations, from a
2298  * requested ideal, are allowed.
2299  *
2300  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2301  */
2302 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2303 {
2304 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2305 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2306 	void *kbuf;
2307 
2308 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2309 
2310 	while (*size > min_alloc) {
2311 		kbuf = kmalloc(*size, flags);
2312 		if (kbuf)
2313 			return kbuf;
2314 
2315 		*size >>= 1;
2316 		*size = ALIGN(*size, mtd->writesize);
2317 	}
2318 
2319 	/*
2320 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2321 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2322 	 */
2323 	return kmalloc(*size, GFP_KERNEL);
2324 }
2325 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2326 
2327 #ifdef CONFIG_PROC_FS
2328 
2329 /*====================================================================*/
2330 /* Support for /proc/mtd */
2331 
2332 static int mtd_proc_show(struct seq_file *m, void *v)
2333 {
2334 	struct mtd_info *mtd;
2335 
2336 	seq_puts(m, "dev:    size   erasesize  name\n");
2337 	mutex_lock(&mtd_table_mutex);
2338 	mtd_for_each_device(mtd) {
2339 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2340 			   mtd->index, (unsigned long long)mtd->size,
2341 			   mtd->erasesize, mtd->name);
2342 	}
2343 	mutex_unlock(&mtd_table_mutex);
2344 	return 0;
2345 }
2346 #endif /* CONFIG_PROC_FS */
2347 
2348 /*====================================================================*/
2349 /* Init code */
2350 
2351 static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2352 {
2353 	struct backing_dev_info *bdi;
2354 	int ret;
2355 
2356 	bdi = bdi_alloc(NUMA_NO_NODE);
2357 	if (!bdi)
2358 		return ERR_PTR(-ENOMEM);
2359 	bdi->ra_pages = 0;
2360 	bdi->io_pages = 0;
2361 
2362 	/*
2363 	 * We put '-0' suffix to the name to get the same name format as we
2364 	 * used to get. Since this is called only once, we get a unique name.
2365 	 */
2366 	ret = bdi_register(bdi, "%.28s-0", name);
2367 	if (ret)
2368 		bdi_put(bdi);
2369 
2370 	return ret ? ERR_PTR(ret) : bdi;
2371 }
2372 
2373 char *mtd_expert_analysis_warning =
2374 	"Bad block checks have been entirely disabled.\n"
2375 	"This is only reserved for post-mortem forensics and debug purposes.\n"
2376 	"Never enable this mode if you do not know what you are doing!\n";
2377 EXPORT_SYMBOL_GPL(mtd_expert_analysis_warning);
2378 bool mtd_expert_analysis_mode;
2379 EXPORT_SYMBOL_GPL(mtd_expert_analysis_mode);
2380 
2381 static struct proc_dir_entry *proc_mtd;
2382 
2383 static int __init init_mtd(void)
2384 {
2385 	int ret;
2386 
2387 	ret = class_register(&mtd_class);
2388 	if (ret)
2389 		goto err_reg;
2390 
2391 	mtd_bdi = mtd_bdi_init("mtd");
2392 	if (IS_ERR(mtd_bdi)) {
2393 		ret = PTR_ERR(mtd_bdi);
2394 		goto err_bdi;
2395 	}
2396 
2397 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2398 
2399 	ret = init_mtdchar();
2400 	if (ret)
2401 		goto out_procfs;
2402 
2403 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2404 	debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2405 			    &mtd_expert_analysis_mode);
2406 
2407 	return 0;
2408 
2409 out_procfs:
2410 	if (proc_mtd)
2411 		remove_proc_entry("mtd", NULL);
2412 	bdi_put(mtd_bdi);
2413 err_bdi:
2414 	class_unregister(&mtd_class);
2415 err_reg:
2416 	pr_err("Error registering mtd class or bdi: %d\n", ret);
2417 	return ret;
2418 }
2419 
2420 static void __exit cleanup_mtd(void)
2421 {
2422 	debugfs_remove_recursive(dfs_dir_mtd);
2423 	cleanup_mtdchar();
2424 	if (proc_mtd)
2425 		remove_proc_entry("mtd", NULL);
2426 	class_unregister(&mtd_class);
2427 	bdi_unregister(mtd_bdi);
2428 	bdi_put(mtd_bdi);
2429 	idr_destroy(&mtd_idr);
2430 }
2431 
2432 module_init(init_mtd);
2433 module_exit(cleanup_mtd);
2434 
2435 MODULE_LICENSE("GPL");
2436 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2437 MODULE_DESCRIPTION("Core MTD registration and access routines");
2438