xref: /openbmc/linux/drivers/mtd/mtdcore.c (revision 8b030a57)
1 /*
2  * Core registration and callback routines for MTD
3  * drivers and users.
4  *
5  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6  * Copyright © 2006      Red Hat UK Limited
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/of.h>
36 #include <linux/proc_fs.h>
37 #include <linux/idr.h>
38 #include <linux/backing-dev.h>
39 #include <linux/gfp.h>
40 #include <linux/slab.h>
41 #include <linux/reboot.h>
42 #include <linux/leds.h>
43 #include <linux/debugfs.h>
44 #include <linux/nvmem-provider.h>
45 
46 #include <linux/mtd/mtd.h>
47 #include <linux/mtd/partitions.h>
48 
49 #include "mtdcore.h"
50 
51 struct backing_dev_info *mtd_bdi;
52 
53 #ifdef CONFIG_PM_SLEEP
54 
55 static int mtd_cls_suspend(struct device *dev)
56 {
57 	struct mtd_info *mtd = dev_get_drvdata(dev);
58 
59 	return mtd ? mtd_suspend(mtd) : 0;
60 }
61 
62 static int mtd_cls_resume(struct device *dev)
63 {
64 	struct mtd_info *mtd = dev_get_drvdata(dev);
65 
66 	if (mtd)
67 		mtd_resume(mtd);
68 	return 0;
69 }
70 
71 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
72 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
73 #else
74 #define MTD_CLS_PM_OPS NULL
75 #endif
76 
77 static struct class mtd_class = {
78 	.name = "mtd",
79 	.owner = THIS_MODULE,
80 	.pm = MTD_CLS_PM_OPS,
81 };
82 
83 static DEFINE_IDR(mtd_idr);
84 
85 /* These are exported solely for the purpose of mtd_blkdevs.c. You
86    should not use them for _anything_ else */
87 DEFINE_MUTEX(mtd_table_mutex);
88 EXPORT_SYMBOL_GPL(mtd_table_mutex);
89 
90 struct mtd_info *__mtd_next_device(int i)
91 {
92 	return idr_get_next(&mtd_idr, &i);
93 }
94 EXPORT_SYMBOL_GPL(__mtd_next_device);
95 
96 static LIST_HEAD(mtd_notifiers);
97 
98 
99 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
100 
101 /* REVISIT once MTD uses the driver model better, whoever allocates
102  * the mtd_info will probably want to use the release() hook...
103  */
104 static void mtd_release(struct device *dev)
105 {
106 	struct mtd_info *mtd = dev_get_drvdata(dev);
107 	dev_t index = MTD_DEVT(mtd->index);
108 
109 	/* remove /dev/mtdXro node */
110 	device_destroy(&mtd_class, index + 1);
111 }
112 
113 static ssize_t mtd_type_show(struct device *dev,
114 		struct device_attribute *attr, char *buf)
115 {
116 	struct mtd_info *mtd = dev_get_drvdata(dev);
117 	char *type;
118 
119 	switch (mtd->type) {
120 	case MTD_ABSENT:
121 		type = "absent";
122 		break;
123 	case MTD_RAM:
124 		type = "ram";
125 		break;
126 	case MTD_ROM:
127 		type = "rom";
128 		break;
129 	case MTD_NORFLASH:
130 		type = "nor";
131 		break;
132 	case MTD_NANDFLASH:
133 		type = "nand";
134 		break;
135 	case MTD_DATAFLASH:
136 		type = "dataflash";
137 		break;
138 	case MTD_UBIVOLUME:
139 		type = "ubi";
140 		break;
141 	case MTD_MLCNANDFLASH:
142 		type = "mlc-nand";
143 		break;
144 	default:
145 		type = "unknown";
146 	}
147 
148 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
149 }
150 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
151 
152 static ssize_t mtd_flags_show(struct device *dev,
153 		struct device_attribute *attr, char *buf)
154 {
155 	struct mtd_info *mtd = dev_get_drvdata(dev);
156 
157 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
158 
159 }
160 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
161 
162 static ssize_t mtd_size_show(struct device *dev,
163 		struct device_attribute *attr, char *buf)
164 {
165 	struct mtd_info *mtd = dev_get_drvdata(dev);
166 
167 	return snprintf(buf, PAGE_SIZE, "%llu\n",
168 		(unsigned long long)mtd->size);
169 
170 }
171 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
172 
173 static ssize_t mtd_erasesize_show(struct device *dev,
174 		struct device_attribute *attr, char *buf)
175 {
176 	struct mtd_info *mtd = dev_get_drvdata(dev);
177 
178 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
179 
180 }
181 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
182 
183 static ssize_t mtd_writesize_show(struct device *dev,
184 		struct device_attribute *attr, char *buf)
185 {
186 	struct mtd_info *mtd = dev_get_drvdata(dev);
187 
188 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
189 
190 }
191 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
192 
193 static ssize_t mtd_subpagesize_show(struct device *dev,
194 		struct device_attribute *attr, char *buf)
195 {
196 	struct mtd_info *mtd = dev_get_drvdata(dev);
197 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
198 
199 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
200 
201 }
202 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
203 
204 static ssize_t mtd_oobsize_show(struct device *dev,
205 		struct device_attribute *attr, char *buf)
206 {
207 	struct mtd_info *mtd = dev_get_drvdata(dev);
208 
209 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
210 
211 }
212 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
213 
214 static ssize_t mtd_oobavail_show(struct device *dev,
215 				 struct device_attribute *attr, char *buf)
216 {
217 	struct mtd_info *mtd = dev_get_drvdata(dev);
218 
219 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
220 }
221 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
222 
223 static ssize_t mtd_numeraseregions_show(struct device *dev,
224 		struct device_attribute *attr, char *buf)
225 {
226 	struct mtd_info *mtd = dev_get_drvdata(dev);
227 
228 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
229 
230 }
231 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
232 	NULL);
233 
234 static ssize_t mtd_name_show(struct device *dev,
235 		struct device_attribute *attr, char *buf)
236 {
237 	struct mtd_info *mtd = dev_get_drvdata(dev);
238 
239 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
240 
241 }
242 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
243 
244 static ssize_t mtd_ecc_strength_show(struct device *dev,
245 				     struct device_attribute *attr, char *buf)
246 {
247 	struct mtd_info *mtd = dev_get_drvdata(dev);
248 
249 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
250 }
251 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
252 
253 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
254 					  struct device_attribute *attr,
255 					  char *buf)
256 {
257 	struct mtd_info *mtd = dev_get_drvdata(dev);
258 
259 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
260 }
261 
262 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
263 					   struct device_attribute *attr,
264 					   const char *buf, size_t count)
265 {
266 	struct mtd_info *mtd = dev_get_drvdata(dev);
267 	unsigned int bitflip_threshold;
268 	int retval;
269 
270 	retval = kstrtouint(buf, 0, &bitflip_threshold);
271 	if (retval)
272 		return retval;
273 
274 	mtd->bitflip_threshold = bitflip_threshold;
275 	return count;
276 }
277 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
278 		   mtd_bitflip_threshold_show,
279 		   mtd_bitflip_threshold_store);
280 
281 static ssize_t mtd_ecc_step_size_show(struct device *dev,
282 		struct device_attribute *attr, char *buf)
283 {
284 	struct mtd_info *mtd = dev_get_drvdata(dev);
285 
286 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
287 
288 }
289 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
290 
291 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
292 		struct device_attribute *attr, char *buf)
293 {
294 	struct mtd_info *mtd = dev_get_drvdata(dev);
295 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
296 
297 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
298 }
299 static DEVICE_ATTR(corrected_bits, S_IRUGO,
300 		   mtd_ecc_stats_corrected_show, NULL);
301 
302 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
303 		struct device_attribute *attr, char *buf)
304 {
305 	struct mtd_info *mtd = dev_get_drvdata(dev);
306 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
307 
308 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
309 }
310 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
311 
312 static ssize_t mtd_badblocks_show(struct device *dev,
313 		struct device_attribute *attr, char *buf)
314 {
315 	struct mtd_info *mtd = dev_get_drvdata(dev);
316 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
317 
318 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
319 }
320 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
321 
322 static ssize_t mtd_bbtblocks_show(struct device *dev,
323 		struct device_attribute *attr, char *buf)
324 {
325 	struct mtd_info *mtd = dev_get_drvdata(dev);
326 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
327 
328 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
329 }
330 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
331 
332 static struct attribute *mtd_attrs[] = {
333 	&dev_attr_type.attr,
334 	&dev_attr_flags.attr,
335 	&dev_attr_size.attr,
336 	&dev_attr_erasesize.attr,
337 	&dev_attr_writesize.attr,
338 	&dev_attr_subpagesize.attr,
339 	&dev_attr_oobsize.attr,
340 	&dev_attr_oobavail.attr,
341 	&dev_attr_numeraseregions.attr,
342 	&dev_attr_name.attr,
343 	&dev_attr_ecc_strength.attr,
344 	&dev_attr_ecc_step_size.attr,
345 	&dev_attr_corrected_bits.attr,
346 	&dev_attr_ecc_failures.attr,
347 	&dev_attr_bad_blocks.attr,
348 	&dev_attr_bbt_blocks.attr,
349 	&dev_attr_bitflip_threshold.attr,
350 	NULL,
351 };
352 ATTRIBUTE_GROUPS(mtd);
353 
354 static const struct device_type mtd_devtype = {
355 	.name		= "mtd",
356 	.groups		= mtd_groups,
357 	.release	= mtd_release,
358 };
359 
360 #ifndef CONFIG_MMU
361 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
362 {
363 	switch (mtd->type) {
364 	case MTD_RAM:
365 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
366 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
367 	case MTD_ROM:
368 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
369 			NOMMU_MAP_READ;
370 	default:
371 		return NOMMU_MAP_COPY;
372 	}
373 }
374 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
375 #endif
376 
377 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
378 			       void *cmd)
379 {
380 	struct mtd_info *mtd;
381 
382 	mtd = container_of(n, struct mtd_info, reboot_notifier);
383 	mtd->_reboot(mtd);
384 
385 	return NOTIFY_DONE;
386 }
387 
388 /**
389  * mtd_wunit_to_pairing_info - get pairing information of a wunit
390  * @mtd: pointer to new MTD device info structure
391  * @wunit: write unit we are interested in
392  * @info: returned pairing information
393  *
394  * Retrieve pairing information associated to the wunit.
395  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
396  * paired together, and where programming a page may influence the page it is
397  * paired with.
398  * The notion of page is replaced by the term wunit (write-unit) to stay
399  * consistent with the ->writesize field.
400  *
401  * The @wunit argument can be extracted from an absolute offset using
402  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
403  * to @wunit.
404  *
405  * From the pairing info the MTD user can find all the wunits paired with
406  * @wunit using the following loop:
407  *
408  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
409  *	info.pair = i;
410  *	mtd_pairing_info_to_wunit(mtd, &info);
411  *	...
412  * }
413  */
414 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
415 			      struct mtd_pairing_info *info)
416 {
417 	int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
418 
419 	if (wunit < 0 || wunit >= npairs)
420 		return -EINVAL;
421 
422 	if (mtd->pairing && mtd->pairing->get_info)
423 		return mtd->pairing->get_info(mtd, wunit, info);
424 
425 	info->group = 0;
426 	info->pair = wunit;
427 
428 	return 0;
429 }
430 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
431 
432 /**
433  * mtd_pairing_info_to_wunit - get wunit from pairing information
434  * @mtd: pointer to new MTD device info structure
435  * @info: pairing information struct
436  *
437  * Returns a positive number representing the wunit associated to the info
438  * struct, or a negative error code.
439  *
440  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
441  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
442  * doc).
443  *
444  * It can also be used to only program the first page of each pair (i.e.
445  * page attached to group 0), which allows one to use an MLC NAND in
446  * software-emulated SLC mode:
447  *
448  * info.group = 0;
449  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
450  * for (info.pair = 0; info.pair < npairs; info.pair++) {
451  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
452  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
453  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
454  * }
455  */
456 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
457 			      const struct mtd_pairing_info *info)
458 {
459 	int ngroups = mtd_pairing_groups(mtd);
460 	int npairs = mtd_wunit_per_eb(mtd) / ngroups;
461 
462 	if (!info || info->pair < 0 || info->pair >= npairs ||
463 	    info->group < 0 || info->group >= ngroups)
464 		return -EINVAL;
465 
466 	if (mtd->pairing && mtd->pairing->get_wunit)
467 		return mtd->pairing->get_wunit(mtd, info);
468 
469 	return info->pair;
470 }
471 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
472 
473 /**
474  * mtd_pairing_groups - get the number of pairing groups
475  * @mtd: pointer to new MTD device info structure
476  *
477  * Returns the number of pairing groups.
478  *
479  * This number is usually equal to the number of bits exposed by a single
480  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
481  * to iterate over all pages of a given pair.
482  */
483 int mtd_pairing_groups(struct mtd_info *mtd)
484 {
485 	if (!mtd->pairing || !mtd->pairing->ngroups)
486 		return 1;
487 
488 	return mtd->pairing->ngroups;
489 }
490 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
491 
492 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
493 			      void *val, size_t bytes)
494 {
495 	struct mtd_info *mtd = priv;
496 	size_t retlen;
497 	int err;
498 
499 	err = mtd_read(mtd, offset, bytes, &retlen, val);
500 	if (err && err != -EUCLEAN)
501 		return err;
502 
503 	return retlen == bytes ? 0 : -EIO;
504 }
505 
506 static int mtd_nvmem_add(struct mtd_info *mtd)
507 {
508 	struct nvmem_config config = {};
509 
510 	config.id = -1;
511 	config.dev = &mtd->dev;
512 	config.name = mtd->name;
513 	config.owner = THIS_MODULE;
514 	config.reg_read = mtd_nvmem_reg_read;
515 	config.size = mtd->size;
516 	config.word_size = 1;
517 	config.stride = 1;
518 	config.read_only = true;
519 	config.root_only = true;
520 	config.no_of_node = true;
521 	config.priv = mtd;
522 
523 	mtd->nvmem = nvmem_register(&config);
524 	if (IS_ERR(mtd->nvmem)) {
525 		/* Just ignore if there is no NVMEM support in the kernel */
526 		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
527 			mtd->nvmem = NULL;
528 		} else {
529 			dev_err(&mtd->dev, "Failed to register NVMEM device\n");
530 			return PTR_ERR(mtd->nvmem);
531 		}
532 	}
533 
534 	return 0;
535 }
536 
537 static struct dentry *dfs_dir_mtd;
538 
539 /**
540  *	add_mtd_device - register an MTD device
541  *	@mtd: pointer to new MTD device info structure
542  *
543  *	Add a device to the list of MTD devices present in the system, and
544  *	notify each currently active MTD 'user' of its arrival. Returns
545  *	zero on success or non-zero on failure.
546  */
547 
548 int add_mtd_device(struct mtd_info *mtd)
549 {
550 	struct mtd_notifier *not;
551 	int i, error;
552 
553 	/*
554 	 * May occur, for instance, on buggy drivers which call
555 	 * mtd_device_parse_register() multiple times on the same master MTD,
556 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
557 	 */
558 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
559 		return -EEXIST;
560 
561 	BUG_ON(mtd->writesize == 0);
562 
563 	if (WARN_ON((!mtd->erasesize || !mtd->_erase) &&
564 		    !(mtd->flags & MTD_NO_ERASE)))
565 		return -EINVAL;
566 
567 	mutex_lock(&mtd_table_mutex);
568 
569 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
570 	if (i < 0) {
571 		error = i;
572 		goto fail_locked;
573 	}
574 
575 	mtd->index = i;
576 	mtd->usecount = 0;
577 
578 	/* default value if not set by driver */
579 	if (mtd->bitflip_threshold == 0)
580 		mtd->bitflip_threshold = mtd->ecc_strength;
581 
582 	if (is_power_of_2(mtd->erasesize))
583 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
584 	else
585 		mtd->erasesize_shift = 0;
586 
587 	if (is_power_of_2(mtd->writesize))
588 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
589 	else
590 		mtd->writesize_shift = 0;
591 
592 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
593 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
594 
595 	/* Some chips always power up locked. Unlock them now */
596 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
597 		error = mtd_unlock(mtd, 0, mtd->size);
598 		if (error && error != -EOPNOTSUPP)
599 			printk(KERN_WARNING
600 			       "%s: unlock failed, writes may not work\n",
601 			       mtd->name);
602 		/* Ignore unlock failures? */
603 		error = 0;
604 	}
605 
606 	/* Caller should have set dev.parent to match the
607 	 * physical device, if appropriate.
608 	 */
609 	mtd->dev.type = &mtd_devtype;
610 	mtd->dev.class = &mtd_class;
611 	mtd->dev.devt = MTD_DEVT(i);
612 	dev_set_name(&mtd->dev, "mtd%d", i);
613 	dev_set_drvdata(&mtd->dev, mtd);
614 	of_node_get(mtd_get_of_node(mtd));
615 	error = device_register(&mtd->dev);
616 	if (error)
617 		goto fail_added;
618 
619 	/* Add the nvmem provider */
620 	error = mtd_nvmem_add(mtd);
621 	if (error)
622 		goto fail_nvmem_add;
623 
624 	if (!IS_ERR_OR_NULL(dfs_dir_mtd)) {
625 		mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd);
626 		if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) {
627 			pr_debug("mtd device %s won't show data in debugfs\n",
628 				 dev_name(&mtd->dev));
629 		}
630 	}
631 
632 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
633 		      "mtd%dro", i);
634 
635 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
636 	/* No need to get a refcount on the module containing
637 	   the notifier, since we hold the mtd_table_mutex */
638 	list_for_each_entry(not, &mtd_notifiers, list)
639 		not->add(mtd);
640 
641 	mutex_unlock(&mtd_table_mutex);
642 	/* We _know_ we aren't being removed, because
643 	   our caller is still holding us here. So none
644 	   of this try_ nonsense, and no bitching about it
645 	   either. :) */
646 	__module_get(THIS_MODULE);
647 	return 0;
648 
649 fail_nvmem_add:
650 	device_unregister(&mtd->dev);
651 fail_added:
652 	of_node_put(mtd_get_of_node(mtd));
653 	idr_remove(&mtd_idr, i);
654 fail_locked:
655 	mutex_unlock(&mtd_table_mutex);
656 	return error;
657 }
658 
659 /**
660  *	del_mtd_device - unregister an MTD device
661  *	@mtd: pointer to MTD device info structure
662  *
663  *	Remove a device from the list of MTD devices present in the system,
664  *	and notify each currently active MTD 'user' of its departure.
665  *	Returns zero on success or 1 on failure, which currently will happen
666  *	if the requested device does not appear to be present in the list.
667  */
668 
669 int del_mtd_device(struct mtd_info *mtd)
670 {
671 	int ret;
672 	struct mtd_notifier *not;
673 
674 	mutex_lock(&mtd_table_mutex);
675 
676 	debugfs_remove_recursive(mtd->dbg.dfs_dir);
677 
678 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
679 		ret = -ENODEV;
680 		goto out_error;
681 	}
682 
683 	/* No need to get a refcount on the module containing
684 		the notifier, since we hold the mtd_table_mutex */
685 	list_for_each_entry(not, &mtd_notifiers, list)
686 		not->remove(mtd);
687 
688 	if (mtd->usecount) {
689 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
690 		       mtd->index, mtd->name, mtd->usecount);
691 		ret = -EBUSY;
692 	} else {
693 		/* Try to remove the NVMEM provider */
694 		if (mtd->nvmem)
695 			nvmem_unregister(mtd->nvmem);
696 
697 		device_unregister(&mtd->dev);
698 
699 		idr_remove(&mtd_idr, mtd->index);
700 		of_node_put(mtd_get_of_node(mtd));
701 
702 		module_put(THIS_MODULE);
703 		ret = 0;
704 	}
705 
706 out_error:
707 	mutex_unlock(&mtd_table_mutex);
708 	return ret;
709 }
710 
711 /*
712  * Set a few defaults based on the parent devices, if not provided by the
713  * driver
714  */
715 static void mtd_set_dev_defaults(struct mtd_info *mtd)
716 {
717 	if (mtd->dev.parent) {
718 		if (!mtd->owner && mtd->dev.parent->driver)
719 			mtd->owner = mtd->dev.parent->driver->owner;
720 		if (!mtd->name)
721 			mtd->name = dev_name(mtd->dev.parent);
722 	} else {
723 		pr_debug("mtd device won't show a device symlink in sysfs\n");
724 	}
725 
726 	mtd->orig_flags = mtd->flags;
727 }
728 
729 /**
730  * mtd_device_parse_register - parse partitions and register an MTD device.
731  *
732  * @mtd: the MTD device to register
733  * @types: the list of MTD partition probes to try, see
734  *         'parse_mtd_partitions()' for more information
735  * @parser_data: MTD partition parser-specific data
736  * @parts: fallback partition information to register, if parsing fails;
737  *         only valid if %nr_parts > %0
738  * @nr_parts: the number of partitions in parts, if zero then the full
739  *            MTD device is registered if no partition info is found
740  *
741  * This function aggregates MTD partitions parsing (done by
742  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
743  * basically follows the most common pattern found in many MTD drivers:
744  *
745  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
746  *   registered first.
747  * * Then It tries to probe partitions on MTD device @mtd using parsers
748  *   specified in @types (if @types is %NULL, then the default list of parsers
749  *   is used, see 'parse_mtd_partitions()' for more information). If none are
750  *   found this functions tries to fallback to information specified in
751  *   @parts/@nr_parts.
752  * * If no partitions were found this function just registers the MTD device
753  *   @mtd and exits.
754  *
755  * Returns zero in case of success and a negative error code in case of failure.
756  */
757 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
758 			      struct mtd_part_parser_data *parser_data,
759 			      const struct mtd_partition *parts,
760 			      int nr_parts)
761 {
762 	int ret;
763 
764 	mtd_set_dev_defaults(mtd);
765 
766 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
767 		ret = add_mtd_device(mtd);
768 		if (ret)
769 			return ret;
770 	}
771 
772 	/* Prefer parsed partitions over driver-provided fallback */
773 	ret = parse_mtd_partitions(mtd, types, parser_data);
774 	if (ret > 0)
775 		ret = 0;
776 	else if (nr_parts)
777 		ret = add_mtd_partitions(mtd, parts, nr_parts);
778 	else if (!device_is_registered(&mtd->dev))
779 		ret = add_mtd_device(mtd);
780 	else
781 		ret = 0;
782 
783 	if (ret)
784 		goto out;
785 
786 	/*
787 	 * FIXME: some drivers unfortunately call this function more than once.
788 	 * So we have to check if we've already assigned the reboot notifier.
789 	 *
790 	 * Generally, we can make multiple calls work for most cases, but it
791 	 * does cause problems with parse_mtd_partitions() above (e.g.,
792 	 * cmdlineparts will register partitions more than once).
793 	 */
794 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
795 		  "MTD already registered\n");
796 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
797 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
798 		register_reboot_notifier(&mtd->reboot_notifier);
799 	}
800 
801 out:
802 	if (ret && device_is_registered(&mtd->dev))
803 		del_mtd_device(mtd);
804 
805 	return ret;
806 }
807 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
808 
809 /**
810  * mtd_device_unregister - unregister an existing MTD device.
811  *
812  * @master: the MTD device to unregister.  This will unregister both the master
813  *          and any partitions if registered.
814  */
815 int mtd_device_unregister(struct mtd_info *master)
816 {
817 	int err;
818 
819 	if (master->_reboot)
820 		unregister_reboot_notifier(&master->reboot_notifier);
821 
822 	err = del_mtd_partitions(master);
823 	if (err)
824 		return err;
825 
826 	if (!device_is_registered(&master->dev))
827 		return 0;
828 
829 	return del_mtd_device(master);
830 }
831 EXPORT_SYMBOL_GPL(mtd_device_unregister);
832 
833 /**
834  *	register_mtd_user - register a 'user' of MTD devices.
835  *	@new: pointer to notifier info structure
836  *
837  *	Registers a pair of callbacks function to be called upon addition
838  *	or removal of MTD devices. Causes the 'add' callback to be immediately
839  *	invoked for each MTD device currently present in the system.
840  */
841 void register_mtd_user (struct mtd_notifier *new)
842 {
843 	struct mtd_info *mtd;
844 
845 	mutex_lock(&mtd_table_mutex);
846 
847 	list_add(&new->list, &mtd_notifiers);
848 
849 	__module_get(THIS_MODULE);
850 
851 	mtd_for_each_device(mtd)
852 		new->add(mtd);
853 
854 	mutex_unlock(&mtd_table_mutex);
855 }
856 EXPORT_SYMBOL_GPL(register_mtd_user);
857 
858 /**
859  *	unregister_mtd_user - unregister a 'user' of MTD devices.
860  *	@old: pointer to notifier info structure
861  *
862  *	Removes a callback function pair from the list of 'users' to be
863  *	notified upon addition or removal of MTD devices. Causes the
864  *	'remove' callback to be immediately invoked for each MTD device
865  *	currently present in the system.
866  */
867 int unregister_mtd_user (struct mtd_notifier *old)
868 {
869 	struct mtd_info *mtd;
870 
871 	mutex_lock(&mtd_table_mutex);
872 
873 	module_put(THIS_MODULE);
874 
875 	mtd_for_each_device(mtd)
876 		old->remove(mtd);
877 
878 	list_del(&old->list);
879 	mutex_unlock(&mtd_table_mutex);
880 	return 0;
881 }
882 EXPORT_SYMBOL_GPL(unregister_mtd_user);
883 
884 /**
885  *	get_mtd_device - obtain a validated handle for an MTD device
886  *	@mtd: last known address of the required MTD device
887  *	@num: internal device number of the required MTD device
888  *
889  *	Given a number and NULL address, return the num'th entry in the device
890  *	table, if any.	Given an address and num == -1, search the device table
891  *	for a device with that address and return if it's still present. Given
892  *	both, return the num'th driver only if its address matches. Return
893  *	error code if not.
894  */
895 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
896 {
897 	struct mtd_info *ret = NULL, *other;
898 	int err = -ENODEV;
899 
900 	mutex_lock(&mtd_table_mutex);
901 
902 	if (num == -1) {
903 		mtd_for_each_device(other) {
904 			if (other == mtd) {
905 				ret = mtd;
906 				break;
907 			}
908 		}
909 	} else if (num >= 0) {
910 		ret = idr_find(&mtd_idr, num);
911 		if (mtd && mtd != ret)
912 			ret = NULL;
913 	}
914 
915 	if (!ret) {
916 		ret = ERR_PTR(err);
917 		goto out;
918 	}
919 
920 	err = __get_mtd_device(ret);
921 	if (err)
922 		ret = ERR_PTR(err);
923 out:
924 	mutex_unlock(&mtd_table_mutex);
925 	return ret;
926 }
927 EXPORT_SYMBOL_GPL(get_mtd_device);
928 
929 
930 int __get_mtd_device(struct mtd_info *mtd)
931 {
932 	int err;
933 
934 	if (!try_module_get(mtd->owner))
935 		return -ENODEV;
936 
937 	if (mtd->_get_device) {
938 		err = mtd->_get_device(mtd);
939 
940 		if (err) {
941 			module_put(mtd->owner);
942 			return err;
943 		}
944 	}
945 	mtd->usecount++;
946 	return 0;
947 }
948 EXPORT_SYMBOL_GPL(__get_mtd_device);
949 
950 /**
951  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
952  *	device name
953  *	@name: MTD device name to open
954  *
955  * 	This function returns MTD device description structure in case of
956  * 	success and an error code in case of failure.
957  */
958 struct mtd_info *get_mtd_device_nm(const char *name)
959 {
960 	int err = -ENODEV;
961 	struct mtd_info *mtd = NULL, *other;
962 
963 	mutex_lock(&mtd_table_mutex);
964 
965 	mtd_for_each_device(other) {
966 		if (!strcmp(name, other->name)) {
967 			mtd = other;
968 			break;
969 		}
970 	}
971 
972 	if (!mtd)
973 		goto out_unlock;
974 
975 	err = __get_mtd_device(mtd);
976 	if (err)
977 		goto out_unlock;
978 
979 	mutex_unlock(&mtd_table_mutex);
980 	return mtd;
981 
982 out_unlock:
983 	mutex_unlock(&mtd_table_mutex);
984 	return ERR_PTR(err);
985 }
986 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
987 
988 void put_mtd_device(struct mtd_info *mtd)
989 {
990 	mutex_lock(&mtd_table_mutex);
991 	__put_mtd_device(mtd);
992 	mutex_unlock(&mtd_table_mutex);
993 
994 }
995 EXPORT_SYMBOL_GPL(put_mtd_device);
996 
997 void __put_mtd_device(struct mtd_info *mtd)
998 {
999 	--mtd->usecount;
1000 	BUG_ON(mtd->usecount < 0);
1001 
1002 	if (mtd->_put_device)
1003 		mtd->_put_device(mtd);
1004 
1005 	module_put(mtd->owner);
1006 }
1007 EXPORT_SYMBOL_GPL(__put_mtd_device);
1008 
1009 /*
1010  * Erase is an synchronous operation. Device drivers are epected to return a
1011  * negative error code if the operation failed and update instr->fail_addr
1012  * to point the portion that was not properly erased.
1013  */
1014 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1015 {
1016 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1017 
1018 	if (!mtd->erasesize || !mtd->_erase)
1019 		return -ENOTSUPP;
1020 
1021 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1022 		return -EINVAL;
1023 	if (!(mtd->flags & MTD_WRITEABLE))
1024 		return -EROFS;
1025 
1026 	if (!instr->len)
1027 		return 0;
1028 
1029 	ledtrig_mtd_activity();
1030 	return mtd->_erase(mtd, instr);
1031 }
1032 EXPORT_SYMBOL_GPL(mtd_erase);
1033 
1034 /*
1035  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1036  */
1037 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1038 	      void **virt, resource_size_t *phys)
1039 {
1040 	*retlen = 0;
1041 	*virt = NULL;
1042 	if (phys)
1043 		*phys = 0;
1044 	if (!mtd->_point)
1045 		return -EOPNOTSUPP;
1046 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1047 		return -EINVAL;
1048 	if (!len)
1049 		return 0;
1050 	return mtd->_point(mtd, from, len, retlen, virt, phys);
1051 }
1052 EXPORT_SYMBOL_GPL(mtd_point);
1053 
1054 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1055 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1056 {
1057 	if (!mtd->_unpoint)
1058 		return -EOPNOTSUPP;
1059 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1060 		return -EINVAL;
1061 	if (!len)
1062 		return 0;
1063 	return mtd->_unpoint(mtd, from, len);
1064 }
1065 EXPORT_SYMBOL_GPL(mtd_unpoint);
1066 
1067 /*
1068  * Allow NOMMU mmap() to directly map the device (if not NULL)
1069  * - return the address to which the offset maps
1070  * - return -ENOSYS to indicate refusal to do the mapping
1071  */
1072 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1073 				    unsigned long offset, unsigned long flags)
1074 {
1075 	size_t retlen;
1076 	void *virt;
1077 	int ret;
1078 
1079 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1080 	if (ret)
1081 		return ret;
1082 	if (retlen != len) {
1083 		mtd_unpoint(mtd, offset, retlen);
1084 		return -ENOSYS;
1085 	}
1086 	return (unsigned long)virt;
1087 }
1088 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1089 
1090 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1091 	     u_char *buf)
1092 {
1093 	int ret_code;
1094 	*retlen = 0;
1095 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1096 		return -EINVAL;
1097 	if (!len)
1098 		return 0;
1099 
1100 	ledtrig_mtd_activity();
1101 	/*
1102 	 * In the absence of an error, drivers return a non-negative integer
1103 	 * representing the maximum number of bitflips that were corrected on
1104 	 * any one ecc region (if applicable; zero otherwise).
1105 	 */
1106 	if (mtd->_read) {
1107 		ret_code = mtd->_read(mtd, from, len, retlen, buf);
1108 	} else if (mtd->_read_oob) {
1109 		struct mtd_oob_ops ops = {
1110 			.len = len,
1111 			.datbuf = buf,
1112 		};
1113 
1114 		ret_code = mtd->_read_oob(mtd, from, &ops);
1115 		*retlen = ops.retlen;
1116 	} else {
1117 		return -ENOTSUPP;
1118 	}
1119 
1120 	if (unlikely(ret_code < 0))
1121 		return ret_code;
1122 	if (mtd->ecc_strength == 0)
1123 		return 0;	/* device lacks ecc */
1124 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1125 }
1126 EXPORT_SYMBOL_GPL(mtd_read);
1127 
1128 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1129 	      const u_char *buf)
1130 {
1131 	*retlen = 0;
1132 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1133 		return -EINVAL;
1134 	if ((!mtd->_write && !mtd->_write_oob) ||
1135 	    !(mtd->flags & MTD_WRITEABLE))
1136 		return -EROFS;
1137 	if (!len)
1138 		return 0;
1139 	ledtrig_mtd_activity();
1140 
1141 	if (!mtd->_write) {
1142 		struct mtd_oob_ops ops = {
1143 			.len = len,
1144 			.datbuf = (u8 *)buf,
1145 		};
1146 		int ret;
1147 
1148 		ret = mtd->_write_oob(mtd, to, &ops);
1149 		*retlen = ops.retlen;
1150 		return ret;
1151 	}
1152 
1153 	return mtd->_write(mtd, to, len, retlen, buf);
1154 }
1155 EXPORT_SYMBOL_GPL(mtd_write);
1156 
1157 /*
1158  * In blackbox flight recorder like scenarios we want to make successful writes
1159  * in interrupt context. panic_write() is only intended to be called when its
1160  * known the kernel is about to panic and we need the write to succeed. Since
1161  * the kernel is not going to be running for much longer, this function can
1162  * break locks and delay to ensure the write succeeds (but not sleep).
1163  */
1164 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1165 		    const u_char *buf)
1166 {
1167 	*retlen = 0;
1168 	if (!mtd->_panic_write)
1169 		return -EOPNOTSUPP;
1170 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1171 		return -EINVAL;
1172 	if (!(mtd->flags & MTD_WRITEABLE))
1173 		return -EROFS;
1174 	if (!len)
1175 		return 0;
1176 	return mtd->_panic_write(mtd, to, len, retlen, buf);
1177 }
1178 EXPORT_SYMBOL_GPL(mtd_panic_write);
1179 
1180 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1181 			     struct mtd_oob_ops *ops)
1182 {
1183 	/*
1184 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1185 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1186 	 *  this case.
1187 	 */
1188 	if (!ops->datbuf)
1189 		ops->len = 0;
1190 
1191 	if (!ops->oobbuf)
1192 		ops->ooblen = 0;
1193 
1194 	if (offs < 0 || offs + ops->len > mtd->size)
1195 		return -EINVAL;
1196 
1197 	if (ops->ooblen) {
1198 		size_t maxooblen;
1199 
1200 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1201 			return -EINVAL;
1202 
1203 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1204 				      mtd_div_by_ws(offs, mtd)) *
1205 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1206 		if (ops->ooblen > maxooblen)
1207 			return -EINVAL;
1208 	}
1209 
1210 	return 0;
1211 }
1212 
1213 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1214 {
1215 	int ret_code;
1216 	ops->retlen = ops->oobretlen = 0;
1217 
1218 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1219 	if (ret_code)
1220 		return ret_code;
1221 
1222 	ledtrig_mtd_activity();
1223 
1224 	/* Check the validity of a potential fallback on mtd->_read */
1225 	if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf))
1226 		return -EOPNOTSUPP;
1227 
1228 	if (mtd->_read_oob)
1229 		ret_code = mtd->_read_oob(mtd, from, ops);
1230 	else
1231 		ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen,
1232 				      ops->datbuf);
1233 
1234 	/*
1235 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1236 	 * similar to mtd->_read(), returning a non-negative integer
1237 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1238 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1239 	 */
1240 	if (unlikely(ret_code < 0))
1241 		return ret_code;
1242 	if (mtd->ecc_strength == 0)
1243 		return 0;	/* device lacks ecc */
1244 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1245 }
1246 EXPORT_SYMBOL_GPL(mtd_read_oob);
1247 
1248 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1249 				struct mtd_oob_ops *ops)
1250 {
1251 	int ret;
1252 
1253 	ops->retlen = ops->oobretlen = 0;
1254 
1255 	if (!(mtd->flags & MTD_WRITEABLE))
1256 		return -EROFS;
1257 
1258 	ret = mtd_check_oob_ops(mtd, to, ops);
1259 	if (ret)
1260 		return ret;
1261 
1262 	ledtrig_mtd_activity();
1263 
1264 	/* Check the validity of a potential fallback on mtd->_write */
1265 	if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf))
1266 		return -EOPNOTSUPP;
1267 
1268 	if (mtd->_write_oob)
1269 		return mtd->_write_oob(mtd, to, ops);
1270 	else
1271 		return mtd->_write(mtd, to, ops->len, &ops->retlen,
1272 				   ops->datbuf);
1273 }
1274 EXPORT_SYMBOL_GPL(mtd_write_oob);
1275 
1276 /**
1277  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1278  * @mtd: MTD device structure
1279  * @section: ECC section. Depending on the layout you may have all the ECC
1280  *	     bytes stored in a single contiguous section, or one section
1281  *	     per ECC chunk (and sometime several sections for a single ECC
1282  *	     ECC chunk)
1283  * @oobecc: OOB region struct filled with the appropriate ECC position
1284  *	    information
1285  *
1286  * This function returns ECC section information in the OOB area. If you want
1287  * to get all the ECC bytes information, then you should call
1288  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1289  *
1290  * Returns zero on success, a negative error code otherwise.
1291  */
1292 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1293 		      struct mtd_oob_region *oobecc)
1294 {
1295 	memset(oobecc, 0, sizeof(*oobecc));
1296 
1297 	if (!mtd || section < 0)
1298 		return -EINVAL;
1299 
1300 	if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1301 		return -ENOTSUPP;
1302 
1303 	return mtd->ooblayout->ecc(mtd, section, oobecc);
1304 }
1305 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1306 
1307 /**
1308  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1309  *			section
1310  * @mtd: MTD device structure
1311  * @section: Free section you are interested in. Depending on the layout
1312  *	     you may have all the free bytes stored in a single contiguous
1313  *	     section, or one section per ECC chunk plus an extra section
1314  *	     for the remaining bytes (or other funky layout).
1315  * @oobfree: OOB region struct filled with the appropriate free position
1316  *	     information
1317  *
1318  * This function returns free bytes position in the OOB area. If you want
1319  * to get all the free bytes information, then you should call
1320  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1321  *
1322  * Returns zero on success, a negative error code otherwise.
1323  */
1324 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1325 		       struct mtd_oob_region *oobfree)
1326 {
1327 	memset(oobfree, 0, sizeof(*oobfree));
1328 
1329 	if (!mtd || section < 0)
1330 		return -EINVAL;
1331 
1332 	if (!mtd->ooblayout || !mtd->ooblayout->free)
1333 		return -ENOTSUPP;
1334 
1335 	return mtd->ooblayout->free(mtd, section, oobfree);
1336 }
1337 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1338 
1339 /**
1340  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1341  * @mtd: mtd info structure
1342  * @byte: the byte we are searching for
1343  * @sectionp: pointer where the section id will be stored
1344  * @oobregion: used to retrieve the ECC position
1345  * @iter: iterator function. Should be either mtd_ooblayout_free or
1346  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1347  *
1348  * This function returns the section id and oobregion information of a
1349  * specific byte. For example, say you want to know where the 4th ECC byte is
1350  * stored, you'll use:
1351  *
1352  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1353  *
1354  * Returns zero on success, a negative error code otherwise.
1355  */
1356 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1357 				int *sectionp, struct mtd_oob_region *oobregion,
1358 				int (*iter)(struct mtd_info *,
1359 					    int section,
1360 					    struct mtd_oob_region *oobregion))
1361 {
1362 	int pos = 0, ret, section = 0;
1363 
1364 	memset(oobregion, 0, sizeof(*oobregion));
1365 
1366 	while (1) {
1367 		ret = iter(mtd, section, oobregion);
1368 		if (ret)
1369 			return ret;
1370 
1371 		if (pos + oobregion->length > byte)
1372 			break;
1373 
1374 		pos += oobregion->length;
1375 		section++;
1376 	}
1377 
1378 	/*
1379 	 * Adjust region info to make it start at the beginning at the
1380 	 * 'start' ECC byte.
1381 	 */
1382 	oobregion->offset += byte - pos;
1383 	oobregion->length -= byte - pos;
1384 	*sectionp = section;
1385 
1386 	return 0;
1387 }
1388 
1389 /**
1390  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1391  *				  ECC byte
1392  * @mtd: mtd info structure
1393  * @eccbyte: the byte we are searching for
1394  * @sectionp: pointer where the section id will be stored
1395  * @oobregion: OOB region information
1396  *
1397  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1398  * byte.
1399  *
1400  * Returns zero on success, a negative error code otherwise.
1401  */
1402 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1403 				 int *section,
1404 				 struct mtd_oob_region *oobregion)
1405 {
1406 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1407 					 mtd_ooblayout_ecc);
1408 }
1409 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1410 
1411 /**
1412  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1413  * @mtd: mtd info structure
1414  * @buf: destination buffer to store OOB bytes
1415  * @oobbuf: OOB buffer
1416  * @start: first byte to retrieve
1417  * @nbytes: number of bytes to retrieve
1418  * @iter: section iterator
1419  *
1420  * Extract bytes attached to a specific category (ECC or free)
1421  * from the OOB buffer and copy them into buf.
1422  *
1423  * Returns zero on success, a negative error code otherwise.
1424  */
1425 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1426 				const u8 *oobbuf, int start, int nbytes,
1427 				int (*iter)(struct mtd_info *,
1428 					    int section,
1429 					    struct mtd_oob_region *oobregion))
1430 {
1431 	struct mtd_oob_region oobregion;
1432 	int section, ret;
1433 
1434 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1435 					&oobregion, iter);
1436 
1437 	while (!ret) {
1438 		int cnt;
1439 
1440 		cnt = min_t(int, nbytes, oobregion.length);
1441 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1442 		buf += cnt;
1443 		nbytes -= cnt;
1444 
1445 		if (!nbytes)
1446 			break;
1447 
1448 		ret = iter(mtd, ++section, &oobregion);
1449 	}
1450 
1451 	return ret;
1452 }
1453 
1454 /**
1455  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1456  * @mtd: mtd info structure
1457  * @buf: source buffer to get OOB bytes from
1458  * @oobbuf: OOB buffer
1459  * @start: first OOB byte to set
1460  * @nbytes: number of OOB bytes to set
1461  * @iter: section iterator
1462  *
1463  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1464  * is selected by passing the appropriate iterator.
1465  *
1466  * Returns zero on success, a negative error code otherwise.
1467  */
1468 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1469 				u8 *oobbuf, int start, int nbytes,
1470 				int (*iter)(struct mtd_info *,
1471 					    int section,
1472 					    struct mtd_oob_region *oobregion))
1473 {
1474 	struct mtd_oob_region oobregion;
1475 	int section, ret;
1476 
1477 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1478 					&oobregion, iter);
1479 
1480 	while (!ret) {
1481 		int cnt;
1482 
1483 		cnt = min_t(int, nbytes, oobregion.length);
1484 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1485 		buf += cnt;
1486 		nbytes -= cnt;
1487 
1488 		if (!nbytes)
1489 			break;
1490 
1491 		ret = iter(mtd, ++section, &oobregion);
1492 	}
1493 
1494 	return ret;
1495 }
1496 
1497 /**
1498  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1499  * @mtd: mtd info structure
1500  * @iter: category iterator
1501  *
1502  * Count the number of bytes in a given category.
1503  *
1504  * Returns a positive value on success, a negative error code otherwise.
1505  */
1506 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1507 				int (*iter)(struct mtd_info *,
1508 					    int section,
1509 					    struct mtd_oob_region *oobregion))
1510 {
1511 	struct mtd_oob_region oobregion;
1512 	int section = 0, ret, nbytes = 0;
1513 
1514 	while (1) {
1515 		ret = iter(mtd, section++, &oobregion);
1516 		if (ret) {
1517 			if (ret == -ERANGE)
1518 				ret = nbytes;
1519 			break;
1520 		}
1521 
1522 		nbytes += oobregion.length;
1523 	}
1524 
1525 	return ret;
1526 }
1527 
1528 /**
1529  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1530  * @mtd: mtd info structure
1531  * @eccbuf: destination buffer to store ECC bytes
1532  * @oobbuf: OOB buffer
1533  * @start: first ECC byte to retrieve
1534  * @nbytes: number of ECC bytes to retrieve
1535  *
1536  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1537  *
1538  * Returns zero on success, a negative error code otherwise.
1539  */
1540 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1541 			       const u8 *oobbuf, int start, int nbytes)
1542 {
1543 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1544 				       mtd_ooblayout_ecc);
1545 }
1546 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1547 
1548 /**
1549  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1550  * @mtd: mtd info structure
1551  * @eccbuf: source buffer to get ECC bytes from
1552  * @oobbuf: OOB buffer
1553  * @start: first ECC byte to set
1554  * @nbytes: number of ECC bytes to set
1555  *
1556  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1557  *
1558  * Returns zero on success, a negative error code otherwise.
1559  */
1560 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1561 			       u8 *oobbuf, int start, int nbytes)
1562 {
1563 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1564 				       mtd_ooblayout_ecc);
1565 }
1566 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1567 
1568 /**
1569  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1570  * @mtd: mtd info structure
1571  * @databuf: destination buffer to store ECC bytes
1572  * @oobbuf: OOB buffer
1573  * @start: first ECC byte to retrieve
1574  * @nbytes: number of ECC bytes to retrieve
1575  *
1576  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1577  *
1578  * Returns zero on success, a negative error code otherwise.
1579  */
1580 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1581 				const u8 *oobbuf, int start, int nbytes)
1582 {
1583 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1584 				       mtd_ooblayout_free);
1585 }
1586 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1587 
1588 /**
1589  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1590  * @mtd: mtd info structure
1591  * @databuf: source buffer to get data bytes from
1592  * @oobbuf: OOB buffer
1593  * @start: first ECC byte to set
1594  * @nbytes: number of ECC bytes to set
1595  *
1596  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1597  *
1598  * Returns zero on success, a negative error code otherwise.
1599  */
1600 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1601 				u8 *oobbuf, int start, int nbytes)
1602 {
1603 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1604 				       mtd_ooblayout_free);
1605 }
1606 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1607 
1608 /**
1609  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1610  * @mtd: mtd info structure
1611  *
1612  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1613  *
1614  * Returns zero on success, a negative error code otherwise.
1615  */
1616 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1617 {
1618 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1619 }
1620 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1621 
1622 /**
1623  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1624  * @mtd: mtd info structure
1625  *
1626  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1627  *
1628  * Returns zero on success, a negative error code otherwise.
1629  */
1630 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1631 {
1632 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1633 }
1634 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1635 
1636 /*
1637  * Method to access the protection register area, present in some flash
1638  * devices. The user data is one time programmable but the factory data is read
1639  * only.
1640  */
1641 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1642 			   struct otp_info *buf)
1643 {
1644 	if (!mtd->_get_fact_prot_info)
1645 		return -EOPNOTSUPP;
1646 	if (!len)
1647 		return 0;
1648 	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1649 }
1650 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1651 
1652 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1653 			   size_t *retlen, u_char *buf)
1654 {
1655 	*retlen = 0;
1656 	if (!mtd->_read_fact_prot_reg)
1657 		return -EOPNOTSUPP;
1658 	if (!len)
1659 		return 0;
1660 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1661 }
1662 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1663 
1664 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1665 			   struct otp_info *buf)
1666 {
1667 	if (!mtd->_get_user_prot_info)
1668 		return -EOPNOTSUPP;
1669 	if (!len)
1670 		return 0;
1671 	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1672 }
1673 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1674 
1675 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1676 			   size_t *retlen, u_char *buf)
1677 {
1678 	*retlen = 0;
1679 	if (!mtd->_read_user_prot_reg)
1680 		return -EOPNOTSUPP;
1681 	if (!len)
1682 		return 0;
1683 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1684 }
1685 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1686 
1687 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1688 			    size_t *retlen, u_char *buf)
1689 {
1690 	int ret;
1691 
1692 	*retlen = 0;
1693 	if (!mtd->_write_user_prot_reg)
1694 		return -EOPNOTSUPP;
1695 	if (!len)
1696 		return 0;
1697 	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1698 	if (ret)
1699 		return ret;
1700 
1701 	/*
1702 	 * If no data could be written at all, we are out of memory and
1703 	 * must return -ENOSPC.
1704 	 */
1705 	return (*retlen) ? 0 : -ENOSPC;
1706 }
1707 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1708 
1709 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1710 {
1711 	if (!mtd->_lock_user_prot_reg)
1712 		return -EOPNOTSUPP;
1713 	if (!len)
1714 		return 0;
1715 	return mtd->_lock_user_prot_reg(mtd, from, len);
1716 }
1717 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1718 
1719 /* Chip-supported device locking */
1720 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1721 {
1722 	if (!mtd->_lock)
1723 		return -EOPNOTSUPP;
1724 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1725 		return -EINVAL;
1726 	if (!len)
1727 		return 0;
1728 	return mtd->_lock(mtd, ofs, len);
1729 }
1730 EXPORT_SYMBOL_GPL(mtd_lock);
1731 
1732 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1733 {
1734 	if (!mtd->_unlock)
1735 		return -EOPNOTSUPP;
1736 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1737 		return -EINVAL;
1738 	if (!len)
1739 		return 0;
1740 	return mtd->_unlock(mtd, ofs, len);
1741 }
1742 EXPORT_SYMBOL_GPL(mtd_unlock);
1743 
1744 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1745 {
1746 	if (!mtd->_is_locked)
1747 		return -EOPNOTSUPP;
1748 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1749 		return -EINVAL;
1750 	if (!len)
1751 		return 0;
1752 	return mtd->_is_locked(mtd, ofs, len);
1753 }
1754 EXPORT_SYMBOL_GPL(mtd_is_locked);
1755 
1756 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1757 {
1758 	if (ofs < 0 || ofs >= mtd->size)
1759 		return -EINVAL;
1760 	if (!mtd->_block_isreserved)
1761 		return 0;
1762 	return mtd->_block_isreserved(mtd, ofs);
1763 }
1764 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1765 
1766 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1767 {
1768 	if (ofs < 0 || ofs >= mtd->size)
1769 		return -EINVAL;
1770 	if (!mtd->_block_isbad)
1771 		return 0;
1772 	return mtd->_block_isbad(mtd, ofs);
1773 }
1774 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1775 
1776 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1777 {
1778 	if (!mtd->_block_markbad)
1779 		return -EOPNOTSUPP;
1780 	if (ofs < 0 || ofs >= mtd->size)
1781 		return -EINVAL;
1782 	if (!(mtd->flags & MTD_WRITEABLE))
1783 		return -EROFS;
1784 	return mtd->_block_markbad(mtd, ofs);
1785 }
1786 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1787 
1788 /*
1789  * default_mtd_writev - the default writev method
1790  * @mtd: mtd device description object pointer
1791  * @vecs: the vectors to write
1792  * @count: count of vectors in @vecs
1793  * @to: the MTD device offset to write to
1794  * @retlen: on exit contains the count of bytes written to the MTD device.
1795  *
1796  * This function returns zero in case of success and a negative error code in
1797  * case of failure.
1798  */
1799 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1800 			      unsigned long count, loff_t to, size_t *retlen)
1801 {
1802 	unsigned long i;
1803 	size_t totlen = 0, thislen;
1804 	int ret = 0;
1805 
1806 	for (i = 0; i < count; i++) {
1807 		if (!vecs[i].iov_len)
1808 			continue;
1809 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1810 				vecs[i].iov_base);
1811 		totlen += thislen;
1812 		if (ret || thislen != vecs[i].iov_len)
1813 			break;
1814 		to += vecs[i].iov_len;
1815 	}
1816 	*retlen = totlen;
1817 	return ret;
1818 }
1819 
1820 /*
1821  * mtd_writev - the vector-based MTD write method
1822  * @mtd: mtd device description object pointer
1823  * @vecs: the vectors to write
1824  * @count: count of vectors in @vecs
1825  * @to: the MTD device offset to write to
1826  * @retlen: on exit contains the count of bytes written to the MTD device.
1827  *
1828  * This function returns zero in case of success and a negative error code in
1829  * case of failure.
1830  */
1831 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1832 	       unsigned long count, loff_t to, size_t *retlen)
1833 {
1834 	*retlen = 0;
1835 	if (!(mtd->flags & MTD_WRITEABLE))
1836 		return -EROFS;
1837 	if (!mtd->_writev)
1838 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1839 	return mtd->_writev(mtd, vecs, count, to, retlen);
1840 }
1841 EXPORT_SYMBOL_GPL(mtd_writev);
1842 
1843 /**
1844  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1845  * @mtd: mtd device description object pointer
1846  * @size: a pointer to the ideal or maximum size of the allocation, points
1847  *        to the actual allocation size on success.
1848  *
1849  * This routine attempts to allocate a contiguous kernel buffer up to
1850  * the specified size, backing off the size of the request exponentially
1851  * until the request succeeds or until the allocation size falls below
1852  * the system page size. This attempts to make sure it does not adversely
1853  * impact system performance, so when allocating more than one page, we
1854  * ask the memory allocator to avoid re-trying, swapping, writing back
1855  * or performing I/O.
1856  *
1857  * Note, this function also makes sure that the allocated buffer is aligned to
1858  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1859  *
1860  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1861  * to handle smaller (i.e. degraded) buffer allocations under low- or
1862  * fragmented-memory situations where such reduced allocations, from a
1863  * requested ideal, are allowed.
1864  *
1865  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1866  */
1867 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1868 {
1869 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1870 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1871 	void *kbuf;
1872 
1873 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1874 
1875 	while (*size > min_alloc) {
1876 		kbuf = kmalloc(*size, flags);
1877 		if (kbuf)
1878 			return kbuf;
1879 
1880 		*size >>= 1;
1881 		*size = ALIGN(*size, mtd->writesize);
1882 	}
1883 
1884 	/*
1885 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1886 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1887 	 */
1888 	return kmalloc(*size, GFP_KERNEL);
1889 }
1890 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1891 
1892 #ifdef CONFIG_PROC_FS
1893 
1894 /*====================================================================*/
1895 /* Support for /proc/mtd */
1896 
1897 static int mtd_proc_show(struct seq_file *m, void *v)
1898 {
1899 	struct mtd_info *mtd;
1900 
1901 	seq_puts(m, "dev:    size   erasesize  name\n");
1902 	mutex_lock(&mtd_table_mutex);
1903 	mtd_for_each_device(mtd) {
1904 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1905 			   mtd->index, (unsigned long long)mtd->size,
1906 			   mtd->erasesize, mtd->name);
1907 	}
1908 	mutex_unlock(&mtd_table_mutex);
1909 	return 0;
1910 }
1911 #endif /* CONFIG_PROC_FS */
1912 
1913 /*====================================================================*/
1914 /* Init code */
1915 
1916 static struct backing_dev_info * __init mtd_bdi_init(char *name)
1917 {
1918 	struct backing_dev_info *bdi;
1919 	int ret;
1920 
1921 	bdi = bdi_alloc(GFP_KERNEL);
1922 	if (!bdi)
1923 		return ERR_PTR(-ENOMEM);
1924 
1925 	bdi->name = name;
1926 	/*
1927 	 * We put '-0' suffix to the name to get the same name format as we
1928 	 * used to get. Since this is called only once, we get a unique name.
1929 	 */
1930 	ret = bdi_register(bdi, "%.28s-0", name);
1931 	if (ret)
1932 		bdi_put(bdi);
1933 
1934 	return ret ? ERR_PTR(ret) : bdi;
1935 }
1936 
1937 static struct proc_dir_entry *proc_mtd;
1938 
1939 static int __init init_mtd(void)
1940 {
1941 	int ret;
1942 
1943 	ret = class_register(&mtd_class);
1944 	if (ret)
1945 		goto err_reg;
1946 
1947 	mtd_bdi = mtd_bdi_init("mtd");
1948 	if (IS_ERR(mtd_bdi)) {
1949 		ret = PTR_ERR(mtd_bdi);
1950 		goto err_bdi;
1951 	}
1952 
1953 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
1954 
1955 	ret = init_mtdchar();
1956 	if (ret)
1957 		goto out_procfs;
1958 
1959 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
1960 
1961 	return 0;
1962 
1963 out_procfs:
1964 	if (proc_mtd)
1965 		remove_proc_entry("mtd", NULL);
1966 	bdi_put(mtd_bdi);
1967 err_bdi:
1968 	class_unregister(&mtd_class);
1969 err_reg:
1970 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1971 	return ret;
1972 }
1973 
1974 static void __exit cleanup_mtd(void)
1975 {
1976 	debugfs_remove_recursive(dfs_dir_mtd);
1977 	cleanup_mtdchar();
1978 	if (proc_mtd)
1979 		remove_proc_entry("mtd", NULL);
1980 	class_unregister(&mtd_class);
1981 	bdi_put(mtd_bdi);
1982 	idr_destroy(&mtd_idr);
1983 }
1984 
1985 module_init(init_mtd);
1986 module_exit(cleanup_mtd);
1987 
1988 MODULE_LICENSE("GPL");
1989 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1990 MODULE_DESCRIPTION("Core MTD registration and access routines");
1991