1 /* 2 * Core registration and callback routines for MTD 3 * drivers and users. 4 * 5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 6 * Copyright © 2006 Red Hat UK Limited 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/kernel.h> 26 #include <linux/ptrace.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/major.h> 31 #include <linux/fs.h> 32 #include <linux/err.h> 33 #include <linux/ioctl.h> 34 #include <linux/init.h> 35 #include <linux/of.h> 36 #include <linux/proc_fs.h> 37 #include <linux/idr.h> 38 #include <linux/backing-dev.h> 39 #include <linux/gfp.h> 40 #include <linux/slab.h> 41 #include <linux/reboot.h> 42 #include <linux/leds.h> 43 #include <linux/debugfs.h> 44 #include <linux/nvmem-provider.h> 45 46 #include <linux/mtd/mtd.h> 47 #include <linux/mtd/partitions.h> 48 49 #include "mtdcore.h" 50 51 struct backing_dev_info *mtd_bdi; 52 53 #ifdef CONFIG_PM_SLEEP 54 55 static int mtd_cls_suspend(struct device *dev) 56 { 57 struct mtd_info *mtd = dev_get_drvdata(dev); 58 59 return mtd ? mtd_suspend(mtd) : 0; 60 } 61 62 static int mtd_cls_resume(struct device *dev) 63 { 64 struct mtd_info *mtd = dev_get_drvdata(dev); 65 66 if (mtd) 67 mtd_resume(mtd); 68 return 0; 69 } 70 71 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 72 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 73 #else 74 #define MTD_CLS_PM_OPS NULL 75 #endif 76 77 static struct class mtd_class = { 78 .name = "mtd", 79 .owner = THIS_MODULE, 80 .pm = MTD_CLS_PM_OPS, 81 }; 82 83 static DEFINE_IDR(mtd_idr); 84 85 /* These are exported solely for the purpose of mtd_blkdevs.c. You 86 should not use them for _anything_ else */ 87 DEFINE_MUTEX(mtd_table_mutex); 88 EXPORT_SYMBOL_GPL(mtd_table_mutex); 89 90 struct mtd_info *__mtd_next_device(int i) 91 { 92 return idr_get_next(&mtd_idr, &i); 93 } 94 EXPORT_SYMBOL_GPL(__mtd_next_device); 95 96 static LIST_HEAD(mtd_notifiers); 97 98 99 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 100 101 /* REVISIT once MTD uses the driver model better, whoever allocates 102 * the mtd_info will probably want to use the release() hook... 103 */ 104 static void mtd_release(struct device *dev) 105 { 106 struct mtd_info *mtd = dev_get_drvdata(dev); 107 dev_t index = MTD_DEVT(mtd->index); 108 109 /* remove /dev/mtdXro node */ 110 device_destroy(&mtd_class, index + 1); 111 } 112 113 static ssize_t mtd_type_show(struct device *dev, 114 struct device_attribute *attr, char *buf) 115 { 116 struct mtd_info *mtd = dev_get_drvdata(dev); 117 char *type; 118 119 switch (mtd->type) { 120 case MTD_ABSENT: 121 type = "absent"; 122 break; 123 case MTD_RAM: 124 type = "ram"; 125 break; 126 case MTD_ROM: 127 type = "rom"; 128 break; 129 case MTD_NORFLASH: 130 type = "nor"; 131 break; 132 case MTD_NANDFLASH: 133 type = "nand"; 134 break; 135 case MTD_DATAFLASH: 136 type = "dataflash"; 137 break; 138 case MTD_UBIVOLUME: 139 type = "ubi"; 140 break; 141 case MTD_MLCNANDFLASH: 142 type = "mlc-nand"; 143 break; 144 default: 145 type = "unknown"; 146 } 147 148 return snprintf(buf, PAGE_SIZE, "%s\n", type); 149 } 150 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 151 152 static ssize_t mtd_flags_show(struct device *dev, 153 struct device_attribute *attr, char *buf) 154 { 155 struct mtd_info *mtd = dev_get_drvdata(dev); 156 157 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 158 159 } 160 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 161 162 static ssize_t mtd_size_show(struct device *dev, 163 struct device_attribute *attr, char *buf) 164 { 165 struct mtd_info *mtd = dev_get_drvdata(dev); 166 167 return snprintf(buf, PAGE_SIZE, "%llu\n", 168 (unsigned long long)mtd->size); 169 170 } 171 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 172 173 static ssize_t mtd_erasesize_show(struct device *dev, 174 struct device_attribute *attr, char *buf) 175 { 176 struct mtd_info *mtd = dev_get_drvdata(dev); 177 178 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 179 180 } 181 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 182 183 static ssize_t mtd_writesize_show(struct device *dev, 184 struct device_attribute *attr, char *buf) 185 { 186 struct mtd_info *mtd = dev_get_drvdata(dev); 187 188 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 189 190 } 191 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 192 193 static ssize_t mtd_subpagesize_show(struct device *dev, 194 struct device_attribute *attr, char *buf) 195 { 196 struct mtd_info *mtd = dev_get_drvdata(dev); 197 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 198 199 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 200 201 } 202 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 203 204 static ssize_t mtd_oobsize_show(struct device *dev, 205 struct device_attribute *attr, char *buf) 206 { 207 struct mtd_info *mtd = dev_get_drvdata(dev); 208 209 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 210 211 } 212 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 213 214 static ssize_t mtd_oobavail_show(struct device *dev, 215 struct device_attribute *attr, char *buf) 216 { 217 struct mtd_info *mtd = dev_get_drvdata(dev); 218 219 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail); 220 } 221 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL); 222 223 static ssize_t mtd_numeraseregions_show(struct device *dev, 224 struct device_attribute *attr, char *buf) 225 { 226 struct mtd_info *mtd = dev_get_drvdata(dev); 227 228 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 229 230 } 231 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 232 NULL); 233 234 static ssize_t mtd_name_show(struct device *dev, 235 struct device_attribute *attr, char *buf) 236 { 237 struct mtd_info *mtd = dev_get_drvdata(dev); 238 239 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 240 241 } 242 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 243 244 static ssize_t mtd_ecc_strength_show(struct device *dev, 245 struct device_attribute *attr, char *buf) 246 { 247 struct mtd_info *mtd = dev_get_drvdata(dev); 248 249 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 250 } 251 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 252 253 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 254 struct device_attribute *attr, 255 char *buf) 256 { 257 struct mtd_info *mtd = dev_get_drvdata(dev); 258 259 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 260 } 261 262 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 263 struct device_attribute *attr, 264 const char *buf, size_t count) 265 { 266 struct mtd_info *mtd = dev_get_drvdata(dev); 267 unsigned int bitflip_threshold; 268 int retval; 269 270 retval = kstrtouint(buf, 0, &bitflip_threshold); 271 if (retval) 272 return retval; 273 274 mtd->bitflip_threshold = bitflip_threshold; 275 return count; 276 } 277 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 278 mtd_bitflip_threshold_show, 279 mtd_bitflip_threshold_store); 280 281 static ssize_t mtd_ecc_step_size_show(struct device *dev, 282 struct device_attribute *attr, char *buf) 283 { 284 struct mtd_info *mtd = dev_get_drvdata(dev); 285 286 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 287 288 } 289 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 290 291 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev, 292 struct device_attribute *attr, char *buf) 293 { 294 struct mtd_info *mtd = dev_get_drvdata(dev); 295 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 296 297 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected); 298 } 299 static DEVICE_ATTR(corrected_bits, S_IRUGO, 300 mtd_ecc_stats_corrected_show, NULL); 301 302 static ssize_t mtd_ecc_stats_errors_show(struct device *dev, 303 struct device_attribute *attr, char *buf) 304 { 305 struct mtd_info *mtd = dev_get_drvdata(dev); 306 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 307 308 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed); 309 } 310 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL); 311 312 static ssize_t mtd_badblocks_show(struct device *dev, 313 struct device_attribute *attr, char *buf) 314 { 315 struct mtd_info *mtd = dev_get_drvdata(dev); 316 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 317 318 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks); 319 } 320 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL); 321 322 static ssize_t mtd_bbtblocks_show(struct device *dev, 323 struct device_attribute *attr, char *buf) 324 { 325 struct mtd_info *mtd = dev_get_drvdata(dev); 326 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 327 328 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks); 329 } 330 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL); 331 332 static struct attribute *mtd_attrs[] = { 333 &dev_attr_type.attr, 334 &dev_attr_flags.attr, 335 &dev_attr_size.attr, 336 &dev_attr_erasesize.attr, 337 &dev_attr_writesize.attr, 338 &dev_attr_subpagesize.attr, 339 &dev_attr_oobsize.attr, 340 &dev_attr_oobavail.attr, 341 &dev_attr_numeraseregions.attr, 342 &dev_attr_name.attr, 343 &dev_attr_ecc_strength.attr, 344 &dev_attr_ecc_step_size.attr, 345 &dev_attr_corrected_bits.attr, 346 &dev_attr_ecc_failures.attr, 347 &dev_attr_bad_blocks.attr, 348 &dev_attr_bbt_blocks.attr, 349 &dev_attr_bitflip_threshold.attr, 350 NULL, 351 }; 352 ATTRIBUTE_GROUPS(mtd); 353 354 static const struct device_type mtd_devtype = { 355 .name = "mtd", 356 .groups = mtd_groups, 357 .release = mtd_release, 358 }; 359 360 #ifndef CONFIG_MMU 361 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 362 { 363 switch (mtd->type) { 364 case MTD_RAM: 365 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 366 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 367 case MTD_ROM: 368 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 369 NOMMU_MAP_READ; 370 default: 371 return NOMMU_MAP_COPY; 372 } 373 } 374 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 375 #endif 376 377 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 378 void *cmd) 379 { 380 struct mtd_info *mtd; 381 382 mtd = container_of(n, struct mtd_info, reboot_notifier); 383 mtd->_reboot(mtd); 384 385 return NOTIFY_DONE; 386 } 387 388 /** 389 * mtd_wunit_to_pairing_info - get pairing information of a wunit 390 * @mtd: pointer to new MTD device info structure 391 * @wunit: write unit we are interested in 392 * @info: returned pairing information 393 * 394 * Retrieve pairing information associated to the wunit. 395 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 396 * paired together, and where programming a page may influence the page it is 397 * paired with. 398 * The notion of page is replaced by the term wunit (write-unit) to stay 399 * consistent with the ->writesize field. 400 * 401 * The @wunit argument can be extracted from an absolute offset using 402 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 403 * to @wunit. 404 * 405 * From the pairing info the MTD user can find all the wunits paired with 406 * @wunit using the following loop: 407 * 408 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 409 * info.pair = i; 410 * mtd_pairing_info_to_wunit(mtd, &info); 411 * ... 412 * } 413 */ 414 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 415 struct mtd_pairing_info *info) 416 { 417 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 418 419 if (wunit < 0 || wunit >= npairs) 420 return -EINVAL; 421 422 if (mtd->pairing && mtd->pairing->get_info) 423 return mtd->pairing->get_info(mtd, wunit, info); 424 425 info->group = 0; 426 info->pair = wunit; 427 428 return 0; 429 } 430 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 431 432 /** 433 * mtd_pairing_info_to_wunit - get wunit from pairing information 434 * @mtd: pointer to new MTD device info structure 435 * @info: pairing information struct 436 * 437 * Returns a positive number representing the wunit associated to the info 438 * struct, or a negative error code. 439 * 440 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 441 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 442 * doc). 443 * 444 * It can also be used to only program the first page of each pair (i.e. 445 * page attached to group 0), which allows one to use an MLC NAND in 446 * software-emulated SLC mode: 447 * 448 * info.group = 0; 449 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 450 * for (info.pair = 0; info.pair < npairs; info.pair++) { 451 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 452 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 453 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 454 * } 455 */ 456 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 457 const struct mtd_pairing_info *info) 458 { 459 int ngroups = mtd_pairing_groups(mtd); 460 int npairs = mtd_wunit_per_eb(mtd) / ngroups; 461 462 if (!info || info->pair < 0 || info->pair >= npairs || 463 info->group < 0 || info->group >= ngroups) 464 return -EINVAL; 465 466 if (mtd->pairing && mtd->pairing->get_wunit) 467 return mtd->pairing->get_wunit(mtd, info); 468 469 return info->pair; 470 } 471 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 472 473 /** 474 * mtd_pairing_groups - get the number of pairing groups 475 * @mtd: pointer to new MTD device info structure 476 * 477 * Returns the number of pairing groups. 478 * 479 * This number is usually equal to the number of bits exposed by a single 480 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 481 * to iterate over all pages of a given pair. 482 */ 483 int mtd_pairing_groups(struct mtd_info *mtd) 484 { 485 if (!mtd->pairing || !mtd->pairing->ngroups) 486 return 1; 487 488 return mtd->pairing->ngroups; 489 } 490 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 491 492 static int mtd_nvmem_reg_read(void *priv, unsigned int offset, 493 void *val, size_t bytes) 494 { 495 struct mtd_info *mtd = priv; 496 size_t retlen; 497 int err; 498 499 err = mtd_read(mtd, offset, bytes, &retlen, val); 500 if (err && err != -EUCLEAN) 501 return err; 502 503 return retlen == bytes ? 0 : -EIO; 504 } 505 506 static int mtd_nvmem_add(struct mtd_info *mtd) 507 { 508 struct nvmem_config config = {}; 509 510 config.id = -1; 511 config.dev = &mtd->dev; 512 config.name = mtd->name; 513 config.owner = THIS_MODULE; 514 config.reg_read = mtd_nvmem_reg_read; 515 config.size = mtd->size; 516 config.word_size = 1; 517 config.stride = 1; 518 config.read_only = true; 519 config.root_only = true; 520 config.no_of_node = true; 521 config.priv = mtd; 522 523 mtd->nvmem = nvmem_register(&config); 524 if (IS_ERR(mtd->nvmem)) { 525 /* Just ignore if there is no NVMEM support in the kernel */ 526 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) { 527 mtd->nvmem = NULL; 528 } else { 529 dev_err(&mtd->dev, "Failed to register NVMEM device\n"); 530 return PTR_ERR(mtd->nvmem); 531 } 532 } 533 534 return 0; 535 } 536 537 static struct dentry *dfs_dir_mtd; 538 539 /** 540 * add_mtd_device - register an MTD device 541 * @mtd: pointer to new MTD device info structure 542 * 543 * Add a device to the list of MTD devices present in the system, and 544 * notify each currently active MTD 'user' of its arrival. Returns 545 * zero on success or non-zero on failure. 546 */ 547 548 int add_mtd_device(struct mtd_info *mtd) 549 { 550 struct mtd_notifier *not; 551 int i, error; 552 553 /* 554 * May occur, for instance, on buggy drivers which call 555 * mtd_device_parse_register() multiple times on the same master MTD, 556 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 557 */ 558 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 559 return -EEXIST; 560 561 BUG_ON(mtd->writesize == 0); 562 563 if (WARN_ON((!mtd->erasesize || !mtd->_erase) && 564 !(mtd->flags & MTD_NO_ERASE))) 565 return -EINVAL; 566 567 mutex_lock(&mtd_table_mutex); 568 569 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 570 if (i < 0) { 571 error = i; 572 goto fail_locked; 573 } 574 575 mtd->index = i; 576 mtd->usecount = 0; 577 578 /* default value if not set by driver */ 579 if (mtd->bitflip_threshold == 0) 580 mtd->bitflip_threshold = mtd->ecc_strength; 581 582 if (is_power_of_2(mtd->erasesize)) 583 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 584 else 585 mtd->erasesize_shift = 0; 586 587 if (is_power_of_2(mtd->writesize)) 588 mtd->writesize_shift = ffs(mtd->writesize) - 1; 589 else 590 mtd->writesize_shift = 0; 591 592 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 593 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 594 595 /* Some chips always power up locked. Unlock them now */ 596 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 597 error = mtd_unlock(mtd, 0, mtd->size); 598 if (error && error != -EOPNOTSUPP) 599 printk(KERN_WARNING 600 "%s: unlock failed, writes may not work\n", 601 mtd->name); 602 /* Ignore unlock failures? */ 603 error = 0; 604 } 605 606 /* Caller should have set dev.parent to match the 607 * physical device, if appropriate. 608 */ 609 mtd->dev.type = &mtd_devtype; 610 mtd->dev.class = &mtd_class; 611 mtd->dev.devt = MTD_DEVT(i); 612 dev_set_name(&mtd->dev, "mtd%d", i); 613 dev_set_drvdata(&mtd->dev, mtd); 614 of_node_get(mtd_get_of_node(mtd)); 615 error = device_register(&mtd->dev); 616 if (error) 617 goto fail_added; 618 619 /* Add the nvmem provider */ 620 error = mtd_nvmem_add(mtd); 621 if (error) 622 goto fail_nvmem_add; 623 624 if (!IS_ERR_OR_NULL(dfs_dir_mtd)) { 625 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd); 626 if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) { 627 pr_debug("mtd device %s won't show data in debugfs\n", 628 dev_name(&mtd->dev)); 629 } 630 } 631 632 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 633 "mtd%dro", i); 634 635 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 636 /* No need to get a refcount on the module containing 637 the notifier, since we hold the mtd_table_mutex */ 638 list_for_each_entry(not, &mtd_notifiers, list) 639 not->add(mtd); 640 641 mutex_unlock(&mtd_table_mutex); 642 /* We _know_ we aren't being removed, because 643 our caller is still holding us here. So none 644 of this try_ nonsense, and no bitching about it 645 either. :) */ 646 __module_get(THIS_MODULE); 647 return 0; 648 649 fail_nvmem_add: 650 device_unregister(&mtd->dev); 651 fail_added: 652 of_node_put(mtd_get_of_node(mtd)); 653 idr_remove(&mtd_idr, i); 654 fail_locked: 655 mutex_unlock(&mtd_table_mutex); 656 return error; 657 } 658 659 /** 660 * del_mtd_device - unregister an MTD device 661 * @mtd: pointer to MTD device info structure 662 * 663 * Remove a device from the list of MTD devices present in the system, 664 * and notify each currently active MTD 'user' of its departure. 665 * Returns zero on success or 1 on failure, which currently will happen 666 * if the requested device does not appear to be present in the list. 667 */ 668 669 int del_mtd_device(struct mtd_info *mtd) 670 { 671 int ret; 672 struct mtd_notifier *not; 673 674 mutex_lock(&mtd_table_mutex); 675 676 debugfs_remove_recursive(mtd->dbg.dfs_dir); 677 678 if (idr_find(&mtd_idr, mtd->index) != mtd) { 679 ret = -ENODEV; 680 goto out_error; 681 } 682 683 /* No need to get a refcount on the module containing 684 the notifier, since we hold the mtd_table_mutex */ 685 list_for_each_entry(not, &mtd_notifiers, list) 686 not->remove(mtd); 687 688 if (mtd->usecount) { 689 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 690 mtd->index, mtd->name, mtd->usecount); 691 ret = -EBUSY; 692 } else { 693 /* Try to remove the NVMEM provider */ 694 if (mtd->nvmem) 695 nvmem_unregister(mtd->nvmem); 696 697 device_unregister(&mtd->dev); 698 699 idr_remove(&mtd_idr, mtd->index); 700 of_node_put(mtd_get_of_node(mtd)); 701 702 module_put(THIS_MODULE); 703 ret = 0; 704 } 705 706 out_error: 707 mutex_unlock(&mtd_table_mutex); 708 return ret; 709 } 710 711 /* 712 * Set a few defaults based on the parent devices, if not provided by the 713 * driver 714 */ 715 static void mtd_set_dev_defaults(struct mtd_info *mtd) 716 { 717 if (mtd->dev.parent) { 718 if (!mtd->owner && mtd->dev.parent->driver) 719 mtd->owner = mtd->dev.parent->driver->owner; 720 if (!mtd->name) 721 mtd->name = dev_name(mtd->dev.parent); 722 } else { 723 pr_debug("mtd device won't show a device symlink in sysfs\n"); 724 } 725 726 mtd->orig_flags = mtd->flags; 727 } 728 729 /** 730 * mtd_device_parse_register - parse partitions and register an MTD device. 731 * 732 * @mtd: the MTD device to register 733 * @types: the list of MTD partition probes to try, see 734 * 'parse_mtd_partitions()' for more information 735 * @parser_data: MTD partition parser-specific data 736 * @parts: fallback partition information to register, if parsing fails; 737 * only valid if %nr_parts > %0 738 * @nr_parts: the number of partitions in parts, if zero then the full 739 * MTD device is registered if no partition info is found 740 * 741 * This function aggregates MTD partitions parsing (done by 742 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 743 * basically follows the most common pattern found in many MTD drivers: 744 * 745 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is 746 * registered first. 747 * * Then It tries to probe partitions on MTD device @mtd using parsers 748 * specified in @types (if @types is %NULL, then the default list of parsers 749 * is used, see 'parse_mtd_partitions()' for more information). If none are 750 * found this functions tries to fallback to information specified in 751 * @parts/@nr_parts. 752 * * If no partitions were found this function just registers the MTD device 753 * @mtd and exits. 754 * 755 * Returns zero in case of success and a negative error code in case of failure. 756 */ 757 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 758 struct mtd_part_parser_data *parser_data, 759 const struct mtd_partition *parts, 760 int nr_parts) 761 { 762 int ret; 763 764 mtd_set_dev_defaults(mtd); 765 766 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 767 ret = add_mtd_device(mtd); 768 if (ret) 769 return ret; 770 } 771 772 /* Prefer parsed partitions over driver-provided fallback */ 773 ret = parse_mtd_partitions(mtd, types, parser_data); 774 if (ret > 0) 775 ret = 0; 776 else if (nr_parts) 777 ret = add_mtd_partitions(mtd, parts, nr_parts); 778 else if (!device_is_registered(&mtd->dev)) 779 ret = add_mtd_device(mtd); 780 else 781 ret = 0; 782 783 if (ret) 784 goto out; 785 786 /* 787 * FIXME: some drivers unfortunately call this function more than once. 788 * So we have to check if we've already assigned the reboot notifier. 789 * 790 * Generally, we can make multiple calls work for most cases, but it 791 * does cause problems with parse_mtd_partitions() above (e.g., 792 * cmdlineparts will register partitions more than once). 793 */ 794 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 795 "MTD already registered\n"); 796 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 797 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 798 register_reboot_notifier(&mtd->reboot_notifier); 799 } 800 801 out: 802 if (ret && device_is_registered(&mtd->dev)) 803 del_mtd_device(mtd); 804 805 return ret; 806 } 807 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 808 809 /** 810 * mtd_device_unregister - unregister an existing MTD device. 811 * 812 * @master: the MTD device to unregister. This will unregister both the master 813 * and any partitions if registered. 814 */ 815 int mtd_device_unregister(struct mtd_info *master) 816 { 817 int err; 818 819 if (master->_reboot) 820 unregister_reboot_notifier(&master->reboot_notifier); 821 822 err = del_mtd_partitions(master); 823 if (err) 824 return err; 825 826 if (!device_is_registered(&master->dev)) 827 return 0; 828 829 return del_mtd_device(master); 830 } 831 EXPORT_SYMBOL_GPL(mtd_device_unregister); 832 833 /** 834 * register_mtd_user - register a 'user' of MTD devices. 835 * @new: pointer to notifier info structure 836 * 837 * Registers a pair of callbacks function to be called upon addition 838 * or removal of MTD devices. Causes the 'add' callback to be immediately 839 * invoked for each MTD device currently present in the system. 840 */ 841 void register_mtd_user (struct mtd_notifier *new) 842 { 843 struct mtd_info *mtd; 844 845 mutex_lock(&mtd_table_mutex); 846 847 list_add(&new->list, &mtd_notifiers); 848 849 __module_get(THIS_MODULE); 850 851 mtd_for_each_device(mtd) 852 new->add(mtd); 853 854 mutex_unlock(&mtd_table_mutex); 855 } 856 EXPORT_SYMBOL_GPL(register_mtd_user); 857 858 /** 859 * unregister_mtd_user - unregister a 'user' of MTD devices. 860 * @old: pointer to notifier info structure 861 * 862 * Removes a callback function pair from the list of 'users' to be 863 * notified upon addition or removal of MTD devices. Causes the 864 * 'remove' callback to be immediately invoked for each MTD device 865 * currently present in the system. 866 */ 867 int unregister_mtd_user (struct mtd_notifier *old) 868 { 869 struct mtd_info *mtd; 870 871 mutex_lock(&mtd_table_mutex); 872 873 module_put(THIS_MODULE); 874 875 mtd_for_each_device(mtd) 876 old->remove(mtd); 877 878 list_del(&old->list); 879 mutex_unlock(&mtd_table_mutex); 880 return 0; 881 } 882 EXPORT_SYMBOL_GPL(unregister_mtd_user); 883 884 /** 885 * get_mtd_device - obtain a validated handle for an MTD device 886 * @mtd: last known address of the required MTD device 887 * @num: internal device number of the required MTD device 888 * 889 * Given a number and NULL address, return the num'th entry in the device 890 * table, if any. Given an address and num == -1, search the device table 891 * for a device with that address and return if it's still present. Given 892 * both, return the num'th driver only if its address matches. Return 893 * error code if not. 894 */ 895 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 896 { 897 struct mtd_info *ret = NULL, *other; 898 int err = -ENODEV; 899 900 mutex_lock(&mtd_table_mutex); 901 902 if (num == -1) { 903 mtd_for_each_device(other) { 904 if (other == mtd) { 905 ret = mtd; 906 break; 907 } 908 } 909 } else if (num >= 0) { 910 ret = idr_find(&mtd_idr, num); 911 if (mtd && mtd != ret) 912 ret = NULL; 913 } 914 915 if (!ret) { 916 ret = ERR_PTR(err); 917 goto out; 918 } 919 920 err = __get_mtd_device(ret); 921 if (err) 922 ret = ERR_PTR(err); 923 out: 924 mutex_unlock(&mtd_table_mutex); 925 return ret; 926 } 927 EXPORT_SYMBOL_GPL(get_mtd_device); 928 929 930 int __get_mtd_device(struct mtd_info *mtd) 931 { 932 int err; 933 934 if (!try_module_get(mtd->owner)) 935 return -ENODEV; 936 937 if (mtd->_get_device) { 938 err = mtd->_get_device(mtd); 939 940 if (err) { 941 module_put(mtd->owner); 942 return err; 943 } 944 } 945 mtd->usecount++; 946 return 0; 947 } 948 EXPORT_SYMBOL_GPL(__get_mtd_device); 949 950 /** 951 * get_mtd_device_nm - obtain a validated handle for an MTD device by 952 * device name 953 * @name: MTD device name to open 954 * 955 * This function returns MTD device description structure in case of 956 * success and an error code in case of failure. 957 */ 958 struct mtd_info *get_mtd_device_nm(const char *name) 959 { 960 int err = -ENODEV; 961 struct mtd_info *mtd = NULL, *other; 962 963 mutex_lock(&mtd_table_mutex); 964 965 mtd_for_each_device(other) { 966 if (!strcmp(name, other->name)) { 967 mtd = other; 968 break; 969 } 970 } 971 972 if (!mtd) 973 goto out_unlock; 974 975 err = __get_mtd_device(mtd); 976 if (err) 977 goto out_unlock; 978 979 mutex_unlock(&mtd_table_mutex); 980 return mtd; 981 982 out_unlock: 983 mutex_unlock(&mtd_table_mutex); 984 return ERR_PTR(err); 985 } 986 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 987 988 void put_mtd_device(struct mtd_info *mtd) 989 { 990 mutex_lock(&mtd_table_mutex); 991 __put_mtd_device(mtd); 992 mutex_unlock(&mtd_table_mutex); 993 994 } 995 EXPORT_SYMBOL_GPL(put_mtd_device); 996 997 void __put_mtd_device(struct mtd_info *mtd) 998 { 999 --mtd->usecount; 1000 BUG_ON(mtd->usecount < 0); 1001 1002 if (mtd->_put_device) 1003 mtd->_put_device(mtd); 1004 1005 module_put(mtd->owner); 1006 } 1007 EXPORT_SYMBOL_GPL(__put_mtd_device); 1008 1009 /* 1010 * Erase is an synchronous operation. Device drivers are epected to return a 1011 * negative error code if the operation failed and update instr->fail_addr 1012 * to point the portion that was not properly erased. 1013 */ 1014 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 1015 { 1016 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 1017 1018 if (!mtd->erasesize || !mtd->_erase) 1019 return -ENOTSUPP; 1020 1021 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 1022 return -EINVAL; 1023 if (!(mtd->flags & MTD_WRITEABLE)) 1024 return -EROFS; 1025 1026 if (!instr->len) 1027 return 0; 1028 1029 ledtrig_mtd_activity(); 1030 return mtd->_erase(mtd, instr); 1031 } 1032 EXPORT_SYMBOL_GPL(mtd_erase); 1033 1034 /* 1035 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 1036 */ 1037 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1038 void **virt, resource_size_t *phys) 1039 { 1040 *retlen = 0; 1041 *virt = NULL; 1042 if (phys) 1043 *phys = 0; 1044 if (!mtd->_point) 1045 return -EOPNOTSUPP; 1046 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1047 return -EINVAL; 1048 if (!len) 1049 return 0; 1050 return mtd->_point(mtd, from, len, retlen, virt, phys); 1051 } 1052 EXPORT_SYMBOL_GPL(mtd_point); 1053 1054 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 1055 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1056 { 1057 if (!mtd->_unpoint) 1058 return -EOPNOTSUPP; 1059 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1060 return -EINVAL; 1061 if (!len) 1062 return 0; 1063 return mtd->_unpoint(mtd, from, len); 1064 } 1065 EXPORT_SYMBOL_GPL(mtd_unpoint); 1066 1067 /* 1068 * Allow NOMMU mmap() to directly map the device (if not NULL) 1069 * - return the address to which the offset maps 1070 * - return -ENOSYS to indicate refusal to do the mapping 1071 */ 1072 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1073 unsigned long offset, unsigned long flags) 1074 { 1075 size_t retlen; 1076 void *virt; 1077 int ret; 1078 1079 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); 1080 if (ret) 1081 return ret; 1082 if (retlen != len) { 1083 mtd_unpoint(mtd, offset, retlen); 1084 return -ENOSYS; 1085 } 1086 return (unsigned long)virt; 1087 } 1088 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1089 1090 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1091 u_char *buf) 1092 { 1093 int ret_code; 1094 *retlen = 0; 1095 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1096 return -EINVAL; 1097 if (!len) 1098 return 0; 1099 1100 ledtrig_mtd_activity(); 1101 /* 1102 * In the absence of an error, drivers return a non-negative integer 1103 * representing the maximum number of bitflips that were corrected on 1104 * any one ecc region (if applicable; zero otherwise). 1105 */ 1106 if (mtd->_read) { 1107 ret_code = mtd->_read(mtd, from, len, retlen, buf); 1108 } else if (mtd->_read_oob) { 1109 struct mtd_oob_ops ops = { 1110 .len = len, 1111 .datbuf = buf, 1112 }; 1113 1114 ret_code = mtd->_read_oob(mtd, from, &ops); 1115 *retlen = ops.retlen; 1116 } else { 1117 return -ENOTSUPP; 1118 } 1119 1120 if (unlikely(ret_code < 0)) 1121 return ret_code; 1122 if (mtd->ecc_strength == 0) 1123 return 0; /* device lacks ecc */ 1124 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1125 } 1126 EXPORT_SYMBOL_GPL(mtd_read); 1127 1128 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1129 const u_char *buf) 1130 { 1131 *retlen = 0; 1132 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1133 return -EINVAL; 1134 if ((!mtd->_write && !mtd->_write_oob) || 1135 !(mtd->flags & MTD_WRITEABLE)) 1136 return -EROFS; 1137 if (!len) 1138 return 0; 1139 ledtrig_mtd_activity(); 1140 1141 if (!mtd->_write) { 1142 struct mtd_oob_ops ops = { 1143 .len = len, 1144 .datbuf = (u8 *)buf, 1145 }; 1146 int ret; 1147 1148 ret = mtd->_write_oob(mtd, to, &ops); 1149 *retlen = ops.retlen; 1150 return ret; 1151 } 1152 1153 return mtd->_write(mtd, to, len, retlen, buf); 1154 } 1155 EXPORT_SYMBOL_GPL(mtd_write); 1156 1157 /* 1158 * In blackbox flight recorder like scenarios we want to make successful writes 1159 * in interrupt context. panic_write() is only intended to be called when its 1160 * known the kernel is about to panic and we need the write to succeed. Since 1161 * the kernel is not going to be running for much longer, this function can 1162 * break locks and delay to ensure the write succeeds (but not sleep). 1163 */ 1164 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1165 const u_char *buf) 1166 { 1167 *retlen = 0; 1168 if (!mtd->_panic_write) 1169 return -EOPNOTSUPP; 1170 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1171 return -EINVAL; 1172 if (!(mtd->flags & MTD_WRITEABLE)) 1173 return -EROFS; 1174 if (!len) 1175 return 0; 1176 return mtd->_panic_write(mtd, to, len, retlen, buf); 1177 } 1178 EXPORT_SYMBOL_GPL(mtd_panic_write); 1179 1180 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1181 struct mtd_oob_ops *ops) 1182 { 1183 /* 1184 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1185 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1186 * this case. 1187 */ 1188 if (!ops->datbuf) 1189 ops->len = 0; 1190 1191 if (!ops->oobbuf) 1192 ops->ooblen = 0; 1193 1194 if (offs < 0 || offs + ops->len > mtd->size) 1195 return -EINVAL; 1196 1197 if (ops->ooblen) { 1198 size_t maxooblen; 1199 1200 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1201 return -EINVAL; 1202 1203 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) - 1204 mtd_div_by_ws(offs, mtd)) * 1205 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1206 if (ops->ooblen > maxooblen) 1207 return -EINVAL; 1208 } 1209 1210 return 0; 1211 } 1212 1213 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1214 { 1215 int ret_code; 1216 ops->retlen = ops->oobretlen = 0; 1217 1218 ret_code = mtd_check_oob_ops(mtd, from, ops); 1219 if (ret_code) 1220 return ret_code; 1221 1222 ledtrig_mtd_activity(); 1223 1224 /* Check the validity of a potential fallback on mtd->_read */ 1225 if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf)) 1226 return -EOPNOTSUPP; 1227 1228 if (mtd->_read_oob) 1229 ret_code = mtd->_read_oob(mtd, from, ops); 1230 else 1231 ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen, 1232 ops->datbuf); 1233 1234 /* 1235 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1236 * similar to mtd->_read(), returning a non-negative integer 1237 * representing max bitflips. In other cases, mtd->_read_oob() may 1238 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1239 */ 1240 if (unlikely(ret_code < 0)) 1241 return ret_code; 1242 if (mtd->ecc_strength == 0) 1243 return 0; /* device lacks ecc */ 1244 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1245 } 1246 EXPORT_SYMBOL_GPL(mtd_read_oob); 1247 1248 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1249 struct mtd_oob_ops *ops) 1250 { 1251 int ret; 1252 1253 ops->retlen = ops->oobretlen = 0; 1254 1255 if (!(mtd->flags & MTD_WRITEABLE)) 1256 return -EROFS; 1257 1258 ret = mtd_check_oob_ops(mtd, to, ops); 1259 if (ret) 1260 return ret; 1261 1262 ledtrig_mtd_activity(); 1263 1264 /* Check the validity of a potential fallback on mtd->_write */ 1265 if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf)) 1266 return -EOPNOTSUPP; 1267 1268 if (mtd->_write_oob) 1269 return mtd->_write_oob(mtd, to, ops); 1270 else 1271 return mtd->_write(mtd, to, ops->len, &ops->retlen, 1272 ops->datbuf); 1273 } 1274 EXPORT_SYMBOL_GPL(mtd_write_oob); 1275 1276 /** 1277 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1278 * @mtd: MTD device structure 1279 * @section: ECC section. Depending on the layout you may have all the ECC 1280 * bytes stored in a single contiguous section, or one section 1281 * per ECC chunk (and sometime several sections for a single ECC 1282 * ECC chunk) 1283 * @oobecc: OOB region struct filled with the appropriate ECC position 1284 * information 1285 * 1286 * This function returns ECC section information in the OOB area. If you want 1287 * to get all the ECC bytes information, then you should call 1288 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1289 * 1290 * Returns zero on success, a negative error code otherwise. 1291 */ 1292 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1293 struct mtd_oob_region *oobecc) 1294 { 1295 memset(oobecc, 0, sizeof(*oobecc)); 1296 1297 if (!mtd || section < 0) 1298 return -EINVAL; 1299 1300 if (!mtd->ooblayout || !mtd->ooblayout->ecc) 1301 return -ENOTSUPP; 1302 1303 return mtd->ooblayout->ecc(mtd, section, oobecc); 1304 } 1305 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1306 1307 /** 1308 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1309 * section 1310 * @mtd: MTD device structure 1311 * @section: Free section you are interested in. Depending on the layout 1312 * you may have all the free bytes stored in a single contiguous 1313 * section, or one section per ECC chunk plus an extra section 1314 * for the remaining bytes (or other funky layout). 1315 * @oobfree: OOB region struct filled with the appropriate free position 1316 * information 1317 * 1318 * This function returns free bytes position in the OOB area. If you want 1319 * to get all the free bytes information, then you should call 1320 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1321 * 1322 * Returns zero on success, a negative error code otherwise. 1323 */ 1324 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1325 struct mtd_oob_region *oobfree) 1326 { 1327 memset(oobfree, 0, sizeof(*oobfree)); 1328 1329 if (!mtd || section < 0) 1330 return -EINVAL; 1331 1332 if (!mtd->ooblayout || !mtd->ooblayout->free) 1333 return -ENOTSUPP; 1334 1335 return mtd->ooblayout->free(mtd, section, oobfree); 1336 } 1337 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1338 1339 /** 1340 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1341 * @mtd: mtd info structure 1342 * @byte: the byte we are searching for 1343 * @sectionp: pointer where the section id will be stored 1344 * @oobregion: used to retrieve the ECC position 1345 * @iter: iterator function. Should be either mtd_ooblayout_free or 1346 * mtd_ooblayout_ecc depending on the region type you're searching for 1347 * 1348 * This function returns the section id and oobregion information of a 1349 * specific byte. For example, say you want to know where the 4th ECC byte is 1350 * stored, you'll use: 1351 * 1352 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1353 * 1354 * Returns zero on success, a negative error code otherwise. 1355 */ 1356 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1357 int *sectionp, struct mtd_oob_region *oobregion, 1358 int (*iter)(struct mtd_info *, 1359 int section, 1360 struct mtd_oob_region *oobregion)) 1361 { 1362 int pos = 0, ret, section = 0; 1363 1364 memset(oobregion, 0, sizeof(*oobregion)); 1365 1366 while (1) { 1367 ret = iter(mtd, section, oobregion); 1368 if (ret) 1369 return ret; 1370 1371 if (pos + oobregion->length > byte) 1372 break; 1373 1374 pos += oobregion->length; 1375 section++; 1376 } 1377 1378 /* 1379 * Adjust region info to make it start at the beginning at the 1380 * 'start' ECC byte. 1381 */ 1382 oobregion->offset += byte - pos; 1383 oobregion->length -= byte - pos; 1384 *sectionp = section; 1385 1386 return 0; 1387 } 1388 1389 /** 1390 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1391 * ECC byte 1392 * @mtd: mtd info structure 1393 * @eccbyte: the byte we are searching for 1394 * @sectionp: pointer where the section id will be stored 1395 * @oobregion: OOB region information 1396 * 1397 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1398 * byte. 1399 * 1400 * Returns zero on success, a negative error code otherwise. 1401 */ 1402 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1403 int *section, 1404 struct mtd_oob_region *oobregion) 1405 { 1406 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1407 mtd_ooblayout_ecc); 1408 } 1409 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1410 1411 /** 1412 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1413 * @mtd: mtd info structure 1414 * @buf: destination buffer to store OOB bytes 1415 * @oobbuf: OOB buffer 1416 * @start: first byte to retrieve 1417 * @nbytes: number of bytes to retrieve 1418 * @iter: section iterator 1419 * 1420 * Extract bytes attached to a specific category (ECC or free) 1421 * from the OOB buffer and copy them into buf. 1422 * 1423 * Returns zero on success, a negative error code otherwise. 1424 */ 1425 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1426 const u8 *oobbuf, int start, int nbytes, 1427 int (*iter)(struct mtd_info *, 1428 int section, 1429 struct mtd_oob_region *oobregion)) 1430 { 1431 struct mtd_oob_region oobregion; 1432 int section, ret; 1433 1434 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1435 &oobregion, iter); 1436 1437 while (!ret) { 1438 int cnt; 1439 1440 cnt = min_t(int, nbytes, oobregion.length); 1441 memcpy(buf, oobbuf + oobregion.offset, cnt); 1442 buf += cnt; 1443 nbytes -= cnt; 1444 1445 if (!nbytes) 1446 break; 1447 1448 ret = iter(mtd, ++section, &oobregion); 1449 } 1450 1451 return ret; 1452 } 1453 1454 /** 1455 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1456 * @mtd: mtd info structure 1457 * @buf: source buffer to get OOB bytes from 1458 * @oobbuf: OOB buffer 1459 * @start: first OOB byte to set 1460 * @nbytes: number of OOB bytes to set 1461 * @iter: section iterator 1462 * 1463 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1464 * is selected by passing the appropriate iterator. 1465 * 1466 * Returns zero on success, a negative error code otherwise. 1467 */ 1468 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1469 u8 *oobbuf, int start, int nbytes, 1470 int (*iter)(struct mtd_info *, 1471 int section, 1472 struct mtd_oob_region *oobregion)) 1473 { 1474 struct mtd_oob_region oobregion; 1475 int section, ret; 1476 1477 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1478 &oobregion, iter); 1479 1480 while (!ret) { 1481 int cnt; 1482 1483 cnt = min_t(int, nbytes, oobregion.length); 1484 memcpy(oobbuf + oobregion.offset, buf, cnt); 1485 buf += cnt; 1486 nbytes -= cnt; 1487 1488 if (!nbytes) 1489 break; 1490 1491 ret = iter(mtd, ++section, &oobregion); 1492 } 1493 1494 return ret; 1495 } 1496 1497 /** 1498 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1499 * @mtd: mtd info structure 1500 * @iter: category iterator 1501 * 1502 * Count the number of bytes in a given category. 1503 * 1504 * Returns a positive value on success, a negative error code otherwise. 1505 */ 1506 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1507 int (*iter)(struct mtd_info *, 1508 int section, 1509 struct mtd_oob_region *oobregion)) 1510 { 1511 struct mtd_oob_region oobregion; 1512 int section = 0, ret, nbytes = 0; 1513 1514 while (1) { 1515 ret = iter(mtd, section++, &oobregion); 1516 if (ret) { 1517 if (ret == -ERANGE) 1518 ret = nbytes; 1519 break; 1520 } 1521 1522 nbytes += oobregion.length; 1523 } 1524 1525 return ret; 1526 } 1527 1528 /** 1529 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1530 * @mtd: mtd info structure 1531 * @eccbuf: destination buffer to store ECC bytes 1532 * @oobbuf: OOB buffer 1533 * @start: first ECC byte to retrieve 1534 * @nbytes: number of ECC bytes to retrieve 1535 * 1536 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1537 * 1538 * Returns zero on success, a negative error code otherwise. 1539 */ 1540 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1541 const u8 *oobbuf, int start, int nbytes) 1542 { 1543 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1544 mtd_ooblayout_ecc); 1545 } 1546 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1547 1548 /** 1549 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1550 * @mtd: mtd info structure 1551 * @eccbuf: source buffer to get ECC bytes from 1552 * @oobbuf: OOB buffer 1553 * @start: first ECC byte to set 1554 * @nbytes: number of ECC bytes to set 1555 * 1556 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 1557 * 1558 * Returns zero on success, a negative error code otherwise. 1559 */ 1560 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 1561 u8 *oobbuf, int start, int nbytes) 1562 { 1563 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1564 mtd_ooblayout_ecc); 1565 } 1566 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 1567 1568 /** 1569 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 1570 * @mtd: mtd info structure 1571 * @databuf: destination buffer to store ECC bytes 1572 * @oobbuf: OOB buffer 1573 * @start: first ECC byte to retrieve 1574 * @nbytes: number of ECC bytes to retrieve 1575 * 1576 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1577 * 1578 * Returns zero on success, a negative error code otherwise. 1579 */ 1580 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 1581 const u8 *oobbuf, int start, int nbytes) 1582 { 1583 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 1584 mtd_ooblayout_free); 1585 } 1586 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 1587 1588 /** 1589 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer 1590 * @mtd: mtd info structure 1591 * @databuf: source buffer to get data bytes from 1592 * @oobbuf: OOB buffer 1593 * @start: first ECC byte to set 1594 * @nbytes: number of ECC bytes to set 1595 * 1596 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1597 * 1598 * Returns zero on success, a negative error code otherwise. 1599 */ 1600 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 1601 u8 *oobbuf, int start, int nbytes) 1602 { 1603 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 1604 mtd_ooblayout_free); 1605 } 1606 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 1607 1608 /** 1609 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 1610 * @mtd: mtd info structure 1611 * 1612 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 1613 * 1614 * Returns zero on success, a negative error code otherwise. 1615 */ 1616 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 1617 { 1618 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 1619 } 1620 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 1621 1622 /** 1623 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB 1624 * @mtd: mtd info structure 1625 * 1626 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 1627 * 1628 * Returns zero on success, a negative error code otherwise. 1629 */ 1630 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 1631 { 1632 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 1633 } 1634 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 1635 1636 /* 1637 * Method to access the protection register area, present in some flash 1638 * devices. The user data is one time programmable but the factory data is read 1639 * only. 1640 */ 1641 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1642 struct otp_info *buf) 1643 { 1644 if (!mtd->_get_fact_prot_info) 1645 return -EOPNOTSUPP; 1646 if (!len) 1647 return 0; 1648 return mtd->_get_fact_prot_info(mtd, len, retlen, buf); 1649 } 1650 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 1651 1652 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1653 size_t *retlen, u_char *buf) 1654 { 1655 *retlen = 0; 1656 if (!mtd->_read_fact_prot_reg) 1657 return -EOPNOTSUPP; 1658 if (!len) 1659 return 0; 1660 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); 1661 } 1662 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 1663 1664 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1665 struct otp_info *buf) 1666 { 1667 if (!mtd->_get_user_prot_info) 1668 return -EOPNOTSUPP; 1669 if (!len) 1670 return 0; 1671 return mtd->_get_user_prot_info(mtd, len, retlen, buf); 1672 } 1673 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 1674 1675 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1676 size_t *retlen, u_char *buf) 1677 { 1678 *retlen = 0; 1679 if (!mtd->_read_user_prot_reg) 1680 return -EOPNOTSUPP; 1681 if (!len) 1682 return 0; 1683 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); 1684 } 1685 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 1686 1687 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 1688 size_t *retlen, u_char *buf) 1689 { 1690 int ret; 1691 1692 *retlen = 0; 1693 if (!mtd->_write_user_prot_reg) 1694 return -EOPNOTSUPP; 1695 if (!len) 1696 return 0; 1697 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); 1698 if (ret) 1699 return ret; 1700 1701 /* 1702 * If no data could be written at all, we are out of memory and 1703 * must return -ENOSPC. 1704 */ 1705 return (*retlen) ? 0 : -ENOSPC; 1706 } 1707 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1708 1709 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1710 { 1711 if (!mtd->_lock_user_prot_reg) 1712 return -EOPNOTSUPP; 1713 if (!len) 1714 return 0; 1715 return mtd->_lock_user_prot_reg(mtd, from, len); 1716 } 1717 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1718 1719 /* Chip-supported device locking */ 1720 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1721 { 1722 if (!mtd->_lock) 1723 return -EOPNOTSUPP; 1724 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1725 return -EINVAL; 1726 if (!len) 1727 return 0; 1728 return mtd->_lock(mtd, ofs, len); 1729 } 1730 EXPORT_SYMBOL_GPL(mtd_lock); 1731 1732 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1733 { 1734 if (!mtd->_unlock) 1735 return -EOPNOTSUPP; 1736 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1737 return -EINVAL; 1738 if (!len) 1739 return 0; 1740 return mtd->_unlock(mtd, ofs, len); 1741 } 1742 EXPORT_SYMBOL_GPL(mtd_unlock); 1743 1744 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1745 { 1746 if (!mtd->_is_locked) 1747 return -EOPNOTSUPP; 1748 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1749 return -EINVAL; 1750 if (!len) 1751 return 0; 1752 return mtd->_is_locked(mtd, ofs, len); 1753 } 1754 EXPORT_SYMBOL_GPL(mtd_is_locked); 1755 1756 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 1757 { 1758 if (ofs < 0 || ofs >= mtd->size) 1759 return -EINVAL; 1760 if (!mtd->_block_isreserved) 1761 return 0; 1762 return mtd->_block_isreserved(mtd, ofs); 1763 } 1764 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 1765 1766 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 1767 { 1768 if (ofs < 0 || ofs >= mtd->size) 1769 return -EINVAL; 1770 if (!mtd->_block_isbad) 1771 return 0; 1772 return mtd->_block_isbad(mtd, ofs); 1773 } 1774 EXPORT_SYMBOL_GPL(mtd_block_isbad); 1775 1776 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 1777 { 1778 if (!mtd->_block_markbad) 1779 return -EOPNOTSUPP; 1780 if (ofs < 0 || ofs >= mtd->size) 1781 return -EINVAL; 1782 if (!(mtd->flags & MTD_WRITEABLE)) 1783 return -EROFS; 1784 return mtd->_block_markbad(mtd, ofs); 1785 } 1786 EXPORT_SYMBOL_GPL(mtd_block_markbad); 1787 1788 /* 1789 * default_mtd_writev - the default writev method 1790 * @mtd: mtd device description object pointer 1791 * @vecs: the vectors to write 1792 * @count: count of vectors in @vecs 1793 * @to: the MTD device offset to write to 1794 * @retlen: on exit contains the count of bytes written to the MTD device. 1795 * 1796 * This function returns zero in case of success and a negative error code in 1797 * case of failure. 1798 */ 1799 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1800 unsigned long count, loff_t to, size_t *retlen) 1801 { 1802 unsigned long i; 1803 size_t totlen = 0, thislen; 1804 int ret = 0; 1805 1806 for (i = 0; i < count; i++) { 1807 if (!vecs[i].iov_len) 1808 continue; 1809 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1810 vecs[i].iov_base); 1811 totlen += thislen; 1812 if (ret || thislen != vecs[i].iov_len) 1813 break; 1814 to += vecs[i].iov_len; 1815 } 1816 *retlen = totlen; 1817 return ret; 1818 } 1819 1820 /* 1821 * mtd_writev - the vector-based MTD write method 1822 * @mtd: mtd device description object pointer 1823 * @vecs: the vectors to write 1824 * @count: count of vectors in @vecs 1825 * @to: the MTD device offset to write to 1826 * @retlen: on exit contains the count of bytes written to the MTD device. 1827 * 1828 * This function returns zero in case of success and a negative error code in 1829 * case of failure. 1830 */ 1831 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1832 unsigned long count, loff_t to, size_t *retlen) 1833 { 1834 *retlen = 0; 1835 if (!(mtd->flags & MTD_WRITEABLE)) 1836 return -EROFS; 1837 if (!mtd->_writev) 1838 return default_mtd_writev(mtd, vecs, count, to, retlen); 1839 return mtd->_writev(mtd, vecs, count, to, retlen); 1840 } 1841 EXPORT_SYMBOL_GPL(mtd_writev); 1842 1843 /** 1844 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1845 * @mtd: mtd device description object pointer 1846 * @size: a pointer to the ideal or maximum size of the allocation, points 1847 * to the actual allocation size on success. 1848 * 1849 * This routine attempts to allocate a contiguous kernel buffer up to 1850 * the specified size, backing off the size of the request exponentially 1851 * until the request succeeds or until the allocation size falls below 1852 * the system page size. This attempts to make sure it does not adversely 1853 * impact system performance, so when allocating more than one page, we 1854 * ask the memory allocator to avoid re-trying, swapping, writing back 1855 * or performing I/O. 1856 * 1857 * Note, this function also makes sure that the allocated buffer is aligned to 1858 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1859 * 1860 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1861 * to handle smaller (i.e. degraded) buffer allocations under low- or 1862 * fragmented-memory situations where such reduced allocations, from a 1863 * requested ideal, are allowed. 1864 * 1865 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1866 */ 1867 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1868 { 1869 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 1870 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1871 void *kbuf; 1872 1873 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1874 1875 while (*size > min_alloc) { 1876 kbuf = kmalloc(*size, flags); 1877 if (kbuf) 1878 return kbuf; 1879 1880 *size >>= 1; 1881 *size = ALIGN(*size, mtd->writesize); 1882 } 1883 1884 /* 1885 * For the last resort allocation allow 'kmalloc()' to do all sorts of 1886 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 1887 */ 1888 return kmalloc(*size, GFP_KERNEL); 1889 } 1890 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 1891 1892 #ifdef CONFIG_PROC_FS 1893 1894 /*====================================================================*/ 1895 /* Support for /proc/mtd */ 1896 1897 static int mtd_proc_show(struct seq_file *m, void *v) 1898 { 1899 struct mtd_info *mtd; 1900 1901 seq_puts(m, "dev: size erasesize name\n"); 1902 mutex_lock(&mtd_table_mutex); 1903 mtd_for_each_device(mtd) { 1904 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 1905 mtd->index, (unsigned long long)mtd->size, 1906 mtd->erasesize, mtd->name); 1907 } 1908 mutex_unlock(&mtd_table_mutex); 1909 return 0; 1910 } 1911 #endif /* CONFIG_PROC_FS */ 1912 1913 /*====================================================================*/ 1914 /* Init code */ 1915 1916 static struct backing_dev_info * __init mtd_bdi_init(char *name) 1917 { 1918 struct backing_dev_info *bdi; 1919 int ret; 1920 1921 bdi = bdi_alloc(GFP_KERNEL); 1922 if (!bdi) 1923 return ERR_PTR(-ENOMEM); 1924 1925 bdi->name = name; 1926 /* 1927 * We put '-0' suffix to the name to get the same name format as we 1928 * used to get. Since this is called only once, we get a unique name. 1929 */ 1930 ret = bdi_register(bdi, "%.28s-0", name); 1931 if (ret) 1932 bdi_put(bdi); 1933 1934 return ret ? ERR_PTR(ret) : bdi; 1935 } 1936 1937 static struct proc_dir_entry *proc_mtd; 1938 1939 static int __init init_mtd(void) 1940 { 1941 int ret; 1942 1943 ret = class_register(&mtd_class); 1944 if (ret) 1945 goto err_reg; 1946 1947 mtd_bdi = mtd_bdi_init("mtd"); 1948 if (IS_ERR(mtd_bdi)) { 1949 ret = PTR_ERR(mtd_bdi); 1950 goto err_bdi; 1951 } 1952 1953 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show); 1954 1955 ret = init_mtdchar(); 1956 if (ret) 1957 goto out_procfs; 1958 1959 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 1960 1961 return 0; 1962 1963 out_procfs: 1964 if (proc_mtd) 1965 remove_proc_entry("mtd", NULL); 1966 bdi_put(mtd_bdi); 1967 err_bdi: 1968 class_unregister(&mtd_class); 1969 err_reg: 1970 pr_err("Error registering mtd class or bdi: %d\n", ret); 1971 return ret; 1972 } 1973 1974 static void __exit cleanup_mtd(void) 1975 { 1976 debugfs_remove_recursive(dfs_dir_mtd); 1977 cleanup_mtdchar(); 1978 if (proc_mtd) 1979 remove_proc_entry("mtd", NULL); 1980 class_unregister(&mtd_class); 1981 bdi_put(mtd_bdi); 1982 idr_destroy(&mtd_idr); 1983 } 1984 1985 module_init(init_mtd); 1986 module_exit(cleanup_mtd); 1987 1988 MODULE_LICENSE("GPL"); 1989 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1990 MODULE_DESCRIPTION("Core MTD registration and access routines"); 1991