xref: /openbmc/linux/drivers/mtd/mtdcore.c (revision 86e281fc)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/random.h>
27 #include <linux/slab.h>
28 #include <linux/reboot.h>
29 #include <linux/leds.h>
30 #include <linux/debugfs.h>
31 #include <linux/nvmem-provider.h>
32 #include <linux/root_dev.h>
33 
34 #include <linux/mtd/mtd.h>
35 #include <linux/mtd/partitions.h>
36 
37 #include "mtdcore.h"
38 
39 struct backing_dev_info *mtd_bdi;
40 
41 #ifdef CONFIG_PM_SLEEP
42 
43 static int mtd_cls_suspend(struct device *dev)
44 {
45 	struct mtd_info *mtd = dev_get_drvdata(dev);
46 
47 	return mtd ? mtd_suspend(mtd) : 0;
48 }
49 
50 static int mtd_cls_resume(struct device *dev)
51 {
52 	struct mtd_info *mtd = dev_get_drvdata(dev);
53 
54 	if (mtd)
55 		mtd_resume(mtd);
56 	return 0;
57 }
58 
59 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
60 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
61 #else
62 #define MTD_CLS_PM_OPS NULL
63 #endif
64 
65 static struct class mtd_class = {
66 	.name = "mtd",
67 	.pm = MTD_CLS_PM_OPS,
68 };
69 
70 static DEFINE_IDR(mtd_idr);
71 
72 /* These are exported solely for the purpose of mtd_blkdevs.c. You
73    should not use them for _anything_ else */
74 DEFINE_MUTEX(mtd_table_mutex);
75 EXPORT_SYMBOL_GPL(mtd_table_mutex);
76 
77 struct mtd_info *__mtd_next_device(int i)
78 {
79 	return idr_get_next(&mtd_idr, &i);
80 }
81 EXPORT_SYMBOL_GPL(__mtd_next_device);
82 
83 static LIST_HEAD(mtd_notifiers);
84 
85 
86 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
87 
88 /* REVISIT once MTD uses the driver model better, whoever allocates
89  * the mtd_info will probably want to use the release() hook...
90  */
91 static void mtd_release(struct device *dev)
92 {
93 	struct mtd_info *mtd = dev_get_drvdata(dev);
94 	dev_t index = MTD_DEVT(mtd->index);
95 
96 	idr_remove(&mtd_idr, mtd->index);
97 	of_node_put(mtd_get_of_node(mtd));
98 
99 	if (mtd_is_partition(mtd))
100 		release_mtd_partition(mtd);
101 
102 	/* remove /dev/mtdXro node */
103 	device_destroy(&mtd_class, index + 1);
104 }
105 
106 static void mtd_device_release(struct kref *kref)
107 {
108 	struct mtd_info *mtd = container_of(kref, struct mtd_info, refcnt);
109 	bool is_partition = mtd_is_partition(mtd);
110 
111 	debugfs_remove_recursive(mtd->dbg.dfs_dir);
112 
113 	/* Try to remove the NVMEM provider */
114 	nvmem_unregister(mtd->nvmem);
115 
116 	device_unregister(&mtd->dev);
117 
118 	/*
119 	 *  Clear dev so mtd can be safely re-registered later if desired.
120 	 *  Should not be done for partition,
121 	 *  as it was already destroyed in device_unregister().
122 	 */
123 	if (!is_partition)
124 		memset(&mtd->dev, 0, sizeof(mtd->dev));
125 
126 	module_put(THIS_MODULE);
127 }
128 
129 #define MTD_DEVICE_ATTR_RO(name) \
130 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
131 
132 #define MTD_DEVICE_ATTR_RW(name) \
133 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
134 
135 static ssize_t mtd_type_show(struct device *dev,
136 		struct device_attribute *attr, char *buf)
137 {
138 	struct mtd_info *mtd = dev_get_drvdata(dev);
139 	char *type;
140 
141 	switch (mtd->type) {
142 	case MTD_ABSENT:
143 		type = "absent";
144 		break;
145 	case MTD_RAM:
146 		type = "ram";
147 		break;
148 	case MTD_ROM:
149 		type = "rom";
150 		break;
151 	case MTD_NORFLASH:
152 		type = "nor";
153 		break;
154 	case MTD_NANDFLASH:
155 		type = "nand";
156 		break;
157 	case MTD_DATAFLASH:
158 		type = "dataflash";
159 		break;
160 	case MTD_UBIVOLUME:
161 		type = "ubi";
162 		break;
163 	case MTD_MLCNANDFLASH:
164 		type = "mlc-nand";
165 		break;
166 	default:
167 		type = "unknown";
168 	}
169 
170 	return sysfs_emit(buf, "%s\n", type);
171 }
172 MTD_DEVICE_ATTR_RO(type);
173 
174 static ssize_t mtd_flags_show(struct device *dev,
175 		struct device_attribute *attr, char *buf)
176 {
177 	struct mtd_info *mtd = dev_get_drvdata(dev);
178 
179 	return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
180 }
181 MTD_DEVICE_ATTR_RO(flags);
182 
183 static ssize_t mtd_size_show(struct device *dev,
184 		struct device_attribute *attr, char *buf)
185 {
186 	struct mtd_info *mtd = dev_get_drvdata(dev);
187 
188 	return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
189 }
190 MTD_DEVICE_ATTR_RO(size);
191 
192 static ssize_t mtd_erasesize_show(struct device *dev,
193 		struct device_attribute *attr, char *buf)
194 {
195 	struct mtd_info *mtd = dev_get_drvdata(dev);
196 
197 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
198 }
199 MTD_DEVICE_ATTR_RO(erasesize);
200 
201 static ssize_t mtd_writesize_show(struct device *dev,
202 		struct device_attribute *attr, char *buf)
203 {
204 	struct mtd_info *mtd = dev_get_drvdata(dev);
205 
206 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
207 }
208 MTD_DEVICE_ATTR_RO(writesize);
209 
210 static ssize_t mtd_subpagesize_show(struct device *dev,
211 		struct device_attribute *attr, char *buf)
212 {
213 	struct mtd_info *mtd = dev_get_drvdata(dev);
214 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
215 
216 	return sysfs_emit(buf, "%u\n", subpagesize);
217 }
218 MTD_DEVICE_ATTR_RO(subpagesize);
219 
220 static ssize_t mtd_oobsize_show(struct device *dev,
221 		struct device_attribute *attr, char *buf)
222 {
223 	struct mtd_info *mtd = dev_get_drvdata(dev);
224 
225 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
226 }
227 MTD_DEVICE_ATTR_RO(oobsize);
228 
229 static ssize_t mtd_oobavail_show(struct device *dev,
230 				 struct device_attribute *attr, char *buf)
231 {
232 	struct mtd_info *mtd = dev_get_drvdata(dev);
233 
234 	return sysfs_emit(buf, "%u\n", mtd->oobavail);
235 }
236 MTD_DEVICE_ATTR_RO(oobavail);
237 
238 static ssize_t mtd_numeraseregions_show(struct device *dev,
239 		struct device_attribute *attr, char *buf)
240 {
241 	struct mtd_info *mtd = dev_get_drvdata(dev);
242 
243 	return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
244 }
245 MTD_DEVICE_ATTR_RO(numeraseregions);
246 
247 static ssize_t mtd_name_show(struct device *dev,
248 		struct device_attribute *attr, char *buf)
249 {
250 	struct mtd_info *mtd = dev_get_drvdata(dev);
251 
252 	return sysfs_emit(buf, "%s\n", mtd->name);
253 }
254 MTD_DEVICE_ATTR_RO(name);
255 
256 static ssize_t mtd_ecc_strength_show(struct device *dev,
257 				     struct device_attribute *attr, char *buf)
258 {
259 	struct mtd_info *mtd = dev_get_drvdata(dev);
260 
261 	return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
262 }
263 MTD_DEVICE_ATTR_RO(ecc_strength);
264 
265 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
266 					  struct device_attribute *attr,
267 					  char *buf)
268 {
269 	struct mtd_info *mtd = dev_get_drvdata(dev);
270 
271 	return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
272 }
273 
274 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
275 					   struct device_attribute *attr,
276 					   const char *buf, size_t count)
277 {
278 	struct mtd_info *mtd = dev_get_drvdata(dev);
279 	unsigned int bitflip_threshold;
280 	int retval;
281 
282 	retval = kstrtouint(buf, 0, &bitflip_threshold);
283 	if (retval)
284 		return retval;
285 
286 	mtd->bitflip_threshold = bitflip_threshold;
287 	return count;
288 }
289 MTD_DEVICE_ATTR_RW(bitflip_threshold);
290 
291 static ssize_t mtd_ecc_step_size_show(struct device *dev,
292 		struct device_attribute *attr, char *buf)
293 {
294 	struct mtd_info *mtd = dev_get_drvdata(dev);
295 
296 	return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
297 
298 }
299 MTD_DEVICE_ATTR_RO(ecc_step_size);
300 
301 static ssize_t mtd_corrected_bits_show(struct device *dev,
302 		struct device_attribute *attr, char *buf)
303 {
304 	struct mtd_info *mtd = dev_get_drvdata(dev);
305 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306 
307 	return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
308 }
309 MTD_DEVICE_ATTR_RO(corrected_bits);	/* ecc stats corrected */
310 
311 static ssize_t mtd_ecc_failures_show(struct device *dev,
312 		struct device_attribute *attr, char *buf)
313 {
314 	struct mtd_info *mtd = dev_get_drvdata(dev);
315 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
316 
317 	return sysfs_emit(buf, "%u\n", ecc_stats->failed);
318 }
319 MTD_DEVICE_ATTR_RO(ecc_failures);	/* ecc stats errors */
320 
321 static ssize_t mtd_bad_blocks_show(struct device *dev,
322 		struct device_attribute *attr, char *buf)
323 {
324 	struct mtd_info *mtd = dev_get_drvdata(dev);
325 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
326 
327 	return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
328 }
329 MTD_DEVICE_ATTR_RO(bad_blocks);
330 
331 static ssize_t mtd_bbt_blocks_show(struct device *dev,
332 		struct device_attribute *attr, char *buf)
333 {
334 	struct mtd_info *mtd = dev_get_drvdata(dev);
335 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
336 
337 	return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
338 }
339 MTD_DEVICE_ATTR_RO(bbt_blocks);
340 
341 static struct attribute *mtd_attrs[] = {
342 	&dev_attr_type.attr,
343 	&dev_attr_flags.attr,
344 	&dev_attr_size.attr,
345 	&dev_attr_erasesize.attr,
346 	&dev_attr_writesize.attr,
347 	&dev_attr_subpagesize.attr,
348 	&dev_attr_oobsize.attr,
349 	&dev_attr_oobavail.attr,
350 	&dev_attr_numeraseregions.attr,
351 	&dev_attr_name.attr,
352 	&dev_attr_ecc_strength.attr,
353 	&dev_attr_ecc_step_size.attr,
354 	&dev_attr_corrected_bits.attr,
355 	&dev_attr_ecc_failures.attr,
356 	&dev_attr_bad_blocks.attr,
357 	&dev_attr_bbt_blocks.attr,
358 	&dev_attr_bitflip_threshold.attr,
359 	NULL,
360 };
361 ATTRIBUTE_GROUPS(mtd);
362 
363 static const struct device_type mtd_devtype = {
364 	.name		= "mtd",
365 	.groups		= mtd_groups,
366 	.release	= mtd_release,
367 };
368 
369 static bool mtd_expert_analysis_mode;
370 
371 #ifdef CONFIG_DEBUG_FS
372 bool mtd_check_expert_analysis_mode(void)
373 {
374 	const char *mtd_expert_analysis_warning =
375 		"Bad block checks have been entirely disabled.\n"
376 		"This is only reserved for post-mortem forensics and debug purposes.\n"
377 		"Never enable this mode if you do not know what you are doing!\n";
378 
379 	return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning);
380 }
381 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode);
382 #endif
383 
384 static struct dentry *dfs_dir_mtd;
385 
386 static void mtd_debugfs_populate(struct mtd_info *mtd)
387 {
388 	struct device *dev = &mtd->dev;
389 
390 	if (IS_ERR_OR_NULL(dfs_dir_mtd))
391 		return;
392 
393 	mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
394 }
395 
396 #ifndef CONFIG_MMU
397 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
398 {
399 	switch (mtd->type) {
400 	case MTD_RAM:
401 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
402 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
403 	case MTD_ROM:
404 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
405 			NOMMU_MAP_READ;
406 	default:
407 		return NOMMU_MAP_COPY;
408 	}
409 }
410 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
411 #endif
412 
413 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
414 			       void *cmd)
415 {
416 	struct mtd_info *mtd;
417 
418 	mtd = container_of(n, struct mtd_info, reboot_notifier);
419 	mtd->_reboot(mtd);
420 
421 	return NOTIFY_DONE;
422 }
423 
424 /**
425  * mtd_wunit_to_pairing_info - get pairing information of a wunit
426  * @mtd: pointer to new MTD device info structure
427  * @wunit: write unit we are interested in
428  * @info: returned pairing information
429  *
430  * Retrieve pairing information associated to the wunit.
431  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
432  * paired together, and where programming a page may influence the page it is
433  * paired with.
434  * The notion of page is replaced by the term wunit (write-unit) to stay
435  * consistent with the ->writesize field.
436  *
437  * The @wunit argument can be extracted from an absolute offset using
438  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
439  * to @wunit.
440  *
441  * From the pairing info the MTD user can find all the wunits paired with
442  * @wunit using the following loop:
443  *
444  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
445  *	info.pair = i;
446  *	mtd_pairing_info_to_wunit(mtd, &info);
447  *	...
448  * }
449  */
450 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
451 			      struct mtd_pairing_info *info)
452 {
453 	struct mtd_info *master = mtd_get_master(mtd);
454 	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
455 
456 	if (wunit < 0 || wunit >= npairs)
457 		return -EINVAL;
458 
459 	if (master->pairing && master->pairing->get_info)
460 		return master->pairing->get_info(master, wunit, info);
461 
462 	info->group = 0;
463 	info->pair = wunit;
464 
465 	return 0;
466 }
467 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
468 
469 /**
470  * mtd_pairing_info_to_wunit - get wunit from pairing information
471  * @mtd: pointer to new MTD device info structure
472  * @info: pairing information struct
473  *
474  * Returns a positive number representing the wunit associated to the info
475  * struct, or a negative error code.
476  *
477  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
478  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
479  * doc).
480  *
481  * It can also be used to only program the first page of each pair (i.e.
482  * page attached to group 0), which allows one to use an MLC NAND in
483  * software-emulated SLC mode:
484  *
485  * info.group = 0;
486  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
487  * for (info.pair = 0; info.pair < npairs; info.pair++) {
488  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
489  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
490  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
491  * }
492  */
493 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
494 			      const struct mtd_pairing_info *info)
495 {
496 	struct mtd_info *master = mtd_get_master(mtd);
497 	int ngroups = mtd_pairing_groups(master);
498 	int npairs = mtd_wunit_per_eb(master) / ngroups;
499 
500 	if (!info || info->pair < 0 || info->pair >= npairs ||
501 	    info->group < 0 || info->group >= ngroups)
502 		return -EINVAL;
503 
504 	if (master->pairing && master->pairing->get_wunit)
505 		return mtd->pairing->get_wunit(master, info);
506 
507 	return info->pair;
508 }
509 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
510 
511 /**
512  * mtd_pairing_groups - get the number of pairing groups
513  * @mtd: pointer to new MTD device info structure
514  *
515  * Returns the number of pairing groups.
516  *
517  * This number is usually equal to the number of bits exposed by a single
518  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
519  * to iterate over all pages of a given pair.
520  */
521 int mtd_pairing_groups(struct mtd_info *mtd)
522 {
523 	struct mtd_info *master = mtd_get_master(mtd);
524 
525 	if (!master->pairing || !master->pairing->ngroups)
526 		return 1;
527 
528 	return master->pairing->ngroups;
529 }
530 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
531 
532 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
533 			      void *val, size_t bytes)
534 {
535 	struct mtd_info *mtd = priv;
536 	size_t retlen;
537 	int err;
538 
539 	err = mtd_read(mtd, offset, bytes, &retlen, val);
540 	if (err && err != -EUCLEAN)
541 		return err;
542 
543 	return retlen == bytes ? 0 : -EIO;
544 }
545 
546 static int mtd_nvmem_add(struct mtd_info *mtd)
547 {
548 	struct device_node *node = mtd_get_of_node(mtd);
549 	struct nvmem_config config = {};
550 
551 	config.id = NVMEM_DEVID_NONE;
552 	config.dev = &mtd->dev;
553 	config.name = dev_name(&mtd->dev);
554 	config.owner = THIS_MODULE;
555 	config.reg_read = mtd_nvmem_reg_read;
556 	config.size = mtd->size;
557 	config.word_size = 1;
558 	config.stride = 1;
559 	config.read_only = true;
560 	config.root_only = true;
561 	config.ignore_wp = true;
562 	config.no_of_node = !of_device_is_compatible(node, "nvmem-cells");
563 	config.priv = mtd;
564 
565 	mtd->nvmem = nvmem_register(&config);
566 	if (IS_ERR(mtd->nvmem)) {
567 		/* Just ignore if there is no NVMEM support in the kernel */
568 		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP)
569 			mtd->nvmem = NULL;
570 		else
571 			return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem),
572 					     "Failed to register NVMEM device\n");
573 	}
574 
575 	return 0;
576 }
577 
578 static void mtd_check_of_node(struct mtd_info *mtd)
579 {
580 	struct device_node *partitions, *parent_dn, *mtd_dn = NULL;
581 	const char *pname, *prefix = "partition-";
582 	int plen, mtd_name_len, offset, prefix_len;
583 
584 	/* Check if MTD already has a device node */
585 	if (mtd_get_of_node(mtd))
586 		return;
587 
588 	if (!mtd_is_partition(mtd))
589 		return;
590 
591 	parent_dn = of_node_get(mtd_get_of_node(mtd->parent));
592 	if (!parent_dn)
593 		return;
594 
595 	if (mtd_is_partition(mtd->parent))
596 		partitions = of_node_get(parent_dn);
597 	else
598 		partitions = of_get_child_by_name(parent_dn, "partitions");
599 	if (!partitions)
600 		goto exit_parent;
601 
602 	prefix_len = strlen(prefix);
603 	mtd_name_len = strlen(mtd->name);
604 
605 	/* Search if a partition is defined with the same name */
606 	for_each_child_of_node(partitions, mtd_dn) {
607 		/* Skip partition with no/wrong prefix */
608 		if (!of_node_name_prefix(mtd_dn, prefix))
609 			continue;
610 
611 		/* Label have priority. Check that first */
612 		if (!of_property_read_string(mtd_dn, "label", &pname)) {
613 			offset = 0;
614 		} else {
615 			pname = mtd_dn->name;
616 			offset = prefix_len;
617 		}
618 
619 		plen = strlen(pname) - offset;
620 		if (plen == mtd_name_len &&
621 		    !strncmp(mtd->name, pname + offset, plen)) {
622 			mtd_set_of_node(mtd, mtd_dn);
623 			break;
624 		}
625 	}
626 
627 	of_node_put(partitions);
628 exit_parent:
629 	of_node_put(parent_dn);
630 }
631 
632 /**
633  *	add_mtd_device - register an MTD device
634  *	@mtd: pointer to new MTD device info structure
635  *
636  *	Add a device to the list of MTD devices present in the system, and
637  *	notify each currently active MTD 'user' of its arrival. Returns
638  *	zero on success or non-zero on failure.
639  */
640 
641 int add_mtd_device(struct mtd_info *mtd)
642 {
643 	struct device_node *np = mtd_get_of_node(mtd);
644 	struct mtd_info *master = mtd_get_master(mtd);
645 	struct mtd_notifier *not;
646 	int i, error, ofidx;
647 
648 	/*
649 	 * May occur, for instance, on buggy drivers which call
650 	 * mtd_device_parse_register() multiple times on the same master MTD,
651 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
652 	 */
653 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
654 		return -EEXIST;
655 
656 	BUG_ON(mtd->writesize == 0);
657 
658 	/*
659 	 * MTD drivers should implement ->_{write,read}() or
660 	 * ->_{write,read}_oob(), but not both.
661 	 */
662 	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
663 		    (mtd->_read && mtd->_read_oob)))
664 		return -EINVAL;
665 
666 	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
667 		    !(mtd->flags & MTD_NO_ERASE)))
668 		return -EINVAL;
669 
670 	/*
671 	 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
672 	 * master is an MLC NAND and has a proper pairing scheme defined.
673 	 * We also reject masters that implement ->_writev() for now, because
674 	 * NAND controller drivers don't implement this hook, and adding the
675 	 * SLC -> MLC address/length conversion to this path is useless if we
676 	 * don't have a user.
677 	 */
678 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
679 	    (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
680 	     !master->pairing || master->_writev))
681 		return -EINVAL;
682 
683 	mutex_lock(&mtd_table_mutex);
684 
685 	ofidx = -1;
686 	if (np)
687 		ofidx = of_alias_get_id(np, "mtd");
688 	if (ofidx >= 0)
689 		i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
690 	else
691 		i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
692 	if (i < 0) {
693 		error = i;
694 		goto fail_locked;
695 	}
696 
697 	mtd->index = i;
698 	kref_init(&mtd->refcnt);
699 
700 	/* default value if not set by driver */
701 	if (mtd->bitflip_threshold == 0)
702 		mtd->bitflip_threshold = mtd->ecc_strength;
703 
704 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
705 		int ngroups = mtd_pairing_groups(master);
706 
707 		mtd->erasesize /= ngroups;
708 		mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
709 			    mtd->erasesize;
710 	}
711 
712 	if (is_power_of_2(mtd->erasesize))
713 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
714 	else
715 		mtd->erasesize_shift = 0;
716 
717 	if (is_power_of_2(mtd->writesize))
718 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
719 	else
720 		mtd->writesize_shift = 0;
721 
722 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
723 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
724 
725 	/* Some chips always power up locked. Unlock them now */
726 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
727 		error = mtd_unlock(mtd, 0, mtd->size);
728 		if (error && error != -EOPNOTSUPP)
729 			printk(KERN_WARNING
730 			       "%s: unlock failed, writes may not work\n",
731 			       mtd->name);
732 		/* Ignore unlock failures? */
733 		error = 0;
734 	}
735 
736 	/* Caller should have set dev.parent to match the
737 	 * physical device, if appropriate.
738 	 */
739 	mtd->dev.type = &mtd_devtype;
740 	mtd->dev.class = &mtd_class;
741 	mtd->dev.devt = MTD_DEVT(i);
742 	dev_set_name(&mtd->dev, "mtd%d", i);
743 	dev_set_drvdata(&mtd->dev, mtd);
744 	mtd_check_of_node(mtd);
745 	of_node_get(mtd_get_of_node(mtd));
746 	error = device_register(&mtd->dev);
747 	if (error) {
748 		put_device(&mtd->dev);
749 		goto fail_added;
750 	}
751 
752 	/* Add the nvmem provider */
753 	error = mtd_nvmem_add(mtd);
754 	if (error)
755 		goto fail_nvmem_add;
756 
757 	mtd_debugfs_populate(mtd);
758 
759 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
760 		      "mtd%dro", i);
761 
762 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
763 	/* No need to get a refcount on the module containing
764 	   the notifier, since we hold the mtd_table_mutex */
765 	list_for_each_entry(not, &mtd_notifiers, list)
766 		not->add(mtd);
767 
768 	mutex_unlock(&mtd_table_mutex);
769 
770 	if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) {
771 		if (IS_BUILTIN(CONFIG_MTD)) {
772 			pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name);
773 			ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index);
774 		} else {
775 			pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n",
776 				mtd->index, mtd->name);
777 		}
778 	}
779 
780 	/* We _know_ we aren't being removed, because
781 	   our caller is still holding us here. So none
782 	   of this try_ nonsense, and no bitching about it
783 	   either. :) */
784 	__module_get(THIS_MODULE);
785 	return 0;
786 
787 fail_nvmem_add:
788 	device_unregister(&mtd->dev);
789 fail_added:
790 	of_node_put(mtd_get_of_node(mtd));
791 	idr_remove(&mtd_idr, i);
792 fail_locked:
793 	mutex_unlock(&mtd_table_mutex);
794 	return error;
795 }
796 
797 /**
798  *	del_mtd_device - unregister an MTD device
799  *	@mtd: pointer to MTD device info structure
800  *
801  *	Remove a device from the list of MTD devices present in the system,
802  *	and notify each currently active MTD 'user' of its departure.
803  *	Returns zero on success or 1 on failure, which currently will happen
804  *	if the requested device does not appear to be present in the list.
805  */
806 
807 int del_mtd_device(struct mtd_info *mtd)
808 {
809 	int ret;
810 	struct mtd_notifier *not;
811 
812 	mutex_lock(&mtd_table_mutex);
813 
814 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
815 		ret = -ENODEV;
816 		goto out_error;
817 	}
818 
819 	/* No need to get a refcount on the module containing
820 		the notifier, since we hold the mtd_table_mutex */
821 	list_for_each_entry(not, &mtd_notifiers, list)
822 		not->remove(mtd);
823 
824 	kref_put(&mtd->refcnt, mtd_device_release);
825 	ret = 0;
826 
827 out_error:
828 	mutex_unlock(&mtd_table_mutex);
829 	return ret;
830 }
831 
832 /*
833  * Set a few defaults based on the parent devices, if not provided by the
834  * driver
835  */
836 static void mtd_set_dev_defaults(struct mtd_info *mtd)
837 {
838 	if (mtd->dev.parent) {
839 		if (!mtd->owner && mtd->dev.parent->driver)
840 			mtd->owner = mtd->dev.parent->driver->owner;
841 		if (!mtd->name)
842 			mtd->name = dev_name(mtd->dev.parent);
843 	} else {
844 		pr_debug("mtd device won't show a device symlink in sysfs\n");
845 	}
846 
847 	INIT_LIST_HEAD(&mtd->partitions);
848 	mutex_init(&mtd->master.partitions_lock);
849 	mutex_init(&mtd->master.chrdev_lock);
850 }
851 
852 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
853 {
854 	struct otp_info *info;
855 	ssize_t size = 0;
856 	unsigned int i;
857 	size_t retlen;
858 	int ret;
859 
860 	info = kmalloc(PAGE_SIZE, GFP_KERNEL);
861 	if (!info)
862 		return -ENOMEM;
863 
864 	if (is_user)
865 		ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
866 	else
867 		ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
868 	if (ret)
869 		goto err;
870 
871 	for (i = 0; i < retlen / sizeof(*info); i++)
872 		size += info[i].length;
873 
874 	kfree(info);
875 	return size;
876 
877 err:
878 	kfree(info);
879 
880 	/* ENODATA means there is no OTP region. */
881 	return ret == -ENODATA ? 0 : ret;
882 }
883 
884 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
885 						   const char *compatible,
886 						   int size,
887 						   nvmem_reg_read_t reg_read)
888 {
889 	struct nvmem_device *nvmem = NULL;
890 	struct nvmem_config config = {};
891 	struct device_node *np;
892 
893 	/* DT binding is optional */
894 	np = of_get_compatible_child(mtd->dev.of_node, compatible);
895 
896 	/* OTP nvmem will be registered on the physical device */
897 	config.dev = mtd->dev.parent;
898 	config.name = compatible;
899 	config.id = NVMEM_DEVID_AUTO;
900 	config.owner = THIS_MODULE;
901 	config.type = NVMEM_TYPE_OTP;
902 	config.root_only = true;
903 	config.ignore_wp = true;
904 	config.reg_read = reg_read;
905 	config.size = size;
906 	config.of_node = np;
907 	config.priv = mtd;
908 
909 	nvmem = nvmem_register(&config);
910 	/* Just ignore if there is no NVMEM support in the kernel */
911 	if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
912 		nvmem = NULL;
913 
914 	of_node_put(np);
915 
916 	return nvmem;
917 }
918 
919 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
920 				       void *val, size_t bytes)
921 {
922 	struct mtd_info *mtd = priv;
923 	size_t retlen;
924 	int ret;
925 
926 	ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
927 	if (ret)
928 		return ret;
929 
930 	return retlen == bytes ? 0 : -EIO;
931 }
932 
933 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
934 				       void *val, size_t bytes)
935 {
936 	struct mtd_info *mtd = priv;
937 	size_t retlen;
938 	int ret;
939 
940 	ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
941 	if (ret)
942 		return ret;
943 
944 	return retlen == bytes ? 0 : -EIO;
945 }
946 
947 static int mtd_otp_nvmem_add(struct mtd_info *mtd)
948 {
949 	struct device *dev = mtd->dev.parent;
950 	struct nvmem_device *nvmem;
951 	ssize_t size;
952 	int err;
953 
954 	if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
955 		size = mtd_otp_size(mtd, true);
956 		if (size < 0)
957 			return size;
958 
959 		if (size > 0) {
960 			nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
961 						       mtd_nvmem_user_otp_reg_read);
962 			if (IS_ERR(nvmem)) {
963 				err = PTR_ERR(nvmem);
964 				goto err;
965 			}
966 			mtd->otp_user_nvmem = nvmem;
967 		}
968 	}
969 
970 	if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
971 		size = mtd_otp_size(mtd, false);
972 		if (size < 0) {
973 			err = size;
974 			goto err;
975 		}
976 
977 		if (size > 0) {
978 			/*
979 			 * The factory OTP contains thing such as a unique serial
980 			 * number and is small, so let's read it out and put it
981 			 * into the entropy pool.
982 			 */
983 			void *otp;
984 
985 			otp = kmalloc(size, GFP_KERNEL);
986 			if (!otp) {
987 				err = -ENOMEM;
988 				goto err;
989 			}
990 			err = mtd_nvmem_fact_otp_reg_read(mtd, 0, otp, size);
991 			if (err < 0) {
992 				kfree(otp);
993 				goto err;
994 			}
995 			add_device_randomness(otp, err);
996 			kfree(otp);
997 
998 			nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
999 						       mtd_nvmem_fact_otp_reg_read);
1000 			if (IS_ERR(nvmem)) {
1001 				err = PTR_ERR(nvmem);
1002 				goto err;
1003 			}
1004 			mtd->otp_factory_nvmem = nvmem;
1005 		}
1006 	}
1007 
1008 	return 0;
1009 
1010 err:
1011 	nvmem_unregister(mtd->otp_user_nvmem);
1012 	return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n");
1013 }
1014 
1015 /**
1016  * mtd_device_parse_register - parse partitions and register an MTD device.
1017  *
1018  * @mtd: the MTD device to register
1019  * @types: the list of MTD partition probes to try, see
1020  *         'parse_mtd_partitions()' for more information
1021  * @parser_data: MTD partition parser-specific data
1022  * @parts: fallback partition information to register, if parsing fails;
1023  *         only valid if %nr_parts > %0
1024  * @nr_parts: the number of partitions in parts, if zero then the full
1025  *            MTD device is registered if no partition info is found
1026  *
1027  * This function aggregates MTD partitions parsing (done by
1028  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
1029  * basically follows the most common pattern found in many MTD drivers:
1030  *
1031  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
1032  *   registered first.
1033  * * Then It tries to probe partitions on MTD device @mtd using parsers
1034  *   specified in @types (if @types is %NULL, then the default list of parsers
1035  *   is used, see 'parse_mtd_partitions()' for more information). If none are
1036  *   found this functions tries to fallback to information specified in
1037  *   @parts/@nr_parts.
1038  * * If no partitions were found this function just registers the MTD device
1039  *   @mtd and exits.
1040  *
1041  * Returns zero in case of success and a negative error code in case of failure.
1042  */
1043 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
1044 			      struct mtd_part_parser_data *parser_data,
1045 			      const struct mtd_partition *parts,
1046 			      int nr_parts)
1047 {
1048 	int ret;
1049 
1050 	mtd_set_dev_defaults(mtd);
1051 
1052 	ret = mtd_otp_nvmem_add(mtd);
1053 	if (ret)
1054 		goto out;
1055 
1056 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
1057 		ret = add_mtd_device(mtd);
1058 		if (ret)
1059 			goto out;
1060 	}
1061 
1062 	/* Prefer parsed partitions over driver-provided fallback */
1063 	ret = parse_mtd_partitions(mtd, types, parser_data);
1064 	if (ret == -EPROBE_DEFER)
1065 		goto out;
1066 
1067 	if (ret > 0)
1068 		ret = 0;
1069 	else if (nr_parts)
1070 		ret = add_mtd_partitions(mtd, parts, nr_parts);
1071 	else if (!device_is_registered(&mtd->dev))
1072 		ret = add_mtd_device(mtd);
1073 	else
1074 		ret = 0;
1075 
1076 	if (ret)
1077 		goto out;
1078 
1079 	/*
1080 	 * FIXME: some drivers unfortunately call this function more than once.
1081 	 * So we have to check if we've already assigned the reboot notifier.
1082 	 *
1083 	 * Generally, we can make multiple calls work for most cases, but it
1084 	 * does cause problems with parse_mtd_partitions() above (e.g.,
1085 	 * cmdlineparts will register partitions more than once).
1086 	 */
1087 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
1088 		  "MTD already registered\n");
1089 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
1090 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1091 		register_reboot_notifier(&mtd->reboot_notifier);
1092 	}
1093 
1094 out:
1095 	if (ret) {
1096 		nvmem_unregister(mtd->otp_user_nvmem);
1097 		nvmem_unregister(mtd->otp_factory_nvmem);
1098 	}
1099 
1100 	if (ret && device_is_registered(&mtd->dev))
1101 		del_mtd_device(mtd);
1102 
1103 	return ret;
1104 }
1105 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1106 
1107 /**
1108  * mtd_device_unregister - unregister an existing MTD device.
1109  *
1110  * @master: the MTD device to unregister.  This will unregister both the master
1111  *          and any partitions if registered.
1112  */
1113 int mtd_device_unregister(struct mtd_info *master)
1114 {
1115 	int err;
1116 
1117 	if (master->_reboot) {
1118 		unregister_reboot_notifier(&master->reboot_notifier);
1119 		memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1120 	}
1121 
1122 	nvmem_unregister(master->otp_user_nvmem);
1123 	nvmem_unregister(master->otp_factory_nvmem);
1124 
1125 	err = del_mtd_partitions(master);
1126 	if (err)
1127 		return err;
1128 
1129 	if (!device_is_registered(&master->dev))
1130 		return 0;
1131 
1132 	return del_mtd_device(master);
1133 }
1134 EXPORT_SYMBOL_GPL(mtd_device_unregister);
1135 
1136 /**
1137  *	register_mtd_user - register a 'user' of MTD devices.
1138  *	@new: pointer to notifier info structure
1139  *
1140  *	Registers a pair of callbacks function to be called upon addition
1141  *	or removal of MTD devices. Causes the 'add' callback to be immediately
1142  *	invoked for each MTD device currently present in the system.
1143  */
1144 void register_mtd_user (struct mtd_notifier *new)
1145 {
1146 	struct mtd_info *mtd;
1147 
1148 	mutex_lock(&mtd_table_mutex);
1149 
1150 	list_add(&new->list, &mtd_notifiers);
1151 
1152 	__module_get(THIS_MODULE);
1153 
1154 	mtd_for_each_device(mtd)
1155 		new->add(mtd);
1156 
1157 	mutex_unlock(&mtd_table_mutex);
1158 }
1159 EXPORT_SYMBOL_GPL(register_mtd_user);
1160 
1161 /**
1162  *	unregister_mtd_user - unregister a 'user' of MTD devices.
1163  *	@old: pointer to notifier info structure
1164  *
1165  *	Removes a callback function pair from the list of 'users' to be
1166  *	notified upon addition or removal of MTD devices. Causes the
1167  *	'remove' callback to be immediately invoked for each MTD device
1168  *	currently present in the system.
1169  */
1170 int unregister_mtd_user (struct mtd_notifier *old)
1171 {
1172 	struct mtd_info *mtd;
1173 
1174 	mutex_lock(&mtd_table_mutex);
1175 
1176 	module_put(THIS_MODULE);
1177 
1178 	mtd_for_each_device(mtd)
1179 		old->remove(mtd);
1180 
1181 	list_del(&old->list);
1182 	mutex_unlock(&mtd_table_mutex);
1183 	return 0;
1184 }
1185 EXPORT_SYMBOL_GPL(unregister_mtd_user);
1186 
1187 /**
1188  *	get_mtd_device - obtain a validated handle for an MTD device
1189  *	@mtd: last known address of the required MTD device
1190  *	@num: internal device number of the required MTD device
1191  *
1192  *	Given a number and NULL address, return the num'th entry in the device
1193  *	table, if any.	Given an address and num == -1, search the device table
1194  *	for a device with that address and return if it's still present. Given
1195  *	both, return the num'th driver only if its address matches. Return
1196  *	error code if not.
1197  */
1198 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1199 {
1200 	struct mtd_info *ret = NULL, *other;
1201 	int err = -ENODEV;
1202 
1203 	mutex_lock(&mtd_table_mutex);
1204 
1205 	if (num == -1) {
1206 		mtd_for_each_device(other) {
1207 			if (other == mtd) {
1208 				ret = mtd;
1209 				break;
1210 			}
1211 		}
1212 	} else if (num >= 0) {
1213 		ret = idr_find(&mtd_idr, num);
1214 		if (mtd && mtd != ret)
1215 			ret = NULL;
1216 	}
1217 
1218 	if (!ret) {
1219 		ret = ERR_PTR(err);
1220 		goto out;
1221 	}
1222 
1223 	err = __get_mtd_device(ret);
1224 	if (err)
1225 		ret = ERR_PTR(err);
1226 out:
1227 	mutex_unlock(&mtd_table_mutex);
1228 	return ret;
1229 }
1230 EXPORT_SYMBOL_GPL(get_mtd_device);
1231 
1232 
1233 int __get_mtd_device(struct mtd_info *mtd)
1234 {
1235 	struct mtd_info *master = mtd_get_master(mtd);
1236 	int err;
1237 
1238 	if (master->_get_device) {
1239 		err = master->_get_device(mtd);
1240 		if (err)
1241 			return err;
1242 	}
1243 
1244 	if (!try_module_get(master->owner)) {
1245 		if (master->_put_device)
1246 			master->_put_device(master);
1247 		return -ENODEV;
1248 	}
1249 
1250 	while (mtd) {
1251 		if (mtd != master)
1252 			kref_get(&mtd->refcnt);
1253 		mtd = mtd->parent;
1254 	}
1255 
1256 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1257 		kref_get(&master->refcnt);
1258 
1259 	return 0;
1260 }
1261 EXPORT_SYMBOL_GPL(__get_mtd_device);
1262 
1263 /**
1264  * of_get_mtd_device_by_node - obtain an MTD device associated with a given node
1265  *
1266  * @np: device tree node
1267  */
1268 struct mtd_info *of_get_mtd_device_by_node(struct device_node *np)
1269 {
1270 	struct mtd_info *mtd = NULL;
1271 	struct mtd_info *tmp;
1272 	int err;
1273 
1274 	mutex_lock(&mtd_table_mutex);
1275 
1276 	err = -EPROBE_DEFER;
1277 	mtd_for_each_device(tmp) {
1278 		if (mtd_get_of_node(tmp) == np) {
1279 			mtd = tmp;
1280 			err = __get_mtd_device(mtd);
1281 			break;
1282 		}
1283 	}
1284 
1285 	mutex_unlock(&mtd_table_mutex);
1286 
1287 	return err ? ERR_PTR(err) : mtd;
1288 }
1289 EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node);
1290 
1291 /**
1292  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1293  *	device name
1294  *	@name: MTD device name to open
1295  *
1296  * 	This function returns MTD device description structure in case of
1297  * 	success and an error code in case of failure.
1298  */
1299 struct mtd_info *get_mtd_device_nm(const char *name)
1300 {
1301 	int err = -ENODEV;
1302 	struct mtd_info *mtd = NULL, *other;
1303 
1304 	mutex_lock(&mtd_table_mutex);
1305 
1306 	mtd_for_each_device(other) {
1307 		if (!strcmp(name, other->name)) {
1308 			mtd = other;
1309 			break;
1310 		}
1311 	}
1312 
1313 	if (!mtd)
1314 		goto out_unlock;
1315 
1316 	err = __get_mtd_device(mtd);
1317 	if (err)
1318 		goto out_unlock;
1319 
1320 	mutex_unlock(&mtd_table_mutex);
1321 	return mtd;
1322 
1323 out_unlock:
1324 	mutex_unlock(&mtd_table_mutex);
1325 	return ERR_PTR(err);
1326 }
1327 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1328 
1329 void put_mtd_device(struct mtd_info *mtd)
1330 {
1331 	mutex_lock(&mtd_table_mutex);
1332 	__put_mtd_device(mtd);
1333 	mutex_unlock(&mtd_table_mutex);
1334 
1335 }
1336 EXPORT_SYMBOL_GPL(put_mtd_device);
1337 
1338 void __put_mtd_device(struct mtd_info *mtd)
1339 {
1340 	struct mtd_info *master = mtd_get_master(mtd);
1341 
1342 	while (mtd) {
1343 		/* kref_put() can relese mtd, so keep a reference mtd->parent */
1344 		struct mtd_info *parent = mtd->parent;
1345 
1346 		if (mtd != master)
1347 			kref_put(&mtd->refcnt, mtd_device_release);
1348 		mtd = parent;
1349 	}
1350 
1351 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1352 		kref_put(&master->refcnt, mtd_device_release);
1353 
1354 	module_put(master->owner);
1355 
1356 	/* must be the last as master can be freed in the _put_device */
1357 	if (master->_put_device)
1358 		master->_put_device(master);
1359 }
1360 EXPORT_SYMBOL_GPL(__put_mtd_device);
1361 
1362 /*
1363  * Erase is an synchronous operation. Device drivers are epected to return a
1364  * negative error code if the operation failed and update instr->fail_addr
1365  * to point the portion that was not properly erased.
1366  */
1367 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1368 {
1369 	struct mtd_info *master = mtd_get_master(mtd);
1370 	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1371 	struct erase_info adjinstr;
1372 	int ret;
1373 
1374 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1375 	adjinstr = *instr;
1376 
1377 	if (!mtd->erasesize || !master->_erase)
1378 		return -ENOTSUPP;
1379 
1380 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1381 		return -EINVAL;
1382 	if (!(mtd->flags & MTD_WRITEABLE))
1383 		return -EROFS;
1384 
1385 	if (!instr->len)
1386 		return 0;
1387 
1388 	ledtrig_mtd_activity();
1389 
1390 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1391 		adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1392 				master->erasesize;
1393 		adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1394 				master->erasesize) -
1395 			       adjinstr.addr;
1396 	}
1397 
1398 	adjinstr.addr += mst_ofs;
1399 
1400 	ret = master->_erase(master, &adjinstr);
1401 
1402 	if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1403 		instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1404 		if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1405 			instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1406 							 master);
1407 			instr->fail_addr *= mtd->erasesize;
1408 		}
1409 	}
1410 
1411 	return ret;
1412 }
1413 EXPORT_SYMBOL_GPL(mtd_erase);
1414 
1415 /*
1416  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1417  */
1418 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1419 	      void **virt, resource_size_t *phys)
1420 {
1421 	struct mtd_info *master = mtd_get_master(mtd);
1422 
1423 	*retlen = 0;
1424 	*virt = NULL;
1425 	if (phys)
1426 		*phys = 0;
1427 	if (!master->_point)
1428 		return -EOPNOTSUPP;
1429 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1430 		return -EINVAL;
1431 	if (!len)
1432 		return 0;
1433 
1434 	from = mtd_get_master_ofs(mtd, from);
1435 	return master->_point(master, from, len, retlen, virt, phys);
1436 }
1437 EXPORT_SYMBOL_GPL(mtd_point);
1438 
1439 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1440 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1441 {
1442 	struct mtd_info *master = mtd_get_master(mtd);
1443 
1444 	if (!master->_unpoint)
1445 		return -EOPNOTSUPP;
1446 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1447 		return -EINVAL;
1448 	if (!len)
1449 		return 0;
1450 	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1451 }
1452 EXPORT_SYMBOL_GPL(mtd_unpoint);
1453 
1454 /*
1455  * Allow NOMMU mmap() to directly map the device (if not NULL)
1456  * - return the address to which the offset maps
1457  * - return -ENOSYS to indicate refusal to do the mapping
1458  */
1459 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1460 				    unsigned long offset, unsigned long flags)
1461 {
1462 	size_t retlen;
1463 	void *virt;
1464 	int ret;
1465 
1466 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1467 	if (ret)
1468 		return ret;
1469 	if (retlen != len) {
1470 		mtd_unpoint(mtd, offset, retlen);
1471 		return -ENOSYS;
1472 	}
1473 	return (unsigned long)virt;
1474 }
1475 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1476 
1477 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1478 				 const struct mtd_ecc_stats *old_stats)
1479 {
1480 	struct mtd_ecc_stats diff;
1481 
1482 	if (master == mtd)
1483 		return;
1484 
1485 	diff = master->ecc_stats;
1486 	diff.failed -= old_stats->failed;
1487 	diff.corrected -= old_stats->corrected;
1488 
1489 	while (mtd->parent) {
1490 		mtd->ecc_stats.failed += diff.failed;
1491 		mtd->ecc_stats.corrected += diff.corrected;
1492 		mtd = mtd->parent;
1493 	}
1494 }
1495 
1496 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1497 	     u_char *buf)
1498 {
1499 	struct mtd_oob_ops ops = {
1500 		.len = len,
1501 		.datbuf = buf,
1502 	};
1503 	int ret;
1504 
1505 	ret = mtd_read_oob(mtd, from, &ops);
1506 	*retlen = ops.retlen;
1507 
1508 	return ret;
1509 }
1510 EXPORT_SYMBOL_GPL(mtd_read);
1511 
1512 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1513 	      const u_char *buf)
1514 {
1515 	struct mtd_oob_ops ops = {
1516 		.len = len,
1517 		.datbuf = (u8 *)buf,
1518 	};
1519 	int ret;
1520 
1521 	ret = mtd_write_oob(mtd, to, &ops);
1522 	*retlen = ops.retlen;
1523 
1524 	return ret;
1525 }
1526 EXPORT_SYMBOL_GPL(mtd_write);
1527 
1528 /*
1529  * In blackbox flight recorder like scenarios we want to make successful writes
1530  * in interrupt context. panic_write() is only intended to be called when its
1531  * known the kernel is about to panic and we need the write to succeed. Since
1532  * the kernel is not going to be running for much longer, this function can
1533  * break locks and delay to ensure the write succeeds (but not sleep).
1534  */
1535 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1536 		    const u_char *buf)
1537 {
1538 	struct mtd_info *master = mtd_get_master(mtd);
1539 
1540 	*retlen = 0;
1541 	if (!master->_panic_write)
1542 		return -EOPNOTSUPP;
1543 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1544 		return -EINVAL;
1545 	if (!(mtd->flags & MTD_WRITEABLE))
1546 		return -EROFS;
1547 	if (!len)
1548 		return 0;
1549 	if (!master->oops_panic_write)
1550 		master->oops_panic_write = true;
1551 
1552 	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1553 				    retlen, buf);
1554 }
1555 EXPORT_SYMBOL_GPL(mtd_panic_write);
1556 
1557 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1558 			     struct mtd_oob_ops *ops)
1559 {
1560 	/*
1561 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1562 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1563 	 *  this case.
1564 	 */
1565 	if (!ops->datbuf)
1566 		ops->len = 0;
1567 
1568 	if (!ops->oobbuf)
1569 		ops->ooblen = 0;
1570 
1571 	if (offs < 0 || offs + ops->len > mtd->size)
1572 		return -EINVAL;
1573 
1574 	if (ops->ooblen) {
1575 		size_t maxooblen;
1576 
1577 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1578 			return -EINVAL;
1579 
1580 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1581 				      mtd_div_by_ws(offs, mtd)) *
1582 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1583 		if (ops->ooblen > maxooblen)
1584 			return -EINVAL;
1585 	}
1586 
1587 	return 0;
1588 }
1589 
1590 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1591 			    struct mtd_oob_ops *ops)
1592 {
1593 	struct mtd_info *master = mtd_get_master(mtd);
1594 	int ret;
1595 
1596 	from = mtd_get_master_ofs(mtd, from);
1597 	if (master->_read_oob)
1598 		ret = master->_read_oob(master, from, ops);
1599 	else
1600 		ret = master->_read(master, from, ops->len, &ops->retlen,
1601 				    ops->datbuf);
1602 
1603 	return ret;
1604 }
1605 
1606 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1607 			     struct mtd_oob_ops *ops)
1608 {
1609 	struct mtd_info *master = mtd_get_master(mtd);
1610 	int ret;
1611 
1612 	to = mtd_get_master_ofs(mtd, to);
1613 	if (master->_write_oob)
1614 		ret = master->_write_oob(master, to, ops);
1615 	else
1616 		ret = master->_write(master, to, ops->len, &ops->retlen,
1617 				     ops->datbuf);
1618 
1619 	return ret;
1620 }
1621 
1622 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1623 			       struct mtd_oob_ops *ops)
1624 {
1625 	struct mtd_info *master = mtd_get_master(mtd);
1626 	int ngroups = mtd_pairing_groups(master);
1627 	int npairs = mtd_wunit_per_eb(master) / ngroups;
1628 	struct mtd_oob_ops adjops = *ops;
1629 	unsigned int wunit, oobavail;
1630 	struct mtd_pairing_info info;
1631 	int max_bitflips = 0;
1632 	u32 ebofs, pageofs;
1633 	loff_t base, pos;
1634 
1635 	ebofs = mtd_mod_by_eb(start, mtd);
1636 	base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1637 	info.group = 0;
1638 	info.pair = mtd_div_by_ws(ebofs, mtd);
1639 	pageofs = mtd_mod_by_ws(ebofs, mtd);
1640 	oobavail = mtd_oobavail(mtd, ops);
1641 
1642 	while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1643 		int ret;
1644 
1645 		if (info.pair >= npairs) {
1646 			info.pair = 0;
1647 			base += master->erasesize;
1648 		}
1649 
1650 		wunit = mtd_pairing_info_to_wunit(master, &info);
1651 		pos = mtd_wunit_to_offset(mtd, base, wunit);
1652 
1653 		adjops.len = ops->len - ops->retlen;
1654 		if (adjops.len > mtd->writesize - pageofs)
1655 			adjops.len = mtd->writesize - pageofs;
1656 
1657 		adjops.ooblen = ops->ooblen - ops->oobretlen;
1658 		if (adjops.ooblen > oobavail - adjops.ooboffs)
1659 			adjops.ooblen = oobavail - adjops.ooboffs;
1660 
1661 		if (read) {
1662 			ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1663 			if (ret > 0)
1664 				max_bitflips = max(max_bitflips, ret);
1665 		} else {
1666 			ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1667 		}
1668 
1669 		if (ret < 0)
1670 			return ret;
1671 
1672 		max_bitflips = max(max_bitflips, ret);
1673 		ops->retlen += adjops.retlen;
1674 		ops->oobretlen += adjops.oobretlen;
1675 		adjops.datbuf += adjops.retlen;
1676 		adjops.oobbuf += adjops.oobretlen;
1677 		adjops.ooboffs = 0;
1678 		pageofs = 0;
1679 		info.pair++;
1680 	}
1681 
1682 	return max_bitflips;
1683 }
1684 
1685 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1686 {
1687 	struct mtd_info *master = mtd_get_master(mtd);
1688 	struct mtd_ecc_stats old_stats = master->ecc_stats;
1689 	int ret_code;
1690 
1691 	ops->retlen = ops->oobretlen = 0;
1692 
1693 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1694 	if (ret_code)
1695 		return ret_code;
1696 
1697 	ledtrig_mtd_activity();
1698 
1699 	/* Check the validity of a potential fallback on mtd->_read */
1700 	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1701 		return -EOPNOTSUPP;
1702 
1703 	if (ops->stats)
1704 		memset(ops->stats, 0, sizeof(*ops->stats));
1705 
1706 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1707 		ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1708 	else
1709 		ret_code = mtd_read_oob_std(mtd, from, ops);
1710 
1711 	mtd_update_ecc_stats(mtd, master, &old_stats);
1712 
1713 	/*
1714 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1715 	 * similar to mtd->_read(), returning a non-negative integer
1716 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1717 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1718 	 */
1719 	if (unlikely(ret_code < 0))
1720 		return ret_code;
1721 	if (mtd->ecc_strength == 0)
1722 		return 0;	/* device lacks ecc */
1723 	if (ops->stats)
1724 		ops->stats->max_bitflips = ret_code;
1725 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1726 }
1727 EXPORT_SYMBOL_GPL(mtd_read_oob);
1728 
1729 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1730 				struct mtd_oob_ops *ops)
1731 {
1732 	struct mtd_info *master = mtd_get_master(mtd);
1733 	int ret;
1734 
1735 	ops->retlen = ops->oobretlen = 0;
1736 
1737 	if (!(mtd->flags & MTD_WRITEABLE))
1738 		return -EROFS;
1739 
1740 	ret = mtd_check_oob_ops(mtd, to, ops);
1741 	if (ret)
1742 		return ret;
1743 
1744 	ledtrig_mtd_activity();
1745 
1746 	/* Check the validity of a potential fallback on mtd->_write */
1747 	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1748 		return -EOPNOTSUPP;
1749 
1750 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1751 		return mtd_io_emulated_slc(mtd, to, false, ops);
1752 
1753 	return mtd_write_oob_std(mtd, to, ops);
1754 }
1755 EXPORT_SYMBOL_GPL(mtd_write_oob);
1756 
1757 /**
1758  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1759  * @mtd: MTD device structure
1760  * @section: ECC section. Depending on the layout you may have all the ECC
1761  *	     bytes stored in a single contiguous section, or one section
1762  *	     per ECC chunk (and sometime several sections for a single ECC
1763  *	     ECC chunk)
1764  * @oobecc: OOB region struct filled with the appropriate ECC position
1765  *	    information
1766  *
1767  * This function returns ECC section information in the OOB area. If you want
1768  * to get all the ECC bytes information, then you should call
1769  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1770  *
1771  * Returns zero on success, a negative error code otherwise.
1772  */
1773 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1774 		      struct mtd_oob_region *oobecc)
1775 {
1776 	struct mtd_info *master = mtd_get_master(mtd);
1777 
1778 	memset(oobecc, 0, sizeof(*oobecc));
1779 
1780 	if (!master || section < 0)
1781 		return -EINVAL;
1782 
1783 	if (!master->ooblayout || !master->ooblayout->ecc)
1784 		return -ENOTSUPP;
1785 
1786 	return master->ooblayout->ecc(master, section, oobecc);
1787 }
1788 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1789 
1790 /**
1791  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1792  *			section
1793  * @mtd: MTD device structure
1794  * @section: Free section you are interested in. Depending on the layout
1795  *	     you may have all the free bytes stored in a single contiguous
1796  *	     section, or one section per ECC chunk plus an extra section
1797  *	     for the remaining bytes (or other funky layout).
1798  * @oobfree: OOB region struct filled with the appropriate free position
1799  *	     information
1800  *
1801  * This function returns free bytes position in the OOB area. If you want
1802  * to get all the free bytes information, then you should call
1803  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1804  *
1805  * Returns zero on success, a negative error code otherwise.
1806  */
1807 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1808 		       struct mtd_oob_region *oobfree)
1809 {
1810 	struct mtd_info *master = mtd_get_master(mtd);
1811 
1812 	memset(oobfree, 0, sizeof(*oobfree));
1813 
1814 	if (!master || section < 0)
1815 		return -EINVAL;
1816 
1817 	if (!master->ooblayout || !master->ooblayout->free)
1818 		return -ENOTSUPP;
1819 
1820 	return master->ooblayout->free(master, section, oobfree);
1821 }
1822 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1823 
1824 /**
1825  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1826  * @mtd: mtd info structure
1827  * @byte: the byte we are searching for
1828  * @sectionp: pointer where the section id will be stored
1829  * @oobregion: used to retrieve the ECC position
1830  * @iter: iterator function. Should be either mtd_ooblayout_free or
1831  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1832  *
1833  * This function returns the section id and oobregion information of a
1834  * specific byte. For example, say you want to know where the 4th ECC byte is
1835  * stored, you'll use:
1836  *
1837  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1838  *
1839  * Returns zero on success, a negative error code otherwise.
1840  */
1841 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1842 				int *sectionp, struct mtd_oob_region *oobregion,
1843 				int (*iter)(struct mtd_info *,
1844 					    int section,
1845 					    struct mtd_oob_region *oobregion))
1846 {
1847 	int pos = 0, ret, section = 0;
1848 
1849 	memset(oobregion, 0, sizeof(*oobregion));
1850 
1851 	while (1) {
1852 		ret = iter(mtd, section, oobregion);
1853 		if (ret)
1854 			return ret;
1855 
1856 		if (pos + oobregion->length > byte)
1857 			break;
1858 
1859 		pos += oobregion->length;
1860 		section++;
1861 	}
1862 
1863 	/*
1864 	 * Adjust region info to make it start at the beginning at the
1865 	 * 'start' ECC byte.
1866 	 */
1867 	oobregion->offset += byte - pos;
1868 	oobregion->length -= byte - pos;
1869 	*sectionp = section;
1870 
1871 	return 0;
1872 }
1873 
1874 /**
1875  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1876  *				  ECC byte
1877  * @mtd: mtd info structure
1878  * @eccbyte: the byte we are searching for
1879  * @section: pointer where the section id will be stored
1880  * @oobregion: OOB region information
1881  *
1882  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1883  * byte.
1884  *
1885  * Returns zero on success, a negative error code otherwise.
1886  */
1887 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1888 				 int *section,
1889 				 struct mtd_oob_region *oobregion)
1890 {
1891 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1892 					 mtd_ooblayout_ecc);
1893 }
1894 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1895 
1896 /**
1897  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1898  * @mtd: mtd info structure
1899  * @buf: destination buffer to store OOB bytes
1900  * @oobbuf: OOB buffer
1901  * @start: first byte to retrieve
1902  * @nbytes: number of bytes to retrieve
1903  * @iter: section iterator
1904  *
1905  * Extract bytes attached to a specific category (ECC or free)
1906  * from the OOB buffer and copy them into buf.
1907  *
1908  * Returns zero on success, a negative error code otherwise.
1909  */
1910 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1911 				const u8 *oobbuf, int start, int nbytes,
1912 				int (*iter)(struct mtd_info *,
1913 					    int section,
1914 					    struct mtd_oob_region *oobregion))
1915 {
1916 	struct mtd_oob_region oobregion;
1917 	int section, ret;
1918 
1919 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1920 					&oobregion, iter);
1921 
1922 	while (!ret) {
1923 		int cnt;
1924 
1925 		cnt = min_t(int, nbytes, oobregion.length);
1926 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1927 		buf += cnt;
1928 		nbytes -= cnt;
1929 
1930 		if (!nbytes)
1931 			break;
1932 
1933 		ret = iter(mtd, ++section, &oobregion);
1934 	}
1935 
1936 	return ret;
1937 }
1938 
1939 /**
1940  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1941  * @mtd: mtd info structure
1942  * @buf: source buffer to get OOB bytes from
1943  * @oobbuf: OOB buffer
1944  * @start: first OOB byte to set
1945  * @nbytes: number of OOB bytes to set
1946  * @iter: section iterator
1947  *
1948  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1949  * is selected by passing the appropriate iterator.
1950  *
1951  * Returns zero on success, a negative error code otherwise.
1952  */
1953 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1954 				u8 *oobbuf, int start, int nbytes,
1955 				int (*iter)(struct mtd_info *,
1956 					    int section,
1957 					    struct mtd_oob_region *oobregion))
1958 {
1959 	struct mtd_oob_region oobregion;
1960 	int section, ret;
1961 
1962 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1963 					&oobregion, iter);
1964 
1965 	while (!ret) {
1966 		int cnt;
1967 
1968 		cnt = min_t(int, nbytes, oobregion.length);
1969 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1970 		buf += cnt;
1971 		nbytes -= cnt;
1972 
1973 		if (!nbytes)
1974 			break;
1975 
1976 		ret = iter(mtd, ++section, &oobregion);
1977 	}
1978 
1979 	return ret;
1980 }
1981 
1982 /**
1983  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1984  * @mtd: mtd info structure
1985  * @iter: category iterator
1986  *
1987  * Count the number of bytes in a given category.
1988  *
1989  * Returns a positive value on success, a negative error code otherwise.
1990  */
1991 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1992 				int (*iter)(struct mtd_info *,
1993 					    int section,
1994 					    struct mtd_oob_region *oobregion))
1995 {
1996 	struct mtd_oob_region oobregion;
1997 	int section = 0, ret, nbytes = 0;
1998 
1999 	while (1) {
2000 		ret = iter(mtd, section++, &oobregion);
2001 		if (ret) {
2002 			if (ret == -ERANGE)
2003 				ret = nbytes;
2004 			break;
2005 		}
2006 
2007 		nbytes += oobregion.length;
2008 	}
2009 
2010 	return ret;
2011 }
2012 
2013 /**
2014  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
2015  * @mtd: mtd info structure
2016  * @eccbuf: destination buffer to store ECC bytes
2017  * @oobbuf: OOB buffer
2018  * @start: first ECC byte to retrieve
2019  * @nbytes: number of ECC bytes to retrieve
2020  *
2021  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
2022  *
2023  * Returns zero on success, a negative error code otherwise.
2024  */
2025 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
2026 			       const u8 *oobbuf, int start, int nbytes)
2027 {
2028 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2029 				       mtd_ooblayout_ecc);
2030 }
2031 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
2032 
2033 /**
2034  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
2035  * @mtd: mtd info structure
2036  * @eccbuf: source buffer to get ECC bytes from
2037  * @oobbuf: OOB buffer
2038  * @start: first ECC byte to set
2039  * @nbytes: number of ECC bytes to set
2040  *
2041  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
2042  *
2043  * Returns zero on success, a negative error code otherwise.
2044  */
2045 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
2046 			       u8 *oobbuf, int start, int nbytes)
2047 {
2048 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2049 				       mtd_ooblayout_ecc);
2050 }
2051 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
2052 
2053 /**
2054  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
2055  * @mtd: mtd info structure
2056  * @databuf: destination buffer to store ECC bytes
2057  * @oobbuf: OOB buffer
2058  * @start: first ECC byte to retrieve
2059  * @nbytes: number of ECC bytes to retrieve
2060  *
2061  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
2062  *
2063  * Returns zero on success, a negative error code otherwise.
2064  */
2065 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
2066 				const u8 *oobbuf, int start, int nbytes)
2067 {
2068 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
2069 				       mtd_ooblayout_free);
2070 }
2071 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
2072 
2073 /**
2074  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
2075  * @mtd: mtd info structure
2076  * @databuf: source buffer to get data bytes from
2077  * @oobbuf: OOB buffer
2078  * @start: first ECC byte to set
2079  * @nbytes: number of ECC bytes to set
2080  *
2081  * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
2082  *
2083  * Returns zero on success, a negative error code otherwise.
2084  */
2085 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
2086 				u8 *oobbuf, int start, int nbytes)
2087 {
2088 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
2089 				       mtd_ooblayout_free);
2090 }
2091 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
2092 
2093 /**
2094  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
2095  * @mtd: mtd info structure
2096  *
2097  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
2098  *
2099  * Returns zero on success, a negative error code otherwise.
2100  */
2101 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
2102 {
2103 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
2104 }
2105 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
2106 
2107 /**
2108  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
2109  * @mtd: mtd info structure
2110  *
2111  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
2112  *
2113  * Returns zero on success, a negative error code otherwise.
2114  */
2115 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
2116 {
2117 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
2118 }
2119 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
2120 
2121 /*
2122  * Method to access the protection register area, present in some flash
2123  * devices. The user data is one time programmable but the factory data is read
2124  * only.
2125  */
2126 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2127 			   struct otp_info *buf)
2128 {
2129 	struct mtd_info *master = mtd_get_master(mtd);
2130 
2131 	if (!master->_get_fact_prot_info)
2132 		return -EOPNOTSUPP;
2133 	if (!len)
2134 		return 0;
2135 	return master->_get_fact_prot_info(master, len, retlen, buf);
2136 }
2137 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2138 
2139 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2140 			   size_t *retlen, u_char *buf)
2141 {
2142 	struct mtd_info *master = mtd_get_master(mtd);
2143 
2144 	*retlen = 0;
2145 	if (!master->_read_fact_prot_reg)
2146 		return -EOPNOTSUPP;
2147 	if (!len)
2148 		return 0;
2149 	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2150 }
2151 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2152 
2153 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2154 			   struct otp_info *buf)
2155 {
2156 	struct mtd_info *master = mtd_get_master(mtd);
2157 
2158 	if (!master->_get_user_prot_info)
2159 		return -EOPNOTSUPP;
2160 	if (!len)
2161 		return 0;
2162 	return master->_get_user_prot_info(master, len, retlen, buf);
2163 }
2164 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2165 
2166 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2167 			   size_t *retlen, u_char *buf)
2168 {
2169 	struct mtd_info *master = mtd_get_master(mtd);
2170 
2171 	*retlen = 0;
2172 	if (!master->_read_user_prot_reg)
2173 		return -EOPNOTSUPP;
2174 	if (!len)
2175 		return 0;
2176 	return master->_read_user_prot_reg(master, from, len, retlen, buf);
2177 }
2178 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2179 
2180 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2181 			    size_t *retlen, const u_char *buf)
2182 {
2183 	struct mtd_info *master = mtd_get_master(mtd);
2184 	int ret;
2185 
2186 	*retlen = 0;
2187 	if (!master->_write_user_prot_reg)
2188 		return -EOPNOTSUPP;
2189 	if (!len)
2190 		return 0;
2191 	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2192 	if (ret)
2193 		return ret;
2194 
2195 	/*
2196 	 * If no data could be written at all, we are out of memory and
2197 	 * must return -ENOSPC.
2198 	 */
2199 	return (*retlen) ? 0 : -ENOSPC;
2200 }
2201 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2202 
2203 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2204 {
2205 	struct mtd_info *master = mtd_get_master(mtd);
2206 
2207 	if (!master->_lock_user_prot_reg)
2208 		return -EOPNOTSUPP;
2209 	if (!len)
2210 		return 0;
2211 	return master->_lock_user_prot_reg(master, from, len);
2212 }
2213 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2214 
2215 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2216 {
2217 	struct mtd_info *master = mtd_get_master(mtd);
2218 
2219 	if (!master->_erase_user_prot_reg)
2220 		return -EOPNOTSUPP;
2221 	if (!len)
2222 		return 0;
2223 	return master->_erase_user_prot_reg(master, from, len);
2224 }
2225 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2226 
2227 /* Chip-supported device locking */
2228 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2229 {
2230 	struct mtd_info *master = mtd_get_master(mtd);
2231 
2232 	if (!master->_lock)
2233 		return -EOPNOTSUPP;
2234 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2235 		return -EINVAL;
2236 	if (!len)
2237 		return 0;
2238 
2239 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2240 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2241 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2242 	}
2243 
2244 	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2245 }
2246 EXPORT_SYMBOL_GPL(mtd_lock);
2247 
2248 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2249 {
2250 	struct mtd_info *master = mtd_get_master(mtd);
2251 
2252 	if (!master->_unlock)
2253 		return -EOPNOTSUPP;
2254 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2255 		return -EINVAL;
2256 	if (!len)
2257 		return 0;
2258 
2259 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2260 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2261 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2262 	}
2263 
2264 	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2265 }
2266 EXPORT_SYMBOL_GPL(mtd_unlock);
2267 
2268 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2269 {
2270 	struct mtd_info *master = mtd_get_master(mtd);
2271 
2272 	if (!master->_is_locked)
2273 		return -EOPNOTSUPP;
2274 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2275 		return -EINVAL;
2276 	if (!len)
2277 		return 0;
2278 
2279 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2280 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2281 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2282 	}
2283 
2284 	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2285 }
2286 EXPORT_SYMBOL_GPL(mtd_is_locked);
2287 
2288 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2289 {
2290 	struct mtd_info *master = mtd_get_master(mtd);
2291 
2292 	if (ofs < 0 || ofs >= mtd->size)
2293 		return -EINVAL;
2294 	if (!master->_block_isreserved)
2295 		return 0;
2296 
2297 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2298 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2299 
2300 	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2301 }
2302 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2303 
2304 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2305 {
2306 	struct mtd_info *master = mtd_get_master(mtd);
2307 
2308 	if (ofs < 0 || ofs >= mtd->size)
2309 		return -EINVAL;
2310 	if (!master->_block_isbad)
2311 		return 0;
2312 
2313 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2314 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2315 
2316 	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2317 }
2318 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2319 
2320 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2321 {
2322 	struct mtd_info *master = mtd_get_master(mtd);
2323 	int ret;
2324 
2325 	if (!master->_block_markbad)
2326 		return -EOPNOTSUPP;
2327 	if (ofs < 0 || ofs >= mtd->size)
2328 		return -EINVAL;
2329 	if (!(mtd->flags & MTD_WRITEABLE))
2330 		return -EROFS;
2331 
2332 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2333 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2334 
2335 	ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2336 	if (ret)
2337 		return ret;
2338 
2339 	while (mtd->parent) {
2340 		mtd->ecc_stats.badblocks++;
2341 		mtd = mtd->parent;
2342 	}
2343 
2344 	return 0;
2345 }
2346 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2347 
2348 /*
2349  * default_mtd_writev - the default writev method
2350  * @mtd: mtd device description object pointer
2351  * @vecs: the vectors to write
2352  * @count: count of vectors in @vecs
2353  * @to: the MTD device offset to write to
2354  * @retlen: on exit contains the count of bytes written to the MTD device.
2355  *
2356  * This function returns zero in case of success and a negative error code in
2357  * case of failure.
2358  */
2359 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2360 			      unsigned long count, loff_t to, size_t *retlen)
2361 {
2362 	unsigned long i;
2363 	size_t totlen = 0, thislen;
2364 	int ret = 0;
2365 
2366 	for (i = 0; i < count; i++) {
2367 		if (!vecs[i].iov_len)
2368 			continue;
2369 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2370 				vecs[i].iov_base);
2371 		totlen += thislen;
2372 		if (ret || thislen != vecs[i].iov_len)
2373 			break;
2374 		to += vecs[i].iov_len;
2375 	}
2376 	*retlen = totlen;
2377 	return ret;
2378 }
2379 
2380 /*
2381  * mtd_writev - the vector-based MTD write method
2382  * @mtd: mtd device description object pointer
2383  * @vecs: the vectors to write
2384  * @count: count of vectors in @vecs
2385  * @to: the MTD device offset to write to
2386  * @retlen: on exit contains the count of bytes written to the MTD device.
2387  *
2388  * This function returns zero in case of success and a negative error code in
2389  * case of failure.
2390  */
2391 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2392 	       unsigned long count, loff_t to, size_t *retlen)
2393 {
2394 	struct mtd_info *master = mtd_get_master(mtd);
2395 
2396 	*retlen = 0;
2397 	if (!(mtd->flags & MTD_WRITEABLE))
2398 		return -EROFS;
2399 
2400 	if (!master->_writev)
2401 		return default_mtd_writev(mtd, vecs, count, to, retlen);
2402 
2403 	return master->_writev(master, vecs, count,
2404 			       mtd_get_master_ofs(mtd, to), retlen);
2405 }
2406 EXPORT_SYMBOL_GPL(mtd_writev);
2407 
2408 /**
2409  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2410  * @mtd: mtd device description object pointer
2411  * @size: a pointer to the ideal or maximum size of the allocation, points
2412  *        to the actual allocation size on success.
2413  *
2414  * This routine attempts to allocate a contiguous kernel buffer up to
2415  * the specified size, backing off the size of the request exponentially
2416  * until the request succeeds or until the allocation size falls below
2417  * the system page size. This attempts to make sure it does not adversely
2418  * impact system performance, so when allocating more than one page, we
2419  * ask the memory allocator to avoid re-trying, swapping, writing back
2420  * or performing I/O.
2421  *
2422  * Note, this function also makes sure that the allocated buffer is aligned to
2423  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2424  *
2425  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2426  * to handle smaller (i.e. degraded) buffer allocations under low- or
2427  * fragmented-memory situations where such reduced allocations, from a
2428  * requested ideal, are allowed.
2429  *
2430  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2431  */
2432 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2433 {
2434 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2435 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2436 	void *kbuf;
2437 
2438 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2439 
2440 	while (*size > min_alloc) {
2441 		kbuf = kmalloc(*size, flags);
2442 		if (kbuf)
2443 			return kbuf;
2444 
2445 		*size >>= 1;
2446 		*size = ALIGN(*size, mtd->writesize);
2447 	}
2448 
2449 	/*
2450 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2451 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2452 	 */
2453 	return kmalloc(*size, GFP_KERNEL);
2454 }
2455 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2456 
2457 #ifdef CONFIG_PROC_FS
2458 
2459 /*====================================================================*/
2460 /* Support for /proc/mtd */
2461 
2462 static int mtd_proc_show(struct seq_file *m, void *v)
2463 {
2464 	struct mtd_info *mtd;
2465 
2466 	seq_puts(m, "dev:    size   erasesize  name\n");
2467 	mutex_lock(&mtd_table_mutex);
2468 	mtd_for_each_device(mtd) {
2469 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2470 			   mtd->index, (unsigned long long)mtd->size,
2471 			   mtd->erasesize, mtd->name);
2472 	}
2473 	mutex_unlock(&mtd_table_mutex);
2474 	return 0;
2475 }
2476 #endif /* CONFIG_PROC_FS */
2477 
2478 /*====================================================================*/
2479 /* Init code */
2480 
2481 static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2482 {
2483 	struct backing_dev_info *bdi;
2484 	int ret;
2485 
2486 	bdi = bdi_alloc(NUMA_NO_NODE);
2487 	if (!bdi)
2488 		return ERR_PTR(-ENOMEM);
2489 	bdi->ra_pages = 0;
2490 	bdi->io_pages = 0;
2491 
2492 	/*
2493 	 * We put '-0' suffix to the name to get the same name format as we
2494 	 * used to get. Since this is called only once, we get a unique name.
2495 	 */
2496 	ret = bdi_register(bdi, "%.28s-0", name);
2497 	if (ret)
2498 		bdi_put(bdi);
2499 
2500 	return ret ? ERR_PTR(ret) : bdi;
2501 }
2502 
2503 static struct proc_dir_entry *proc_mtd;
2504 
2505 static int __init init_mtd(void)
2506 {
2507 	int ret;
2508 
2509 	ret = class_register(&mtd_class);
2510 	if (ret)
2511 		goto err_reg;
2512 
2513 	mtd_bdi = mtd_bdi_init("mtd");
2514 	if (IS_ERR(mtd_bdi)) {
2515 		ret = PTR_ERR(mtd_bdi);
2516 		goto err_bdi;
2517 	}
2518 
2519 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2520 
2521 	ret = init_mtdchar();
2522 	if (ret)
2523 		goto out_procfs;
2524 
2525 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2526 	debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2527 			    &mtd_expert_analysis_mode);
2528 
2529 	return 0;
2530 
2531 out_procfs:
2532 	if (proc_mtd)
2533 		remove_proc_entry("mtd", NULL);
2534 	bdi_unregister(mtd_bdi);
2535 	bdi_put(mtd_bdi);
2536 err_bdi:
2537 	class_unregister(&mtd_class);
2538 err_reg:
2539 	pr_err("Error registering mtd class or bdi: %d\n", ret);
2540 	return ret;
2541 }
2542 
2543 static void __exit cleanup_mtd(void)
2544 {
2545 	debugfs_remove_recursive(dfs_dir_mtd);
2546 	cleanup_mtdchar();
2547 	if (proc_mtd)
2548 		remove_proc_entry("mtd", NULL);
2549 	class_unregister(&mtd_class);
2550 	bdi_unregister(mtd_bdi);
2551 	bdi_put(mtd_bdi);
2552 	idr_destroy(&mtd_idr);
2553 }
2554 
2555 module_init(init_mtd);
2556 module_exit(cleanup_mtd);
2557 
2558 MODULE_LICENSE("GPL");
2559 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2560 MODULE_DESCRIPTION("Core MTD registration and access routines");
2561