xref: /openbmc/linux/drivers/mtd/mtdcore.c (revision 85ab3738)
1 /*
2  * Core registration and callback routines for MTD
3  * drivers and users.
4  *
5  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6  * Copyright © 2006      Red Hat UK Limited
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/of.h>
36 #include <linux/proc_fs.h>
37 #include <linux/idr.h>
38 #include <linux/backing-dev.h>
39 #include <linux/gfp.h>
40 #include <linux/slab.h>
41 #include <linux/reboot.h>
42 #include <linux/leds.h>
43 
44 #include <linux/mtd/mtd.h>
45 #include <linux/mtd/partitions.h>
46 
47 #include "mtdcore.h"
48 
49 struct backing_dev_info *mtd_bdi;
50 
51 #ifdef CONFIG_PM_SLEEP
52 
53 static int mtd_cls_suspend(struct device *dev)
54 {
55 	struct mtd_info *mtd = dev_get_drvdata(dev);
56 
57 	return mtd ? mtd_suspend(mtd) : 0;
58 }
59 
60 static int mtd_cls_resume(struct device *dev)
61 {
62 	struct mtd_info *mtd = dev_get_drvdata(dev);
63 
64 	if (mtd)
65 		mtd_resume(mtd);
66 	return 0;
67 }
68 
69 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
70 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
71 #else
72 #define MTD_CLS_PM_OPS NULL
73 #endif
74 
75 static struct class mtd_class = {
76 	.name = "mtd",
77 	.owner = THIS_MODULE,
78 	.pm = MTD_CLS_PM_OPS,
79 };
80 
81 static DEFINE_IDR(mtd_idr);
82 
83 /* These are exported solely for the purpose of mtd_blkdevs.c. You
84    should not use them for _anything_ else */
85 DEFINE_MUTEX(mtd_table_mutex);
86 EXPORT_SYMBOL_GPL(mtd_table_mutex);
87 
88 struct mtd_info *__mtd_next_device(int i)
89 {
90 	return idr_get_next(&mtd_idr, &i);
91 }
92 EXPORT_SYMBOL_GPL(__mtd_next_device);
93 
94 static LIST_HEAD(mtd_notifiers);
95 
96 
97 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
98 
99 /* REVISIT once MTD uses the driver model better, whoever allocates
100  * the mtd_info will probably want to use the release() hook...
101  */
102 static void mtd_release(struct device *dev)
103 {
104 	struct mtd_info *mtd = dev_get_drvdata(dev);
105 	dev_t index = MTD_DEVT(mtd->index);
106 
107 	/* remove /dev/mtdXro node */
108 	device_destroy(&mtd_class, index + 1);
109 }
110 
111 static ssize_t mtd_type_show(struct device *dev,
112 		struct device_attribute *attr, char *buf)
113 {
114 	struct mtd_info *mtd = dev_get_drvdata(dev);
115 	char *type;
116 
117 	switch (mtd->type) {
118 	case MTD_ABSENT:
119 		type = "absent";
120 		break;
121 	case MTD_RAM:
122 		type = "ram";
123 		break;
124 	case MTD_ROM:
125 		type = "rom";
126 		break;
127 	case MTD_NORFLASH:
128 		type = "nor";
129 		break;
130 	case MTD_NANDFLASH:
131 		type = "nand";
132 		break;
133 	case MTD_DATAFLASH:
134 		type = "dataflash";
135 		break;
136 	case MTD_UBIVOLUME:
137 		type = "ubi";
138 		break;
139 	case MTD_MLCNANDFLASH:
140 		type = "mlc-nand";
141 		break;
142 	default:
143 		type = "unknown";
144 	}
145 
146 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
147 }
148 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
149 
150 static ssize_t mtd_flags_show(struct device *dev,
151 		struct device_attribute *attr, char *buf)
152 {
153 	struct mtd_info *mtd = dev_get_drvdata(dev);
154 
155 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
156 
157 }
158 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
159 
160 static ssize_t mtd_size_show(struct device *dev,
161 		struct device_attribute *attr, char *buf)
162 {
163 	struct mtd_info *mtd = dev_get_drvdata(dev);
164 
165 	return snprintf(buf, PAGE_SIZE, "%llu\n",
166 		(unsigned long long)mtd->size);
167 
168 }
169 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
170 
171 static ssize_t mtd_erasesize_show(struct device *dev,
172 		struct device_attribute *attr, char *buf)
173 {
174 	struct mtd_info *mtd = dev_get_drvdata(dev);
175 
176 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
177 
178 }
179 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
180 
181 static ssize_t mtd_writesize_show(struct device *dev,
182 		struct device_attribute *attr, char *buf)
183 {
184 	struct mtd_info *mtd = dev_get_drvdata(dev);
185 
186 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
187 
188 }
189 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
190 
191 static ssize_t mtd_subpagesize_show(struct device *dev,
192 		struct device_attribute *attr, char *buf)
193 {
194 	struct mtd_info *mtd = dev_get_drvdata(dev);
195 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
196 
197 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
198 
199 }
200 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
201 
202 static ssize_t mtd_oobsize_show(struct device *dev,
203 		struct device_attribute *attr, char *buf)
204 {
205 	struct mtd_info *mtd = dev_get_drvdata(dev);
206 
207 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
208 
209 }
210 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
211 
212 static ssize_t mtd_numeraseregions_show(struct device *dev,
213 		struct device_attribute *attr, char *buf)
214 {
215 	struct mtd_info *mtd = dev_get_drvdata(dev);
216 
217 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
218 
219 }
220 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
221 	NULL);
222 
223 static ssize_t mtd_name_show(struct device *dev,
224 		struct device_attribute *attr, char *buf)
225 {
226 	struct mtd_info *mtd = dev_get_drvdata(dev);
227 
228 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
229 
230 }
231 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
232 
233 static ssize_t mtd_ecc_strength_show(struct device *dev,
234 				     struct device_attribute *attr, char *buf)
235 {
236 	struct mtd_info *mtd = dev_get_drvdata(dev);
237 
238 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
239 }
240 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
241 
242 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
243 					  struct device_attribute *attr,
244 					  char *buf)
245 {
246 	struct mtd_info *mtd = dev_get_drvdata(dev);
247 
248 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
249 }
250 
251 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
252 					   struct device_attribute *attr,
253 					   const char *buf, size_t count)
254 {
255 	struct mtd_info *mtd = dev_get_drvdata(dev);
256 	unsigned int bitflip_threshold;
257 	int retval;
258 
259 	retval = kstrtouint(buf, 0, &bitflip_threshold);
260 	if (retval)
261 		return retval;
262 
263 	mtd->bitflip_threshold = bitflip_threshold;
264 	return count;
265 }
266 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
267 		   mtd_bitflip_threshold_show,
268 		   mtd_bitflip_threshold_store);
269 
270 static ssize_t mtd_ecc_step_size_show(struct device *dev,
271 		struct device_attribute *attr, char *buf)
272 {
273 	struct mtd_info *mtd = dev_get_drvdata(dev);
274 
275 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
276 
277 }
278 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
279 
280 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
281 		struct device_attribute *attr, char *buf)
282 {
283 	struct mtd_info *mtd = dev_get_drvdata(dev);
284 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
285 
286 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
287 }
288 static DEVICE_ATTR(corrected_bits, S_IRUGO,
289 		   mtd_ecc_stats_corrected_show, NULL);
290 
291 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
292 		struct device_attribute *attr, char *buf)
293 {
294 	struct mtd_info *mtd = dev_get_drvdata(dev);
295 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
296 
297 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
298 }
299 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
300 
301 static ssize_t mtd_badblocks_show(struct device *dev,
302 		struct device_attribute *attr, char *buf)
303 {
304 	struct mtd_info *mtd = dev_get_drvdata(dev);
305 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306 
307 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
308 }
309 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
310 
311 static ssize_t mtd_bbtblocks_show(struct device *dev,
312 		struct device_attribute *attr, char *buf)
313 {
314 	struct mtd_info *mtd = dev_get_drvdata(dev);
315 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
316 
317 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
318 }
319 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
320 
321 static struct attribute *mtd_attrs[] = {
322 	&dev_attr_type.attr,
323 	&dev_attr_flags.attr,
324 	&dev_attr_size.attr,
325 	&dev_attr_erasesize.attr,
326 	&dev_attr_writesize.attr,
327 	&dev_attr_subpagesize.attr,
328 	&dev_attr_oobsize.attr,
329 	&dev_attr_numeraseregions.attr,
330 	&dev_attr_name.attr,
331 	&dev_attr_ecc_strength.attr,
332 	&dev_attr_ecc_step_size.attr,
333 	&dev_attr_corrected_bits.attr,
334 	&dev_attr_ecc_failures.attr,
335 	&dev_attr_bad_blocks.attr,
336 	&dev_attr_bbt_blocks.attr,
337 	&dev_attr_bitflip_threshold.attr,
338 	NULL,
339 };
340 ATTRIBUTE_GROUPS(mtd);
341 
342 static struct device_type mtd_devtype = {
343 	.name		= "mtd",
344 	.groups		= mtd_groups,
345 	.release	= mtd_release,
346 };
347 
348 #ifndef CONFIG_MMU
349 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
350 {
351 	switch (mtd->type) {
352 	case MTD_RAM:
353 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
354 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
355 	case MTD_ROM:
356 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
357 			NOMMU_MAP_READ;
358 	default:
359 		return NOMMU_MAP_COPY;
360 	}
361 }
362 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
363 #endif
364 
365 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
366 			       void *cmd)
367 {
368 	struct mtd_info *mtd;
369 
370 	mtd = container_of(n, struct mtd_info, reboot_notifier);
371 	mtd->_reboot(mtd);
372 
373 	return NOTIFY_DONE;
374 }
375 
376 /**
377  * mtd_wunit_to_pairing_info - get pairing information of a wunit
378  * @mtd: pointer to new MTD device info structure
379  * @wunit: write unit we are interested in
380  * @info: returned pairing information
381  *
382  * Retrieve pairing information associated to the wunit.
383  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
384  * paired together, and where programming a page may influence the page it is
385  * paired with.
386  * The notion of page is replaced by the term wunit (write-unit) to stay
387  * consistent with the ->writesize field.
388  *
389  * The @wunit argument can be extracted from an absolute offset using
390  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
391  * to @wunit.
392  *
393  * From the pairing info the MTD user can find all the wunits paired with
394  * @wunit using the following loop:
395  *
396  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
397  *	info.pair = i;
398  *	mtd_pairing_info_to_wunit(mtd, &info);
399  *	...
400  * }
401  */
402 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
403 			      struct mtd_pairing_info *info)
404 {
405 	int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
406 
407 	if (wunit < 0 || wunit >= npairs)
408 		return -EINVAL;
409 
410 	if (mtd->pairing && mtd->pairing->get_info)
411 		return mtd->pairing->get_info(mtd, wunit, info);
412 
413 	info->group = 0;
414 	info->pair = wunit;
415 
416 	return 0;
417 }
418 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
419 
420 /**
421  * mtd_wunit_to_pairing_info - get wunit from pairing information
422  * @mtd: pointer to new MTD device info structure
423  * @info: pairing information struct
424  *
425  * Returns a positive number representing the wunit associated to the info
426  * struct, or a negative error code.
427  *
428  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
429  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
430  * doc).
431  *
432  * It can also be used to only program the first page of each pair (i.e.
433  * page attached to group 0), which allows one to use an MLC NAND in
434  * software-emulated SLC mode:
435  *
436  * info.group = 0;
437  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
438  * for (info.pair = 0; info.pair < npairs; info.pair++) {
439  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
440  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
441  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
442  * }
443  */
444 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
445 			      const struct mtd_pairing_info *info)
446 {
447 	int ngroups = mtd_pairing_groups(mtd);
448 	int npairs = mtd_wunit_per_eb(mtd) / ngroups;
449 
450 	if (!info || info->pair < 0 || info->pair >= npairs ||
451 	    info->group < 0 || info->group >= ngroups)
452 		return -EINVAL;
453 
454 	if (mtd->pairing && mtd->pairing->get_wunit)
455 		return mtd->pairing->get_wunit(mtd, info);
456 
457 	return info->pair;
458 }
459 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
460 
461 /**
462  * mtd_pairing_groups - get the number of pairing groups
463  * @mtd: pointer to new MTD device info structure
464  *
465  * Returns the number of pairing groups.
466  *
467  * This number is usually equal to the number of bits exposed by a single
468  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
469  * to iterate over all pages of a given pair.
470  */
471 int mtd_pairing_groups(struct mtd_info *mtd)
472 {
473 	if (!mtd->pairing || !mtd->pairing->ngroups)
474 		return 1;
475 
476 	return mtd->pairing->ngroups;
477 }
478 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
479 
480 /**
481  *	add_mtd_device - register an MTD device
482  *	@mtd: pointer to new MTD device info structure
483  *
484  *	Add a device to the list of MTD devices present in the system, and
485  *	notify each currently active MTD 'user' of its arrival. Returns
486  *	zero on success or non-zero on failure.
487  */
488 
489 int add_mtd_device(struct mtd_info *mtd)
490 {
491 	struct mtd_notifier *not;
492 	int i, error;
493 
494 	/*
495 	 * May occur, for instance, on buggy drivers which call
496 	 * mtd_device_parse_register() multiple times on the same master MTD,
497 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
498 	 */
499 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
500 		return -EEXIST;
501 
502 	BUG_ON(mtd->writesize == 0);
503 	mutex_lock(&mtd_table_mutex);
504 
505 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
506 	if (i < 0) {
507 		error = i;
508 		goto fail_locked;
509 	}
510 
511 	mtd->index = i;
512 	mtd->usecount = 0;
513 
514 	/* default value if not set by driver */
515 	if (mtd->bitflip_threshold == 0)
516 		mtd->bitflip_threshold = mtd->ecc_strength;
517 
518 	if (is_power_of_2(mtd->erasesize))
519 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
520 	else
521 		mtd->erasesize_shift = 0;
522 
523 	if (is_power_of_2(mtd->writesize))
524 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
525 	else
526 		mtd->writesize_shift = 0;
527 
528 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
529 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
530 
531 	/* Some chips always power up locked. Unlock them now */
532 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
533 		error = mtd_unlock(mtd, 0, mtd->size);
534 		if (error && error != -EOPNOTSUPP)
535 			printk(KERN_WARNING
536 			       "%s: unlock failed, writes may not work\n",
537 			       mtd->name);
538 		/* Ignore unlock failures? */
539 		error = 0;
540 	}
541 
542 	/* Caller should have set dev.parent to match the
543 	 * physical device, if appropriate.
544 	 */
545 	mtd->dev.type = &mtd_devtype;
546 	mtd->dev.class = &mtd_class;
547 	mtd->dev.devt = MTD_DEVT(i);
548 	dev_set_name(&mtd->dev, "mtd%d", i);
549 	dev_set_drvdata(&mtd->dev, mtd);
550 	of_node_get(mtd_get_of_node(mtd));
551 	error = device_register(&mtd->dev);
552 	if (error)
553 		goto fail_added;
554 
555 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
556 		      "mtd%dro", i);
557 
558 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
559 	/* No need to get a refcount on the module containing
560 	   the notifier, since we hold the mtd_table_mutex */
561 	list_for_each_entry(not, &mtd_notifiers, list)
562 		not->add(mtd);
563 
564 	mutex_unlock(&mtd_table_mutex);
565 	/* We _know_ we aren't being removed, because
566 	   our caller is still holding us here. So none
567 	   of this try_ nonsense, and no bitching about it
568 	   either. :) */
569 	__module_get(THIS_MODULE);
570 	return 0;
571 
572 fail_added:
573 	of_node_put(mtd_get_of_node(mtd));
574 	idr_remove(&mtd_idr, i);
575 fail_locked:
576 	mutex_unlock(&mtd_table_mutex);
577 	return error;
578 }
579 
580 /**
581  *	del_mtd_device - unregister an MTD device
582  *	@mtd: pointer to MTD device info structure
583  *
584  *	Remove a device from the list of MTD devices present in the system,
585  *	and notify each currently active MTD 'user' of its departure.
586  *	Returns zero on success or 1 on failure, which currently will happen
587  *	if the requested device does not appear to be present in the list.
588  */
589 
590 int del_mtd_device(struct mtd_info *mtd)
591 {
592 	int ret;
593 	struct mtd_notifier *not;
594 
595 	mutex_lock(&mtd_table_mutex);
596 
597 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
598 		ret = -ENODEV;
599 		goto out_error;
600 	}
601 
602 	/* No need to get a refcount on the module containing
603 		the notifier, since we hold the mtd_table_mutex */
604 	list_for_each_entry(not, &mtd_notifiers, list)
605 		not->remove(mtd);
606 
607 	if (mtd->usecount) {
608 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
609 		       mtd->index, mtd->name, mtd->usecount);
610 		ret = -EBUSY;
611 	} else {
612 		device_unregister(&mtd->dev);
613 
614 		idr_remove(&mtd_idr, mtd->index);
615 		of_node_put(mtd_get_of_node(mtd));
616 
617 		module_put(THIS_MODULE);
618 		ret = 0;
619 	}
620 
621 out_error:
622 	mutex_unlock(&mtd_table_mutex);
623 	return ret;
624 }
625 
626 static int mtd_add_device_partitions(struct mtd_info *mtd,
627 				     struct mtd_partitions *parts)
628 {
629 	const struct mtd_partition *real_parts = parts->parts;
630 	int nbparts = parts->nr_parts;
631 	int ret;
632 
633 	if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
634 		ret = add_mtd_device(mtd);
635 		if (ret)
636 			return ret;
637 	}
638 
639 	if (nbparts > 0) {
640 		ret = add_mtd_partitions(mtd, real_parts, nbparts);
641 		if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
642 			del_mtd_device(mtd);
643 		return ret;
644 	}
645 
646 	return 0;
647 }
648 
649 /*
650  * Set a few defaults based on the parent devices, if not provided by the
651  * driver
652  */
653 static void mtd_set_dev_defaults(struct mtd_info *mtd)
654 {
655 	if (mtd->dev.parent) {
656 		if (!mtd->owner && mtd->dev.parent->driver)
657 			mtd->owner = mtd->dev.parent->driver->owner;
658 		if (!mtd->name)
659 			mtd->name = dev_name(mtd->dev.parent);
660 	} else {
661 		pr_debug("mtd device won't show a device symlink in sysfs\n");
662 	}
663 }
664 
665 /**
666  * mtd_device_parse_register - parse partitions and register an MTD device.
667  *
668  * @mtd: the MTD device to register
669  * @types: the list of MTD partition probes to try, see
670  *         'parse_mtd_partitions()' for more information
671  * @parser_data: MTD partition parser-specific data
672  * @parts: fallback partition information to register, if parsing fails;
673  *         only valid if %nr_parts > %0
674  * @nr_parts: the number of partitions in parts, if zero then the full
675  *            MTD device is registered if no partition info is found
676  *
677  * This function aggregates MTD partitions parsing (done by
678  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
679  * basically follows the most common pattern found in many MTD drivers:
680  *
681  * * It first tries to probe partitions on MTD device @mtd using parsers
682  *   specified in @types (if @types is %NULL, then the default list of parsers
683  *   is used, see 'parse_mtd_partitions()' for more information). If none are
684  *   found this functions tries to fallback to information specified in
685  *   @parts/@nr_parts.
686  * * If any partitioning info was found, this function registers the found
687  *   partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
688  *   as a whole is registered first.
689  * * If no partitions were found this function just registers the MTD device
690  *   @mtd and exits.
691  *
692  * Returns zero in case of success and a negative error code in case of failure.
693  */
694 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
695 			      struct mtd_part_parser_data *parser_data,
696 			      const struct mtd_partition *parts,
697 			      int nr_parts)
698 {
699 	struct mtd_partitions parsed;
700 	int ret;
701 
702 	mtd_set_dev_defaults(mtd);
703 
704 	memset(&parsed, 0, sizeof(parsed));
705 
706 	ret = parse_mtd_partitions(mtd, types, &parsed, parser_data);
707 	if ((ret < 0 || parsed.nr_parts == 0) && parts && nr_parts) {
708 		/* Fall back to driver-provided partitions */
709 		parsed = (struct mtd_partitions){
710 			.parts		= parts,
711 			.nr_parts	= nr_parts,
712 		};
713 	} else if (ret < 0) {
714 		/* Didn't come up with parsed OR fallback partitions */
715 		pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n",
716 			ret);
717 		/* Don't abort on errors; we can still use unpartitioned MTD */
718 		memset(&parsed, 0, sizeof(parsed));
719 	}
720 
721 	ret = mtd_add_device_partitions(mtd, &parsed);
722 	if (ret)
723 		goto out;
724 
725 	/*
726 	 * FIXME: some drivers unfortunately call this function more than once.
727 	 * So we have to check if we've already assigned the reboot notifier.
728 	 *
729 	 * Generally, we can make multiple calls work for most cases, but it
730 	 * does cause problems with parse_mtd_partitions() above (e.g.,
731 	 * cmdlineparts will register partitions more than once).
732 	 */
733 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
734 		  "MTD already registered\n");
735 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
736 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
737 		register_reboot_notifier(&mtd->reboot_notifier);
738 	}
739 
740 out:
741 	/* Cleanup any parsed partitions */
742 	mtd_part_parser_cleanup(&parsed);
743 	return ret;
744 }
745 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
746 
747 /**
748  * mtd_device_unregister - unregister an existing MTD device.
749  *
750  * @master: the MTD device to unregister.  This will unregister both the master
751  *          and any partitions if registered.
752  */
753 int mtd_device_unregister(struct mtd_info *master)
754 {
755 	int err;
756 
757 	if (master->_reboot)
758 		unregister_reboot_notifier(&master->reboot_notifier);
759 
760 	err = del_mtd_partitions(master);
761 	if (err)
762 		return err;
763 
764 	if (!device_is_registered(&master->dev))
765 		return 0;
766 
767 	return del_mtd_device(master);
768 }
769 EXPORT_SYMBOL_GPL(mtd_device_unregister);
770 
771 /**
772  *	register_mtd_user - register a 'user' of MTD devices.
773  *	@new: pointer to notifier info structure
774  *
775  *	Registers a pair of callbacks function to be called upon addition
776  *	or removal of MTD devices. Causes the 'add' callback to be immediately
777  *	invoked for each MTD device currently present in the system.
778  */
779 void register_mtd_user (struct mtd_notifier *new)
780 {
781 	struct mtd_info *mtd;
782 
783 	mutex_lock(&mtd_table_mutex);
784 
785 	list_add(&new->list, &mtd_notifiers);
786 
787 	__module_get(THIS_MODULE);
788 
789 	mtd_for_each_device(mtd)
790 		new->add(mtd);
791 
792 	mutex_unlock(&mtd_table_mutex);
793 }
794 EXPORT_SYMBOL_GPL(register_mtd_user);
795 
796 /**
797  *	unregister_mtd_user - unregister a 'user' of MTD devices.
798  *	@old: pointer to notifier info structure
799  *
800  *	Removes a callback function pair from the list of 'users' to be
801  *	notified upon addition or removal of MTD devices. Causes the
802  *	'remove' callback to be immediately invoked for each MTD device
803  *	currently present in the system.
804  */
805 int unregister_mtd_user (struct mtd_notifier *old)
806 {
807 	struct mtd_info *mtd;
808 
809 	mutex_lock(&mtd_table_mutex);
810 
811 	module_put(THIS_MODULE);
812 
813 	mtd_for_each_device(mtd)
814 		old->remove(mtd);
815 
816 	list_del(&old->list);
817 	mutex_unlock(&mtd_table_mutex);
818 	return 0;
819 }
820 EXPORT_SYMBOL_GPL(unregister_mtd_user);
821 
822 /**
823  *	get_mtd_device - obtain a validated handle for an MTD device
824  *	@mtd: last known address of the required MTD device
825  *	@num: internal device number of the required MTD device
826  *
827  *	Given a number and NULL address, return the num'th entry in the device
828  *	table, if any.	Given an address and num == -1, search the device table
829  *	for a device with that address and return if it's still present. Given
830  *	both, return the num'th driver only if its address matches. Return
831  *	error code if not.
832  */
833 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
834 {
835 	struct mtd_info *ret = NULL, *other;
836 	int err = -ENODEV;
837 
838 	mutex_lock(&mtd_table_mutex);
839 
840 	if (num == -1) {
841 		mtd_for_each_device(other) {
842 			if (other == mtd) {
843 				ret = mtd;
844 				break;
845 			}
846 		}
847 	} else if (num >= 0) {
848 		ret = idr_find(&mtd_idr, num);
849 		if (mtd && mtd != ret)
850 			ret = NULL;
851 	}
852 
853 	if (!ret) {
854 		ret = ERR_PTR(err);
855 		goto out;
856 	}
857 
858 	err = __get_mtd_device(ret);
859 	if (err)
860 		ret = ERR_PTR(err);
861 out:
862 	mutex_unlock(&mtd_table_mutex);
863 	return ret;
864 }
865 EXPORT_SYMBOL_GPL(get_mtd_device);
866 
867 
868 int __get_mtd_device(struct mtd_info *mtd)
869 {
870 	int err;
871 
872 	if (!try_module_get(mtd->owner))
873 		return -ENODEV;
874 
875 	if (mtd->_get_device) {
876 		err = mtd->_get_device(mtd);
877 
878 		if (err) {
879 			module_put(mtd->owner);
880 			return err;
881 		}
882 	}
883 	mtd->usecount++;
884 	return 0;
885 }
886 EXPORT_SYMBOL_GPL(__get_mtd_device);
887 
888 /**
889  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
890  *	device name
891  *	@name: MTD device name to open
892  *
893  * 	This function returns MTD device description structure in case of
894  * 	success and an error code in case of failure.
895  */
896 struct mtd_info *get_mtd_device_nm(const char *name)
897 {
898 	int err = -ENODEV;
899 	struct mtd_info *mtd = NULL, *other;
900 
901 	mutex_lock(&mtd_table_mutex);
902 
903 	mtd_for_each_device(other) {
904 		if (!strcmp(name, other->name)) {
905 			mtd = other;
906 			break;
907 		}
908 	}
909 
910 	if (!mtd)
911 		goto out_unlock;
912 
913 	err = __get_mtd_device(mtd);
914 	if (err)
915 		goto out_unlock;
916 
917 	mutex_unlock(&mtd_table_mutex);
918 	return mtd;
919 
920 out_unlock:
921 	mutex_unlock(&mtd_table_mutex);
922 	return ERR_PTR(err);
923 }
924 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
925 
926 void put_mtd_device(struct mtd_info *mtd)
927 {
928 	mutex_lock(&mtd_table_mutex);
929 	__put_mtd_device(mtd);
930 	mutex_unlock(&mtd_table_mutex);
931 
932 }
933 EXPORT_SYMBOL_GPL(put_mtd_device);
934 
935 void __put_mtd_device(struct mtd_info *mtd)
936 {
937 	--mtd->usecount;
938 	BUG_ON(mtd->usecount < 0);
939 
940 	if (mtd->_put_device)
941 		mtd->_put_device(mtd);
942 
943 	module_put(mtd->owner);
944 }
945 EXPORT_SYMBOL_GPL(__put_mtd_device);
946 
947 /*
948  * Erase is an asynchronous operation.  Device drivers are supposed
949  * to call instr->callback() whenever the operation completes, even
950  * if it completes with a failure.
951  * Callers are supposed to pass a callback function and wait for it
952  * to be called before writing to the block.
953  */
954 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
955 {
956 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
957 		return -EINVAL;
958 	if (!(mtd->flags & MTD_WRITEABLE))
959 		return -EROFS;
960 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
961 	if (!instr->len) {
962 		instr->state = MTD_ERASE_DONE;
963 		mtd_erase_callback(instr);
964 		return 0;
965 	}
966 	ledtrig_mtd_activity();
967 	return mtd->_erase(mtd, instr);
968 }
969 EXPORT_SYMBOL_GPL(mtd_erase);
970 
971 /*
972  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
973  */
974 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
975 	      void **virt, resource_size_t *phys)
976 {
977 	*retlen = 0;
978 	*virt = NULL;
979 	if (phys)
980 		*phys = 0;
981 	if (!mtd->_point)
982 		return -EOPNOTSUPP;
983 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
984 		return -EINVAL;
985 	if (!len)
986 		return 0;
987 	return mtd->_point(mtd, from, len, retlen, virt, phys);
988 }
989 EXPORT_SYMBOL_GPL(mtd_point);
990 
991 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
992 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
993 {
994 	if (!mtd->_unpoint)
995 		return -EOPNOTSUPP;
996 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
997 		return -EINVAL;
998 	if (!len)
999 		return 0;
1000 	return mtd->_unpoint(mtd, from, len);
1001 }
1002 EXPORT_SYMBOL_GPL(mtd_unpoint);
1003 
1004 /*
1005  * Allow NOMMU mmap() to directly map the device (if not NULL)
1006  * - return the address to which the offset maps
1007  * - return -ENOSYS to indicate refusal to do the mapping
1008  */
1009 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1010 				    unsigned long offset, unsigned long flags)
1011 {
1012 	if (!mtd->_get_unmapped_area)
1013 		return -EOPNOTSUPP;
1014 	if (offset >= mtd->size || len > mtd->size - offset)
1015 		return -EINVAL;
1016 	return mtd->_get_unmapped_area(mtd, len, offset, flags);
1017 }
1018 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1019 
1020 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1021 	     u_char *buf)
1022 {
1023 	int ret_code;
1024 	*retlen = 0;
1025 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1026 		return -EINVAL;
1027 	if (!len)
1028 		return 0;
1029 
1030 	ledtrig_mtd_activity();
1031 	/*
1032 	 * In the absence of an error, drivers return a non-negative integer
1033 	 * representing the maximum number of bitflips that were corrected on
1034 	 * any one ecc region (if applicable; zero otherwise).
1035 	 */
1036 	ret_code = mtd->_read(mtd, from, len, retlen, buf);
1037 	if (unlikely(ret_code < 0))
1038 		return ret_code;
1039 	if (mtd->ecc_strength == 0)
1040 		return 0;	/* device lacks ecc */
1041 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1042 }
1043 EXPORT_SYMBOL_GPL(mtd_read);
1044 
1045 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1046 	      const u_char *buf)
1047 {
1048 	*retlen = 0;
1049 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1050 		return -EINVAL;
1051 	if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
1052 		return -EROFS;
1053 	if (!len)
1054 		return 0;
1055 	ledtrig_mtd_activity();
1056 	return mtd->_write(mtd, to, len, retlen, buf);
1057 }
1058 EXPORT_SYMBOL_GPL(mtd_write);
1059 
1060 /*
1061  * In blackbox flight recorder like scenarios we want to make successful writes
1062  * in interrupt context. panic_write() is only intended to be called when its
1063  * known the kernel is about to panic and we need the write to succeed. Since
1064  * the kernel is not going to be running for much longer, this function can
1065  * break locks and delay to ensure the write succeeds (but not sleep).
1066  */
1067 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1068 		    const u_char *buf)
1069 {
1070 	*retlen = 0;
1071 	if (!mtd->_panic_write)
1072 		return -EOPNOTSUPP;
1073 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1074 		return -EINVAL;
1075 	if (!(mtd->flags & MTD_WRITEABLE))
1076 		return -EROFS;
1077 	if (!len)
1078 		return 0;
1079 	return mtd->_panic_write(mtd, to, len, retlen, buf);
1080 }
1081 EXPORT_SYMBOL_GPL(mtd_panic_write);
1082 
1083 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1084 {
1085 	int ret_code;
1086 	ops->retlen = ops->oobretlen = 0;
1087 	if (!mtd->_read_oob)
1088 		return -EOPNOTSUPP;
1089 
1090 	ledtrig_mtd_activity();
1091 	/*
1092 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1093 	 * similar to mtd->_read(), returning a non-negative integer
1094 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1095 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1096 	 */
1097 	ret_code = mtd->_read_oob(mtd, from, ops);
1098 	if (unlikely(ret_code < 0))
1099 		return ret_code;
1100 	if (mtd->ecc_strength == 0)
1101 		return 0;	/* device lacks ecc */
1102 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1103 }
1104 EXPORT_SYMBOL_GPL(mtd_read_oob);
1105 
1106 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1107 				struct mtd_oob_ops *ops)
1108 {
1109 	ops->retlen = ops->oobretlen = 0;
1110 	if (!mtd->_write_oob)
1111 		return -EOPNOTSUPP;
1112 	if (!(mtd->flags & MTD_WRITEABLE))
1113 		return -EROFS;
1114 	ledtrig_mtd_activity();
1115 	return mtd->_write_oob(mtd, to, ops);
1116 }
1117 EXPORT_SYMBOL_GPL(mtd_write_oob);
1118 
1119 /**
1120  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1121  * @mtd: MTD device structure
1122  * @section: ECC section. Depending on the layout you may have all the ECC
1123  *	     bytes stored in a single contiguous section, or one section
1124  *	     per ECC chunk (and sometime several sections for a single ECC
1125  *	     ECC chunk)
1126  * @oobecc: OOB region struct filled with the appropriate ECC position
1127  *	    information
1128  *
1129  * This function returns ECC section information in the OOB area. If you want
1130  * to get all the ECC bytes information, then you should call
1131  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1132  *
1133  * Returns zero on success, a negative error code otherwise.
1134  */
1135 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1136 		      struct mtd_oob_region *oobecc)
1137 {
1138 	memset(oobecc, 0, sizeof(*oobecc));
1139 
1140 	if (!mtd || section < 0)
1141 		return -EINVAL;
1142 
1143 	if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1144 		return -ENOTSUPP;
1145 
1146 	return mtd->ooblayout->ecc(mtd, section, oobecc);
1147 }
1148 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1149 
1150 /**
1151  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1152  *			section
1153  * @mtd: MTD device structure
1154  * @section: Free section you are interested in. Depending on the layout
1155  *	     you may have all the free bytes stored in a single contiguous
1156  *	     section, or one section per ECC chunk plus an extra section
1157  *	     for the remaining bytes (or other funky layout).
1158  * @oobfree: OOB region struct filled with the appropriate free position
1159  *	     information
1160  *
1161  * This function returns free bytes position in the OOB area. If you want
1162  * to get all the free bytes information, then you should call
1163  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1164  *
1165  * Returns zero on success, a negative error code otherwise.
1166  */
1167 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1168 		       struct mtd_oob_region *oobfree)
1169 {
1170 	memset(oobfree, 0, sizeof(*oobfree));
1171 
1172 	if (!mtd || section < 0)
1173 		return -EINVAL;
1174 
1175 	if (!mtd->ooblayout || !mtd->ooblayout->free)
1176 		return -ENOTSUPP;
1177 
1178 	return mtd->ooblayout->free(mtd, section, oobfree);
1179 }
1180 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1181 
1182 /**
1183  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1184  * @mtd: mtd info structure
1185  * @byte: the byte we are searching for
1186  * @sectionp: pointer where the section id will be stored
1187  * @oobregion: used to retrieve the ECC position
1188  * @iter: iterator function. Should be either mtd_ooblayout_free or
1189  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1190  *
1191  * This function returns the section id and oobregion information of a
1192  * specific byte. For example, say you want to know where the 4th ECC byte is
1193  * stored, you'll use:
1194  *
1195  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1196  *
1197  * Returns zero on success, a negative error code otherwise.
1198  */
1199 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1200 				int *sectionp, struct mtd_oob_region *oobregion,
1201 				int (*iter)(struct mtd_info *,
1202 					    int section,
1203 					    struct mtd_oob_region *oobregion))
1204 {
1205 	int pos = 0, ret, section = 0;
1206 
1207 	memset(oobregion, 0, sizeof(*oobregion));
1208 
1209 	while (1) {
1210 		ret = iter(mtd, section, oobregion);
1211 		if (ret)
1212 			return ret;
1213 
1214 		if (pos + oobregion->length > byte)
1215 			break;
1216 
1217 		pos += oobregion->length;
1218 		section++;
1219 	}
1220 
1221 	/*
1222 	 * Adjust region info to make it start at the beginning at the
1223 	 * 'start' ECC byte.
1224 	 */
1225 	oobregion->offset += byte - pos;
1226 	oobregion->length -= byte - pos;
1227 	*sectionp = section;
1228 
1229 	return 0;
1230 }
1231 
1232 /**
1233  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1234  *				  ECC byte
1235  * @mtd: mtd info structure
1236  * @eccbyte: the byte we are searching for
1237  * @sectionp: pointer where the section id will be stored
1238  * @oobregion: OOB region information
1239  *
1240  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1241  * byte.
1242  *
1243  * Returns zero on success, a negative error code otherwise.
1244  */
1245 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1246 				 int *section,
1247 				 struct mtd_oob_region *oobregion)
1248 {
1249 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1250 					 mtd_ooblayout_ecc);
1251 }
1252 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1253 
1254 /**
1255  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1256  * @mtd: mtd info structure
1257  * @buf: destination buffer to store OOB bytes
1258  * @oobbuf: OOB buffer
1259  * @start: first byte to retrieve
1260  * @nbytes: number of bytes to retrieve
1261  * @iter: section iterator
1262  *
1263  * Extract bytes attached to a specific category (ECC or free)
1264  * from the OOB buffer and copy them into buf.
1265  *
1266  * Returns zero on success, a negative error code otherwise.
1267  */
1268 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1269 				const u8 *oobbuf, int start, int nbytes,
1270 				int (*iter)(struct mtd_info *,
1271 					    int section,
1272 					    struct mtd_oob_region *oobregion))
1273 {
1274 	struct mtd_oob_region oobregion;
1275 	int section, ret;
1276 
1277 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1278 					&oobregion, iter);
1279 
1280 	while (!ret) {
1281 		int cnt;
1282 
1283 		cnt = min_t(int, nbytes, oobregion.length);
1284 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1285 		buf += cnt;
1286 		nbytes -= cnt;
1287 
1288 		if (!nbytes)
1289 			break;
1290 
1291 		ret = iter(mtd, ++section, &oobregion);
1292 	}
1293 
1294 	return ret;
1295 }
1296 
1297 /**
1298  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1299  * @mtd: mtd info structure
1300  * @buf: source buffer to get OOB bytes from
1301  * @oobbuf: OOB buffer
1302  * @start: first OOB byte to set
1303  * @nbytes: number of OOB bytes to set
1304  * @iter: section iterator
1305  *
1306  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1307  * is selected by passing the appropriate iterator.
1308  *
1309  * Returns zero on success, a negative error code otherwise.
1310  */
1311 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1312 				u8 *oobbuf, int start, int nbytes,
1313 				int (*iter)(struct mtd_info *,
1314 					    int section,
1315 					    struct mtd_oob_region *oobregion))
1316 {
1317 	struct mtd_oob_region oobregion;
1318 	int section, ret;
1319 
1320 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1321 					&oobregion, iter);
1322 
1323 	while (!ret) {
1324 		int cnt;
1325 
1326 		cnt = min_t(int, nbytes, oobregion.length);
1327 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1328 		buf += cnt;
1329 		nbytes -= cnt;
1330 
1331 		if (!nbytes)
1332 			break;
1333 
1334 		ret = iter(mtd, ++section, &oobregion);
1335 	}
1336 
1337 	return ret;
1338 }
1339 
1340 /**
1341  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1342  * @mtd: mtd info structure
1343  * @iter: category iterator
1344  *
1345  * Count the number of bytes in a given category.
1346  *
1347  * Returns a positive value on success, a negative error code otherwise.
1348  */
1349 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1350 				int (*iter)(struct mtd_info *,
1351 					    int section,
1352 					    struct mtd_oob_region *oobregion))
1353 {
1354 	struct mtd_oob_region oobregion;
1355 	int section = 0, ret, nbytes = 0;
1356 
1357 	while (1) {
1358 		ret = iter(mtd, section++, &oobregion);
1359 		if (ret) {
1360 			if (ret == -ERANGE)
1361 				ret = nbytes;
1362 			break;
1363 		}
1364 
1365 		nbytes += oobregion.length;
1366 	}
1367 
1368 	return ret;
1369 }
1370 
1371 /**
1372  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1373  * @mtd: mtd info structure
1374  * @eccbuf: destination buffer to store ECC bytes
1375  * @oobbuf: OOB buffer
1376  * @start: first ECC byte to retrieve
1377  * @nbytes: number of ECC bytes to retrieve
1378  *
1379  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1380  *
1381  * Returns zero on success, a negative error code otherwise.
1382  */
1383 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1384 			       const u8 *oobbuf, int start, int nbytes)
1385 {
1386 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1387 				       mtd_ooblayout_ecc);
1388 }
1389 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1390 
1391 /**
1392  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1393  * @mtd: mtd info structure
1394  * @eccbuf: source buffer to get ECC bytes from
1395  * @oobbuf: OOB buffer
1396  * @start: first ECC byte to set
1397  * @nbytes: number of ECC bytes to set
1398  *
1399  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1400  *
1401  * Returns zero on success, a negative error code otherwise.
1402  */
1403 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1404 			       u8 *oobbuf, int start, int nbytes)
1405 {
1406 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1407 				       mtd_ooblayout_ecc);
1408 }
1409 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1410 
1411 /**
1412  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1413  * @mtd: mtd info structure
1414  * @databuf: destination buffer to store ECC bytes
1415  * @oobbuf: OOB buffer
1416  * @start: first ECC byte to retrieve
1417  * @nbytes: number of ECC bytes to retrieve
1418  *
1419  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1420  *
1421  * Returns zero on success, a negative error code otherwise.
1422  */
1423 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1424 				const u8 *oobbuf, int start, int nbytes)
1425 {
1426 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1427 				       mtd_ooblayout_free);
1428 }
1429 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1430 
1431 /**
1432  * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
1433  * @mtd: mtd info structure
1434  * @eccbuf: source buffer to get data bytes from
1435  * @oobbuf: OOB buffer
1436  * @start: first ECC byte to set
1437  * @nbytes: number of ECC bytes to set
1438  *
1439  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1440  *
1441  * Returns zero on success, a negative error code otherwise.
1442  */
1443 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1444 				u8 *oobbuf, int start, int nbytes)
1445 {
1446 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1447 				       mtd_ooblayout_free);
1448 }
1449 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1450 
1451 /**
1452  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1453  * @mtd: mtd info structure
1454  *
1455  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1456  *
1457  * Returns zero on success, a negative error code otherwise.
1458  */
1459 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1460 {
1461 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1462 }
1463 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1464 
1465 /**
1466  * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
1467  * @mtd: mtd info structure
1468  *
1469  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1470  *
1471  * Returns zero on success, a negative error code otherwise.
1472  */
1473 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1474 {
1475 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1476 }
1477 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1478 
1479 /*
1480  * Method to access the protection register area, present in some flash
1481  * devices. The user data is one time programmable but the factory data is read
1482  * only.
1483  */
1484 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1485 			   struct otp_info *buf)
1486 {
1487 	if (!mtd->_get_fact_prot_info)
1488 		return -EOPNOTSUPP;
1489 	if (!len)
1490 		return 0;
1491 	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1492 }
1493 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1494 
1495 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1496 			   size_t *retlen, u_char *buf)
1497 {
1498 	*retlen = 0;
1499 	if (!mtd->_read_fact_prot_reg)
1500 		return -EOPNOTSUPP;
1501 	if (!len)
1502 		return 0;
1503 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1504 }
1505 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1506 
1507 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1508 			   struct otp_info *buf)
1509 {
1510 	if (!mtd->_get_user_prot_info)
1511 		return -EOPNOTSUPP;
1512 	if (!len)
1513 		return 0;
1514 	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1515 }
1516 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1517 
1518 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1519 			   size_t *retlen, u_char *buf)
1520 {
1521 	*retlen = 0;
1522 	if (!mtd->_read_user_prot_reg)
1523 		return -EOPNOTSUPP;
1524 	if (!len)
1525 		return 0;
1526 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1527 }
1528 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1529 
1530 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1531 			    size_t *retlen, u_char *buf)
1532 {
1533 	int ret;
1534 
1535 	*retlen = 0;
1536 	if (!mtd->_write_user_prot_reg)
1537 		return -EOPNOTSUPP;
1538 	if (!len)
1539 		return 0;
1540 	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1541 	if (ret)
1542 		return ret;
1543 
1544 	/*
1545 	 * If no data could be written at all, we are out of memory and
1546 	 * must return -ENOSPC.
1547 	 */
1548 	return (*retlen) ? 0 : -ENOSPC;
1549 }
1550 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1551 
1552 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1553 {
1554 	if (!mtd->_lock_user_prot_reg)
1555 		return -EOPNOTSUPP;
1556 	if (!len)
1557 		return 0;
1558 	return mtd->_lock_user_prot_reg(mtd, from, len);
1559 }
1560 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1561 
1562 /* Chip-supported device locking */
1563 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1564 {
1565 	if (!mtd->_lock)
1566 		return -EOPNOTSUPP;
1567 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1568 		return -EINVAL;
1569 	if (!len)
1570 		return 0;
1571 	return mtd->_lock(mtd, ofs, len);
1572 }
1573 EXPORT_SYMBOL_GPL(mtd_lock);
1574 
1575 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1576 {
1577 	if (!mtd->_unlock)
1578 		return -EOPNOTSUPP;
1579 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1580 		return -EINVAL;
1581 	if (!len)
1582 		return 0;
1583 	return mtd->_unlock(mtd, ofs, len);
1584 }
1585 EXPORT_SYMBOL_GPL(mtd_unlock);
1586 
1587 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1588 {
1589 	if (!mtd->_is_locked)
1590 		return -EOPNOTSUPP;
1591 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1592 		return -EINVAL;
1593 	if (!len)
1594 		return 0;
1595 	return mtd->_is_locked(mtd, ofs, len);
1596 }
1597 EXPORT_SYMBOL_GPL(mtd_is_locked);
1598 
1599 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1600 {
1601 	if (ofs < 0 || ofs >= mtd->size)
1602 		return -EINVAL;
1603 	if (!mtd->_block_isreserved)
1604 		return 0;
1605 	return mtd->_block_isreserved(mtd, ofs);
1606 }
1607 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1608 
1609 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1610 {
1611 	if (ofs < 0 || ofs >= mtd->size)
1612 		return -EINVAL;
1613 	if (!mtd->_block_isbad)
1614 		return 0;
1615 	return mtd->_block_isbad(mtd, ofs);
1616 }
1617 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1618 
1619 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1620 {
1621 	if (!mtd->_block_markbad)
1622 		return -EOPNOTSUPP;
1623 	if (ofs < 0 || ofs >= mtd->size)
1624 		return -EINVAL;
1625 	if (!(mtd->flags & MTD_WRITEABLE))
1626 		return -EROFS;
1627 	return mtd->_block_markbad(mtd, ofs);
1628 }
1629 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1630 
1631 /*
1632  * default_mtd_writev - the default writev method
1633  * @mtd: mtd device description object pointer
1634  * @vecs: the vectors to write
1635  * @count: count of vectors in @vecs
1636  * @to: the MTD device offset to write to
1637  * @retlen: on exit contains the count of bytes written to the MTD device.
1638  *
1639  * This function returns zero in case of success and a negative error code in
1640  * case of failure.
1641  */
1642 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1643 			      unsigned long count, loff_t to, size_t *retlen)
1644 {
1645 	unsigned long i;
1646 	size_t totlen = 0, thislen;
1647 	int ret = 0;
1648 
1649 	for (i = 0; i < count; i++) {
1650 		if (!vecs[i].iov_len)
1651 			continue;
1652 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1653 				vecs[i].iov_base);
1654 		totlen += thislen;
1655 		if (ret || thislen != vecs[i].iov_len)
1656 			break;
1657 		to += vecs[i].iov_len;
1658 	}
1659 	*retlen = totlen;
1660 	return ret;
1661 }
1662 
1663 /*
1664  * mtd_writev - the vector-based MTD write method
1665  * @mtd: mtd device description object pointer
1666  * @vecs: the vectors to write
1667  * @count: count of vectors in @vecs
1668  * @to: the MTD device offset to write to
1669  * @retlen: on exit contains the count of bytes written to the MTD device.
1670  *
1671  * This function returns zero in case of success and a negative error code in
1672  * case of failure.
1673  */
1674 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1675 	       unsigned long count, loff_t to, size_t *retlen)
1676 {
1677 	*retlen = 0;
1678 	if (!(mtd->flags & MTD_WRITEABLE))
1679 		return -EROFS;
1680 	if (!mtd->_writev)
1681 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1682 	return mtd->_writev(mtd, vecs, count, to, retlen);
1683 }
1684 EXPORT_SYMBOL_GPL(mtd_writev);
1685 
1686 /**
1687  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1688  * @mtd: mtd device description object pointer
1689  * @size: a pointer to the ideal or maximum size of the allocation, points
1690  *        to the actual allocation size on success.
1691  *
1692  * This routine attempts to allocate a contiguous kernel buffer up to
1693  * the specified size, backing off the size of the request exponentially
1694  * until the request succeeds or until the allocation size falls below
1695  * the system page size. This attempts to make sure it does not adversely
1696  * impact system performance, so when allocating more than one page, we
1697  * ask the memory allocator to avoid re-trying, swapping, writing back
1698  * or performing I/O.
1699  *
1700  * Note, this function also makes sure that the allocated buffer is aligned to
1701  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1702  *
1703  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1704  * to handle smaller (i.e. degraded) buffer allocations under low- or
1705  * fragmented-memory situations where such reduced allocations, from a
1706  * requested ideal, are allowed.
1707  *
1708  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1709  */
1710 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1711 {
1712 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1713 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1714 	void *kbuf;
1715 
1716 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1717 
1718 	while (*size > min_alloc) {
1719 		kbuf = kmalloc(*size, flags);
1720 		if (kbuf)
1721 			return kbuf;
1722 
1723 		*size >>= 1;
1724 		*size = ALIGN(*size, mtd->writesize);
1725 	}
1726 
1727 	/*
1728 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1729 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1730 	 */
1731 	return kmalloc(*size, GFP_KERNEL);
1732 }
1733 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1734 
1735 #ifdef CONFIG_PROC_FS
1736 
1737 /*====================================================================*/
1738 /* Support for /proc/mtd */
1739 
1740 static int mtd_proc_show(struct seq_file *m, void *v)
1741 {
1742 	struct mtd_info *mtd;
1743 
1744 	seq_puts(m, "dev:    size   erasesize  name\n");
1745 	mutex_lock(&mtd_table_mutex);
1746 	mtd_for_each_device(mtd) {
1747 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1748 			   mtd->index, (unsigned long long)mtd->size,
1749 			   mtd->erasesize, mtd->name);
1750 	}
1751 	mutex_unlock(&mtd_table_mutex);
1752 	return 0;
1753 }
1754 
1755 static int mtd_proc_open(struct inode *inode, struct file *file)
1756 {
1757 	return single_open(file, mtd_proc_show, NULL);
1758 }
1759 
1760 static const struct file_operations mtd_proc_ops = {
1761 	.open		= mtd_proc_open,
1762 	.read		= seq_read,
1763 	.llseek		= seq_lseek,
1764 	.release	= single_release,
1765 };
1766 #endif /* CONFIG_PROC_FS */
1767 
1768 /*====================================================================*/
1769 /* Init code */
1770 
1771 static struct backing_dev_info * __init mtd_bdi_init(char *name)
1772 {
1773 	struct backing_dev_info *bdi;
1774 	int ret;
1775 
1776 	bdi = bdi_alloc(GFP_KERNEL);
1777 	if (!bdi)
1778 		return ERR_PTR(-ENOMEM);
1779 
1780 	bdi->name = name;
1781 	/*
1782 	 * We put '-0' suffix to the name to get the same name format as we
1783 	 * used to get. Since this is called only once, we get a unique name.
1784 	 */
1785 	ret = bdi_register(bdi, "%.28s-0", name);
1786 	if (ret)
1787 		bdi_put(bdi);
1788 
1789 	return ret ? ERR_PTR(ret) : bdi;
1790 }
1791 
1792 static struct proc_dir_entry *proc_mtd;
1793 
1794 static int __init init_mtd(void)
1795 {
1796 	int ret;
1797 
1798 	ret = class_register(&mtd_class);
1799 	if (ret)
1800 		goto err_reg;
1801 
1802 	mtd_bdi = mtd_bdi_init("mtd");
1803 	if (IS_ERR(mtd_bdi)) {
1804 		ret = PTR_ERR(mtd_bdi);
1805 		goto err_bdi;
1806 	}
1807 
1808 	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1809 
1810 	ret = init_mtdchar();
1811 	if (ret)
1812 		goto out_procfs;
1813 
1814 	return 0;
1815 
1816 out_procfs:
1817 	if (proc_mtd)
1818 		remove_proc_entry("mtd", NULL);
1819 	bdi_put(mtd_bdi);
1820 err_bdi:
1821 	class_unregister(&mtd_class);
1822 err_reg:
1823 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1824 	return ret;
1825 }
1826 
1827 static void __exit cleanup_mtd(void)
1828 {
1829 	cleanup_mtdchar();
1830 	if (proc_mtd)
1831 		remove_proc_entry("mtd", NULL);
1832 	class_unregister(&mtd_class);
1833 	bdi_put(mtd_bdi);
1834 	idr_destroy(&mtd_idr);
1835 }
1836 
1837 module_init(init_mtd);
1838 module_exit(cleanup_mtd);
1839 
1840 MODULE_LICENSE("GPL");
1841 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1842 MODULE_DESCRIPTION("Core MTD registration and access routines");
1843