xref: /openbmc/linux/drivers/mtd/mtdcore.c (revision 8571e645)
1 /*
2  * Core registration and callback routines for MTD
3  * drivers and users.
4  *
5  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6  * Copyright © 2006      Red Hat UK Limited
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/of.h>
36 #include <linux/proc_fs.h>
37 #include <linux/idr.h>
38 #include <linux/backing-dev.h>
39 #include <linux/gfp.h>
40 #include <linux/slab.h>
41 #include <linux/reboot.h>
42 #include <linux/kconfig.h>
43 
44 #include <linux/mtd/mtd.h>
45 #include <linux/mtd/partitions.h>
46 
47 #include "mtdcore.h"
48 
49 static struct backing_dev_info mtd_bdi = {
50 };
51 
52 #ifdef CONFIG_PM_SLEEP
53 
54 static int mtd_cls_suspend(struct device *dev)
55 {
56 	struct mtd_info *mtd = dev_get_drvdata(dev);
57 
58 	return mtd ? mtd_suspend(mtd) : 0;
59 }
60 
61 static int mtd_cls_resume(struct device *dev)
62 {
63 	struct mtd_info *mtd = dev_get_drvdata(dev);
64 
65 	if (mtd)
66 		mtd_resume(mtd);
67 	return 0;
68 }
69 
70 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
71 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
72 #else
73 #define MTD_CLS_PM_OPS NULL
74 #endif
75 
76 static struct class mtd_class = {
77 	.name = "mtd",
78 	.owner = THIS_MODULE,
79 	.pm = MTD_CLS_PM_OPS,
80 };
81 
82 static DEFINE_IDR(mtd_idr);
83 
84 /* These are exported solely for the purpose of mtd_blkdevs.c. You
85    should not use them for _anything_ else */
86 DEFINE_MUTEX(mtd_table_mutex);
87 EXPORT_SYMBOL_GPL(mtd_table_mutex);
88 
89 struct mtd_info *__mtd_next_device(int i)
90 {
91 	return idr_get_next(&mtd_idr, &i);
92 }
93 EXPORT_SYMBOL_GPL(__mtd_next_device);
94 
95 static LIST_HEAD(mtd_notifiers);
96 
97 
98 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
99 
100 /* REVISIT once MTD uses the driver model better, whoever allocates
101  * the mtd_info will probably want to use the release() hook...
102  */
103 static void mtd_release(struct device *dev)
104 {
105 	struct mtd_info *mtd = dev_get_drvdata(dev);
106 	dev_t index = MTD_DEVT(mtd->index);
107 
108 	/* remove /dev/mtdXro node */
109 	device_destroy(&mtd_class, index + 1);
110 }
111 
112 static ssize_t mtd_type_show(struct device *dev,
113 		struct device_attribute *attr, char *buf)
114 {
115 	struct mtd_info *mtd = dev_get_drvdata(dev);
116 	char *type;
117 
118 	switch (mtd->type) {
119 	case MTD_ABSENT:
120 		type = "absent";
121 		break;
122 	case MTD_RAM:
123 		type = "ram";
124 		break;
125 	case MTD_ROM:
126 		type = "rom";
127 		break;
128 	case MTD_NORFLASH:
129 		type = "nor";
130 		break;
131 	case MTD_NANDFLASH:
132 		type = "nand";
133 		break;
134 	case MTD_DATAFLASH:
135 		type = "dataflash";
136 		break;
137 	case MTD_UBIVOLUME:
138 		type = "ubi";
139 		break;
140 	case MTD_MLCNANDFLASH:
141 		type = "mlc-nand";
142 		break;
143 	default:
144 		type = "unknown";
145 	}
146 
147 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
148 }
149 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
150 
151 static ssize_t mtd_flags_show(struct device *dev,
152 		struct device_attribute *attr, char *buf)
153 {
154 	struct mtd_info *mtd = dev_get_drvdata(dev);
155 
156 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
157 
158 }
159 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
160 
161 static ssize_t mtd_size_show(struct device *dev,
162 		struct device_attribute *attr, char *buf)
163 {
164 	struct mtd_info *mtd = dev_get_drvdata(dev);
165 
166 	return snprintf(buf, PAGE_SIZE, "%llu\n",
167 		(unsigned long long)mtd->size);
168 
169 }
170 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
171 
172 static ssize_t mtd_erasesize_show(struct device *dev,
173 		struct device_attribute *attr, char *buf)
174 {
175 	struct mtd_info *mtd = dev_get_drvdata(dev);
176 
177 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
178 
179 }
180 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
181 
182 static ssize_t mtd_writesize_show(struct device *dev,
183 		struct device_attribute *attr, char *buf)
184 {
185 	struct mtd_info *mtd = dev_get_drvdata(dev);
186 
187 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
188 
189 }
190 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
191 
192 static ssize_t mtd_subpagesize_show(struct device *dev,
193 		struct device_attribute *attr, char *buf)
194 {
195 	struct mtd_info *mtd = dev_get_drvdata(dev);
196 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
197 
198 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
199 
200 }
201 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
202 
203 static ssize_t mtd_oobsize_show(struct device *dev,
204 		struct device_attribute *attr, char *buf)
205 {
206 	struct mtd_info *mtd = dev_get_drvdata(dev);
207 
208 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
209 
210 }
211 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
212 
213 static ssize_t mtd_numeraseregions_show(struct device *dev,
214 		struct device_attribute *attr, char *buf)
215 {
216 	struct mtd_info *mtd = dev_get_drvdata(dev);
217 
218 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
219 
220 }
221 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
222 	NULL);
223 
224 static ssize_t mtd_name_show(struct device *dev,
225 		struct device_attribute *attr, char *buf)
226 {
227 	struct mtd_info *mtd = dev_get_drvdata(dev);
228 
229 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
230 
231 }
232 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
233 
234 static ssize_t mtd_ecc_strength_show(struct device *dev,
235 				     struct device_attribute *attr, char *buf)
236 {
237 	struct mtd_info *mtd = dev_get_drvdata(dev);
238 
239 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
240 }
241 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
242 
243 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
244 					  struct device_attribute *attr,
245 					  char *buf)
246 {
247 	struct mtd_info *mtd = dev_get_drvdata(dev);
248 
249 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
250 }
251 
252 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
253 					   struct device_attribute *attr,
254 					   const char *buf, size_t count)
255 {
256 	struct mtd_info *mtd = dev_get_drvdata(dev);
257 	unsigned int bitflip_threshold;
258 	int retval;
259 
260 	retval = kstrtouint(buf, 0, &bitflip_threshold);
261 	if (retval)
262 		return retval;
263 
264 	mtd->bitflip_threshold = bitflip_threshold;
265 	return count;
266 }
267 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
268 		   mtd_bitflip_threshold_show,
269 		   mtd_bitflip_threshold_store);
270 
271 static ssize_t mtd_ecc_step_size_show(struct device *dev,
272 		struct device_attribute *attr, char *buf)
273 {
274 	struct mtd_info *mtd = dev_get_drvdata(dev);
275 
276 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
277 
278 }
279 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
280 
281 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
282 		struct device_attribute *attr, char *buf)
283 {
284 	struct mtd_info *mtd = dev_get_drvdata(dev);
285 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
286 
287 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
288 }
289 static DEVICE_ATTR(corrected_bits, S_IRUGO,
290 		   mtd_ecc_stats_corrected_show, NULL);
291 
292 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
293 		struct device_attribute *attr, char *buf)
294 {
295 	struct mtd_info *mtd = dev_get_drvdata(dev);
296 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
297 
298 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
299 }
300 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
301 
302 static ssize_t mtd_badblocks_show(struct device *dev,
303 		struct device_attribute *attr, char *buf)
304 {
305 	struct mtd_info *mtd = dev_get_drvdata(dev);
306 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
307 
308 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
309 }
310 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
311 
312 static ssize_t mtd_bbtblocks_show(struct device *dev,
313 		struct device_attribute *attr, char *buf)
314 {
315 	struct mtd_info *mtd = dev_get_drvdata(dev);
316 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
317 
318 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
319 }
320 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
321 
322 static struct attribute *mtd_attrs[] = {
323 	&dev_attr_type.attr,
324 	&dev_attr_flags.attr,
325 	&dev_attr_size.attr,
326 	&dev_attr_erasesize.attr,
327 	&dev_attr_writesize.attr,
328 	&dev_attr_subpagesize.attr,
329 	&dev_attr_oobsize.attr,
330 	&dev_attr_numeraseregions.attr,
331 	&dev_attr_name.attr,
332 	&dev_attr_ecc_strength.attr,
333 	&dev_attr_ecc_step_size.attr,
334 	&dev_attr_corrected_bits.attr,
335 	&dev_attr_ecc_failures.attr,
336 	&dev_attr_bad_blocks.attr,
337 	&dev_attr_bbt_blocks.attr,
338 	&dev_attr_bitflip_threshold.attr,
339 	NULL,
340 };
341 ATTRIBUTE_GROUPS(mtd);
342 
343 static struct device_type mtd_devtype = {
344 	.name		= "mtd",
345 	.groups		= mtd_groups,
346 	.release	= mtd_release,
347 };
348 
349 #ifndef CONFIG_MMU
350 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
351 {
352 	switch (mtd->type) {
353 	case MTD_RAM:
354 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
355 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
356 	case MTD_ROM:
357 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
358 			NOMMU_MAP_READ;
359 	default:
360 		return NOMMU_MAP_COPY;
361 	}
362 }
363 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
364 #endif
365 
366 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
367 			       void *cmd)
368 {
369 	struct mtd_info *mtd;
370 
371 	mtd = container_of(n, struct mtd_info, reboot_notifier);
372 	mtd->_reboot(mtd);
373 
374 	return NOTIFY_DONE;
375 }
376 
377 /**
378  *	add_mtd_device - register an MTD device
379  *	@mtd: pointer to new MTD device info structure
380  *
381  *	Add a device to the list of MTD devices present in the system, and
382  *	notify each currently active MTD 'user' of its arrival. Returns
383  *	zero on success or non-zero on failure.
384  */
385 
386 int add_mtd_device(struct mtd_info *mtd)
387 {
388 	struct mtd_notifier *not;
389 	int i, error;
390 
391 	/*
392 	 * May occur, for instance, on buggy drivers which call
393 	 * mtd_device_parse_register() multiple times on the same master MTD,
394 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
395 	 */
396 	if (WARN_ONCE(mtd->backing_dev_info, "MTD already registered\n"))
397 		return -EEXIST;
398 
399 	mtd->backing_dev_info = &mtd_bdi;
400 
401 	BUG_ON(mtd->writesize == 0);
402 	mutex_lock(&mtd_table_mutex);
403 
404 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
405 	if (i < 0) {
406 		error = i;
407 		goto fail_locked;
408 	}
409 
410 	mtd->index = i;
411 	mtd->usecount = 0;
412 
413 	/* default value if not set by driver */
414 	if (mtd->bitflip_threshold == 0)
415 		mtd->bitflip_threshold = mtd->ecc_strength;
416 
417 	if (is_power_of_2(mtd->erasesize))
418 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
419 	else
420 		mtd->erasesize_shift = 0;
421 
422 	if (is_power_of_2(mtd->writesize))
423 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
424 	else
425 		mtd->writesize_shift = 0;
426 
427 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
428 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
429 
430 	/* Some chips always power up locked. Unlock them now */
431 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
432 		error = mtd_unlock(mtd, 0, mtd->size);
433 		if (error && error != -EOPNOTSUPP)
434 			printk(KERN_WARNING
435 			       "%s: unlock failed, writes may not work\n",
436 			       mtd->name);
437 		/* Ignore unlock failures? */
438 		error = 0;
439 	}
440 
441 	/* Caller should have set dev.parent to match the
442 	 * physical device, if appropriate.
443 	 */
444 	mtd->dev.type = &mtd_devtype;
445 	mtd->dev.class = &mtd_class;
446 	mtd->dev.devt = MTD_DEVT(i);
447 	dev_set_name(&mtd->dev, "mtd%d", i);
448 	dev_set_drvdata(&mtd->dev, mtd);
449 	of_node_get(mtd_get_of_node(mtd));
450 	error = device_register(&mtd->dev);
451 	if (error)
452 		goto fail_added;
453 
454 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
455 		      "mtd%dro", i);
456 
457 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
458 	/* No need to get a refcount on the module containing
459 	   the notifier, since we hold the mtd_table_mutex */
460 	list_for_each_entry(not, &mtd_notifiers, list)
461 		not->add(mtd);
462 
463 	mutex_unlock(&mtd_table_mutex);
464 	/* We _know_ we aren't being removed, because
465 	   our caller is still holding us here. So none
466 	   of this try_ nonsense, and no bitching about it
467 	   either. :) */
468 	__module_get(THIS_MODULE);
469 	return 0;
470 
471 fail_added:
472 	of_node_put(mtd_get_of_node(mtd));
473 	idr_remove(&mtd_idr, i);
474 fail_locked:
475 	mutex_unlock(&mtd_table_mutex);
476 	return error;
477 }
478 
479 /**
480  *	del_mtd_device - unregister an MTD device
481  *	@mtd: pointer to MTD device info structure
482  *
483  *	Remove a device from the list of MTD devices present in the system,
484  *	and notify each currently active MTD 'user' of its departure.
485  *	Returns zero on success or 1 on failure, which currently will happen
486  *	if the requested device does not appear to be present in the list.
487  */
488 
489 int del_mtd_device(struct mtd_info *mtd)
490 {
491 	int ret;
492 	struct mtd_notifier *not;
493 
494 	mutex_lock(&mtd_table_mutex);
495 
496 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
497 		ret = -ENODEV;
498 		goto out_error;
499 	}
500 
501 	/* No need to get a refcount on the module containing
502 		the notifier, since we hold the mtd_table_mutex */
503 	list_for_each_entry(not, &mtd_notifiers, list)
504 		not->remove(mtd);
505 
506 	if (mtd->usecount) {
507 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
508 		       mtd->index, mtd->name, mtd->usecount);
509 		ret = -EBUSY;
510 	} else {
511 		device_unregister(&mtd->dev);
512 
513 		idr_remove(&mtd_idr, mtd->index);
514 		of_node_put(mtd_get_of_node(mtd));
515 
516 		module_put(THIS_MODULE);
517 		ret = 0;
518 	}
519 
520 out_error:
521 	mutex_unlock(&mtd_table_mutex);
522 	return ret;
523 }
524 
525 static int mtd_add_device_partitions(struct mtd_info *mtd,
526 				     struct mtd_partitions *parts)
527 {
528 	const struct mtd_partition *real_parts = parts->parts;
529 	int nbparts = parts->nr_parts;
530 	int ret;
531 
532 	if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
533 		ret = add_mtd_device(mtd);
534 		if (ret)
535 			return ret;
536 	}
537 
538 	if (nbparts > 0) {
539 		ret = add_mtd_partitions(mtd, real_parts, nbparts);
540 		if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
541 			del_mtd_device(mtd);
542 		return ret;
543 	}
544 
545 	return 0;
546 }
547 
548 /*
549  * Set a few defaults based on the parent devices, if not provided by the
550  * driver
551  */
552 static void mtd_set_dev_defaults(struct mtd_info *mtd)
553 {
554 	if (mtd->dev.parent) {
555 		if (!mtd->owner && mtd->dev.parent->driver)
556 			mtd->owner = mtd->dev.parent->driver->owner;
557 		if (!mtd->name)
558 			mtd->name = dev_name(mtd->dev.parent);
559 	} else {
560 		pr_debug("mtd device won't show a device symlink in sysfs\n");
561 	}
562 }
563 
564 /**
565  * mtd_device_parse_register - parse partitions and register an MTD device.
566  *
567  * @mtd: the MTD device to register
568  * @types: the list of MTD partition probes to try, see
569  *         'parse_mtd_partitions()' for more information
570  * @parser_data: MTD partition parser-specific data
571  * @parts: fallback partition information to register, if parsing fails;
572  *         only valid if %nr_parts > %0
573  * @nr_parts: the number of partitions in parts, if zero then the full
574  *            MTD device is registered if no partition info is found
575  *
576  * This function aggregates MTD partitions parsing (done by
577  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
578  * basically follows the most common pattern found in many MTD drivers:
579  *
580  * * It first tries to probe partitions on MTD device @mtd using parsers
581  *   specified in @types (if @types is %NULL, then the default list of parsers
582  *   is used, see 'parse_mtd_partitions()' for more information). If none are
583  *   found this functions tries to fallback to information specified in
584  *   @parts/@nr_parts.
585  * * If any partitioning info was found, this function registers the found
586  *   partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
587  *   as a whole is registered first.
588  * * If no partitions were found this function just registers the MTD device
589  *   @mtd and exits.
590  *
591  * Returns zero in case of success and a negative error code in case of failure.
592  */
593 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
594 			      struct mtd_part_parser_data *parser_data,
595 			      const struct mtd_partition *parts,
596 			      int nr_parts)
597 {
598 	struct mtd_partitions parsed;
599 	int ret;
600 
601 	mtd_set_dev_defaults(mtd);
602 
603 	memset(&parsed, 0, sizeof(parsed));
604 
605 	ret = parse_mtd_partitions(mtd, types, &parsed, parser_data);
606 	if ((ret < 0 || parsed.nr_parts == 0) && parts && nr_parts) {
607 		/* Fall back to driver-provided partitions */
608 		parsed = (struct mtd_partitions){
609 			.parts		= parts,
610 			.nr_parts	= nr_parts,
611 		};
612 	} else if (ret < 0) {
613 		/* Didn't come up with parsed OR fallback partitions */
614 		pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n",
615 			ret);
616 		/* Don't abort on errors; we can still use unpartitioned MTD */
617 		memset(&parsed, 0, sizeof(parsed));
618 	}
619 
620 	ret = mtd_add_device_partitions(mtd, &parsed);
621 	if (ret)
622 		goto out;
623 
624 	/*
625 	 * FIXME: some drivers unfortunately call this function more than once.
626 	 * So we have to check if we've already assigned the reboot notifier.
627 	 *
628 	 * Generally, we can make multiple calls work for most cases, but it
629 	 * does cause problems with parse_mtd_partitions() above (e.g.,
630 	 * cmdlineparts will register partitions more than once).
631 	 */
632 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
633 		  "MTD already registered\n");
634 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
635 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
636 		register_reboot_notifier(&mtd->reboot_notifier);
637 	}
638 
639 out:
640 	/* Cleanup any parsed partitions */
641 	mtd_part_parser_cleanup(&parsed);
642 	return ret;
643 }
644 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
645 
646 /**
647  * mtd_device_unregister - unregister an existing MTD device.
648  *
649  * @master: the MTD device to unregister.  This will unregister both the master
650  *          and any partitions if registered.
651  */
652 int mtd_device_unregister(struct mtd_info *master)
653 {
654 	int err;
655 
656 	if (master->_reboot)
657 		unregister_reboot_notifier(&master->reboot_notifier);
658 
659 	err = del_mtd_partitions(master);
660 	if (err)
661 		return err;
662 
663 	if (!device_is_registered(&master->dev))
664 		return 0;
665 
666 	return del_mtd_device(master);
667 }
668 EXPORT_SYMBOL_GPL(mtd_device_unregister);
669 
670 /**
671  *	register_mtd_user - register a 'user' of MTD devices.
672  *	@new: pointer to notifier info structure
673  *
674  *	Registers a pair of callbacks function to be called upon addition
675  *	or removal of MTD devices. Causes the 'add' callback to be immediately
676  *	invoked for each MTD device currently present in the system.
677  */
678 void register_mtd_user (struct mtd_notifier *new)
679 {
680 	struct mtd_info *mtd;
681 
682 	mutex_lock(&mtd_table_mutex);
683 
684 	list_add(&new->list, &mtd_notifiers);
685 
686 	__module_get(THIS_MODULE);
687 
688 	mtd_for_each_device(mtd)
689 		new->add(mtd);
690 
691 	mutex_unlock(&mtd_table_mutex);
692 }
693 EXPORT_SYMBOL_GPL(register_mtd_user);
694 
695 /**
696  *	unregister_mtd_user - unregister a 'user' of MTD devices.
697  *	@old: pointer to notifier info structure
698  *
699  *	Removes a callback function pair from the list of 'users' to be
700  *	notified upon addition or removal of MTD devices. Causes the
701  *	'remove' callback to be immediately invoked for each MTD device
702  *	currently present in the system.
703  */
704 int unregister_mtd_user (struct mtd_notifier *old)
705 {
706 	struct mtd_info *mtd;
707 
708 	mutex_lock(&mtd_table_mutex);
709 
710 	module_put(THIS_MODULE);
711 
712 	mtd_for_each_device(mtd)
713 		old->remove(mtd);
714 
715 	list_del(&old->list);
716 	mutex_unlock(&mtd_table_mutex);
717 	return 0;
718 }
719 EXPORT_SYMBOL_GPL(unregister_mtd_user);
720 
721 /**
722  *	get_mtd_device - obtain a validated handle for an MTD device
723  *	@mtd: last known address of the required MTD device
724  *	@num: internal device number of the required MTD device
725  *
726  *	Given a number and NULL address, return the num'th entry in the device
727  *	table, if any.	Given an address and num == -1, search the device table
728  *	for a device with that address and return if it's still present. Given
729  *	both, return the num'th driver only if its address matches. Return
730  *	error code if not.
731  */
732 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
733 {
734 	struct mtd_info *ret = NULL, *other;
735 	int err = -ENODEV;
736 
737 	mutex_lock(&mtd_table_mutex);
738 
739 	if (num == -1) {
740 		mtd_for_each_device(other) {
741 			if (other == mtd) {
742 				ret = mtd;
743 				break;
744 			}
745 		}
746 	} else if (num >= 0) {
747 		ret = idr_find(&mtd_idr, num);
748 		if (mtd && mtd != ret)
749 			ret = NULL;
750 	}
751 
752 	if (!ret) {
753 		ret = ERR_PTR(err);
754 		goto out;
755 	}
756 
757 	err = __get_mtd_device(ret);
758 	if (err)
759 		ret = ERR_PTR(err);
760 out:
761 	mutex_unlock(&mtd_table_mutex);
762 	return ret;
763 }
764 EXPORT_SYMBOL_GPL(get_mtd_device);
765 
766 
767 int __get_mtd_device(struct mtd_info *mtd)
768 {
769 	int err;
770 
771 	if (!try_module_get(mtd->owner))
772 		return -ENODEV;
773 
774 	if (mtd->_get_device) {
775 		err = mtd->_get_device(mtd);
776 
777 		if (err) {
778 			module_put(mtd->owner);
779 			return err;
780 		}
781 	}
782 	mtd->usecount++;
783 	return 0;
784 }
785 EXPORT_SYMBOL_GPL(__get_mtd_device);
786 
787 /**
788  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
789  *	device name
790  *	@name: MTD device name to open
791  *
792  * 	This function returns MTD device description structure in case of
793  * 	success and an error code in case of failure.
794  */
795 struct mtd_info *get_mtd_device_nm(const char *name)
796 {
797 	int err = -ENODEV;
798 	struct mtd_info *mtd = NULL, *other;
799 
800 	mutex_lock(&mtd_table_mutex);
801 
802 	mtd_for_each_device(other) {
803 		if (!strcmp(name, other->name)) {
804 			mtd = other;
805 			break;
806 		}
807 	}
808 
809 	if (!mtd)
810 		goto out_unlock;
811 
812 	err = __get_mtd_device(mtd);
813 	if (err)
814 		goto out_unlock;
815 
816 	mutex_unlock(&mtd_table_mutex);
817 	return mtd;
818 
819 out_unlock:
820 	mutex_unlock(&mtd_table_mutex);
821 	return ERR_PTR(err);
822 }
823 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
824 
825 void put_mtd_device(struct mtd_info *mtd)
826 {
827 	mutex_lock(&mtd_table_mutex);
828 	__put_mtd_device(mtd);
829 	mutex_unlock(&mtd_table_mutex);
830 
831 }
832 EXPORT_SYMBOL_GPL(put_mtd_device);
833 
834 void __put_mtd_device(struct mtd_info *mtd)
835 {
836 	--mtd->usecount;
837 	BUG_ON(mtd->usecount < 0);
838 
839 	if (mtd->_put_device)
840 		mtd->_put_device(mtd);
841 
842 	module_put(mtd->owner);
843 }
844 EXPORT_SYMBOL_GPL(__put_mtd_device);
845 
846 /*
847  * Erase is an asynchronous operation.  Device drivers are supposed
848  * to call instr->callback() whenever the operation completes, even
849  * if it completes with a failure.
850  * Callers are supposed to pass a callback function and wait for it
851  * to be called before writing to the block.
852  */
853 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
854 {
855 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
856 		return -EINVAL;
857 	if (!(mtd->flags & MTD_WRITEABLE))
858 		return -EROFS;
859 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
860 	if (!instr->len) {
861 		instr->state = MTD_ERASE_DONE;
862 		mtd_erase_callback(instr);
863 		return 0;
864 	}
865 	return mtd->_erase(mtd, instr);
866 }
867 EXPORT_SYMBOL_GPL(mtd_erase);
868 
869 /*
870  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
871  */
872 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
873 	      void **virt, resource_size_t *phys)
874 {
875 	*retlen = 0;
876 	*virt = NULL;
877 	if (phys)
878 		*phys = 0;
879 	if (!mtd->_point)
880 		return -EOPNOTSUPP;
881 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
882 		return -EINVAL;
883 	if (!len)
884 		return 0;
885 	return mtd->_point(mtd, from, len, retlen, virt, phys);
886 }
887 EXPORT_SYMBOL_GPL(mtd_point);
888 
889 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
890 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
891 {
892 	if (!mtd->_point)
893 		return -EOPNOTSUPP;
894 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
895 		return -EINVAL;
896 	if (!len)
897 		return 0;
898 	return mtd->_unpoint(mtd, from, len);
899 }
900 EXPORT_SYMBOL_GPL(mtd_unpoint);
901 
902 /*
903  * Allow NOMMU mmap() to directly map the device (if not NULL)
904  * - return the address to which the offset maps
905  * - return -ENOSYS to indicate refusal to do the mapping
906  */
907 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
908 				    unsigned long offset, unsigned long flags)
909 {
910 	if (!mtd->_get_unmapped_area)
911 		return -EOPNOTSUPP;
912 	if (offset >= mtd->size || len > mtd->size - offset)
913 		return -EINVAL;
914 	return mtd->_get_unmapped_area(mtd, len, offset, flags);
915 }
916 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
917 
918 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
919 	     u_char *buf)
920 {
921 	int ret_code;
922 	*retlen = 0;
923 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
924 		return -EINVAL;
925 	if (!len)
926 		return 0;
927 
928 	/*
929 	 * In the absence of an error, drivers return a non-negative integer
930 	 * representing the maximum number of bitflips that were corrected on
931 	 * any one ecc region (if applicable; zero otherwise).
932 	 */
933 	ret_code = mtd->_read(mtd, from, len, retlen, buf);
934 	if (unlikely(ret_code < 0))
935 		return ret_code;
936 	if (mtd->ecc_strength == 0)
937 		return 0;	/* device lacks ecc */
938 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
939 }
940 EXPORT_SYMBOL_GPL(mtd_read);
941 
942 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
943 	      const u_char *buf)
944 {
945 	*retlen = 0;
946 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
947 		return -EINVAL;
948 	if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
949 		return -EROFS;
950 	if (!len)
951 		return 0;
952 	return mtd->_write(mtd, to, len, retlen, buf);
953 }
954 EXPORT_SYMBOL_GPL(mtd_write);
955 
956 /*
957  * In blackbox flight recorder like scenarios we want to make successful writes
958  * in interrupt context. panic_write() is only intended to be called when its
959  * known the kernel is about to panic and we need the write to succeed. Since
960  * the kernel is not going to be running for much longer, this function can
961  * break locks and delay to ensure the write succeeds (but not sleep).
962  */
963 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
964 		    const u_char *buf)
965 {
966 	*retlen = 0;
967 	if (!mtd->_panic_write)
968 		return -EOPNOTSUPP;
969 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
970 		return -EINVAL;
971 	if (!(mtd->flags & MTD_WRITEABLE))
972 		return -EROFS;
973 	if (!len)
974 		return 0;
975 	return mtd->_panic_write(mtd, to, len, retlen, buf);
976 }
977 EXPORT_SYMBOL_GPL(mtd_panic_write);
978 
979 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
980 {
981 	int ret_code;
982 	ops->retlen = ops->oobretlen = 0;
983 	if (!mtd->_read_oob)
984 		return -EOPNOTSUPP;
985 	/*
986 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
987 	 * similar to mtd->_read(), returning a non-negative integer
988 	 * representing max bitflips. In other cases, mtd->_read_oob() may
989 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
990 	 */
991 	ret_code = mtd->_read_oob(mtd, from, ops);
992 	if (unlikely(ret_code < 0))
993 		return ret_code;
994 	if (mtd->ecc_strength == 0)
995 		return 0;	/* device lacks ecc */
996 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
997 }
998 EXPORT_SYMBOL_GPL(mtd_read_oob);
999 
1000 /*
1001  * Method to access the protection register area, present in some flash
1002  * devices. The user data is one time programmable but the factory data is read
1003  * only.
1004  */
1005 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1006 			   struct otp_info *buf)
1007 {
1008 	if (!mtd->_get_fact_prot_info)
1009 		return -EOPNOTSUPP;
1010 	if (!len)
1011 		return 0;
1012 	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1013 }
1014 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1015 
1016 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1017 			   size_t *retlen, u_char *buf)
1018 {
1019 	*retlen = 0;
1020 	if (!mtd->_read_fact_prot_reg)
1021 		return -EOPNOTSUPP;
1022 	if (!len)
1023 		return 0;
1024 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1025 }
1026 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1027 
1028 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1029 			   struct otp_info *buf)
1030 {
1031 	if (!mtd->_get_user_prot_info)
1032 		return -EOPNOTSUPP;
1033 	if (!len)
1034 		return 0;
1035 	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1036 }
1037 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1038 
1039 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1040 			   size_t *retlen, u_char *buf)
1041 {
1042 	*retlen = 0;
1043 	if (!mtd->_read_user_prot_reg)
1044 		return -EOPNOTSUPP;
1045 	if (!len)
1046 		return 0;
1047 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1048 }
1049 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1050 
1051 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1052 			    size_t *retlen, u_char *buf)
1053 {
1054 	int ret;
1055 
1056 	*retlen = 0;
1057 	if (!mtd->_write_user_prot_reg)
1058 		return -EOPNOTSUPP;
1059 	if (!len)
1060 		return 0;
1061 	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1062 	if (ret)
1063 		return ret;
1064 
1065 	/*
1066 	 * If no data could be written at all, we are out of memory and
1067 	 * must return -ENOSPC.
1068 	 */
1069 	return (*retlen) ? 0 : -ENOSPC;
1070 }
1071 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1072 
1073 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1074 {
1075 	if (!mtd->_lock_user_prot_reg)
1076 		return -EOPNOTSUPP;
1077 	if (!len)
1078 		return 0;
1079 	return mtd->_lock_user_prot_reg(mtd, from, len);
1080 }
1081 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1082 
1083 /* Chip-supported device locking */
1084 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1085 {
1086 	if (!mtd->_lock)
1087 		return -EOPNOTSUPP;
1088 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1089 		return -EINVAL;
1090 	if (!len)
1091 		return 0;
1092 	return mtd->_lock(mtd, ofs, len);
1093 }
1094 EXPORT_SYMBOL_GPL(mtd_lock);
1095 
1096 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1097 {
1098 	if (!mtd->_unlock)
1099 		return -EOPNOTSUPP;
1100 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1101 		return -EINVAL;
1102 	if (!len)
1103 		return 0;
1104 	return mtd->_unlock(mtd, ofs, len);
1105 }
1106 EXPORT_SYMBOL_GPL(mtd_unlock);
1107 
1108 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1109 {
1110 	if (!mtd->_is_locked)
1111 		return -EOPNOTSUPP;
1112 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1113 		return -EINVAL;
1114 	if (!len)
1115 		return 0;
1116 	return mtd->_is_locked(mtd, ofs, len);
1117 }
1118 EXPORT_SYMBOL_GPL(mtd_is_locked);
1119 
1120 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1121 {
1122 	if (ofs < 0 || ofs >= mtd->size)
1123 		return -EINVAL;
1124 	if (!mtd->_block_isreserved)
1125 		return 0;
1126 	return mtd->_block_isreserved(mtd, ofs);
1127 }
1128 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1129 
1130 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1131 {
1132 	if (ofs < 0 || ofs >= mtd->size)
1133 		return -EINVAL;
1134 	if (!mtd->_block_isbad)
1135 		return 0;
1136 	return mtd->_block_isbad(mtd, ofs);
1137 }
1138 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1139 
1140 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1141 {
1142 	if (!mtd->_block_markbad)
1143 		return -EOPNOTSUPP;
1144 	if (ofs < 0 || ofs >= mtd->size)
1145 		return -EINVAL;
1146 	if (!(mtd->flags & MTD_WRITEABLE))
1147 		return -EROFS;
1148 	return mtd->_block_markbad(mtd, ofs);
1149 }
1150 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1151 
1152 /*
1153  * default_mtd_writev - the default writev method
1154  * @mtd: mtd device description object pointer
1155  * @vecs: the vectors to write
1156  * @count: count of vectors in @vecs
1157  * @to: the MTD device offset to write to
1158  * @retlen: on exit contains the count of bytes written to the MTD device.
1159  *
1160  * This function returns zero in case of success and a negative error code in
1161  * case of failure.
1162  */
1163 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1164 			      unsigned long count, loff_t to, size_t *retlen)
1165 {
1166 	unsigned long i;
1167 	size_t totlen = 0, thislen;
1168 	int ret = 0;
1169 
1170 	for (i = 0; i < count; i++) {
1171 		if (!vecs[i].iov_len)
1172 			continue;
1173 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1174 				vecs[i].iov_base);
1175 		totlen += thislen;
1176 		if (ret || thislen != vecs[i].iov_len)
1177 			break;
1178 		to += vecs[i].iov_len;
1179 	}
1180 	*retlen = totlen;
1181 	return ret;
1182 }
1183 
1184 /*
1185  * mtd_writev - the vector-based MTD write method
1186  * @mtd: mtd device description object pointer
1187  * @vecs: the vectors to write
1188  * @count: count of vectors in @vecs
1189  * @to: the MTD device offset to write to
1190  * @retlen: on exit contains the count of bytes written to the MTD device.
1191  *
1192  * This function returns zero in case of success and a negative error code in
1193  * case of failure.
1194  */
1195 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1196 	       unsigned long count, loff_t to, size_t *retlen)
1197 {
1198 	*retlen = 0;
1199 	if (!(mtd->flags & MTD_WRITEABLE))
1200 		return -EROFS;
1201 	if (!mtd->_writev)
1202 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1203 	return mtd->_writev(mtd, vecs, count, to, retlen);
1204 }
1205 EXPORT_SYMBOL_GPL(mtd_writev);
1206 
1207 /**
1208  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1209  * @mtd: mtd device description object pointer
1210  * @size: a pointer to the ideal or maximum size of the allocation, points
1211  *        to the actual allocation size on success.
1212  *
1213  * This routine attempts to allocate a contiguous kernel buffer up to
1214  * the specified size, backing off the size of the request exponentially
1215  * until the request succeeds or until the allocation size falls below
1216  * the system page size. This attempts to make sure it does not adversely
1217  * impact system performance, so when allocating more than one page, we
1218  * ask the memory allocator to avoid re-trying, swapping, writing back
1219  * or performing I/O.
1220  *
1221  * Note, this function also makes sure that the allocated buffer is aligned to
1222  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1223  *
1224  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1225  * to handle smaller (i.e. degraded) buffer allocations under low- or
1226  * fragmented-memory situations where such reduced allocations, from a
1227  * requested ideal, are allowed.
1228  *
1229  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1230  */
1231 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1232 {
1233 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1234 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1235 	void *kbuf;
1236 
1237 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1238 
1239 	while (*size > min_alloc) {
1240 		kbuf = kmalloc(*size, flags);
1241 		if (kbuf)
1242 			return kbuf;
1243 
1244 		*size >>= 1;
1245 		*size = ALIGN(*size, mtd->writesize);
1246 	}
1247 
1248 	/*
1249 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1250 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1251 	 */
1252 	return kmalloc(*size, GFP_KERNEL);
1253 }
1254 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1255 
1256 #ifdef CONFIG_PROC_FS
1257 
1258 /*====================================================================*/
1259 /* Support for /proc/mtd */
1260 
1261 static int mtd_proc_show(struct seq_file *m, void *v)
1262 {
1263 	struct mtd_info *mtd;
1264 
1265 	seq_puts(m, "dev:    size   erasesize  name\n");
1266 	mutex_lock(&mtd_table_mutex);
1267 	mtd_for_each_device(mtd) {
1268 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1269 			   mtd->index, (unsigned long long)mtd->size,
1270 			   mtd->erasesize, mtd->name);
1271 	}
1272 	mutex_unlock(&mtd_table_mutex);
1273 	return 0;
1274 }
1275 
1276 static int mtd_proc_open(struct inode *inode, struct file *file)
1277 {
1278 	return single_open(file, mtd_proc_show, NULL);
1279 }
1280 
1281 static const struct file_operations mtd_proc_ops = {
1282 	.open		= mtd_proc_open,
1283 	.read		= seq_read,
1284 	.llseek		= seq_lseek,
1285 	.release	= single_release,
1286 };
1287 #endif /* CONFIG_PROC_FS */
1288 
1289 /*====================================================================*/
1290 /* Init code */
1291 
1292 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1293 {
1294 	int ret;
1295 
1296 	ret = bdi_init(bdi);
1297 	if (!ret)
1298 		ret = bdi_register(bdi, NULL, "%s", name);
1299 
1300 	if (ret)
1301 		bdi_destroy(bdi);
1302 
1303 	return ret;
1304 }
1305 
1306 static struct proc_dir_entry *proc_mtd;
1307 
1308 static int __init init_mtd(void)
1309 {
1310 	int ret;
1311 
1312 	ret = class_register(&mtd_class);
1313 	if (ret)
1314 		goto err_reg;
1315 
1316 	ret = mtd_bdi_init(&mtd_bdi, "mtd");
1317 	if (ret)
1318 		goto err_bdi;
1319 
1320 	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1321 
1322 	ret = init_mtdchar();
1323 	if (ret)
1324 		goto out_procfs;
1325 
1326 	return 0;
1327 
1328 out_procfs:
1329 	if (proc_mtd)
1330 		remove_proc_entry("mtd", NULL);
1331 err_bdi:
1332 	class_unregister(&mtd_class);
1333 err_reg:
1334 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1335 	return ret;
1336 }
1337 
1338 static void __exit cleanup_mtd(void)
1339 {
1340 	cleanup_mtdchar();
1341 	if (proc_mtd)
1342 		remove_proc_entry("mtd", NULL);
1343 	class_unregister(&mtd_class);
1344 	bdi_destroy(&mtd_bdi);
1345 	idr_destroy(&mtd_idr);
1346 }
1347 
1348 module_init(init_mtd);
1349 module_exit(cleanup_mtd);
1350 
1351 MODULE_LICENSE("GPL");
1352 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1353 MODULE_DESCRIPTION("Core MTD registration and access routines");
1354