xref: /openbmc/linux/drivers/mtd/mtdcore.c (revision 840ef8b7cc584a23c4f9d05352f4dbaf8e56e5ab)
1 /*
2  * Core registration and callback routines for MTD
3  * drivers and users.
4  *
5  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6  * Copyright © 2006      Red Hat UK Limited
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/proc_fs.h>
36 #include <linux/idr.h>
37 #include <linux/backing-dev.h>
38 #include <linux/gfp.h>
39 
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/partitions.h>
42 
43 #include "mtdcore.h"
44 /*
45  * backing device capabilities for non-mappable devices (such as NAND flash)
46  * - permits private mappings, copies are taken of the data
47  */
48 static struct backing_dev_info mtd_bdi_unmappable = {
49 	.capabilities	= BDI_CAP_MAP_COPY,
50 };
51 
52 /*
53  * backing device capabilities for R/O mappable devices (such as ROM)
54  * - permits private mappings, copies are taken of the data
55  * - permits non-writable shared mappings
56  */
57 static struct backing_dev_info mtd_bdi_ro_mappable = {
58 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
59 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
60 };
61 
62 /*
63  * backing device capabilities for writable mappable devices (such as RAM)
64  * - permits private mappings, copies are taken of the data
65  * - permits non-writable shared mappings
66  */
67 static struct backing_dev_info mtd_bdi_rw_mappable = {
68 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
69 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
70 			   BDI_CAP_WRITE_MAP),
71 };
72 
73 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
74 static int mtd_cls_resume(struct device *dev);
75 
76 static struct class mtd_class = {
77 	.name = "mtd",
78 	.owner = THIS_MODULE,
79 	.suspend = mtd_cls_suspend,
80 	.resume = mtd_cls_resume,
81 };
82 
83 static DEFINE_IDR(mtd_idr);
84 
85 /* These are exported solely for the purpose of mtd_blkdevs.c. You
86    should not use them for _anything_ else */
87 DEFINE_MUTEX(mtd_table_mutex);
88 EXPORT_SYMBOL_GPL(mtd_table_mutex);
89 
90 struct mtd_info *__mtd_next_device(int i)
91 {
92 	return idr_get_next(&mtd_idr, &i);
93 }
94 EXPORT_SYMBOL_GPL(__mtd_next_device);
95 
96 static LIST_HEAD(mtd_notifiers);
97 
98 
99 #if defined(CONFIG_MTD_CHAR) || defined(CONFIG_MTD_CHAR_MODULE)
100 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
101 #else
102 #define MTD_DEVT(index) 0
103 #endif
104 
105 /* REVISIT once MTD uses the driver model better, whoever allocates
106  * the mtd_info will probably want to use the release() hook...
107  */
108 static void mtd_release(struct device *dev)
109 {
110 	struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
111 	dev_t index = MTD_DEVT(mtd->index);
112 
113 	/* remove /dev/mtdXro node if needed */
114 	if (index)
115 		device_destroy(&mtd_class, index + 1);
116 }
117 
118 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
119 {
120 	struct mtd_info *mtd = dev_get_drvdata(dev);
121 
122 	return mtd ? mtd_suspend(mtd) : 0;
123 }
124 
125 static int mtd_cls_resume(struct device *dev)
126 {
127 	struct mtd_info *mtd = dev_get_drvdata(dev);
128 
129 	if (mtd)
130 		mtd_resume(mtd);
131 	return 0;
132 }
133 
134 static ssize_t mtd_type_show(struct device *dev,
135 		struct device_attribute *attr, char *buf)
136 {
137 	struct mtd_info *mtd = dev_get_drvdata(dev);
138 	char *type;
139 
140 	switch (mtd->type) {
141 	case MTD_ABSENT:
142 		type = "absent";
143 		break;
144 	case MTD_RAM:
145 		type = "ram";
146 		break;
147 	case MTD_ROM:
148 		type = "rom";
149 		break;
150 	case MTD_NORFLASH:
151 		type = "nor";
152 		break;
153 	case MTD_NANDFLASH:
154 		type = "nand";
155 		break;
156 	case MTD_DATAFLASH:
157 		type = "dataflash";
158 		break;
159 	case MTD_UBIVOLUME:
160 		type = "ubi";
161 		break;
162 	default:
163 		type = "unknown";
164 	}
165 
166 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
167 }
168 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
169 
170 static ssize_t mtd_flags_show(struct device *dev,
171 		struct device_attribute *attr, char *buf)
172 {
173 	struct mtd_info *mtd = dev_get_drvdata(dev);
174 
175 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
176 
177 }
178 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
179 
180 static ssize_t mtd_size_show(struct device *dev,
181 		struct device_attribute *attr, char *buf)
182 {
183 	struct mtd_info *mtd = dev_get_drvdata(dev);
184 
185 	return snprintf(buf, PAGE_SIZE, "%llu\n",
186 		(unsigned long long)mtd->size);
187 
188 }
189 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
190 
191 static ssize_t mtd_erasesize_show(struct device *dev,
192 		struct device_attribute *attr, char *buf)
193 {
194 	struct mtd_info *mtd = dev_get_drvdata(dev);
195 
196 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
197 
198 }
199 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
200 
201 static ssize_t mtd_writesize_show(struct device *dev,
202 		struct device_attribute *attr, char *buf)
203 {
204 	struct mtd_info *mtd = dev_get_drvdata(dev);
205 
206 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
207 
208 }
209 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
210 
211 static ssize_t mtd_subpagesize_show(struct device *dev,
212 		struct device_attribute *attr, char *buf)
213 {
214 	struct mtd_info *mtd = dev_get_drvdata(dev);
215 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
216 
217 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
218 
219 }
220 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
221 
222 static ssize_t mtd_oobsize_show(struct device *dev,
223 		struct device_attribute *attr, char *buf)
224 {
225 	struct mtd_info *mtd = dev_get_drvdata(dev);
226 
227 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
228 
229 }
230 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
231 
232 static ssize_t mtd_numeraseregions_show(struct device *dev,
233 		struct device_attribute *attr, char *buf)
234 {
235 	struct mtd_info *mtd = dev_get_drvdata(dev);
236 
237 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
238 
239 }
240 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
241 	NULL);
242 
243 static ssize_t mtd_name_show(struct device *dev,
244 		struct device_attribute *attr, char *buf)
245 {
246 	struct mtd_info *mtd = dev_get_drvdata(dev);
247 
248 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
249 
250 }
251 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
252 
253 static ssize_t mtd_ecc_strength_show(struct device *dev,
254 				     struct device_attribute *attr, char *buf)
255 {
256 	struct mtd_info *mtd = dev_get_drvdata(dev);
257 
258 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
259 }
260 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
261 
262 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
263 					  struct device_attribute *attr,
264 					  char *buf)
265 {
266 	struct mtd_info *mtd = dev_get_drvdata(dev);
267 
268 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
269 }
270 
271 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
272 					   struct device_attribute *attr,
273 					   const char *buf, size_t count)
274 {
275 	struct mtd_info *mtd = dev_get_drvdata(dev);
276 	unsigned int bitflip_threshold;
277 	int retval;
278 
279 	retval = kstrtouint(buf, 0, &bitflip_threshold);
280 	if (retval)
281 		return retval;
282 
283 	mtd->bitflip_threshold = bitflip_threshold;
284 	return count;
285 }
286 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
287 		   mtd_bitflip_threshold_show,
288 		   mtd_bitflip_threshold_store);
289 
290 static struct attribute *mtd_attrs[] = {
291 	&dev_attr_type.attr,
292 	&dev_attr_flags.attr,
293 	&dev_attr_size.attr,
294 	&dev_attr_erasesize.attr,
295 	&dev_attr_writesize.attr,
296 	&dev_attr_subpagesize.attr,
297 	&dev_attr_oobsize.attr,
298 	&dev_attr_numeraseregions.attr,
299 	&dev_attr_name.attr,
300 	&dev_attr_ecc_strength.attr,
301 	&dev_attr_bitflip_threshold.attr,
302 	NULL,
303 };
304 
305 static struct attribute_group mtd_group = {
306 	.attrs		= mtd_attrs,
307 };
308 
309 static const struct attribute_group *mtd_groups[] = {
310 	&mtd_group,
311 	NULL,
312 };
313 
314 static struct device_type mtd_devtype = {
315 	.name		= "mtd",
316 	.groups		= mtd_groups,
317 	.release	= mtd_release,
318 };
319 
320 /**
321  *	add_mtd_device - register an MTD device
322  *	@mtd: pointer to new MTD device info structure
323  *
324  *	Add a device to the list of MTD devices present in the system, and
325  *	notify each currently active MTD 'user' of its arrival. Returns
326  *	zero on success or 1 on failure, which currently will only happen
327  *	if there is insufficient memory or a sysfs error.
328  */
329 
330 int add_mtd_device(struct mtd_info *mtd)
331 {
332 	struct mtd_notifier *not;
333 	int i, error;
334 
335 	if (!mtd->backing_dev_info) {
336 		switch (mtd->type) {
337 		case MTD_RAM:
338 			mtd->backing_dev_info = &mtd_bdi_rw_mappable;
339 			break;
340 		case MTD_ROM:
341 			mtd->backing_dev_info = &mtd_bdi_ro_mappable;
342 			break;
343 		default:
344 			mtd->backing_dev_info = &mtd_bdi_unmappable;
345 			break;
346 		}
347 	}
348 
349 	BUG_ON(mtd->writesize == 0);
350 	mutex_lock(&mtd_table_mutex);
351 
352 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
353 	if (i < 0)
354 		goto fail_locked;
355 
356 	mtd->index = i;
357 	mtd->usecount = 0;
358 
359 	/* default value if not set by driver */
360 	if (mtd->bitflip_threshold == 0)
361 		mtd->bitflip_threshold = mtd->ecc_strength;
362 
363 	if (is_power_of_2(mtd->erasesize))
364 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
365 	else
366 		mtd->erasesize_shift = 0;
367 
368 	if (is_power_of_2(mtd->writesize))
369 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
370 	else
371 		mtd->writesize_shift = 0;
372 
373 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
374 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
375 
376 	/* Some chips always power up locked. Unlock them now */
377 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
378 		error = mtd_unlock(mtd, 0, mtd->size);
379 		if (error && error != -EOPNOTSUPP)
380 			printk(KERN_WARNING
381 			       "%s: unlock failed, writes may not work\n",
382 			       mtd->name);
383 	}
384 
385 	/* Caller should have set dev.parent to match the
386 	 * physical device.
387 	 */
388 	mtd->dev.type = &mtd_devtype;
389 	mtd->dev.class = &mtd_class;
390 	mtd->dev.devt = MTD_DEVT(i);
391 	dev_set_name(&mtd->dev, "mtd%d", i);
392 	dev_set_drvdata(&mtd->dev, mtd);
393 	if (device_register(&mtd->dev) != 0)
394 		goto fail_added;
395 
396 	if (MTD_DEVT(i))
397 		device_create(&mtd_class, mtd->dev.parent,
398 			      MTD_DEVT(i) + 1,
399 			      NULL, "mtd%dro", i);
400 
401 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
402 	/* No need to get a refcount on the module containing
403 	   the notifier, since we hold the mtd_table_mutex */
404 	list_for_each_entry(not, &mtd_notifiers, list)
405 		not->add(mtd);
406 
407 	mutex_unlock(&mtd_table_mutex);
408 	/* We _know_ we aren't being removed, because
409 	   our caller is still holding us here. So none
410 	   of this try_ nonsense, and no bitching about it
411 	   either. :) */
412 	__module_get(THIS_MODULE);
413 	return 0;
414 
415 fail_added:
416 	idr_remove(&mtd_idr, i);
417 fail_locked:
418 	mutex_unlock(&mtd_table_mutex);
419 	return 1;
420 }
421 
422 /**
423  *	del_mtd_device - unregister an MTD device
424  *	@mtd: pointer to MTD device info structure
425  *
426  *	Remove a device from the list of MTD devices present in the system,
427  *	and notify each currently active MTD 'user' of its departure.
428  *	Returns zero on success or 1 on failure, which currently will happen
429  *	if the requested device does not appear to be present in the list.
430  */
431 
432 int del_mtd_device(struct mtd_info *mtd)
433 {
434 	int ret;
435 	struct mtd_notifier *not;
436 
437 	mutex_lock(&mtd_table_mutex);
438 
439 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
440 		ret = -ENODEV;
441 		goto out_error;
442 	}
443 
444 	/* No need to get a refcount on the module containing
445 		the notifier, since we hold the mtd_table_mutex */
446 	list_for_each_entry(not, &mtd_notifiers, list)
447 		not->remove(mtd);
448 
449 	if (mtd->usecount) {
450 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
451 		       mtd->index, mtd->name, mtd->usecount);
452 		ret = -EBUSY;
453 	} else {
454 		device_unregister(&mtd->dev);
455 
456 		idr_remove(&mtd_idr, mtd->index);
457 
458 		module_put(THIS_MODULE);
459 		ret = 0;
460 	}
461 
462 out_error:
463 	mutex_unlock(&mtd_table_mutex);
464 	return ret;
465 }
466 
467 /**
468  * mtd_device_parse_register - parse partitions and register an MTD device.
469  *
470  * @mtd: the MTD device to register
471  * @types: the list of MTD partition probes to try, see
472  *         'parse_mtd_partitions()' for more information
473  * @parser_data: MTD partition parser-specific data
474  * @parts: fallback partition information to register, if parsing fails;
475  *         only valid if %nr_parts > %0
476  * @nr_parts: the number of partitions in parts, if zero then the full
477  *            MTD device is registered if no partition info is found
478  *
479  * This function aggregates MTD partitions parsing (done by
480  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
481  * basically follows the most common pattern found in many MTD drivers:
482  *
483  * * It first tries to probe partitions on MTD device @mtd using parsers
484  *   specified in @types (if @types is %NULL, then the default list of parsers
485  *   is used, see 'parse_mtd_partitions()' for more information). If none are
486  *   found this functions tries to fallback to information specified in
487  *   @parts/@nr_parts.
488  * * If any partitioning info was found, this function registers the found
489  *   partitions.
490  * * If no partitions were found this function just registers the MTD device
491  *   @mtd and exits.
492  *
493  * Returns zero in case of success and a negative error code in case of failure.
494  */
495 int mtd_device_parse_register(struct mtd_info *mtd, const char **types,
496 			      struct mtd_part_parser_data *parser_data,
497 			      const struct mtd_partition *parts,
498 			      int nr_parts)
499 {
500 	int err;
501 	struct mtd_partition *real_parts;
502 
503 	err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
504 	if (err <= 0 && nr_parts && parts) {
505 		real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
506 				     GFP_KERNEL);
507 		if (!real_parts)
508 			err = -ENOMEM;
509 		else
510 			err = nr_parts;
511 	}
512 
513 	if (err > 0) {
514 		err = add_mtd_partitions(mtd, real_parts, err);
515 		kfree(real_parts);
516 	} else if (err == 0) {
517 		err = add_mtd_device(mtd);
518 		if (err == 1)
519 			err = -ENODEV;
520 	}
521 
522 	return err;
523 }
524 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
525 
526 /**
527  * mtd_device_unregister - unregister an existing MTD device.
528  *
529  * @master: the MTD device to unregister.  This will unregister both the master
530  *          and any partitions if registered.
531  */
532 int mtd_device_unregister(struct mtd_info *master)
533 {
534 	int err;
535 
536 	err = del_mtd_partitions(master);
537 	if (err)
538 		return err;
539 
540 	if (!device_is_registered(&master->dev))
541 		return 0;
542 
543 	return del_mtd_device(master);
544 }
545 EXPORT_SYMBOL_GPL(mtd_device_unregister);
546 
547 /**
548  *	register_mtd_user - register a 'user' of MTD devices.
549  *	@new: pointer to notifier info structure
550  *
551  *	Registers a pair of callbacks function to be called upon addition
552  *	or removal of MTD devices. Causes the 'add' callback to be immediately
553  *	invoked for each MTD device currently present in the system.
554  */
555 void register_mtd_user (struct mtd_notifier *new)
556 {
557 	struct mtd_info *mtd;
558 
559 	mutex_lock(&mtd_table_mutex);
560 
561 	list_add(&new->list, &mtd_notifiers);
562 
563 	__module_get(THIS_MODULE);
564 
565 	mtd_for_each_device(mtd)
566 		new->add(mtd);
567 
568 	mutex_unlock(&mtd_table_mutex);
569 }
570 EXPORT_SYMBOL_GPL(register_mtd_user);
571 
572 /**
573  *	unregister_mtd_user - unregister a 'user' of MTD devices.
574  *	@old: pointer to notifier info structure
575  *
576  *	Removes a callback function pair from the list of 'users' to be
577  *	notified upon addition or removal of MTD devices. Causes the
578  *	'remove' callback to be immediately invoked for each MTD device
579  *	currently present in the system.
580  */
581 int unregister_mtd_user (struct mtd_notifier *old)
582 {
583 	struct mtd_info *mtd;
584 
585 	mutex_lock(&mtd_table_mutex);
586 
587 	module_put(THIS_MODULE);
588 
589 	mtd_for_each_device(mtd)
590 		old->remove(mtd);
591 
592 	list_del(&old->list);
593 	mutex_unlock(&mtd_table_mutex);
594 	return 0;
595 }
596 EXPORT_SYMBOL_GPL(unregister_mtd_user);
597 
598 /**
599  *	get_mtd_device - obtain a validated handle for an MTD device
600  *	@mtd: last known address of the required MTD device
601  *	@num: internal device number of the required MTD device
602  *
603  *	Given a number and NULL address, return the num'th entry in the device
604  *	table, if any.	Given an address and num == -1, search the device table
605  *	for a device with that address and return if it's still present. Given
606  *	both, return the num'th driver only if its address matches. Return
607  *	error code if not.
608  */
609 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
610 {
611 	struct mtd_info *ret = NULL, *other;
612 	int err = -ENODEV;
613 
614 	mutex_lock(&mtd_table_mutex);
615 
616 	if (num == -1) {
617 		mtd_for_each_device(other) {
618 			if (other == mtd) {
619 				ret = mtd;
620 				break;
621 			}
622 		}
623 	} else if (num >= 0) {
624 		ret = idr_find(&mtd_idr, num);
625 		if (mtd && mtd != ret)
626 			ret = NULL;
627 	}
628 
629 	if (!ret) {
630 		ret = ERR_PTR(err);
631 		goto out;
632 	}
633 
634 	err = __get_mtd_device(ret);
635 	if (err)
636 		ret = ERR_PTR(err);
637 out:
638 	mutex_unlock(&mtd_table_mutex);
639 	return ret;
640 }
641 EXPORT_SYMBOL_GPL(get_mtd_device);
642 
643 
644 int __get_mtd_device(struct mtd_info *mtd)
645 {
646 	int err;
647 
648 	if (!try_module_get(mtd->owner))
649 		return -ENODEV;
650 
651 	if (mtd->_get_device) {
652 		err = mtd->_get_device(mtd);
653 
654 		if (err) {
655 			module_put(mtd->owner);
656 			return err;
657 		}
658 	}
659 	mtd->usecount++;
660 	return 0;
661 }
662 EXPORT_SYMBOL_GPL(__get_mtd_device);
663 
664 /**
665  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
666  *	device name
667  *	@name: MTD device name to open
668  *
669  * 	This function returns MTD device description structure in case of
670  * 	success and an error code in case of failure.
671  */
672 struct mtd_info *get_mtd_device_nm(const char *name)
673 {
674 	int err = -ENODEV;
675 	struct mtd_info *mtd = NULL, *other;
676 
677 	mutex_lock(&mtd_table_mutex);
678 
679 	mtd_for_each_device(other) {
680 		if (!strcmp(name, other->name)) {
681 			mtd = other;
682 			break;
683 		}
684 	}
685 
686 	if (!mtd)
687 		goto out_unlock;
688 
689 	err = __get_mtd_device(mtd);
690 	if (err)
691 		goto out_unlock;
692 
693 	mutex_unlock(&mtd_table_mutex);
694 	return mtd;
695 
696 out_unlock:
697 	mutex_unlock(&mtd_table_mutex);
698 	return ERR_PTR(err);
699 }
700 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
701 
702 void put_mtd_device(struct mtd_info *mtd)
703 {
704 	mutex_lock(&mtd_table_mutex);
705 	__put_mtd_device(mtd);
706 	mutex_unlock(&mtd_table_mutex);
707 
708 }
709 EXPORT_SYMBOL_GPL(put_mtd_device);
710 
711 void __put_mtd_device(struct mtd_info *mtd)
712 {
713 	--mtd->usecount;
714 	BUG_ON(mtd->usecount < 0);
715 
716 	if (mtd->_put_device)
717 		mtd->_put_device(mtd);
718 
719 	module_put(mtd->owner);
720 }
721 EXPORT_SYMBOL_GPL(__put_mtd_device);
722 
723 /*
724  * Erase is an asynchronous operation.  Device drivers are supposed
725  * to call instr->callback() whenever the operation completes, even
726  * if it completes with a failure.
727  * Callers are supposed to pass a callback function and wait for it
728  * to be called before writing to the block.
729  */
730 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
731 {
732 	if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
733 		return -EINVAL;
734 	if (!(mtd->flags & MTD_WRITEABLE))
735 		return -EROFS;
736 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
737 	if (!instr->len) {
738 		instr->state = MTD_ERASE_DONE;
739 		mtd_erase_callback(instr);
740 		return 0;
741 	}
742 	return mtd->_erase(mtd, instr);
743 }
744 EXPORT_SYMBOL_GPL(mtd_erase);
745 
746 /*
747  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
748  */
749 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
750 	      void **virt, resource_size_t *phys)
751 {
752 	*retlen = 0;
753 	*virt = NULL;
754 	if (phys)
755 		*phys = 0;
756 	if (!mtd->_point)
757 		return -EOPNOTSUPP;
758 	if (from < 0 || from > mtd->size || len > mtd->size - from)
759 		return -EINVAL;
760 	if (!len)
761 		return 0;
762 	return mtd->_point(mtd, from, len, retlen, virt, phys);
763 }
764 EXPORT_SYMBOL_GPL(mtd_point);
765 
766 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
767 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
768 {
769 	if (!mtd->_point)
770 		return -EOPNOTSUPP;
771 	if (from < 0 || from > mtd->size || len > mtd->size - from)
772 		return -EINVAL;
773 	if (!len)
774 		return 0;
775 	return mtd->_unpoint(mtd, from, len);
776 }
777 EXPORT_SYMBOL_GPL(mtd_unpoint);
778 
779 /*
780  * Allow NOMMU mmap() to directly map the device (if not NULL)
781  * - return the address to which the offset maps
782  * - return -ENOSYS to indicate refusal to do the mapping
783  */
784 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
785 				    unsigned long offset, unsigned long flags)
786 {
787 	if (!mtd->_get_unmapped_area)
788 		return -EOPNOTSUPP;
789 	if (offset > mtd->size || len > mtd->size - offset)
790 		return -EINVAL;
791 	return mtd->_get_unmapped_area(mtd, len, offset, flags);
792 }
793 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
794 
795 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
796 	     u_char *buf)
797 {
798 	int ret_code;
799 	*retlen = 0;
800 	if (from < 0 || from > mtd->size || len > mtd->size - from)
801 		return -EINVAL;
802 	if (!len)
803 		return 0;
804 
805 	/*
806 	 * In the absence of an error, drivers return a non-negative integer
807 	 * representing the maximum number of bitflips that were corrected on
808 	 * any one ecc region (if applicable; zero otherwise).
809 	 */
810 	ret_code = mtd->_read(mtd, from, len, retlen, buf);
811 	if (unlikely(ret_code < 0))
812 		return ret_code;
813 	if (mtd->ecc_strength == 0)
814 		return 0;	/* device lacks ecc */
815 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
816 }
817 EXPORT_SYMBOL_GPL(mtd_read);
818 
819 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
820 	      const u_char *buf)
821 {
822 	*retlen = 0;
823 	if (to < 0 || to > mtd->size || len > mtd->size - to)
824 		return -EINVAL;
825 	if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
826 		return -EROFS;
827 	if (!len)
828 		return 0;
829 	return mtd->_write(mtd, to, len, retlen, buf);
830 }
831 EXPORT_SYMBOL_GPL(mtd_write);
832 
833 /*
834  * In blackbox flight recorder like scenarios we want to make successful writes
835  * in interrupt context. panic_write() is only intended to be called when its
836  * known the kernel is about to panic and we need the write to succeed. Since
837  * the kernel is not going to be running for much longer, this function can
838  * break locks and delay to ensure the write succeeds (but not sleep).
839  */
840 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
841 		    const u_char *buf)
842 {
843 	*retlen = 0;
844 	if (!mtd->_panic_write)
845 		return -EOPNOTSUPP;
846 	if (to < 0 || to > mtd->size || len > mtd->size - to)
847 		return -EINVAL;
848 	if (!(mtd->flags & MTD_WRITEABLE))
849 		return -EROFS;
850 	if (!len)
851 		return 0;
852 	return mtd->_panic_write(mtd, to, len, retlen, buf);
853 }
854 EXPORT_SYMBOL_GPL(mtd_panic_write);
855 
856 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
857 {
858 	int ret_code;
859 	ops->retlen = ops->oobretlen = 0;
860 	if (!mtd->_read_oob)
861 		return -EOPNOTSUPP;
862 	/*
863 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
864 	 * similar to mtd->_read(), returning a non-negative integer
865 	 * representing max bitflips. In other cases, mtd->_read_oob() may
866 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
867 	 */
868 	ret_code = mtd->_read_oob(mtd, from, ops);
869 	if (unlikely(ret_code < 0))
870 		return ret_code;
871 	if (mtd->ecc_strength == 0)
872 		return 0;	/* device lacks ecc */
873 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
874 }
875 EXPORT_SYMBOL_GPL(mtd_read_oob);
876 
877 /*
878  * Method to access the protection register area, present in some flash
879  * devices. The user data is one time programmable but the factory data is read
880  * only.
881  */
882 int mtd_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
883 			   size_t len)
884 {
885 	if (!mtd->_get_fact_prot_info)
886 		return -EOPNOTSUPP;
887 	if (!len)
888 		return 0;
889 	return mtd->_get_fact_prot_info(mtd, buf, len);
890 }
891 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
892 
893 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
894 			   size_t *retlen, u_char *buf)
895 {
896 	*retlen = 0;
897 	if (!mtd->_read_fact_prot_reg)
898 		return -EOPNOTSUPP;
899 	if (!len)
900 		return 0;
901 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
902 }
903 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
904 
905 int mtd_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf,
906 			   size_t len)
907 {
908 	if (!mtd->_get_user_prot_info)
909 		return -EOPNOTSUPP;
910 	if (!len)
911 		return 0;
912 	return mtd->_get_user_prot_info(mtd, buf, len);
913 }
914 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
915 
916 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
917 			   size_t *retlen, u_char *buf)
918 {
919 	*retlen = 0;
920 	if (!mtd->_read_user_prot_reg)
921 		return -EOPNOTSUPP;
922 	if (!len)
923 		return 0;
924 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
925 }
926 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
927 
928 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
929 			    size_t *retlen, u_char *buf)
930 {
931 	*retlen = 0;
932 	if (!mtd->_write_user_prot_reg)
933 		return -EOPNOTSUPP;
934 	if (!len)
935 		return 0;
936 	return mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
937 }
938 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
939 
940 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
941 {
942 	if (!mtd->_lock_user_prot_reg)
943 		return -EOPNOTSUPP;
944 	if (!len)
945 		return 0;
946 	return mtd->_lock_user_prot_reg(mtd, from, len);
947 }
948 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
949 
950 /* Chip-supported device locking */
951 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
952 {
953 	if (!mtd->_lock)
954 		return -EOPNOTSUPP;
955 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
956 		return -EINVAL;
957 	if (!len)
958 		return 0;
959 	return mtd->_lock(mtd, ofs, len);
960 }
961 EXPORT_SYMBOL_GPL(mtd_lock);
962 
963 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
964 {
965 	if (!mtd->_unlock)
966 		return -EOPNOTSUPP;
967 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
968 		return -EINVAL;
969 	if (!len)
970 		return 0;
971 	return mtd->_unlock(mtd, ofs, len);
972 }
973 EXPORT_SYMBOL_GPL(mtd_unlock);
974 
975 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
976 {
977 	if (!mtd->_is_locked)
978 		return -EOPNOTSUPP;
979 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
980 		return -EINVAL;
981 	if (!len)
982 		return 0;
983 	return mtd->_is_locked(mtd, ofs, len);
984 }
985 EXPORT_SYMBOL_GPL(mtd_is_locked);
986 
987 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
988 {
989 	if (!mtd->_block_isbad)
990 		return 0;
991 	if (ofs < 0 || ofs > mtd->size)
992 		return -EINVAL;
993 	return mtd->_block_isbad(mtd, ofs);
994 }
995 EXPORT_SYMBOL_GPL(mtd_block_isbad);
996 
997 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
998 {
999 	if (!mtd->_block_markbad)
1000 		return -EOPNOTSUPP;
1001 	if (ofs < 0 || ofs > mtd->size)
1002 		return -EINVAL;
1003 	if (!(mtd->flags & MTD_WRITEABLE))
1004 		return -EROFS;
1005 	return mtd->_block_markbad(mtd, ofs);
1006 }
1007 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1008 
1009 /*
1010  * default_mtd_writev - the default writev method
1011  * @mtd: mtd device description object pointer
1012  * @vecs: the vectors to write
1013  * @count: count of vectors in @vecs
1014  * @to: the MTD device offset to write to
1015  * @retlen: on exit contains the count of bytes written to the MTD device.
1016  *
1017  * This function returns zero in case of success and a negative error code in
1018  * case of failure.
1019  */
1020 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1021 			      unsigned long count, loff_t to, size_t *retlen)
1022 {
1023 	unsigned long i;
1024 	size_t totlen = 0, thislen;
1025 	int ret = 0;
1026 
1027 	for (i = 0; i < count; i++) {
1028 		if (!vecs[i].iov_len)
1029 			continue;
1030 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1031 				vecs[i].iov_base);
1032 		totlen += thislen;
1033 		if (ret || thislen != vecs[i].iov_len)
1034 			break;
1035 		to += vecs[i].iov_len;
1036 	}
1037 	*retlen = totlen;
1038 	return ret;
1039 }
1040 
1041 /*
1042  * mtd_writev - the vector-based MTD write method
1043  * @mtd: mtd device description object pointer
1044  * @vecs: the vectors to write
1045  * @count: count of vectors in @vecs
1046  * @to: the MTD device offset to write to
1047  * @retlen: on exit contains the count of bytes written to the MTD device.
1048  *
1049  * This function returns zero in case of success and a negative error code in
1050  * case of failure.
1051  */
1052 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1053 	       unsigned long count, loff_t to, size_t *retlen)
1054 {
1055 	*retlen = 0;
1056 	if (!(mtd->flags & MTD_WRITEABLE))
1057 		return -EROFS;
1058 	if (!mtd->_writev)
1059 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1060 	return mtd->_writev(mtd, vecs, count, to, retlen);
1061 }
1062 EXPORT_SYMBOL_GPL(mtd_writev);
1063 
1064 /**
1065  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1066  * @mtd: mtd device description object pointer
1067  * @size: a pointer to the ideal or maximum size of the allocation, points
1068  *        to the actual allocation size on success.
1069  *
1070  * This routine attempts to allocate a contiguous kernel buffer up to
1071  * the specified size, backing off the size of the request exponentially
1072  * until the request succeeds or until the allocation size falls below
1073  * the system page size. This attempts to make sure it does not adversely
1074  * impact system performance, so when allocating more than one page, we
1075  * ask the memory allocator to avoid re-trying, swapping, writing back
1076  * or performing I/O.
1077  *
1078  * Note, this function also makes sure that the allocated buffer is aligned to
1079  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1080  *
1081  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1082  * to handle smaller (i.e. degraded) buffer allocations under low- or
1083  * fragmented-memory situations where such reduced allocations, from a
1084  * requested ideal, are allowed.
1085  *
1086  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1087  */
1088 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1089 {
1090 	gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1091 		       __GFP_NORETRY | __GFP_NO_KSWAPD;
1092 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1093 	void *kbuf;
1094 
1095 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1096 
1097 	while (*size > min_alloc) {
1098 		kbuf = kmalloc(*size, flags);
1099 		if (kbuf)
1100 			return kbuf;
1101 
1102 		*size >>= 1;
1103 		*size = ALIGN(*size, mtd->writesize);
1104 	}
1105 
1106 	/*
1107 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1108 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1109 	 */
1110 	return kmalloc(*size, GFP_KERNEL);
1111 }
1112 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1113 
1114 #ifdef CONFIG_PROC_FS
1115 
1116 /*====================================================================*/
1117 /* Support for /proc/mtd */
1118 
1119 static struct proc_dir_entry *proc_mtd;
1120 
1121 static int mtd_proc_show(struct seq_file *m, void *v)
1122 {
1123 	struct mtd_info *mtd;
1124 
1125 	seq_puts(m, "dev:    size   erasesize  name\n");
1126 	mutex_lock(&mtd_table_mutex);
1127 	mtd_for_each_device(mtd) {
1128 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1129 			   mtd->index, (unsigned long long)mtd->size,
1130 			   mtd->erasesize, mtd->name);
1131 	}
1132 	mutex_unlock(&mtd_table_mutex);
1133 	return 0;
1134 }
1135 
1136 static int mtd_proc_open(struct inode *inode, struct file *file)
1137 {
1138 	return single_open(file, mtd_proc_show, NULL);
1139 }
1140 
1141 static const struct file_operations mtd_proc_ops = {
1142 	.open		= mtd_proc_open,
1143 	.read		= seq_read,
1144 	.llseek		= seq_lseek,
1145 	.release	= single_release,
1146 };
1147 #endif /* CONFIG_PROC_FS */
1148 
1149 /*====================================================================*/
1150 /* Init code */
1151 
1152 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1153 {
1154 	int ret;
1155 
1156 	ret = bdi_init(bdi);
1157 	if (!ret)
1158 		ret = bdi_register(bdi, NULL, name);
1159 
1160 	if (ret)
1161 		bdi_destroy(bdi);
1162 
1163 	return ret;
1164 }
1165 
1166 static int __init init_mtd(void)
1167 {
1168 	int ret;
1169 
1170 	ret = class_register(&mtd_class);
1171 	if (ret)
1172 		goto err_reg;
1173 
1174 	ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1175 	if (ret)
1176 		goto err_bdi1;
1177 
1178 	ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1179 	if (ret)
1180 		goto err_bdi2;
1181 
1182 	ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1183 	if (ret)
1184 		goto err_bdi3;
1185 
1186 #ifdef CONFIG_PROC_FS
1187 	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1188 #endif /* CONFIG_PROC_FS */
1189 	return 0;
1190 
1191 err_bdi3:
1192 	bdi_destroy(&mtd_bdi_ro_mappable);
1193 err_bdi2:
1194 	bdi_destroy(&mtd_bdi_unmappable);
1195 err_bdi1:
1196 	class_unregister(&mtd_class);
1197 err_reg:
1198 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1199 	return ret;
1200 }
1201 
1202 static void __exit cleanup_mtd(void)
1203 {
1204 #ifdef CONFIG_PROC_FS
1205 	if (proc_mtd)
1206 		remove_proc_entry( "mtd", NULL);
1207 #endif /* CONFIG_PROC_FS */
1208 	class_unregister(&mtd_class);
1209 	bdi_destroy(&mtd_bdi_unmappable);
1210 	bdi_destroy(&mtd_bdi_ro_mappable);
1211 	bdi_destroy(&mtd_bdi_rw_mappable);
1212 }
1213 
1214 module_init(init_mtd);
1215 module_exit(cleanup_mtd);
1216 
1217 MODULE_LICENSE("GPL");
1218 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1219 MODULE_DESCRIPTION("Core MTD registration and access routines");
1220