1 /* 2 * Core registration and callback routines for MTD 3 * drivers and users. 4 * 5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 6 * Copyright © 2006 Red Hat UK Limited 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/kernel.h> 26 #include <linux/ptrace.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/major.h> 31 #include <linux/fs.h> 32 #include <linux/err.h> 33 #include <linux/ioctl.h> 34 #include <linux/init.h> 35 #include <linux/of.h> 36 #include <linux/proc_fs.h> 37 #include <linux/idr.h> 38 #include <linux/backing-dev.h> 39 #include <linux/gfp.h> 40 #include <linux/slab.h> 41 #include <linux/reboot.h> 42 #include <linux/leds.h> 43 #include <linux/debugfs.h> 44 45 #include <linux/mtd/mtd.h> 46 #include <linux/mtd/partitions.h> 47 48 #include "mtdcore.h" 49 50 struct backing_dev_info *mtd_bdi; 51 52 #ifdef CONFIG_PM_SLEEP 53 54 static int mtd_cls_suspend(struct device *dev) 55 { 56 struct mtd_info *mtd = dev_get_drvdata(dev); 57 58 return mtd ? mtd_suspend(mtd) : 0; 59 } 60 61 static int mtd_cls_resume(struct device *dev) 62 { 63 struct mtd_info *mtd = dev_get_drvdata(dev); 64 65 if (mtd) 66 mtd_resume(mtd); 67 return 0; 68 } 69 70 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 71 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 72 #else 73 #define MTD_CLS_PM_OPS NULL 74 #endif 75 76 static struct class mtd_class = { 77 .name = "mtd", 78 .owner = THIS_MODULE, 79 .pm = MTD_CLS_PM_OPS, 80 }; 81 82 static DEFINE_IDR(mtd_idr); 83 84 /* These are exported solely for the purpose of mtd_blkdevs.c. You 85 should not use them for _anything_ else */ 86 DEFINE_MUTEX(mtd_table_mutex); 87 EXPORT_SYMBOL_GPL(mtd_table_mutex); 88 89 struct mtd_info *__mtd_next_device(int i) 90 { 91 return idr_get_next(&mtd_idr, &i); 92 } 93 EXPORT_SYMBOL_GPL(__mtd_next_device); 94 95 static LIST_HEAD(mtd_notifiers); 96 97 98 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 99 100 /* REVISIT once MTD uses the driver model better, whoever allocates 101 * the mtd_info will probably want to use the release() hook... 102 */ 103 static void mtd_release(struct device *dev) 104 { 105 struct mtd_info *mtd = dev_get_drvdata(dev); 106 dev_t index = MTD_DEVT(mtd->index); 107 108 /* remove /dev/mtdXro node */ 109 device_destroy(&mtd_class, index + 1); 110 } 111 112 static ssize_t mtd_type_show(struct device *dev, 113 struct device_attribute *attr, char *buf) 114 { 115 struct mtd_info *mtd = dev_get_drvdata(dev); 116 char *type; 117 118 switch (mtd->type) { 119 case MTD_ABSENT: 120 type = "absent"; 121 break; 122 case MTD_RAM: 123 type = "ram"; 124 break; 125 case MTD_ROM: 126 type = "rom"; 127 break; 128 case MTD_NORFLASH: 129 type = "nor"; 130 break; 131 case MTD_NANDFLASH: 132 type = "nand"; 133 break; 134 case MTD_DATAFLASH: 135 type = "dataflash"; 136 break; 137 case MTD_UBIVOLUME: 138 type = "ubi"; 139 break; 140 case MTD_MLCNANDFLASH: 141 type = "mlc-nand"; 142 break; 143 default: 144 type = "unknown"; 145 } 146 147 return snprintf(buf, PAGE_SIZE, "%s\n", type); 148 } 149 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 150 151 static ssize_t mtd_flags_show(struct device *dev, 152 struct device_attribute *attr, char *buf) 153 { 154 struct mtd_info *mtd = dev_get_drvdata(dev); 155 156 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 157 158 } 159 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 160 161 static ssize_t mtd_size_show(struct device *dev, 162 struct device_attribute *attr, char *buf) 163 { 164 struct mtd_info *mtd = dev_get_drvdata(dev); 165 166 return snprintf(buf, PAGE_SIZE, "%llu\n", 167 (unsigned long long)mtd->size); 168 169 } 170 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 171 172 static ssize_t mtd_erasesize_show(struct device *dev, 173 struct device_attribute *attr, char *buf) 174 { 175 struct mtd_info *mtd = dev_get_drvdata(dev); 176 177 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 178 179 } 180 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 181 182 static ssize_t mtd_writesize_show(struct device *dev, 183 struct device_attribute *attr, char *buf) 184 { 185 struct mtd_info *mtd = dev_get_drvdata(dev); 186 187 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 188 189 } 190 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 191 192 static ssize_t mtd_subpagesize_show(struct device *dev, 193 struct device_attribute *attr, char *buf) 194 { 195 struct mtd_info *mtd = dev_get_drvdata(dev); 196 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 197 198 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 199 200 } 201 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 202 203 static ssize_t mtd_oobsize_show(struct device *dev, 204 struct device_attribute *attr, char *buf) 205 { 206 struct mtd_info *mtd = dev_get_drvdata(dev); 207 208 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 209 210 } 211 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 212 213 static ssize_t mtd_numeraseregions_show(struct device *dev, 214 struct device_attribute *attr, char *buf) 215 { 216 struct mtd_info *mtd = dev_get_drvdata(dev); 217 218 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 219 220 } 221 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 222 NULL); 223 224 static ssize_t mtd_name_show(struct device *dev, 225 struct device_attribute *attr, char *buf) 226 { 227 struct mtd_info *mtd = dev_get_drvdata(dev); 228 229 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 230 231 } 232 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 233 234 static ssize_t mtd_ecc_strength_show(struct device *dev, 235 struct device_attribute *attr, char *buf) 236 { 237 struct mtd_info *mtd = dev_get_drvdata(dev); 238 239 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 240 } 241 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 242 243 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 244 struct device_attribute *attr, 245 char *buf) 246 { 247 struct mtd_info *mtd = dev_get_drvdata(dev); 248 249 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 250 } 251 252 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 253 struct device_attribute *attr, 254 const char *buf, size_t count) 255 { 256 struct mtd_info *mtd = dev_get_drvdata(dev); 257 unsigned int bitflip_threshold; 258 int retval; 259 260 retval = kstrtouint(buf, 0, &bitflip_threshold); 261 if (retval) 262 return retval; 263 264 mtd->bitflip_threshold = bitflip_threshold; 265 return count; 266 } 267 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 268 mtd_bitflip_threshold_show, 269 mtd_bitflip_threshold_store); 270 271 static ssize_t mtd_ecc_step_size_show(struct device *dev, 272 struct device_attribute *attr, char *buf) 273 { 274 struct mtd_info *mtd = dev_get_drvdata(dev); 275 276 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 277 278 } 279 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 280 281 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev, 282 struct device_attribute *attr, char *buf) 283 { 284 struct mtd_info *mtd = dev_get_drvdata(dev); 285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 286 287 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected); 288 } 289 static DEVICE_ATTR(corrected_bits, S_IRUGO, 290 mtd_ecc_stats_corrected_show, NULL); 291 292 static ssize_t mtd_ecc_stats_errors_show(struct device *dev, 293 struct device_attribute *attr, char *buf) 294 { 295 struct mtd_info *mtd = dev_get_drvdata(dev); 296 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 297 298 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed); 299 } 300 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL); 301 302 static ssize_t mtd_badblocks_show(struct device *dev, 303 struct device_attribute *attr, char *buf) 304 { 305 struct mtd_info *mtd = dev_get_drvdata(dev); 306 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 307 308 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks); 309 } 310 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL); 311 312 static ssize_t mtd_bbtblocks_show(struct device *dev, 313 struct device_attribute *attr, char *buf) 314 { 315 struct mtd_info *mtd = dev_get_drvdata(dev); 316 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 317 318 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks); 319 } 320 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL); 321 322 static struct attribute *mtd_attrs[] = { 323 &dev_attr_type.attr, 324 &dev_attr_flags.attr, 325 &dev_attr_size.attr, 326 &dev_attr_erasesize.attr, 327 &dev_attr_writesize.attr, 328 &dev_attr_subpagesize.attr, 329 &dev_attr_oobsize.attr, 330 &dev_attr_numeraseregions.attr, 331 &dev_attr_name.attr, 332 &dev_attr_ecc_strength.attr, 333 &dev_attr_ecc_step_size.attr, 334 &dev_attr_corrected_bits.attr, 335 &dev_attr_ecc_failures.attr, 336 &dev_attr_bad_blocks.attr, 337 &dev_attr_bbt_blocks.attr, 338 &dev_attr_bitflip_threshold.attr, 339 NULL, 340 }; 341 ATTRIBUTE_GROUPS(mtd); 342 343 static const struct device_type mtd_devtype = { 344 .name = "mtd", 345 .groups = mtd_groups, 346 .release = mtd_release, 347 }; 348 349 #ifndef CONFIG_MMU 350 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 351 { 352 switch (mtd->type) { 353 case MTD_RAM: 354 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 355 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 356 case MTD_ROM: 357 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 358 NOMMU_MAP_READ; 359 default: 360 return NOMMU_MAP_COPY; 361 } 362 } 363 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 364 #endif 365 366 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 367 void *cmd) 368 { 369 struct mtd_info *mtd; 370 371 mtd = container_of(n, struct mtd_info, reboot_notifier); 372 mtd->_reboot(mtd); 373 374 return NOTIFY_DONE; 375 } 376 377 /** 378 * mtd_wunit_to_pairing_info - get pairing information of a wunit 379 * @mtd: pointer to new MTD device info structure 380 * @wunit: write unit we are interested in 381 * @info: returned pairing information 382 * 383 * Retrieve pairing information associated to the wunit. 384 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 385 * paired together, and where programming a page may influence the page it is 386 * paired with. 387 * The notion of page is replaced by the term wunit (write-unit) to stay 388 * consistent with the ->writesize field. 389 * 390 * The @wunit argument can be extracted from an absolute offset using 391 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 392 * to @wunit. 393 * 394 * From the pairing info the MTD user can find all the wunits paired with 395 * @wunit using the following loop: 396 * 397 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 398 * info.pair = i; 399 * mtd_pairing_info_to_wunit(mtd, &info); 400 * ... 401 * } 402 */ 403 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 404 struct mtd_pairing_info *info) 405 { 406 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 407 408 if (wunit < 0 || wunit >= npairs) 409 return -EINVAL; 410 411 if (mtd->pairing && mtd->pairing->get_info) 412 return mtd->pairing->get_info(mtd, wunit, info); 413 414 info->group = 0; 415 info->pair = wunit; 416 417 return 0; 418 } 419 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 420 421 /** 422 * mtd_wunit_to_pairing_info - get wunit from pairing information 423 * @mtd: pointer to new MTD device info structure 424 * @info: pairing information struct 425 * 426 * Returns a positive number representing the wunit associated to the info 427 * struct, or a negative error code. 428 * 429 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 430 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 431 * doc). 432 * 433 * It can also be used to only program the first page of each pair (i.e. 434 * page attached to group 0), which allows one to use an MLC NAND in 435 * software-emulated SLC mode: 436 * 437 * info.group = 0; 438 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 439 * for (info.pair = 0; info.pair < npairs; info.pair++) { 440 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 441 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 442 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 443 * } 444 */ 445 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 446 const struct mtd_pairing_info *info) 447 { 448 int ngroups = mtd_pairing_groups(mtd); 449 int npairs = mtd_wunit_per_eb(mtd) / ngroups; 450 451 if (!info || info->pair < 0 || info->pair >= npairs || 452 info->group < 0 || info->group >= ngroups) 453 return -EINVAL; 454 455 if (mtd->pairing && mtd->pairing->get_wunit) 456 return mtd->pairing->get_wunit(mtd, info); 457 458 return info->pair; 459 } 460 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 461 462 /** 463 * mtd_pairing_groups - get the number of pairing groups 464 * @mtd: pointer to new MTD device info structure 465 * 466 * Returns the number of pairing groups. 467 * 468 * This number is usually equal to the number of bits exposed by a single 469 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 470 * to iterate over all pages of a given pair. 471 */ 472 int mtd_pairing_groups(struct mtd_info *mtd) 473 { 474 if (!mtd->pairing || !mtd->pairing->ngroups) 475 return 1; 476 477 return mtd->pairing->ngroups; 478 } 479 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 480 481 static struct dentry *dfs_dir_mtd; 482 483 /** 484 * add_mtd_device - register an MTD device 485 * @mtd: pointer to new MTD device info structure 486 * 487 * Add a device to the list of MTD devices present in the system, and 488 * notify each currently active MTD 'user' of its arrival. Returns 489 * zero on success or non-zero on failure. 490 */ 491 492 int add_mtd_device(struct mtd_info *mtd) 493 { 494 struct mtd_notifier *not; 495 int i, error; 496 497 /* 498 * May occur, for instance, on buggy drivers which call 499 * mtd_device_parse_register() multiple times on the same master MTD, 500 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 501 */ 502 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 503 return -EEXIST; 504 505 BUG_ON(mtd->writesize == 0); 506 507 if (WARN_ON((!mtd->erasesize || !mtd->_erase) && 508 !(mtd->flags & MTD_NO_ERASE))) 509 return -EINVAL; 510 511 mutex_lock(&mtd_table_mutex); 512 513 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 514 if (i < 0) { 515 error = i; 516 goto fail_locked; 517 } 518 519 mtd->index = i; 520 mtd->usecount = 0; 521 522 /* default value if not set by driver */ 523 if (mtd->bitflip_threshold == 0) 524 mtd->bitflip_threshold = mtd->ecc_strength; 525 526 if (is_power_of_2(mtd->erasesize)) 527 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 528 else 529 mtd->erasesize_shift = 0; 530 531 if (is_power_of_2(mtd->writesize)) 532 mtd->writesize_shift = ffs(mtd->writesize) - 1; 533 else 534 mtd->writesize_shift = 0; 535 536 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 537 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 538 539 /* Some chips always power up locked. Unlock them now */ 540 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 541 error = mtd_unlock(mtd, 0, mtd->size); 542 if (error && error != -EOPNOTSUPP) 543 printk(KERN_WARNING 544 "%s: unlock failed, writes may not work\n", 545 mtd->name); 546 /* Ignore unlock failures? */ 547 error = 0; 548 } 549 550 /* Caller should have set dev.parent to match the 551 * physical device, if appropriate. 552 */ 553 mtd->dev.type = &mtd_devtype; 554 mtd->dev.class = &mtd_class; 555 mtd->dev.devt = MTD_DEVT(i); 556 dev_set_name(&mtd->dev, "mtd%d", i); 557 dev_set_drvdata(&mtd->dev, mtd); 558 of_node_get(mtd_get_of_node(mtd)); 559 error = device_register(&mtd->dev); 560 if (error) 561 goto fail_added; 562 563 if (!IS_ERR_OR_NULL(dfs_dir_mtd)) { 564 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd); 565 if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) { 566 pr_debug("mtd device %s won't show data in debugfs\n", 567 dev_name(&mtd->dev)); 568 } 569 } 570 571 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 572 "mtd%dro", i); 573 574 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 575 /* No need to get a refcount on the module containing 576 the notifier, since we hold the mtd_table_mutex */ 577 list_for_each_entry(not, &mtd_notifiers, list) 578 not->add(mtd); 579 580 mutex_unlock(&mtd_table_mutex); 581 /* We _know_ we aren't being removed, because 582 our caller is still holding us here. So none 583 of this try_ nonsense, and no bitching about it 584 either. :) */ 585 __module_get(THIS_MODULE); 586 return 0; 587 588 fail_added: 589 of_node_put(mtd_get_of_node(mtd)); 590 idr_remove(&mtd_idr, i); 591 fail_locked: 592 mutex_unlock(&mtd_table_mutex); 593 return error; 594 } 595 596 /** 597 * del_mtd_device - unregister an MTD device 598 * @mtd: pointer to MTD device info structure 599 * 600 * Remove a device from the list of MTD devices present in the system, 601 * and notify each currently active MTD 'user' of its departure. 602 * Returns zero on success or 1 on failure, which currently will happen 603 * if the requested device does not appear to be present in the list. 604 */ 605 606 int del_mtd_device(struct mtd_info *mtd) 607 { 608 int ret; 609 struct mtd_notifier *not; 610 611 mutex_lock(&mtd_table_mutex); 612 613 debugfs_remove_recursive(mtd->dbg.dfs_dir); 614 615 if (idr_find(&mtd_idr, mtd->index) != mtd) { 616 ret = -ENODEV; 617 goto out_error; 618 } 619 620 /* No need to get a refcount on the module containing 621 the notifier, since we hold the mtd_table_mutex */ 622 list_for_each_entry(not, &mtd_notifiers, list) 623 not->remove(mtd); 624 625 if (mtd->usecount) { 626 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 627 mtd->index, mtd->name, mtd->usecount); 628 ret = -EBUSY; 629 } else { 630 device_unregister(&mtd->dev); 631 632 idr_remove(&mtd_idr, mtd->index); 633 of_node_put(mtd_get_of_node(mtd)); 634 635 module_put(THIS_MODULE); 636 ret = 0; 637 } 638 639 out_error: 640 mutex_unlock(&mtd_table_mutex); 641 return ret; 642 } 643 644 static int mtd_add_device_partitions(struct mtd_info *mtd, 645 struct mtd_partitions *parts) 646 { 647 const struct mtd_partition *real_parts = parts->parts; 648 int nbparts = parts->nr_parts; 649 int ret; 650 651 if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 652 ret = add_mtd_device(mtd); 653 if (ret) 654 return ret; 655 } 656 657 if (nbparts > 0) { 658 ret = add_mtd_partitions(mtd, real_parts, nbparts); 659 if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) 660 del_mtd_device(mtd); 661 return ret; 662 } 663 664 return 0; 665 } 666 667 /* 668 * Set a few defaults based on the parent devices, if not provided by the 669 * driver 670 */ 671 static void mtd_set_dev_defaults(struct mtd_info *mtd) 672 { 673 if (mtd->dev.parent) { 674 if (!mtd->owner && mtd->dev.parent->driver) 675 mtd->owner = mtd->dev.parent->driver->owner; 676 if (!mtd->name) 677 mtd->name = dev_name(mtd->dev.parent); 678 } else { 679 pr_debug("mtd device won't show a device symlink in sysfs\n"); 680 } 681 } 682 683 /** 684 * mtd_device_parse_register - parse partitions and register an MTD device. 685 * 686 * @mtd: the MTD device to register 687 * @types: the list of MTD partition probes to try, see 688 * 'parse_mtd_partitions()' for more information 689 * @parser_data: MTD partition parser-specific data 690 * @parts: fallback partition information to register, if parsing fails; 691 * only valid if %nr_parts > %0 692 * @nr_parts: the number of partitions in parts, if zero then the full 693 * MTD device is registered if no partition info is found 694 * 695 * This function aggregates MTD partitions parsing (done by 696 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 697 * basically follows the most common pattern found in many MTD drivers: 698 * 699 * * It first tries to probe partitions on MTD device @mtd using parsers 700 * specified in @types (if @types is %NULL, then the default list of parsers 701 * is used, see 'parse_mtd_partitions()' for more information). If none are 702 * found this functions tries to fallback to information specified in 703 * @parts/@nr_parts. 704 * * If any partitioning info was found, this function registers the found 705 * partitions. If the MTD_PARTITIONED_MASTER option is set, then the device 706 * as a whole is registered first. 707 * * If no partitions were found this function just registers the MTD device 708 * @mtd and exits. 709 * 710 * Returns zero in case of success and a negative error code in case of failure. 711 */ 712 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 713 struct mtd_part_parser_data *parser_data, 714 const struct mtd_partition *parts, 715 int nr_parts) 716 { 717 struct mtd_partitions parsed; 718 int ret; 719 720 mtd_set_dev_defaults(mtd); 721 722 memset(&parsed, 0, sizeof(parsed)); 723 724 ret = parse_mtd_partitions(mtd, types, &parsed, parser_data); 725 if ((ret < 0 || parsed.nr_parts == 0) && parts && nr_parts) { 726 /* Fall back to driver-provided partitions */ 727 parsed = (struct mtd_partitions){ 728 .parts = parts, 729 .nr_parts = nr_parts, 730 }; 731 } else if (ret < 0) { 732 /* Didn't come up with parsed OR fallback partitions */ 733 pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n", 734 ret); 735 /* Don't abort on errors; we can still use unpartitioned MTD */ 736 memset(&parsed, 0, sizeof(parsed)); 737 } 738 739 ret = mtd_add_device_partitions(mtd, &parsed); 740 if (ret) 741 goto out; 742 743 /* 744 * FIXME: some drivers unfortunately call this function more than once. 745 * So we have to check if we've already assigned the reboot notifier. 746 * 747 * Generally, we can make multiple calls work for most cases, but it 748 * does cause problems with parse_mtd_partitions() above (e.g., 749 * cmdlineparts will register partitions more than once). 750 */ 751 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 752 "MTD already registered\n"); 753 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 754 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 755 register_reboot_notifier(&mtd->reboot_notifier); 756 } 757 758 out: 759 /* Cleanup any parsed partitions */ 760 mtd_part_parser_cleanup(&parsed); 761 return ret; 762 } 763 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 764 765 /** 766 * mtd_device_unregister - unregister an existing MTD device. 767 * 768 * @master: the MTD device to unregister. This will unregister both the master 769 * and any partitions if registered. 770 */ 771 int mtd_device_unregister(struct mtd_info *master) 772 { 773 int err; 774 775 if (master->_reboot) 776 unregister_reboot_notifier(&master->reboot_notifier); 777 778 err = del_mtd_partitions(master); 779 if (err) 780 return err; 781 782 if (!device_is_registered(&master->dev)) 783 return 0; 784 785 return del_mtd_device(master); 786 } 787 EXPORT_SYMBOL_GPL(mtd_device_unregister); 788 789 /** 790 * register_mtd_user - register a 'user' of MTD devices. 791 * @new: pointer to notifier info structure 792 * 793 * Registers a pair of callbacks function to be called upon addition 794 * or removal of MTD devices. Causes the 'add' callback to be immediately 795 * invoked for each MTD device currently present in the system. 796 */ 797 void register_mtd_user (struct mtd_notifier *new) 798 { 799 struct mtd_info *mtd; 800 801 mutex_lock(&mtd_table_mutex); 802 803 list_add(&new->list, &mtd_notifiers); 804 805 __module_get(THIS_MODULE); 806 807 mtd_for_each_device(mtd) 808 new->add(mtd); 809 810 mutex_unlock(&mtd_table_mutex); 811 } 812 EXPORT_SYMBOL_GPL(register_mtd_user); 813 814 /** 815 * unregister_mtd_user - unregister a 'user' of MTD devices. 816 * @old: pointer to notifier info structure 817 * 818 * Removes a callback function pair from the list of 'users' to be 819 * notified upon addition or removal of MTD devices. Causes the 820 * 'remove' callback to be immediately invoked for each MTD device 821 * currently present in the system. 822 */ 823 int unregister_mtd_user (struct mtd_notifier *old) 824 { 825 struct mtd_info *mtd; 826 827 mutex_lock(&mtd_table_mutex); 828 829 module_put(THIS_MODULE); 830 831 mtd_for_each_device(mtd) 832 old->remove(mtd); 833 834 list_del(&old->list); 835 mutex_unlock(&mtd_table_mutex); 836 return 0; 837 } 838 EXPORT_SYMBOL_GPL(unregister_mtd_user); 839 840 /** 841 * get_mtd_device - obtain a validated handle for an MTD device 842 * @mtd: last known address of the required MTD device 843 * @num: internal device number of the required MTD device 844 * 845 * Given a number and NULL address, return the num'th entry in the device 846 * table, if any. Given an address and num == -1, search the device table 847 * for a device with that address and return if it's still present. Given 848 * both, return the num'th driver only if its address matches. Return 849 * error code if not. 850 */ 851 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 852 { 853 struct mtd_info *ret = NULL, *other; 854 int err = -ENODEV; 855 856 mutex_lock(&mtd_table_mutex); 857 858 if (num == -1) { 859 mtd_for_each_device(other) { 860 if (other == mtd) { 861 ret = mtd; 862 break; 863 } 864 } 865 } else if (num >= 0) { 866 ret = idr_find(&mtd_idr, num); 867 if (mtd && mtd != ret) 868 ret = NULL; 869 } 870 871 if (!ret) { 872 ret = ERR_PTR(err); 873 goto out; 874 } 875 876 err = __get_mtd_device(ret); 877 if (err) 878 ret = ERR_PTR(err); 879 out: 880 mutex_unlock(&mtd_table_mutex); 881 return ret; 882 } 883 EXPORT_SYMBOL_GPL(get_mtd_device); 884 885 886 int __get_mtd_device(struct mtd_info *mtd) 887 { 888 int err; 889 890 if (!try_module_get(mtd->owner)) 891 return -ENODEV; 892 893 if (mtd->_get_device) { 894 err = mtd->_get_device(mtd); 895 896 if (err) { 897 module_put(mtd->owner); 898 return err; 899 } 900 } 901 mtd->usecount++; 902 return 0; 903 } 904 EXPORT_SYMBOL_GPL(__get_mtd_device); 905 906 /** 907 * get_mtd_device_nm - obtain a validated handle for an MTD device by 908 * device name 909 * @name: MTD device name to open 910 * 911 * This function returns MTD device description structure in case of 912 * success and an error code in case of failure. 913 */ 914 struct mtd_info *get_mtd_device_nm(const char *name) 915 { 916 int err = -ENODEV; 917 struct mtd_info *mtd = NULL, *other; 918 919 mutex_lock(&mtd_table_mutex); 920 921 mtd_for_each_device(other) { 922 if (!strcmp(name, other->name)) { 923 mtd = other; 924 break; 925 } 926 } 927 928 if (!mtd) 929 goto out_unlock; 930 931 err = __get_mtd_device(mtd); 932 if (err) 933 goto out_unlock; 934 935 mutex_unlock(&mtd_table_mutex); 936 return mtd; 937 938 out_unlock: 939 mutex_unlock(&mtd_table_mutex); 940 return ERR_PTR(err); 941 } 942 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 943 944 void put_mtd_device(struct mtd_info *mtd) 945 { 946 mutex_lock(&mtd_table_mutex); 947 __put_mtd_device(mtd); 948 mutex_unlock(&mtd_table_mutex); 949 950 } 951 EXPORT_SYMBOL_GPL(put_mtd_device); 952 953 void __put_mtd_device(struct mtd_info *mtd) 954 { 955 --mtd->usecount; 956 BUG_ON(mtd->usecount < 0); 957 958 if (mtd->_put_device) 959 mtd->_put_device(mtd); 960 961 module_put(mtd->owner); 962 } 963 EXPORT_SYMBOL_GPL(__put_mtd_device); 964 965 /* 966 * Erase is an asynchronous operation. Device drivers are supposed 967 * to call instr->callback() whenever the operation completes, even 968 * if it completes with a failure. 969 * Callers are supposed to pass a callback function and wait for it 970 * to be called before writing to the block. 971 */ 972 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 973 { 974 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 975 return -EINVAL; 976 if (!(mtd->flags & MTD_WRITEABLE)) 977 return -EROFS; 978 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 979 if (!instr->len) { 980 instr->state = MTD_ERASE_DONE; 981 mtd_erase_callback(instr); 982 return 0; 983 } 984 ledtrig_mtd_activity(); 985 return mtd->_erase(mtd, instr); 986 } 987 EXPORT_SYMBOL_GPL(mtd_erase); 988 989 /* 990 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 991 */ 992 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 993 void **virt, resource_size_t *phys) 994 { 995 *retlen = 0; 996 *virt = NULL; 997 if (phys) 998 *phys = 0; 999 if (!mtd->_point) 1000 return -EOPNOTSUPP; 1001 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1002 return -EINVAL; 1003 if (!len) 1004 return 0; 1005 return mtd->_point(mtd, from, len, retlen, virt, phys); 1006 } 1007 EXPORT_SYMBOL_GPL(mtd_point); 1008 1009 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 1010 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1011 { 1012 if (!mtd->_unpoint) 1013 return -EOPNOTSUPP; 1014 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1015 return -EINVAL; 1016 if (!len) 1017 return 0; 1018 return mtd->_unpoint(mtd, from, len); 1019 } 1020 EXPORT_SYMBOL_GPL(mtd_unpoint); 1021 1022 /* 1023 * Allow NOMMU mmap() to directly map the device (if not NULL) 1024 * - return the address to which the offset maps 1025 * - return -ENOSYS to indicate refusal to do the mapping 1026 */ 1027 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1028 unsigned long offset, unsigned long flags) 1029 { 1030 size_t retlen; 1031 void *virt; 1032 int ret; 1033 1034 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); 1035 if (ret) 1036 return ret; 1037 if (retlen != len) { 1038 mtd_unpoint(mtd, offset, retlen); 1039 return -ENOSYS; 1040 } 1041 return (unsigned long)virt; 1042 } 1043 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1044 1045 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1046 u_char *buf) 1047 { 1048 int ret_code; 1049 *retlen = 0; 1050 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1051 return -EINVAL; 1052 if (!len) 1053 return 0; 1054 1055 ledtrig_mtd_activity(); 1056 /* 1057 * In the absence of an error, drivers return a non-negative integer 1058 * representing the maximum number of bitflips that were corrected on 1059 * any one ecc region (if applicable; zero otherwise). 1060 */ 1061 if (mtd->_read) { 1062 ret_code = mtd->_read(mtd, from, len, retlen, buf); 1063 } else if (mtd->_read_oob) { 1064 struct mtd_oob_ops ops = { 1065 .len = len, 1066 .datbuf = buf, 1067 }; 1068 1069 ret_code = mtd->_read_oob(mtd, from, &ops); 1070 *retlen = ops.retlen; 1071 } else { 1072 return -ENOTSUPP; 1073 } 1074 1075 if (unlikely(ret_code < 0)) 1076 return ret_code; 1077 if (mtd->ecc_strength == 0) 1078 return 0; /* device lacks ecc */ 1079 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1080 } 1081 EXPORT_SYMBOL_GPL(mtd_read); 1082 1083 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1084 const u_char *buf) 1085 { 1086 *retlen = 0; 1087 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1088 return -EINVAL; 1089 if ((!mtd->_write && !mtd->_write_oob) || 1090 !(mtd->flags & MTD_WRITEABLE)) 1091 return -EROFS; 1092 if (!len) 1093 return 0; 1094 ledtrig_mtd_activity(); 1095 1096 if (!mtd->_write) { 1097 struct mtd_oob_ops ops = { 1098 .len = len, 1099 .datbuf = (u8 *)buf, 1100 }; 1101 int ret; 1102 1103 ret = mtd->_write_oob(mtd, to, &ops); 1104 *retlen = ops.retlen; 1105 return ret; 1106 } 1107 1108 return mtd->_write(mtd, to, len, retlen, buf); 1109 } 1110 EXPORT_SYMBOL_GPL(mtd_write); 1111 1112 /* 1113 * In blackbox flight recorder like scenarios we want to make successful writes 1114 * in interrupt context. panic_write() is only intended to be called when its 1115 * known the kernel is about to panic and we need the write to succeed. Since 1116 * the kernel is not going to be running for much longer, this function can 1117 * break locks and delay to ensure the write succeeds (but not sleep). 1118 */ 1119 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1120 const u_char *buf) 1121 { 1122 *retlen = 0; 1123 if (!mtd->_panic_write) 1124 return -EOPNOTSUPP; 1125 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1126 return -EINVAL; 1127 if (!(mtd->flags & MTD_WRITEABLE)) 1128 return -EROFS; 1129 if (!len) 1130 return 0; 1131 return mtd->_panic_write(mtd, to, len, retlen, buf); 1132 } 1133 EXPORT_SYMBOL_GPL(mtd_panic_write); 1134 1135 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1136 struct mtd_oob_ops *ops) 1137 { 1138 /* 1139 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1140 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1141 * this case. 1142 */ 1143 if (!ops->datbuf) 1144 ops->len = 0; 1145 1146 if (!ops->oobbuf) 1147 ops->ooblen = 0; 1148 1149 if (offs < 0 || offs + ops->len > mtd->size) 1150 return -EINVAL; 1151 1152 if (ops->ooblen) { 1153 u64 maxooblen; 1154 1155 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1156 return -EINVAL; 1157 1158 maxooblen = ((mtd_div_by_ws(mtd->size, mtd) - 1159 mtd_div_by_ws(offs, mtd)) * 1160 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1161 if (ops->ooblen > maxooblen) 1162 return -EINVAL; 1163 } 1164 1165 return 0; 1166 } 1167 1168 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1169 { 1170 int ret_code; 1171 ops->retlen = ops->oobretlen = 0; 1172 if (!mtd->_read_oob) 1173 return -EOPNOTSUPP; 1174 1175 ret_code = mtd_check_oob_ops(mtd, from, ops); 1176 if (ret_code) 1177 return ret_code; 1178 1179 ledtrig_mtd_activity(); 1180 /* 1181 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1182 * similar to mtd->_read(), returning a non-negative integer 1183 * representing max bitflips. In other cases, mtd->_read_oob() may 1184 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1185 */ 1186 ret_code = mtd->_read_oob(mtd, from, ops); 1187 if (unlikely(ret_code < 0)) 1188 return ret_code; 1189 if (mtd->ecc_strength == 0) 1190 return 0; /* device lacks ecc */ 1191 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1192 } 1193 EXPORT_SYMBOL_GPL(mtd_read_oob); 1194 1195 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1196 struct mtd_oob_ops *ops) 1197 { 1198 int ret; 1199 1200 ops->retlen = ops->oobretlen = 0; 1201 if (!mtd->_write_oob) 1202 return -EOPNOTSUPP; 1203 if (!(mtd->flags & MTD_WRITEABLE)) 1204 return -EROFS; 1205 1206 ret = mtd_check_oob_ops(mtd, to, ops); 1207 if (ret) 1208 return ret; 1209 1210 ledtrig_mtd_activity(); 1211 return mtd->_write_oob(mtd, to, ops); 1212 } 1213 EXPORT_SYMBOL_GPL(mtd_write_oob); 1214 1215 /** 1216 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1217 * @mtd: MTD device structure 1218 * @section: ECC section. Depending on the layout you may have all the ECC 1219 * bytes stored in a single contiguous section, or one section 1220 * per ECC chunk (and sometime several sections for a single ECC 1221 * ECC chunk) 1222 * @oobecc: OOB region struct filled with the appropriate ECC position 1223 * information 1224 * 1225 * This function returns ECC section information in the OOB area. If you want 1226 * to get all the ECC bytes information, then you should call 1227 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1228 * 1229 * Returns zero on success, a negative error code otherwise. 1230 */ 1231 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1232 struct mtd_oob_region *oobecc) 1233 { 1234 memset(oobecc, 0, sizeof(*oobecc)); 1235 1236 if (!mtd || section < 0) 1237 return -EINVAL; 1238 1239 if (!mtd->ooblayout || !mtd->ooblayout->ecc) 1240 return -ENOTSUPP; 1241 1242 return mtd->ooblayout->ecc(mtd, section, oobecc); 1243 } 1244 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1245 1246 /** 1247 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1248 * section 1249 * @mtd: MTD device structure 1250 * @section: Free section you are interested in. Depending on the layout 1251 * you may have all the free bytes stored in a single contiguous 1252 * section, or one section per ECC chunk plus an extra section 1253 * for the remaining bytes (or other funky layout). 1254 * @oobfree: OOB region struct filled with the appropriate free position 1255 * information 1256 * 1257 * This function returns free bytes position in the OOB area. If you want 1258 * to get all the free bytes information, then you should call 1259 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1260 * 1261 * Returns zero on success, a negative error code otherwise. 1262 */ 1263 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1264 struct mtd_oob_region *oobfree) 1265 { 1266 memset(oobfree, 0, sizeof(*oobfree)); 1267 1268 if (!mtd || section < 0) 1269 return -EINVAL; 1270 1271 if (!mtd->ooblayout || !mtd->ooblayout->free) 1272 return -ENOTSUPP; 1273 1274 return mtd->ooblayout->free(mtd, section, oobfree); 1275 } 1276 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1277 1278 /** 1279 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1280 * @mtd: mtd info structure 1281 * @byte: the byte we are searching for 1282 * @sectionp: pointer where the section id will be stored 1283 * @oobregion: used to retrieve the ECC position 1284 * @iter: iterator function. Should be either mtd_ooblayout_free or 1285 * mtd_ooblayout_ecc depending on the region type you're searching for 1286 * 1287 * This function returns the section id and oobregion information of a 1288 * specific byte. For example, say you want to know where the 4th ECC byte is 1289 * stored, you'll use: 1290 * 1291 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1292 * 1293 * Returns zero on success, a negative error code otherwise. 1294 */ 1295 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1296 int *sectionp, struct mtd_oob_region *oobregion, 1297 int (*iter)(struct mtd_info *, 1298 int section, 1299 struct mtd_oob_region *oobregion)) 1300 { 1301 int pos = 0, ret, section = 0; 1302 1303 memset(oobregion, 0, sizeof(*oobregion)); 1304 1305 while (1) { 1306 ret = iter(mtd, section, oobregion); 1307 if (ret) 1308 return ret; 1309 1310 if (pos + oobregion->length > byte) 1311 break; 1312 1313 pos += oobregion->length; 1314 section++; 1315 } 1316 1317 /* 1318 * Adjust region info to make it start at the beginning at the 1319 * 'start' ECC byte. 1320 */ 1321 oobregion->offset += byte - pos; 1322 oobregion->length -= byte - pos; 1323 *sectionp = section; 1324 1325 return 0; 1326 } 1327 1328 /** 1329 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1330 * ECC byte 1331 * @mtd: mtd info structure 1332 * @eccbyte: the byte we are searching for 1333 * @sectionp: pointer where the section id will be stored 1334 * @oobregion: OOB region information 1335 * 1336 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1337 * byte. 1338 * 1339 * Returns zero on success, a negative error code otherwise. 1340 */ 1341 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1342 int *section, 1343 struct mtd_oob_region *oobregion) 1344 { 1345 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1346 mtd_ooblayout_ecc); 1347 } 1348 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1349 1350 /** 1351 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1352 * @mtd: mtd info structure 1353 * @buf: destination buffer to store OOB bytes 1354 * @oobbuf: OOB buffer 1355 * @start: first byte to retrieve 1356 * @nbytes: number of bytes to retrieve 1357 * @iter: section iterator 1358 * 1359 * Extract bytes attached to a specific category (ECC or free) 1360 * from the OOB buffer and copy them into buf. 1361 * 1362 * Returns zero on success, a negative error code otherwise. 1363 */ 1364 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1365 const u8 *oobbuf, int start, int nbytes, 1366 int (*iter)(struct mtd_info *, 1367 int section, 1368 struct mtd_oob_region *oobregion)) 1369 { 1370 struct mtd_oob_region oobregion; 1371 int section, ret; 1372 1373 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1374 &oobregion, iter); 1375 1376 while (!ret) { 1377 int cnt; 1378 1379 cnt = min_t(int, nbytes, oobregion.length); 1380 memcpy(buf, oobbuf + oobregion.offset, cnt); 1381 buf += cnt; 1382 nbytes -= cnt; 1383 1384 if (!nbytes) 1385 break; 1386 1387 ret = iter(mtd, ++section, &oobregion); 1388 } 1389 1390 return ret; 1391 } 1392 1393 /** 1394 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1395 * @mtd: mtd info structure 1396 * @buf: source buffer to get OOB bytes from 1397 * @oobbuf: OOB buffer 1398 * @start: first OOB byte to set 1399 * @nbytes: number of OOB bytes to set 1400 * @iter: section iterator 1401 * 1402 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1403 * is selected by passing the appropriate iterator. 1404 * 1405 * Returns zero on success, a negative error code otherwise. 1406 */ 1407 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1408 u8 *oobbuf, int start, int nbytes, 1409 int (*iter)(struct mtd_info *, 1410 int section, 1411 struct mtd_oob_region *oobregion)) 1412 { 1413 struct mtd_oob_region oobregion; 1414 int section, ret; 1415 1416 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1417 &oobregion, iter); 1418 1419 while (!ret) { 1420 int cnt; 1421 1422 cnt = min_t(int, nbytes, oobregion.length); 1423 memcpy(oobbuf + oobregion.offset, buf, cnt); 1424 buf += cnt; 1425 nbytes -= cnt; 1426 1427 if (!nbytes) 1428 break; 1429 1430 ret = iter(mtd, ++section, &oobregion); 1431 } 1432 1433 return ret; 1434 } 1435 1436 /** 1437 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1438 * @mtd: mtd info structure 1439 * @iter: category iterator 1440 * 1441 * Count the number of bytes in a given category. 1442 * 1443 * Returns a positive value on success, a negative error code otherwise. 1444 */ 1445 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1446 int (*iter)(struct mtd_info *, 1447 int section, 1448 struct mtd_oob_region *oobregion)) 1449 { 1450 struct mtd_oob_region oobregion; 1451 int section = 0, ret, nbytes = 0; 1452 1453 while (1) { 1454 ret = iter(mtd, section++, &oobregion); 1455 if (ret) { 1456 if (ret == -ERANGE) 1457 ret = nbytes; 1458 break; 1459 } 1460 1461 nbytes += oobregion.length; 1462 } 1463 1464 return ret; 1465 } 1466 1467 /** 1468 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1469 * @mtd: mtd info structure 1470 * @eccbuf: destination buffer to store ECC bytes 1471 * @oobbuf: OOB buffer 1472 * @start: first ECC byte to retrieve 1473 * @nbytes: number of ECC bytes to retrieve 1474 * 1475 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1476 * 1477 * Returns zero on success, a negative error code otherwise. 1478 */ 1479 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1480 const u8 *oobbuf, int start, int nbytes) 1481 { 1482 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1483 mtd_ooblayout_ecc); 1484 } 1485 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1486 1487 /** 1488 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1489 * @mtd: mtd info structure 1490 * @eccbuf: source buffer to get ECC bytes from 1491 * @oobbuf: OOB buffer 1492 * @start: first ECC byte to set 1493 * @nbytes: number of ECC bytes to set 1494 * 1495 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 1496 * 1497 * Returns zero on success, a negative error code otherwise. 1498 */ 1499 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 1500 u8 *oobbuf, int start, int nbytes) 1501 { 1502 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1503 mtd_ooblayout_ecc); 1504 } 1505 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 1506 1507 /** 1508 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 1509 * @mtd: mtd info structure 1510 * @databuf: destination buffer to store ECC bytes 1511 * @oobbuf: OOB buffer 1512 * @start: first ECC byte to retrieve 1513 * @nbytes: number of ECC bytes to retrieve 1514 * 1515 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1516 * 1517 * Returns zero on success, a negative error code otherwise. 1518 */ 1519 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 1520 const u8 *oobbuf, int start, int nbytes) 1521 { 1522 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 1523 mtd_ooblayout_free); 1524 } 1525 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 1526 1527 /** 1528 * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer 1529 * @mtd: mtd info structure 1530 * @eccbuf: source buffer to get data bytes from 1531 * @oobbuf: OOB buffer 1532 * @start: first ECC byte to set 1533 * @nbytes: number of ECC bytes to set 1534 * 1535 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1536 * 1537 * Returns zero on success, a negative error code otherwise. 1538 */ 1539 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 1540 u8 *oobbuf, int start, int nbytes) 1541 { 1542 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 1543 mtd_ooblayout_free); 1544 } 1545 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 1546 1547 /** 1548 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 1549 * @mtd: mtd info structure 1550 * 1551 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 1552 * 1553 * Returns zero on success, a negative error code otherwise. 1554 */ 1555 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 1556 { 1557 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 1558 } 1559 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 1560 1561 /** 1562 * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB 1563 * @mtd: mtd info structure 1564 * 1565 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 1566 * 1567 * Returns zero on success, a negative error code otherwise. 1568 */ 1569 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 1570 { 1571 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 1572 } 1573 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 1574 1575 /* 1576 * Method to access the protection register area, present in some flash 1577 * devices. The user data is one time programmable but the factory data is read 1578 * only. 1579 */ 1580 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1581 struct otp_info *buf) 1582 { 1583 if (!mtd->_get_fact_prot_info) 1584 return -EOPNOTSUPP; 1585 if (!len) 1586 return 0; 1587 return mtd->_get_fact_prot_info(mtd, len, retlen, buf); 1588 } 1589 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 1590 1591 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1592 size_t *retlen, u_char *buf) 1593 { 1594 *retlen = 0; 1595 if (!mtd->_read_fact_prot_reg) 1596 return -EOPNOTSUPP; 1597 if (!len) 1598 return 0; 1599 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); 1600 } 1601 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 1602 1603 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1604 struct otp_info *buf) 1605 { 1606 if (!mtd->_get_user_prot_info) 1607 return -EOPNOTSUPP; 1608 if (!len) 1609 return 0; 1610 return mtd->_get_user_prot_info(mtd, len, retlen, buf); 1611 } 1612 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 1613 1614 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1615 size_t *retlen, u_char *buf) 1616 { 1617 *retlen = 0; 1618 if (!mtd->_read_user_prot_reg) 1619 return -EOPNOTSUPP; 1620 if (!len) 1621 return 0; 1622 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); 1623 } 1624 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 1625 1626 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 1627 size_t *retlen, u_char *buf) 1628 { 1629 int ret; 1630 1631 *retlen = 0; 1632 if (!mtd->_write_user_prot_reg) 1633 return -EOPNOTSUPP; 1634 if (!len) 1635 return 0; 1636 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); 1637 if (ret) 1638 return ret; 1639 1640 /* 1641 * If no data could be written at all, we are out of memory and 1642 * must return -ENOSPC. 1643 */ 1644 return (*retlen) ? 0 : -ENOSPC; 1645 } 1646 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1647 1648 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1649 { 1650 if (!mtd->_lock_user_prot_reg) 1651 return -EOPNOTSUPP; 1652 if (!len) 1653 return 0; 1654 return mtd->_lock_user_prot_reg(mtd, from, len); 1655 } 1656 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1657 1658 /* Chip-supported device locking */ 1659 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1660 { 1661 if (!mtd->_lock) 1662 return -EOPNOTSUPP; 1663 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1664 return -EINVAL; 1665 if (!len) 1666 return 0; 1667 return mtd->_lock(mtd, ofs, len); 1668 } 1669 EXPORT_SYMBOL_GPL(mtd_lock); 1670 1671 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1672 { 1673 if (!mtd->_unlock) 1674 return -EOPNOTSUPP; 1675 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1676 return -EINVAL; 1677 if (!len) 1678 return 0; 1679 return mtd->_unlock(mtd, ofs, len); 1680 } 1681 EXPORT_SYMBOL_GPL(mtd_unlock); 1682 1683 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1684 { 1685 if (!mtd->_is_locked) 1686 return -EOPNOTSUPP; 1687 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1688 return -EINVAL; 1689 if (!len) 1690 return 0; 1691 return mtd->_is_locked(mtd, ofs, len); 1692 } 1693 EXPORT_SYMBOL_GPL(mtd_is_locked); 1694 1695 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 1696 { 1697 if (ofs < 0 || ofs >= mtd->size) 1698 return -EINVAL; 1699 if (!mtd->_block_isreserved) 1700 return 0; 1701 return mtd->_block_isreserved(mtd, ofs); 1702 } 1703 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 1704 1705 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 1706 { 1707 if (ofs < 0 || ofs >= mtd->size) 1708 return -EINVAL; 1709 if (!mtd->_block_isbad) 1710 return 0; 1711 return mtd->_block_isbad(mtd, ofs); 1712 } 1713 EXPORT_SYMBOL_GPL(mtd_block_isbad); 1714 1715 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 1716 { 1717 if (!mtd->_block_markbad) 1718 return -EOPNOTSUPP; 1719 if (ofs < 0 || ofs >= mtd->size) 1720 return -EINVAL; 1721 if (!(mtd->flags & MTD_WRITEABLE)) 1722 return -EROFS; 1723 return mtd->_block_markbad(mtd, ofs); 1724 } 1725 EXPORT_SYMBOL_GPL(mtd_block_markbad); 1726 1727 /* 1728 * default_mtd_writev - the default writev method 1729 * @mtd: mtd device description object pointer 1730 * @vecs: the vectors to write 1731 * @count: count of vectors in @vecs 1732 * @to: the MTD device offset to write to 1733 * @retlen: on exit contains the count of bytes written to the MTD device. 1734 * 1735 * This function returns zero in case of success and a negative error code in 1736 * case of failure. 1737 */ 1738 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1739 unsigned long count, loff_t to, size_t *retlen) 1740 { 1741 unsigned long i; 1742 size_t totlen = 0, thislen; 1743 int ret = 0; 1744 1745 for (i = 0; i < count; i++) { 1746 if (!vecs[i].iov_len) 1747 continue; 1748 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1749 vecs[i].iov_base); 1750 totlen += thislen; 1751 if (ret || thislen != vecs[i].iov_len) 1752 break; 1753 to += vecs[i].iov_len; 1754 } 1755 *retlen = totlen; 1756 return ret; 1757 } 1758 1759 /* 1760 * mtd_writev - the vector-based MTD write method 1761 * @mtd: mtd device description object pointer 1762 * @vecs: the vectors to write 1763 * @count: count of vectors in @vecs 1764 * @to: the MTD device offset to write to 1765 * @retlen: on exit contains the count of bytes written to the MTD device. 1766 * 1767 * This function returns zero in case of success and a negative error code in 1768 * case of failure. 1769 */ 1770 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1771 unsigned long count, loff_t to, size_t *retlen) 1772 { 1773 *retlen = 0; 1774 if (!(mtd->flags & MTD_WRITEABLE)) 1775 return -EROFS; 1776 if (!mtd->_writev) 1777 return default_mtd_writev(mtd, vecs, count, to, retlen); 1778 return mtd->_writev(mtd, vecs, count, to, retlen); 1779 } 1780 EXPORT_SYMBOL_GPL(mtd_writev); 1781 1782 /** 1783 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1784 * @mtd: mtd device description object pointer 1785 * @size: a pointer to the ideal or maximum size of the allocation, points 1786 * to the actual allocation size on success. 1787 * 1788 * This routine attempts to allocate a contiguous kernel buffer up to 1789 * the specified size, backing off the size of the request exponentially 1790 * until the request succeeds or until the allocation size falls below 1791 * the system page size. This attempts to make sure it does not adversely 1792 * impact system performance, so when allocating more than one page, we 1793 * ask the memory allocator to avoid re-trying, swapping, writing back 1794 * or performing I/O. 1795 * 1796 * Note, this function also makes sure that the allocated buffer is aligned to 1797 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1798 * 1799 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1800 * to handle smaller (i.e. degraded) buffer allocations under low- or 1801 * fragmented-memory situations where such reduced allocations, from a 1802 * requested ideal, are allowed. 1803 * 1804 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1805 */ 1806 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1807 { 1808 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 1809 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1810 void *kbuf; 1811 1812 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1813 1814 while (*size > min_alloc) { 1815 kbuf = kmalloc(*size, flags); 1816 if (kbuf) 1817 return kbuf; 1818 1819 *size >>= 1; 1820 *size = ALIGN(*size, mtd->writesize); 1821 } 1822 1823 /* 1824 * For the last resort allocation allow 'kmalloc()' to do all sorts of 1825 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 1826 */ 1827 return kmalloc(*size, GFP_KERNEL); 1828 } 1829 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 1830 1831 #ifdef CONFIG_PROC_FS 1832 1833 /*====================================================================*/ 1834 /* Support for /proc/mtd */ 1835 1836 static int mtd_proc_show(struct seq_file *m, void *v) 1837 { 1838 struct mtd_info *mtd; 1839 1840 seq_puts(m, "dev: size erasesize name\n"); 1841 mutex_lock(&mtd_table_mutex); 1842 mtd_for_each_device(mtd) { 1843 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 1844 mtd->index, (unsigned long long)mtd->size, 1845 mtd->erasesize, mtd->name); 1846 } 1847 mutex_unlock(&mtd_table_mutex); 1848 return 0; 1849 } 1850 1851 static int mtd_proc_open(struct inode *inode, struct file *file) 1852 { 1853 return single_open(file, mtd_proc_show, NULL); 1854 } 1855 1856 static const struct file_operations mtd_proc_ops = { 1857 .open = mtd_proc_open, 1858 .read = seq_read, 1859 .llseek = seq_lseek, 1860 .release = single_release, 1861 }; 1862 #endif /* CONFIG_PROC_FS */ 1863 1864 /*====================================================================*/ 1865 /* Init code */ 1866 1867 static struct backing_dev_info * __init mtd_bdi_init(char *name) 1868 { 1869 struct backing_dev_info *bdi; 1870 int ret; 1871 1872 bdi = bdi_alloc(GFP_KERNEL); 1873 if (!bdi) 1874 return ERR_PTR(-ENOMEM); 1875 1876 bdi->name = name; 1877 /* 1878 * We put '-0' suffix to the name to get the same name format as we 1879 * used to get. Since this is called only once, we get a unique name. 1880 */ 1881 ret = bdi_register(bdi, "%.28s-0", name); 1882 if (ret) 1883 bdi_put(bdi); 1884 1885 return ret ? ERR_PTR(ret) : bdi; 1886 } 1887 1888 static struct proc_dir_entry *proc_mtd; 1889 1890 static int __init init_mtd(void) 1891 { 1892 int ret; 1893 1894 ret = class_register(&mtd_class); 1895 if (ret) 1896 goto err_reg; 1897 1898 mtd_bdi = mtd_bdi_init("mtd"); 1899 if (IS_ERR(mtd_bdi)) { 1900 ret = PTR_ERR(mtd_bdi); 1901 goto err_bdi; 1902 } 1903 1904 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops); 1905 1906 ret = init_mtdchar(); 1907 if (ret) 1908 goto out_procfs; 1909 1910 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 1911 1912 return 0; 1913 1914 out_procfs: 1915 if (proc_mtd) 1916 remove_proc_entry("mtd", NULL); 1917 bdi_put(mtd_bdi); 1918 err_bdi: 1919 class_unregister(&mtd_class); 1920 err_reg: 1921 pr_err("Error registering mtd class or bdi: %d\n", ret); 1922 return ret; 1923 } 1924 1925 static void __exit cleanup_mtd(void) 1926 { 1927 debugfs_remove_recursive(dfs_dir_mtd); 1928 cleanup_mtdchar(); 1929 if (proc_mtd) 1930 remove_proc_entry("mtd", NULL); 1931 class_unregister(&mtd_class); 1932 bdi_put(mtd_bdi); 1933 idr_destroy(&mtd_idr); 1934 } 1935 1936 module_init(init_mtd); 1937 module_exit(cleanup_mtd); 1938 1939 MODULE_LICENSE("GPL"); 1940 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1941 MODULE_DESCRIPTION("Core MTD registration and access routines"); 1942