1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Core registration and callback routines for MTD 4 * drivers and users. 5 * 6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 7 * Copyright © 2006 Red Hat UK Limited 8 */ 9 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/ptrace.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/timer.h> 16 #include <linux/major.h> 17 #include <linux/fs.h> 18 #include <linux/err.h> 19 #include <linux/ioctl.h> 20 #include <linux/init.h> 21 #include <linux/of.h> 22 #include <linux/proc_fs.h> 23 #include <linux/idr.h> 24 #include <linux/backing-dev.h> 25 #include <linux/gfp.h> 26 #include <linux/random.h> 27 #include <linux/slab.h> 28 #include <linux/reboot.h> 29 #include <linux/leds.h> 30 #include <linux/debugfs.h> 31 #include <linux/nvmem-provider.h> 32 #include <linux/root_dev.h> 33 34 #include <linux/mtd/mtd.h> 35 #include <linux/mtd/partitions.h> 36 37 #include "mtdcore.h" 38 39 struct backing_dev_info *mtd_bdi; 40 41 #ifdef CONFIG_PM_SLEEP 42 43 static int mtd_cls_suspend(struct device *dev) 44 { 45 struct mtd_info *mtd = dev_get_drvdata(dev); 46 47 return mtd ? mtd_suspend(mtd) : 0; 48 } 49 50 static int mtd_cls_resume(struct device *dev) 51 { 52 struct mtd_info *mtd = dev_get_drvdata(dev); 53 54 if (mtd) 55 mtd_resume(mtd); 56 return 0; 57 } 58 59 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 60 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 61 #else 62 #define MTD_CLS_PM_OPS NULL 63 #endif 64 65 static struct class mtd_class = { 66 .name = "mtd", 67 .pm = MTD_CLS_PM_OPS, 68 }; 69 70 static DEFINE_IDR(mtd_idr); 71 72 /* These are exported solely for the purpose of mtd_blkdevs.c. You 73 should not use them for _anything_ else */ 74 DEFINE_MUTEX(mtd_table_mutex); 75 EXPORT_SYMBOL_GPL(mtd_table_mutex); 76 77 struct mtd_info *__mtd_next_device(int i) 78 { 79 return idr_get_next(&mtd_idr, &i); 80 } 81 EXPORT_SYMBOL_GPL(__mtd_next_device); 82 83 static LIST_HEAD(mtd_notifiers); 84 85 86 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 87 88 /* REVISIT once MTD uses the driver model better, whoever allocates 89 * the mtd_info will probably want to use the release() hook... 90 */ 91 static void mtd_release(struct device *dev) 92 { 93 struct mtd_info *mtd = dev_get_drvdata(dev); 94 dev_t index = MTD_DEVT(mtd->index); 95 96 /* remove /dev/mtdXro node */ 97 device_destroy(&mtd_class, index + 1); 98 } 99 100 #define MTD_DEVICE_ATTR_RO(name) \ 101 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL) 102 103 #define MTD_DEVICE_ATTR_RW(name) \ 104 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store) 105 106 static ssize_t mtd_type_show(struct device *dev, 107 struct device_attribute *attr, char *buf) 108 { 109 struct mtd_info *mtd = dev_get_drvdata(dev); 110 char *type; 111 112 switch (mtd->type) { 113 case MTD_ABSENT: 114 type = "absent"; 115 break; 116 case MTD_RAM: 117 type = "ram"; 118 break; 119 case MTD_ROM: 120 type = "rom"; 121 break; 122 case MTD_NORFLASH: 123 type = "nor"; 124 break; 125 case MTD_NANDFLASH: 126 type = "nand"; 127 break; 128 case MTD_DATAFLASH: 129 type = "dataflash"; 130 break; 131 case MTD_UBIVOLUME: 132 type = "ubi"; 133 break; 134 case MTD_MLCNANDFLASH: 135 type = "mlc-nand"; 136 break; 137 default: 138 type = "unknown"; 139 } 140 141 return sysfs_emit(buf, "%s\n", type); 142 } 143 MTD_DEVICE_ATTR_RO(type); 144 145 static ssize_t mtd_flags_show(struct device *dev, 146 struct device_attribute *attr, char *buf) 147 { 148 struct mtd_info *mtd = dev_get_drvdata(dev); 149 150 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags); 151 } 152 MTD_DEVICE_ATTR_RO(flags); 153 154 static ssize_t mtd_size_show(struct device *dev, 155 struct device_attribute *attr, char *buf) 156 { 157 struct mtd_info *mtd = dev_get_drvdata(dev); 158 159 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size); 160 } 161 MTD_DEVICE_ATTR_RO(size); 162 163 static ssize_t mtd_erasesize_show(struct device *dev, 164 struct device_attribute *attr, char *buf) 165 { 166 struct mtd_info *mtd = dev_get_drvdata(dev); 167 168 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize); 169 } 170 MTD_DEVICE_ATTR_RO(erasesize); 171 172 static ssize_t mtd_writesize_show(struct device *dev, 173 struct device_attribute *attr, char *buf) 174 { 175 struct mtd_info *mtd = dev_get_drvdata(dev); 176 177 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize); 178 } 179 MTD_DEVICE_ATTR_RO(writesize); 180 181 static ssize_t mtd_subpagesize_show(struct device *dev, 182 struct device_attribute *attr, char *buf) 183 { 184 struct mtd_info *mtd = dev_get_drvdata(dev); 185 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 186 187 return sysfs_emit(buf, "%u\n", subpagesize); 188 } 189 MTD_DEVICE_ATTR_RO(subpagesize); 190 191 static ssize_t mtd_oobsize_show(struct device *dev, 192 struct device_attribute *attr, char *buf) 193 { 194 struct mtd_info *mtd = dev_get_drvdata(dev); 195 196 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize); 197 } 198 MTD_DEVICE_ATTR_RO(oobsize); 199 200 static ssize_t mtd_oobavail_show(struct device *dev, 201 struct device_attribute *attr, char *buf) 202 { 203 struct mtd_info *mtd = dev_get_drvdata(dev); 204 205 return sysfs_emit(buf, "%u\n", mtd->oobavail); 206 } 207 MTD_DEVICE_ATTR_RO(oobavail); 208 209 static ssize_t mtd_numeraseregions_show(struct device *dev, 210 struct device_attribute *attr, char *buf) 211 { 212 struct mtd_info *mtd = dev_get_drvdata(dev); 213 214 return sysfs_emit(buf, "%u\n", mtd->numeraseregions); 215 } 216 MTD_DEVICE_ATTR_RO(numeraseregions); 217 218 static ssize_t mtd_name_show(struct device *dev, 219 struct device_attribute *attr, char *buf) 220 { 221 struct mtd_info *mtd = dev_get_drvdata(dev); 222 223 return sysfs_emit(buf, "%s\n", mtd->name); 224 } 225 MTD_DEVICE_ATTR_RO(name); 226 227 static ssize_t mtd_ecc_strength_show(struct device *dev, 228 struct device_attribute *attr, char *buf) 229 { 230 struct mtd_info *mtd = dev_get_drvdata(dev); 231 232 return sysfs_emit(buf, "%u\n", mtd->ecc_strength); 233 } 234 MTD_DEVICE_ATTR_RO(ecc_strength); 235 236 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 237 struct device_attribute *attr, 238 char *buf) 239 { 240 struct mtd_info *mtd = dev_get_drvdata(dev); 241 242 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold); 243 } 244 245 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 246 struct device_attribute *attr, 247 const char *buf, size_t count) 248 { 249 struct mtd_info *mtd = dev_get_drvdata(dev); 250 unsigned int bitflip_threshold; 251 int retval; 252 253 retval = kstrtouint(buf, 0, &bitflip_threshold); 254 if (retval) 255 return retval; 256 257 mtd->bitflip_threshold = bitflip_threshold; 258 return count; 259 } 260 MTD_DEVICE_ATTR_RW(bitflip_threshold); 261 262 static ssize_t mtd_ecc_step_size_show(struct device *dev, 263 struct device_attribute *attr, char *buf) 264 { 265 struct mtd_info *mtd = dev_get_drvdata(dev); 266 267 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size); 268 269 } 270 MTD_DEVICE_ATTR_RO(ecc_step_size); 271 272 static ssize_t mtd_corrected_bits_show(struct device *dev, 273 struct device_attribute *attr, char *buf) 274 { 275 struct mtd_info *mtd = dev_get_drvdata(dev); 276 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 277 278 return sysfs_emit(buf, "%u\n", ecc_stats->corrected); 279 } 280 MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */ 281 282 static ssize_t mtd_ecc_failures_show(struct device *dev, 283 struct device_attribute *attr, char *buf) 284 { 285 struct mtd_info *mtd = dev_get_drvdata(dev); 286 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 287 288 return sysfs_emit(buf, "%u\n", ecc_stats->failed); 289 } 290 MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */ 291 292 static ssize_t mtd_bad_blocks_show(struct device *dev, 293 struct device_attribute *attr, char *buf) 294 { 295 struct mtd_info *mtd = dev_get_drvdata(dev); 296 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 297 298 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks); 299 } 300 MTD_DEVICE_ATTR_RO(bad_blocks); 301 302 static ssize_t mtd_bbt_blocks_show(struct device *dev, 303 struct device_attribute *attr, char *buf) 304 { 305 struct mtd_info *mtd = dev_get_drvdata(dev); 306 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 307 308 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks); 309 } 310 MTD_DEVICE_ATTR_RO(bbt_blocks); 311 312 static struct attribute *mtd_attrs[] = { 313 &dev_attr_type.attr, 314 &dev_attr_flags.attr, 315 &dev_attr_size.attr, 316 &dev_attr_erasesize.attr, 317 &dev_attr_writesize.attr, 318 &dev_attr_subpagesize.attr, 319 &dev_attr_oobsize.attr, 320 &dev_attr_oobavail.attr, 321 &dev_attr_numeraseregions.attr, 322 &dev_attr_name.attr, 323 &dev_attr_ecc_strength.attr, 324 &dev_attr_ecc_step_size.attr, 325 &dev_attr_corrected_bits.attr, 326 &dev_attr_ecc_failures.attr, 327 &dev_attr_bad_blocks.attr, 328 &dev_attr_bbt_blocks.attr, 329 &dev_attr_bitflip_threshold.attr, 330 NULL, 331 }; 332 ATTRIBUTE_GROUPS(mtd); 333 334 static const struct device_type mtd_devtype = { 335 .name = "mtd", 336 .groups = mtd_groups, 337 .release = mtd_release, 338 }; 339 340 static bool mtd_expert_analysis_mode; 341 342 #ifdef CONFIG_DEBUG_FS 343 bool mtd_check_expert_analysis_mode(void) 344 { 345 const char *mtd_expert_analysis_warning = 346 "Bad block checks have been entirely disabled.\n" 347 "This is only reserved for post-mortem forensics and debug purposes.\n" 348 "Never enable this mode if you do not know what you are doing!\n"; 349 350 return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning); 351 } 352 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode); 353 #endif 354 355 static struct dentry *dfs_dir_mtd; 356 357 static void mtd_debugfs_populate(struct mtd_info *mtd) 358 { 359 struct device *dev = &mtd->dev; 360 361 if (IS_ERR_OR_NULL(dfs_dir_mtd)) 362 return; 363 364 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd); 365 } 366 367 #ifndef CONFIG_MMU 368 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 369 { 370 switch (mtd->type) { 371 case MTD_RAM: 372 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 373 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 374 case MTD_ROM: 375 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 376 NOMMU_MAP_READ; 377 default: 378 return NOMMU_MAP_COPY; 379 } 380 } 381 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 382 #endif 383 384 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 385 void *cmd) 386 { 387 struct mtd_info *mtd; 388 389 mtd = container_of(n, struct mtd_info, reboot_notifier); 390 mtd->_reboot(mtd); 391 392 return NOTIFY_DONE; 393 } 394 395 /** 396 * mtd_wunit_to_pairing_info - get pairing information of a wunit 397 * @mtd: pointer to new MTD device info structure 398 * @wunit: write unit we are interested in 399 * @info: returned pairing information 400 * 401 * Retrieve pairing information associated to the wunit. 402 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 403 * paired together, and where programming a page may influence the page it is 404 * paired with. 405 * The notion of page is replaced by the term wunit (write-unit) to stay 406 * consistent with the ->writesize field. 407 * 408 * The @wunit argument can be extracted from an absolute offset using 409 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 410 * to @wunit. 411 * 412 * From the pairing info the MTD user can find all the wunits paired with 413 * @wunit using the following loop: 414 * 415 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 416 * info.pair = i; 417 * mtd_pairing_info_to_wunit(mtd, &info); 418 * ... 419 * } 420 */ 421 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 422 struct mtd_pairing_info *info) 423 { 424 struct mtd_info *master = mtd_get_master(mtd); 425 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master); 426 427 if (wunit < 0 || wunit >= npairs) 428 return -EINVAL; 429 430 if (master->pairing && master->pairing->get_info) 431 return master->pairing->get_info(master, wunit, info); 432 433 info->group = 0; 434 info->pair = wunit; 435 436 return 0; 437 } 438 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 439 440 /** 441 * mtd_pairing_info_to_wunit - get wunit from pairing information 442 * @mtd: pointer to new MTD device info structure 443 * @info: pairing information struct 444 * 445 * Returns a positive number representing the wunit associated to the info 446 * struct, or a negative error code. 447 * 448 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 449 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 450 * doc). 451 * 452 * It can also be used to only program the first page of each pair (i.e. 453 * page attached to group 0), which allows one to use an MLC NAND in 454 * software-emulated SLC mode: 455 * 456 * info.group = 0; 457 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 458 * for (info.pair = 0; info.pair < npairs; info.pair++) { 459 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 460 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 461 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 462 * } 463 */ 464 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 465 const struct mtd_pairing_info *info) 466 { 467 struct mtd_info *master = mtd_get_master(mtd); 468 int ngroups = mtd_pairing_groups(master); 469 int npairs = mtd_wunit_per_eb(master) / ngroups; 470 471 if (!info || info->pair < 0 || info->pair >= npairs || 472 info->group < 0 || info->group >= ngroups) 473 return -EINVAL; 474 475 if (master->pairing && master->pairing->get_wunit) 476 return mtd->pairing->get_wunit(master, info); 477 478 return info->pair; 479 } 480 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 481 482 /** 483 * mtd_pairing_groups - get the number of pairing groups 484 * @mtd: pointer to new MTD device info structure 485 * 486 * Returns the number of pairing groups. 487 * 488 * This number is usually equal to the number of bits exposed by a single 489 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 490 * to iterate over all pages of a given pair. 491 */ 492 int mtd_pairing_groups(struct mtd_info *mtd) 493 { 494 struct mtd_info *master = mtd_get_master(mtd); 495 496 if (!master->pairing || !master->pairing->ngroups) 497 return 1; 498 499 return master->pairing->ngroups; 500 } 501 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 502 503 static int mtd_nvmem_reg_read(void *priv, unsigned int offset, 504 void *val, size_t bytes) 505 { 506 struct mtd_info *mtd = priv; 507 size_t retlen; 508 int err; 509 510 err = mtd_read(mtd, offset, bytes, &retlen, val); 511 if (err && err != -EUCLEAN) 512 return err; 513 514 return retlen == bytes ? 0 : -EIO; 515 } 516 517 static int mtd_nvmem_add(struct mtd_info *mtd) 518 { 519 struct device_node *node = mtd_get_of_node(mtd); 520 struct nvmem_config config = {}; 521 522 config.id = NVMEM_DEVID_NONE; 523 config.dev = &mtd->dev; 524 config.name = dev_name(&mtd->dev); 525 config.owner = THIS_MODULE; 526 config.reg_read = mtd_nvmem_reg_read; 527 config.size = mtd->size; 528 config.word_size = 1; 529 config.stride = 1; 530 config.read_only = true; 531 config.root_only = true; 532 config.ignore_wp = true; 533 config.no_of_node = !of_device_is_compatible(node, "nvmem-cells"); 534 config.priv = mtd; 535 536 mtd->nvmem = nvmem_register(&config); 537 if (IS_ERR(mtd->nvmem)) { 538 /* Just ignore if there is no NVMEM support in the kernel */ 539 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) 540 mtd->nvmem = NULL; 541 else 542 return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem), 543 "Failed to register NVMEM device\n"); 544 } 545 546 return 0; 547 } 548 549 static void mtd_check_of_node(struct mtd_info *mtd) 550 { 551 struct device_node *partitions, *parent_dn, *mtd_dn = NULL; 552 const char *pname, *prefix = "partition-"; 553 int plen, mtd_name_len, offset, prefix_len; 554 555 /* Check if MTD already has a device node */ 556 if (mtd_get_of_node(mtd)) 557 return; 558 559 if (!mtd_is_partition(mtd)) 560 return; 561 562 parent_dn = of_node_get(mtd_get_of_node(mtd->parent)); 563 if (!parent_dn) 564 return; 565 566 if (mtd_is_partition(mtd->parent)) 567 partitions = of_node_get(parent_dn); 568 else 569 partitions = of_get_child_by_name(parent_dn, "partitions"); 570 if (!partitions) 571 goto exit_parent; 572 573 prefix_len = strlen(prefix); 574 mtd_name_len = strlen(mtd->name); 575 576 /* Search if a partition is defined with the same name */ 577 for_each_child_of_node(partitions, mtd_dn) { 578 /* Skip partition with no/wrong prefix */ 579 if (!of_node_name_prefix(mtd_dn, prefix)) 580 continue; 581 582 /* Label have priority. Check that first */ 583 if (!of_property_read_string(mtd_dn, "label", &pname)) { 584 offset = 0; 585 } else { 586 pname = mtd_dn->name; 587 offset = prefix_len; 588 } 589 590 plen = strlen(pname) - offset; 591 if (plen == mtd_name_len && 592 !strncmp(mtd->name, pname + offset, plen)) { 593 mtd_set_of_node(mtd, mtd_dn); 594 break; 595 } 596 } 597 598 of_node_put(partitions); 599 exit_parent: 600 of_node_put(parent_dn); 601 } 602 603 /** 604 * add_mtd_device - register an MTD device 605 * @mtd: pointer to new MTD device info structure 606 * 607 * Add a device to the list of MTD devices present in the system, and 608 * notify each currently active MTD 'user' of its arrival. Returns 609 * zero on success or non-zero on failure. 610 */ 611 612 int add_mtd_device(struct mtd_info *mtd) 613 { 614 struct device_node *np = mtd_get_of_node(mtd); 615 struct mtd_info *master = mtd_get_master(mtd); 616 struct mtd_notifier *not; 617 int i, error, ofidx; 618 619 /* 620 * May occur, for instance, on buggy drivers which call 621 * mtd_device_parse_register() multiple times on the same master MTD, 622 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 623 */ 624 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 625 return -EEXIST; 626 627 BUG_ON(mtd->writesize == 0); 628 629 /* 630 * MTD drivers should implement ->_{write,read}() or 631 * ->_{write,read}_oob(), but not both. 632 */ 633 if (WARN_ON((mtd->_write && mtd->_write_oob) || 634 (mtd->_read && mtd->_read_oob))) 635 return -EINVAL; 636 637 if (WARN_ON((!mtd->erasesize || !master->_erase) && 638 !(mtd->flags & MTD_NO_ERASE))) 639 return -EINVAL; 640 641 /* 642 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the 643 * master is an MLC NAND and has a proper pairing scheme defined. 644 * We also reject masters that implement ->_writev() for now, because 645 * NAND controller drivers don't implement this hook, and adding the 646 * SLC -> MLC address/length conversion to this path is useless if we 647 * don't have a user. 648 */ 649 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION && 650 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH || 651 !master->pairing || master->_writev)) 652 return -EINVAL; 653 654 mutex_lock(&mtd_table_mutex); 655 656 ofidx = -1; 657 if (np) 658 ofidx = of_alias_get_id(np, "mtd"); 659 if (ofidx >= 0) 660 i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL); 661 else 662 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 663 if (i < 0) { 664 error = i; 665 goto fail_locked; 666 } 667 668 mtd->index = i; 669 mtd->usecount = 0; 670 671 /* default value if not set by driver */ 672 if (mtd->bitflip_threshold == 0) 673 mtd->bitflip_threshold = mtd->ecc_strength; 674 675 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 676 int ngroups = mtd_pairing_groups(master); 677 678 mtd->erasesize /= ngroups; 679 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) * 680 mtd->erasesize; 681 } 682 683 if (is_power_of_2(mtd->erasesize)) 684 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 685 else 686 mtd->erasesize_shift = 0; 687 688 if (is_power_of_2(mtd->writesize)) 689 mtd->writesize_shift = ffs(mtd->writesize) - 1; 690 else 691 mtd->writesize_shift = 0; 692 693 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 694 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 695 696 /* Some chips always power up locked. Unlock them now */ 697 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 698 error = mtd_unlock(mtd, 0, mtd->size); 699 if (error && error != -EOPNOTSUPP) 700 printk(KERN_WARNING 701 "%s: unlock failed, writes may not work\n", 702 mtd->name); 703 /* Ignore unlock failures? */ 704 error = 0; 705 } 706 707 /* Caller should have set dev.parent to match the 708 * physical device, if appropriate. 709 */ 710 mtd->dev.type = &mtd_devtype; 711 mtd->dev.class = &mtd_class; 712 mtd->dev.devt = MTD_DEVT(i); 713 dev_set_name(&mtd->dev, "mtd%d", i); 714 dev_set_drvdata(&mtd->dev, mtd); 715 mtd_check_of_node(mtd); 716 of_node_get(mtd_get_of_node(mtd)); 717 error = device_register(&mtd->dev); 718 if (error) { 719 put_device(&mtd->dev); 720 goto fail_added; 721 } 722 723 /* Add the nvmem provider */ 724 error = mtd_nvmem_add(mtd); 725 if (error) 726 goto fail_nvmem_add; 727 728 mtd_debugfs_populate(mtd); 729 730 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 731 "mtd%dro", i); 732 733 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 734 /* No need to get a refcount on the module containing 735 the notifier, since we hold the mtd_table_mutex */ 736 list_for_each_entry(not, &mtd_notifiers, list) 737 not->add(mtd); 738 739 mutex_unlock(&mtd_table_mutex); 740 741 if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) { 742 if (IS_BUILTIN(CONFIG_MTD)) { 743 pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name); 744 ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index); 745 } else { 746 pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n", 747 mtd->index, mtd->name); 748 } 749 } 750 751 /* We _know_ we aren't being removed, because 752 our caller is still holding us here. So none 753 of this try_ nonsense, and no bitching about it 754 either. :) */ 755 __module_get(THIS_MODULE); 756 return 0; 757 758 fail_nvmem_add: 759 device_unregister(&mtd->dev); 760 fail_added: 761 of_node_put(mtd_get_of_node(mtd)); 762 idr_remove(&mtd_idr, i); 763 fail_locked: 764 mutex_unlock(&mtd_table_mutex); 765 return error; 766 } 767 768 /** 769 * del_mtd_device - unregister an MTD device 770 * @mtd: pointer to MTD device info structure 771 * 772 * Remove a device from the list of MTD devices present in the system, 773 * and notify each currently active MTD 'user' of its departure. 774 * Returns zero on success or 1 on failure, which currently will happen 775 * if the requested device does not appear to be present in the list. 776 */ 777 778 int del_mtd_device(struct mtd_info *mtd) 779 { 780 int ret; 781 struct mtd_notifier *not; 782 struct device_node *mtd_of_node; 783 784 mutex_lock(&mtd_table_mutex); 785 786 if (idr_find(&mtd_idr, mtd->index) != mtd) { 787 ret = -ENODEV; 788 goto out_error; 789 } 790 791 /* No need to get a refcount on the module containing 792 the notifier, since we hold the mtd_table_mutex */ 793 list_for_each_entry(not, &mtd_notifiers, list) 794 not->remove(mtd); 795 796 if (mtd->usecount) { 797 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 798 mtd->index, mtd->name, mtd->usecount); 799 ret = -EBUSY; 800 } else { 801 mtd_of_node = mtd_get_of_node(mtd); 802 debugfs_remove_recursive(mtd->dbg.dfs_dir); 803 804 /* Try to remove the NVMEM provider */ 805 nvmem_unregister(mtd->nvmem); 806 807 device_unregister(&mtd->dev); 808 809 /* Clear dev so mtd can be safely re-registered later if desired */ 810 memset(&mtd->dev, 0, sizeof(mtd->dev)); 811 812 idr_remove(&mtd_idr, mtd->index); 813 of_node_put(mtd_of_node); 814 815 module_put(THIS_MODULE); 816 ret = 0; 817 } 818 819 out_error: 820 mutex_unlock(&mtd_table_mutex); 821 return ret; 822 } 823 824 /* 825 * Set a few defaults based on the parent devices, if not provided by the 826 * driver 827 */ 828 static void mtd_set_dev_defaults(struct mtd_info *mtd) 829 { 830 if (mtd->dev.parent) { 831 if (!mtd->owner && mtd->dev.parent->driver) 832 mtd->owner = mtd->dev.parent->driver->owner; 833 if (!mtd->name) 834 mtd->name = dev_name(mtd->dev.parent); 835 } else { 836 pr_debug("mtd device won't show a device symlink in sysfs\n"); 837 } 838 839 INIT_LIST_HEAD(&mtd->partitions); 840 mutex_init(&mtd->master.partitions_lock); 841 mutex_init(&mtd->master.chrdev_lock); 842 } 843 844 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user) 845 { 846 struct otp_info *info; 847 ssize_t size = 0; 848 unsigned int i; 849 size_t retlen; 850 int ret; 851 852 info = kmalloc(PAGE_SIZE, GFP_KERNEL); 853 if (!info) 854 return -ENOMEM; 855 856 if (is_user) 857 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info); 858 else 859 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info); 860 if (ret) 861 goto err; 862 863 for (i = 0; i < retlen / sizeof(*info); i++) 864 size += info[i].length; 865 866 kfree(info); 867 return size; 868 869 err: 870 kfree(info); 871 872 /* ENODATA means there is no OTP region. */ 873 return ret == -ENODATA ? 0 : ret; 874 } 875 876 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd, 877 const char *compatible, 878 int size, 879 nvmem_reg_read_t reg_read) 880 { 881 struct nvmem_device *nvmem = NULL; 882 struct nvmem_config config = {}; 883 struct device_node *np; 884 885 /* DT binding is optional */ 886 np = of_get_compatible_child(mtd->dev.of_node, compatible); 887 888 /* OTP nvmem will be registered on the physical device */ 889 config.dev = mtd->dev.parent; 890 config.name = compatible; 891 config.id = NVMEM_DEVID_AUTO; 892 config.owner = THIS_MODULE; 893 config.type = NVMEM_TYPE_OTP; 894 config.root_only = true; 895 config.ignore_wp = true; 896 config.reg_read = reg_read; 897 config.size = size; 898 config.of_node = np; 899 config.priv = mtd; 900 901 nvmem = nvmem_register(&config); 902 /* Just ignore if there is no NVMEM support in the kernel */ 903 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP) 904 nvmem = NULL; 905 906 of_node_put(np); 907 908 return nvmem; 909 } 910 911 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset, 912 void *val, size_t bytes) 913 { 914 struct mtd_info *mtd = priv; 915 size_t retlen; 916 int ret; 917 918 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val); 919 if (ret) 920 return ret; 921 922 return retlen == bytes ? 0 : -EIO; 923 } 924 925 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset, 926 void *val, size_t bytes) 927 { 928 struct mtd_info *mtd = priv; 929 size_t retlen; 930 int ret; 931 932 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val); 933 if (ret) 934 return ret; 935 936 return retlen == bytes ? 0 : -EIO; 937 } 938 939 static int mtd_otp_nvmem_add(struct mtd_info *mtd) 940 { 941 struct device *dev = mtd->dev.parent; 942 struct nvmem_device *nvmem; 943 ssize_t size; 944 int err; 945 946 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) { 947 size = mtd_otp_size(mtd, true); 948 if (size < 0) 949 return size; 950 951 if (size > 0) { 952 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size, 953 mtd_nvmem_user_otp_reg_read); 954 if (IS_ERR(nvmem)) { 955 err = PTR_ERR(nvmem); 956 goto err; 957 } 958 mtd->otp_user_nvmem = nvmem; 959 } 960 } 961 962 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) { 963 size = mtd_otp_size(mtd, false); 964 if (size < 0) { 965 err = size; 966 goto err; 967 } 968 969 if (size > 0) { 970 /* 971 * The factory OTP contains thing such as a unique serial 972 * number and is small, so let's read it out and put it 973 * into the entropy pool. 974 */ 975 void *otp; 976 977 otp = kmalloc(size, GFP_KERNEL); 978 if (!otp) { 979 err = -ENOMEM; 980 goto err; 981 } 982 err = mtd_nvmem_fact_otp_reg_read(mtd, 0, otp, size); 983 if (err < 0) { 984 kfree(otp); 985 goto err; 986 } 987 add_device_randomness(otp, err); 988 kfree(otp); 989 990 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size, 991 mtd_nvmem_fact_otp_reg_read); 992 if (IS_ERR(nvmem)) { 993 err = PTR_ERR(nvmem); 994 goto err; 995 } 996 mtd->otp_factory_nvmem = nvmem; 997 } 998 } 999 1000 return 0; 1001 1002 err: 1003 nvmem_unregister(mtd->otp_user_nvmem); 1004 return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n"); 1005 } 1006 1007 /** 1008 * mtd_device_parse_register - parse partitions and register an MTD device. 1009 * 1010 * @mtd: the MTD device to register 1011 * @types: the list of MTD partition probes to try, see 1012 * 'parse_mtd_partitions()' for more information 1013 * @parser_data: MTD partition parser-specific data 1014 * @parts: fallback partition information to register, if parsing fails; 1015 * only valid if %nr_parts > %0 1016 * @nr_parts: the number of partitions in parts, if zero then the full 1017 * MTD device is registered if no partition info is found 1018 * 1019 * This function aggregates MTD partitions parsing (done by 1020 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 1021 * basically follows the most common pattern found in many MTD drivers: 1022 * 1023 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is 1024 * registered first. 1025 * * Then It tries to probe partitions on MTD device @mtd using parsers 1026 * specified in @types (if @types is %NULL, then the default list of parsers 1027 * is used, see 'parse_mtd_partitions()' for more information). If none are 1028 * found this functions tries to fallback to information specified in 1029 * @parts/@nr_parts. 1030 * * If no partitions were found this function just registers the MTD device 1031 * @mtd and exits. 1032 * 1033 * Returns zero in case of success and a negative error code in case of failure. 1034 */ 1035 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 1036 struct mtd_part_parser_data *parser_data, 1037 const struct mtd_partition *parts, 1038 int nr_parts) 1039 { 1040 int ret; 1041 1042 mtd_set_dev_defaults(mtd); 1043 1044 ret = mtd_otp_nvmem_add(mtd); 1045 if (ret) 1046 goto out; 1047 1048 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 1049 ret = add_mtd_device(mtd); 1050 if (ret) 1051 goto out; 1052 } 1053 1054 /* Prefer parsed partitions over driver-provided fallback */ 1055 ret = parse_mtd_partitions(mtd, types, parser_data); 1056 if (ret == -EPROBE_DEFER) 1057 goto out; 1058 1059 if (ret > 0) 1060 ret = 0; 1061 else if (nr_parts) 1062 ret = add_mtd_partitions(mtd, parts, nr_parts); 1063 else if (!device_is_registered(&mtd->dev)) 1064 ret = add_mtd_device(mtd); 1065 else 1066 ret = 0; 1067 1068 if (ret) 1069 goto out; 1070 1071 /* 1072 * FIXME: some drivers unfortunately call this function more than once. 1073 * So we have to check if we've already assigned the reboot notifier. 1074 * 1075 * Generally, we can make multiple calls work for most cases, but it 1076 * does cause problems with parse_mtd_partitions() above (e.g., 1077 * cmdlineparts will register partitions more than once). 1078 */ 1079 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 1080 "MTD already registered\n"); 1081 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 1082 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 1083 register_reboot_notifier(&mtd->reboot_notifier); 1084 } 1085 1086 out: 1087 if (ret) { 1088 nvmem_unregister(mtd->otp_user_nvmem); 1089 nvmem_unregister(mtd->otp_factory_nvmem); 1090 } 1091 1092 if (ret && device_is_registered(&mtd->dev)) 1093 del_mtd_device(mtd); 1094 1095 return ret; 1096 } 1097 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 1098 1099 /** 1100 * mtd_device_unregister - unregister an existing MTD device. 1101 * 1102 * @master: the MTD device to unregister. This will unregister both the master 1103 * and any partitions if registered. 1104 */ 1105 int mtd_device_unregister(struct mtd_info *master) 1106 { 1107 int err; 1108 1109 if (master->_reboot) { 1110 unregister_reboot_notifier(&master->reboot_notifier); 1111 memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier)); 1112 } 1113 1114 nvmem_unregister(master->otp_user_nvmem); 1115 nvmem_unregister(master->otp_factory_nvmem); 1116 1117 err = del_mtd_partitions(master); 1118 if (err) 1119 return err; 1120 1121 if (!device_is_registered(&master->dev)) 1122 return 0; 1123 1124 return del_mtd_device(master); 1125 } 1126 EXPORT_SYMBOL_GPL(mtd_device_unregister); 1127 1128 /** 1129 * register_mtd_user - register a 'user' of MTD devices. 1130 * @new: pointer to notifier info structure 1131 * 1132 * Registers a pair of callbacks function to be called upon addition 1133 * or removal of MTD devices. Causes the 'add' callback to be immediately 1134 * invoked for each MTD device currently present in the system. 1135 */ 1136 void register_mtd_user (struct mtd_notifier *new) 1137 { 1138 struct mtd_info *mtd; 1139 1140 mutex_lock(&mtd_table_mutex); 1141 1142 list_add(&new->list, &mtd_notifiers); 1143 1144 __module_get(THIS_MODULE); 1145 1146 mtd_for_each_device(mtd) 1147 new->add(mtd); 1148 1149 mutex_unlock(&mtd_table_mutex); 1150 } 1151 EXPORT_SYMBOL_GPL(register_mtd_user); 1152 1153 /** 1154 * unregister_mtd_user - unregister a 'user' of MTD devices. 1155 * @old: pointer to notifier info structure 1156 * 1157 * Removes a callback function pair from the list of 'users' to be 1158 * notified upon addition or removal of MTD devices. Causes the 1159 * 'remove' callback to be immediately invoked for each MTD device 1160 * currently present in the system. 1161 */ 1162 int unregister_mtd_user (struct mtd_notifier *old) 1163 { 1164 struct mtd_info *mtd; 1165 1166 mutex_lock(&mtd_table_mutex); 1167 1168 module_put(THIS_MODULE); 1169 1170 mtd_for_each_device(mtd) 1171 old->remove(mtd); 1172 1173 list_del(&old->list); 1174 mutex_unlock(&mtd_table_mutex); 1175 return 0; 1176 } 1177 EXPORT_SYMBOL_GPL(unregister_mtd_user); 1178 1179 /** 1180 * get_mtd_device - obtain a validated handle for an MTD device 1181 * @mtd: last known address of the required MTD device 1182 * @num: internal device number of the required MTD device 1183 * 1184 * Given a number and NULL address, return the num'th entry in the device 1185 * table, if any. Given an address and num == -1, search the device table 1186 * for a device with that address and return if it's still present. Given 1187 * both, return the num'th driver only if its address matches. Return 1188 * error code if not. 1189 */ 1190 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 1191 { 1192 struct mtd_info *ret = NULL, *other; 1193 int err = -ENODEV; 1194 1195 mutex_lock(&mtd_table_mutex); 1196 1197 if (num == -1) { 1198 mtd_for_each_device(other) { 1199 if (other == mtd) { 1200 ret = mtd; 1201 break; 1202 } 1203 } 1204 } else if (num >= 0) { 1205 ret = idr_find(&mtd_idr, num); 1206 if (mtd && mtd != ret) 1207 ret = NULL; 1208 } 1209 1210 if (!ret) { 1211 ret = ERR_PTR(err); 1212 goto out; 1213 } 1214 1215 err = __get_mtd_device(ret); 1216 if (err) 1217 ret = ERR_PTR(err); 1218 out: 1219 mutex_unlock(&mtd_table_mutex); 1220 return ret; 1221 } 1222 EXPORT_SYMBOL_GPL(get_mtd_device); 1223 1224 1225 int __get_mtd_device(struct mtd_info *mtd) 1226 { 1227 struct mtd_info *master = mtd_get_master(mtd); 1228 int err; 1229 1230 if (!try_module_get(master->owner)) 1231 return -ENODEV; 1232 1233 if (master->_get_device) { 1234 err = master->_get_device(mtd); 1235 1236 if (err) { 1237 module_put(master->owner); 1238 return err; 1239 } 1240 } 1241 1242 master->usecount++; 1243 1244 while (mtd->parent) { 1245 mtd->usecount++; 1246 mtd = mtd->parent; 1247 } 1248 1249 return 0; 1250 } 1251 EXPORT_SYMBOL_GPL(__get_mtd_device); 1252 1253 /** 1254 * of_get_mtd_device_by_node - obtain an MTD device associated with a given node 1255 * 1256 * @np: device tree node 1257 */ 1258 struct mtd_info *of_get_mtd_device_by_node(struct device_node *np) 1259 { 1260 struct mtd_info *mtd = NULL; 1261 struct mtd_info *tmp; 1262 int err; 1263 1264 mutex_lock(&mtd_table_mutex); 1265 1266 err = -EPROBE_DEFER; 1267 mtd_for_each_device(tmp) { 1268 if (mtd_get_of_node(tmp) == np) { 1269 mtd = tmp; 1270 err = __get_mtd_device(mtd); 1271 break; 1272 } 1273 } 1274 1275 mutex_unlock(&mtd_table_mutex); 1276 1277 return err ? ERR_PTR(err) : mtd; 1278 } 1279 EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node); 1280 1281 /** 1282 * get_mtd_device_nm - obtain a validated handle for an MTD device by 1283 * device name 1284 * @name: MTD device name to open 1285 * 1286 * This function returns MTD device description structure in case of 1287 * success and an error code in case of failure. 1288 */ 1289 struct mtd_info *get_mtd_device_nm(const char *name) 1290 { 1291 int err = -ENODEV; 1292 struct mtd_info *mtd = NULL, *other; 1293 1294 mutex_lock(&mtd_table_mutex); 1295 1296 mtd_for_each_device(other) { 1297 if (!strcmp(name, other->name)) { 1298 mtd = other; 1299 break; 1300 } 1301 } 1302 1303 if (!mtd) 1304 goto out_unlock; 1305 1306 err = __get_mtd_device(mtd); 1307 if (err) 1308 goto out_unlock; 1309 1310 mutex_unlock(&mtd_table_mutex); 1311 return mtd; 1312 1313 out_unlock: 1314 mutex_unlock(&mtd_table_mutex); 1315 return ERR_PTR(err); 1316 } 1317 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 1318 1319 void put_mtd_device(struct mtd_info *mtd) 1320 { 1321 mutex_lock(&mtd_table_mutex); 1322 __put_mtd_device(mtd); 1323 mutex_unlock(&mtd_table_mutex); 1324 1325 } 1326 EXPORT_SYMBOL_GPL(put_mtd_device); 1327 1328 void __put_mtd_device(struct mtd_info *mtd) 1329 { 1330 struct mtd_info *master = mtd_get_master(mtd); 1331 1332 while (mtd->parent) { 1333 --mtd->usecount; 1334 BUG_ON(mtd->usecount < 0); 1335 mtd = mtd->parent; 1336 } 1337 1338 master->usecount--; 1339 1340 if (master->_put_device) 1341 master->_put_device(master); 1342 1343 module_put(master->owner); 1344 } 1345 EXPORT_SYMBOL_GPL(__put_mtd_device); 1346 1347 /* 1348 * Erase is an synchronous operation. Device drivers are epected to return a 1349 * negative error code if the operation failed and update instr->fail_addr 1350 * to point the portion that was not properly erased. 1351 */ 1352 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 1353 { 1354 struct mtd_info *master = mtd_get_master(mtd); 1355 u64 mst_ofs = mtd_get_master_ofs(mtd, 0); 1356 struct erase_info adjinstr; 1357 int ret; 1358 1359 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 1360 adjinstr = *instr; 1361 1362 if (!mtd->erasesize || !master->_erase) 1363 return -ENOTSUPP; 1364 1365 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 1366 return -EINVAL; 1367 if (!(mtd->flags & MTD_WRITEABLE)) 1368 return -EROFS; 1369 1370 if (!instr->len) 1371 return 0; 1372 1373 ledtrig_mtd_activity(); 1374 1375 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1376 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) * 1377 master->erasesize; 1378 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) * 1379 master->erasesize) - 1380 adjinstr.addr; 1381 } 1382 1383 adjinstr.addr += mst_ofs; 1384 1385 ret = master->_erase(master, &adjinstr); 1386 1387 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) { 1388 instr->fail_addr = adjinstr.fail_addr - mst_ofs; 1389 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1390 instr->fail_addr = mtd_div_by_eb(instr->fail_addr, 1391 master); 1392 instr->fail_addr *= mtd->erasesize; 1393 } 1394 } 1395 1396 return ret; 1397 } 1398 EXPORT_SYMBOL_GPL(mtd_erase); 1399 1400 /* 1401 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 1402 */ 1403 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1404 void **virt, resource_size_t *phys) 1405 { 1406 struct mtd_info *master = mtd_get_master(mtd); 1407 1408 *retlen = 0; 1409 *virt = NULL; 1410 if (phys) 1411 *phys = 0; 1412 if (!master->_point) 1413 return -EOPNOTSUPP; 1414 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1415 return -EINVAL; 1416 if (!len) 1417 return 0; 1418 1419 from = mtd_get_master_ofs(mtd, from); 1420 return master->_point(master, from, len, retlen, virt, phys); 1421 } 1422 EXPORT_SYMBOL_GPL(mtd_point); 1423 1424 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 1425 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1426 { 1427 struct mtd_info *master = mtd_get_master(mtd); 1428 1429 if (!master->_unpoint) 1430 return -EOPNOTSUPP; 1431 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1432 return -EINVAL; 1433 if (!len) 1434 return 0; 1435 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len); 1436 } 1437 EXPORT_SYMBOL_GPL(mtd_unpoint); 1438 1439 /* 1440 * Allow NOMMU mmap() to directly map the device (if not NULL) 1441 * - return the address to which the offset maps 1442 * - return -ENOSYS to indicate refusal to do the mapping 1443 */ 1444 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1445 unsigned long offset, unsigned long flags) 1446 { 1447 size_t retlen; 1448 void *virt; 1449 int ret; 1450 1451 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); 1452 if (ret) 1453 return ret; 1454 if (retlen != len) { 1455 mtd_unpoint(mtd, offset, retlen); 1456 return -ENOSYS; 1457 } 1458 return (unsigned long)virt; 1459 } 1460 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1461 1462 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master, 1463 const struct mtd_ecc_stats *old_stats) 1464 { 1465 struct mtd_ecc_stats diff; 1466 1467 if (master == mtd) 1468 return; 1469 1470 diff = master->ecc_stats; 1471 diff.failed -= old_stats->failed; 1472 diff.corrected -= old_stats->corrected; 1473 1474 while (mtd->parent) { 1475 mtd->ecc_stats.failed += diff.failed; 1476 mtd->ecc_stats.corrected += diff.corrected; 1477 mtd = mtd->parent; 1478 } 1479 } 1480 1481 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1482 u_char *buf) 1483 { 1484 struct mtd_oob_ops ops = { 1485 .len = len, 1486 .datbuf = buf, 1487 }; 1488 int ret; 1489 1490 ret = mtd_read_oob(mtd, from, &ops); 1491 *retlen = ops.retlen; 1492 1493 return ret; 1494 } 1495 EXPORT_SYMBOL_GPL(mtd_read); 1496 1497 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1498 const u_char *buf) 1499 { 1500 struct mtd_oob_ops ops = { 1501 .len = len, 1502 .datbuf = (u8 *)buf, 1503 }; 1504 int ret; 1505 1506 ret = mtd_write_oob(mtd, to, &ops); 1507 *retlen = ops.retlen; 1508 1509 return ret; 1510 } 1511 EXPORT_SYMBOL_GPL(mtd_write); 1512 1513 /* 1514 * In blackbox flight recorder like scenarios we want to make successful writes 1515 * in interrupt context. panic_write() is only intended to be called when its 1516 * known the kernel is about to panic and we need the write to succeed. Since 1517 * the kernel is not going to be running for much longer, this function can 1518 * break locks and delay to ensure the write succeeds (but not sleep). 1519 */ 1520 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1521 const u_char *buf) 1522 { 1523 struct mtd_info *master = mtd_get_master(mtd); 1524 1525 *retlen = 0; 1526 if (!master->_panic_write) 1527 return -EOPNOTSUPP; 1528 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1529 return -EINVAL; 1530 if (!(mtd->flags & MTD_WRITEABLE)) 1531 return -EROFS; 1532 if (!len) 1533 return 0; 1534 if (!master->oops_panic_write) 1535 master->oops_panic_write = true; 1536 1537 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len, 1538 retlen, buf); 1539 } 1540 EXPORT_SYMBOL_GPL(mtd_panic_write); 1541 1542 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1543 struct mtd_oob_ops *ops) 1544 { 1545 /* 1546 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1547 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1548 * this case. 1549 */ 1550 if (!ops->datbuf) 1551 ops->len = 0; 1552 1553 if (!ops->oobbuf) 1554 ops->ooblen = 0; 1555 1556 if (offs < 0 || offs + ops->len > mtd->size) 1557 return -EINVAL; 1558 1559 if (ops->ooblen) { 1560 size_t maxooblen; 1561 1562 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1563 return -EINVAL; 1564 1565 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) - 1566 mtd_div_by_ws(offs, mtd)) * 1567 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1568 if (ops->ooblen > maxooblen) 1569 return -EINVAL; 1570 } 1571 1572 return 0; 1573 } 1574 1575 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from, 1576 struct mtd_oob_ops *ops) 1577 { 1578 struct mtd_info *master = mtd_get_master(mtd); 1579 int ret; 1580 1581 from = mtd_get_master_ofs(mtd, from); 1582 if (master->_read_oob) 1583 ret = master->_read_oob(master, from, ops); 1584 else 1585 ret = master->_read(master, from, ops->len, &ops->retlen, 1586 ops->datbuf); 1587 1588 return ret; 1589 } 1590 1591 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to, 1592 struct mtd_oob_ops *ops) 1593 { 1594 struct mtd_info *master = mtd_get_master(mtd); 1595 int ret; 1596 1597 to = mtd_get_master_ofs(mtd, to); 1598 if (master->_write_oob) 1599 ret = master->_write_oob(master, to, ops); 1600 else 1601 ret = master->_write(master, to, ops->len, &ops->retlen, 1602 ops->datbuf); 1603 1604 return ret; 1605 } 1606 1607 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read, 1608 struct mtd_oob_ops *ops) 1609 { 1610 struct mtd_info *master = mtd_get_master(mtd); 1611 int ngroups = mtd_pairing_groups(master); 1612 int npairs = mtd_wunit_per_eb(master) / ngroups; 1613 struct mtd_oob_ops adjops = *ops; 1614 unsigned int wunit, oobavail; 1615 struct mtd_pairing_info info; 1616 int max_bitflips = 0; 1617 u32 ebofs, pageofs; 1618 loff_t base, pos; 1619 1620 ebofs = mtd_mod_by_eb(start, mtd); 1621 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize; 1622 info.group = 0; 1623 info.pair = mtd_div_by_ws(ebofs, mtd); 1624 pageofs = mtd_mod_by_ws(ebofs, mtd); 1625 oobavail = mtd_oobavail(mtd, ops); 1626 1627 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) { 1628 int ret; 1629 1630 if (info.pair >= npairs) { 1631 info.pair = 0; 1632 base += master->erasesize; 1633 } 1634 1635 wunit = mtd_pairing_info_to_wunit(master, &info); 1636 pos = mtd_wunit_to_offset(mtd, base, wunit); 1637 1638 adjops.len = ops->len - ops->retlen; 1639 if (adjops.len > mtd->writesize - pageofs) 1640 adjops.len = mtd->writesize - pageofs; 1641 1642 adjops.ooblen = ops->ooblen - ops->oobretlen; 1643 if (adjops.ooblen > oobavail - adjops.ooboffs) 1644 adjops.ooblen = oobavail - adjops.ooboffs; 1645 1646 if (read) { 1647 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops); 1648 if (ret > 0) 1649 max_bitflips = max(max_bitflips, ret); 1650 } else { 1651 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops); 1652 } 1653 1654 if (ret < 0) 1655 return ret; 1656 1657 max_bitflips = max(max_bitflips, ret); 1658 ops->retlen += adjops.retlen; 1659 ops->oobretlen += adjops.oobretlen; 1660 adjops.datbuf += adjops.retlen; 1661 adjops.oobbuf += adjops.oobretlen; 1662 adjops.ooboffs = 0; 1663 pageofs = 0; 1664 info.pair++; 1665 } 1666 1667 return max_bitflips; 1668 } 1669 1670 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1671 { 1672 struct mtd_info *master = mtd_get_master(mtd); 1673 struct mtd_ecc_stats old_stats = master->ecc_stats; 1674 int ret_code; 1675 1676 ops->retlen = ops->oobretlen = 0; 1677 1678 ret_code = mtd_check_oob_ops(mtd, from, ops); 1679 if (ret_code) 1680 return ret_code; 1681 1682 ledtrig_mtd_activity(); 1683 1684 /* Check the validity of a potential fallback on mtd->_read */ 1685 if (!master->_read_oob && (!master->_read || ops->oobbuf)) 1686 return -EOPNOTSUPP; 1687 1688 if (ops->stats) 1689 memset(ops->stats, 0, sizeof(*ops->stats)); 1690 1691 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1692 ret_code = mtd_io_emulated_slc(mtd, from, true, ops); 1693 else 1694 ret_code = mtd_read_oob_std(mtd, from, ops); 1695 1696 mtd_update_ecc_stats(mtd, master, &old_stats); 1697 1698 /* 1699 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1700 * similar to mtd->_read(), returning a non-negative integer 1701 * representing max bitflips. In other cases, mtd->_read_oob() may 1702 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1703 */ 1704 if (unlikely(ret_code < 0)) 1705 return ret_code; 1706 if (mtd->ecc_strength == 0) 1707 return 0; /* device lacks ecc */ 1708 if (ops->stats) 1709 ops->stats->max_bitflips = ret_code; 1710 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1711 } 1712 EXPORT_SYMBOL_GPL(mtd_read_oob); 1713 1714 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1715 struct mtd_oob_ops *ops) 1716 { 1717 struct mtd_info *master = mtd_get_master(mtd); 1718 int ret; 1719 1720 ops->retlen = ops->oobretlen = 0; 1721 1722 if (!(mtd->flags & MTD_WRITEABLE)) 1723 return -EROFS; 1724 1725 ret = mtd_check_oob_ops(mtd, to, ops); 1726 if (ret) 1727 return ret; 1728 1729 ledtrig_mtd_activity(); 1730 1731 /* Check the validity of a potential fallback on mtd->_write */ 1732 if (!master->_write_oob && (!master->_write || ops->oobbuf)) 1733 return -EOPNOTSUPP; 1734 1735 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1736 return mtd_io_emulated_slc(mtd, to, false, ops); 1737 1738 return mtd_write_oob_std(mtd, to, ops); 1739 } 1740 EXPORT_SYMBOL_GPL(mtd_write_oob); 1741 1742 /** 1743 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1744 * @mtd: MTD device structure 1745 * @section: ECC section. Depending on the layout you may have all the ECC 1746 * bytes stored in a single contiguous section, or one section 1747 * per ECC chunk (and sometime several sections for a single ECC 1748 * ECC chunk) 1749 * @oobecc: OOB region struct filled with the appropriate ECC position 1750 * information 1751 * 1752 * This function returns ECC section information in the OOB area. If you want 1753 * to get all the ECC bytes information, then you should call 1754 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1755 * 1756 * Returns zero on success, a negative error code otherwise. 1757 */ 1758 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1759 struct mtd_oob_region *oobecc) 1760 { 1761 struct mtd_info *master = mtd_get_master(mtd); 1762 1763 memset(oobecc, 0, sizeof(*oobecc)); 1764 1765 if (!master || section < 0) 1766 return -EINVAL; 1767 1768 if (!master->ooblayout || !master->ooblayout->ecc) 1769 return -ENOTSUPP; 1770 1771 return master->ooblayout->ecc(master, section, oobecc); 1772 } 1773 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1774 1775 /** 1776 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1777 * section 1778 * @mtd: MTD device structure 1779 * @section: Free section you are interested in. Depending on the layout 1780 * you may have all the free bytes stored in a single contiguous 1781 * section, or one section per ECC chunk plus an extra section 1782 * for the remaining bytes (or other funky layout). 1783 * @oobfree: OOB region struct filled with the appropriate free position 1784 * information 1785 * 1786 * This function returns free bytes position in the OOB area. If you want 1787 * to get all the free bytes information, then you should call 1788 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1789 * 1790 * Returns zero on success, a negative error code otherwise. 1791 */ 1792 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1793 struct mtd_oob_region *oobfree) 1794 { 1795 struct mtd_info *master = mtd_get_master(mtd); 1796 1797 memset(oobfree, 0, sizeof(*oobfree)); 1798 1799 if (!master || section < 0) 1800 return -EINVAL; 1801 1802 if (!master->ooblayout || !master->ooblayout->free) 1803 return -ENOTSUPP; 1804 1805 return master->ooblayout->free(master, section, oobfree); 1806 } 1807 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1808 1809 /** 1810 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1811 * @mtd: mtd info structure 1812 * @byte: the byte we are searching for 1813 * @sectionp: pointer where the section id will be stored 1814 * @oobregion: used to retrieve the ECC position 1815 * @iter: iterator function. Should be either mtd_ooblayout_free or 1816 * mtd_ooblayout_ecc depending on the region type you're searching for 1817 * 1818 * This function returns the section id and oobregion information of a 1819 * specific byte. For example, say you want to know where the 4th ECC byte is 1820 * stored, you'll use: 1821 * 1822 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1823 * 1824 * Returns zero on success, a negative error code otherwise. 1825 */ 1826 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1827 int *sectionp, struct mtd_oob_region *oobregion, 1828 int (*iter)(struct mtd_info *, 1829 int section, 1830 struct mtd_oob_region *oobregion)) 1831 { 1832 int pos = 0, ret, section = 0; 1833 1834 memset(oobregion, 0, sizeof(*oobregion)); 1835 1836 while (1) { 1837 ret = iter(mtd, section, oobregion); 1838 if (ret) 1839 return ret; 1840 1841 if (pos + oobregion->length > byte) 1842 break; 1843 1844 pos += oobregion->length; 1845 section++; 1846 } 1847 1848 /* 1849 * Adjust region info to make it start at the beginning at the 1850 * 'start' ECC byte. 1851 */ 1852 oobregion->offset += byte - pos; 1853 oobregion->length -= byte - pos; 1854 *sectionp = section; 1855 1856 return 0; 1857 } 1858 1859 /** 1860 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1861 * ECC byte 1862 * @mtd: mtd info structure 1863 * @eccbyte: the byte we are searching for 1864 * @section: pointer where the section id will be stored 1865 * @oobregion: OOB region information 1866 * 1867 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1868 * byte. 1869 * 1870 * Returns zero on success, a negative error code otherwise. 1871 */ 1872 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1873 int *section, 1874 struct mtd_oob_region *oobregion) 1875 { 1876 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1877 mtd_ooblayout_ecc); 1878 } 1879 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1880 1881 /** 1882 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1883 * @mtd: mtd info structure 1884 * @buf: destination buffer to store OOB bytes 1885 * @oobbuf: OOB buffer 1886 * @start: first byte to retrieve 1887 * @nbytes: number of bytes to retrieve 1888 * @iter: section iterator 1889 * 1890 * Extract bytes attached to a specific category (ECC or free) 1891 * from the OOB buffer and copy them into buf. 1892 * 1893 * Returns zero on success, a negative error code otherwise. 1894 */ 1895 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1896 const u8 *oobbuf, int start, int nbytes, 1897 int (*iter)(struct mtd_info *, 1898 int section, 1899 struct mtd_oob_region *oobregion)) 1900 { 1901 struct mtd_oob_region oobregion; 1902 int section, ret; 1903 1904 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1905 &oobregion, iter); 1906 1907 while (!ret) { 1908 int cnt; 1909 1910 cnt = min_t(int, nbytes, oobregion.length); 1911 memcpy(buf, oobbuf + oobregion.offset, cnt); 1912 buf += cnt; 1913 nbytes -= cnt; 1914 1915 if (!nbytes) 1916 break; 1917 1918 ret = iter(mtd, ++section, &oobregion); 1919 } 1920 1921 return ret; 1922 } 1923 1924 /** 1925 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1926 * @mtd: mtd info structure 1927 * @buf: source buffer to get OOB bytes from 1928 * @oobbuf: OOB buffer 1929 * @start: first OOB byte to set 1930 * @nbytes: number of OOB bytes to set 1931 * @iter: section iterator 1932 * 1933 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1934 * is selected by passing the appropriate iterator. 1935 * 1936 * Returns zero on success, a negative error code otherwise. 1937 */ 1938 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1939 u8 *oobbuf, int start, int nbytes, 1940 int (*iter)(struct mtd_info *, 1941 int section, 1942 struct mtd_oob_region *oobregion)) 1943 { 1944 struct mtd_oob_region oobregion; 1945 int section, ret; 1946 1947 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1948 &oobregion, iter); 1949 1950 while (!ret) { 1951 int cnt; 1952 1953 cnt = min_t(int, nbytes, oobregion.length); 1954 memcpy(oobbuf + oobregion.offset, buf, cnt); 1955 buf += cnt; 1956 nbytes -= cnt; 1957 1958 if (!nbytes) 1959 break; 1960 1961 ret = iter(mtd, ++section, &oobregion); 1962 } 1963 1964 return ret; 1965 } 1966 1967 /** 1968 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1969 * @mtd: mtd info structure 1970 * @iter: category iterator 1971 * 1972 * Count the number of bytes in a given category. 1973 * 1974 * Returns a positive value on success, a negative error code otherwise. 1975 */ 1976 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1977 int (*iter)(struct mtd_info *, 1978 int section, 1979 struct mtd_oob_region *oobregion)) 1980 { 1981 struct mtd_oob_region oobregion; 1982 int section = 0, ret, nbytes = 0; 1983 1984 while (1) { 1985 ret = iter(mtd, section++, &oobregion); 1986 if (ret) { 1987 if (ret == -ERANGE) 1988 ret = nbytes; 1989 break; 1990 } 1991 1992 nbytes += oobregion.length; 1993 } 1994 1995 return ret; 1996 } 1997 1998 /** 1999 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 2000 * @mtd: mtd info structure 2001 * @eccbuf: destination buffer to store ECC bytes 2002 * @oobbuf: OOB buffer 2003 * @start: first ECC byte to retrieve 2004 * @nbytes: number of ECC bytes to retrieve 2005 * 2006 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 2007 * 2008 * Returns zero on success, a negative error code otherwise. 2009 */ 2010 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 2011 const u8 *oobbuf, int start, int nbytes) 2012 { 2013 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 2014 mtd_ooblayout_ecc); 2015 } 2016 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 2017 2018 /** 2019 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 2020 * @mtd: mtd info structure 2021 * @eccbuf: source buffer to get ECC bytes from 2022 * @oobbuf: OOB buffer 2023 * @start: first ECC byte to set 2024 * @nbytes: number of ECC bytes to set 2025 * 2026 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 2027 * 2028 * Returns zero on success, a negative error code otherwise. 2029 */ 2030 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 2031 u8 *oobbuf, int start, int nbytes) 2032 { 2033 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 2034 mtd_ooblayout_ecc); 2035 } 2036 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 2037 2038 /** 2039 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 2040 * @mtd: mtd info structure 2041 * @databuf: destination buffer to store ECC bytes 2042 * @oobbuf: OOB buffer 2043 * @start: first ECC byte to retrieve 2044 * @nbytes: number of ECC bytes to retrieve 2045 * 2046 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 2047 * 2048 * Returns zero on success, a negative error code otherwise. 2049 */ 2050 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 2051 const u8 *oobbuf, int start, int nbytes) 2052 { 2053 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 2054 mtd_ooblayout_free); 2055 } 2056 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 2057 2058 /** 2059 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer 2060 * @mtd: mtd info structure 2061 * @databuf: source buffer to get data bytes from 2062 * @oobbuf: OOB buffer 2063 * @start: first ECC byte to set 2064 * @nbytes: number of ECC bytes to set 2065 * 2066 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes. 2067 * 2068 * Returns zero on success, a negative error code otherwise. 2069 */ 2070 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 2071 u8 *oobbuf, int start, int nbytes) 2072 { 2073 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 2074 mtd_ooblayout_free); 2075 } 2076 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 2077 2078 /** 2079 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 2080 * @mtd: mtd info structure 2081 * 2082 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 2083 * 2084 * Returns zero on success, a negative error code otherwise. 2085 */ 2086 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 2087 { 2088 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 2089 } 2090 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 2091 2092 /** 2093 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB 2094 * @mtd: mtd info structure 2095 * 2096 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 2097 * 2098 * Returns zero on success, a negative error code otherwise. 2099 */ 2100 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 2101 { 2102 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 2103 } 2104 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 2105 2106 /* 2107 * Method to access the protection register area, present in some flash 2108 * devices. The user data is one time programmable but the factory data is read 2109 * only. 2110 */ 2111 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 2112 struct otp_info *buf) 2113 { 2114 struct mtd_info *master = mtd_get_master(mtd); 2115 2116 if (!master->_get_fact_prot_info) 2117 return -EOPNOTSUPP; 2118 if (!len) 2119 return 0; 2120 return master->_get_fact_prot_info(master, len, retlen, buf); 2121 } 2122 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 2123 2124 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 2125 size_t *retlen, u_char *buf) 2126 { 2127 struct mtd_info *master = mtd_get_master(mtd); 2128 2129 *retlen = 0; 2130 if (!master->_read_fact_prot_reg) 2131 return -EOPNOTSUPP; 2132 if (!len) 2133 return 0; 2134 return master->_read_fact_prot_reg(master, from, len, retlen, buf); 2135 } 2136 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 2137 2138 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 2139 struct otp_info *buf) 2140 { 2141 struct mtd_info *master = mtd_get_master(mtd); 2142 2143 if (!master->_get_user_prot_info) 2144 return -EOPNOTSUPP; 2145 if (!len) 2146 return 0; 2147 return master->_get_user_prot_info(master, len, retlen, buf); 2148 } 2149 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 2150 2151 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 2152 size_t *retlen, u_char *buf) 2153 { 2154 struct mtd_info *master = mtd_get_master(mtd); 2155 2156 *retlen = 0; 2157 if (!master->_read_user_prot_reg) 2158 return -EOPNOTSUPP; 2159 if (!len) 2160 return 0; 2161 return master->_read_user_prot_reg(master, from, len, retlen, buf); 2162 } 2163 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 2164 2165 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 2166 size_t *retlen, const u_char *buf) 2167 { 2168 struct mtd_info *master = mtd_get_master(mtd); 2169 int ret; 2170 2171 *retlen = 0; 2172 if (!master->_write_user_prot_reg) 2173 return -EOPNOTSUPP; 2174 if (!len) 2175 return 0; 2176 ret = master->_write_user_prot_reg(master, to, len, retlen, buf); 2177 if (ret) 2178 return ret; 2179 2180 /* 2181 * If no data could be written at all, we are out of memory and 2182 * must return -ENOSPC. 2183 */ 2184 return (*retlen) ? 0 : -ENOSPC; 2185 } 2186 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 2187 2188 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2189 { 2190 struct mtd_info *master = mtd_get_master(mtd); 2191 2192 if (!master->_lock_user_prot_reg) 2193 return -EOPNOTSUPP; 2194 if (!len) 2195 return 0; 2196 return master->_lock_user_prot_reg(master, from, len); 2197 } 2198 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 2199 2200 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2201 { 2202 struct mtd_info *master = mtd_get_master(mtd); 2203 2204 if (!master->_erase_user_prot_reg) 2205 return -EOPNOTSUPP; 2206 if (!len) 2207 return 0; 2208 return master->_erase_user_prot_reg(master, from, len); 2209 } 2210 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg); 2211 2212 /* Chip-supported device locking */ 2213 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2214 { 2215 struct mtd_info *master = mtd_get_master(mtd); 2216 2217 if (!master->_lock) 2218 return -EOPNOTSUPP; 2219 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2220 return -EINVAL; 2221 if (!len) 2222 return 0; 2223 2224 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2225 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2226 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2227 } 2228 2229 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len); 2230 } 2231 EXPORT_SYMBOL_GPL(mtd_lock); 2232 2233 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2234 { 2235 struct mtd_info *master = mtd_get_master(mtd); 2236 2237 if (!master->_unlock) 2238 return -EOPNOTSUPP; 2239 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2240 return -EINVAL; 2241 if (!len) 2242 return 0; 2243 2244 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2245 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2246 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2247 } 2248 2249 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len); 2250 } 2251 EXPORT_SYMBOL_GPL(mtd_unlock); 2252 2253 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2254 { 2255 struct mtd_info *master = mtd_get_master(mtd); 2256 2257 if (!master->_is_locked) 2258 return -EOPNOTSUPP; 2259 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2260 return -EINVAL; 2261 if (!len) 2262 return 0; 2263 2264 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2265 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2266 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2267 } 2268 2269 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len); 2270 } 2271 EXPORT_SYMBOL_GPL(mtd_is_locked); 2272 2273 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 2274 { 2275 struct mtd_info *master = mtd_get_master(mtd); 2276 2277 if (ofs < 0 || ofs >= mtd->size) 2278 return -EINVAL; 2279 if (!master->_block_isreserved) 2280 return 0; 2281 2282 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2283 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2284 2285 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs)); 2286 } 2287 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 2288 2289 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 2290 { 2291 struct mtd_info *master = mtd_get_master(mtd); 2292 2293 if (ofs < 0 || ofs >= mtd->size) 2294 return -EINVAL; 2295 if (!master->_block_isbad) 2296 return 0; 2297 2298 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2299 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2300 2301 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs)); 2302 } 2303 EXPORT_SYMBOL_GPL(mtd_block_isbad); 2304 2305 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 2306 { 2307 struct mtd_info *master = mtd_get_master(mtd); 2308 int ret; 2309 2310 if (!master->_block_markbad) 2311 return -EOPNOTSUPP; 2312 if (ofs < 0 || ofs >= mtd->size) 2313 return -EINVAL; 2314 if (!(mtd->flags & MTD_WRITEABLE)) 2315 return -EROFS; 2316 2317 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2318 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2319 2320 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs)); 2321 if (ret) 2322 return ret; 2323 2324 while (mtd->parent) { 2325 mtd->ecc_stats.badblocks++; 2326 mtd = mtd->parent; 2327 } 2328 2329 return 0; 2330 } 2331 EXPORT_SYMBOL_GPL(mtd_block_markbad); 2332 2333 /* 2334 * default_mtd_writev - the default writev method 2335 * @mtd: mtd device description object pointer 2336 * @vecs: the vectors to write 2337 * @count: count of vectors in @vecs 2338 * @to: the MTD device offset to write to 2339 * @retlen: on exit contains the count of bytes written to the MTD device. 2340 * 2341 * This function returns zero in case of success and a negative error code in 2342 * case of failure. 2343 */ 2344 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2345 unsigned long count, loff_t to, size_t *retlen) 2346 { 2347 unsigned long i; 2348 size_t totlen = 0, thislen; 2349 int ret = 0; 2350 2351 for (i = 0; i < count; i++) { 2352 if (!vecs[i].iov_len) 2353 continue; 2354 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 2355 vecs[i].iov_base); 2356 totlen += thislen; 2357 if (ret || thislen != vecs[i].iov_len) 2358 break; 2359 to += vecs[i].iov_len; 2360 } 2361 *retlen = totlen; 2362 return ret; 2363 } 2364 2365 /* 2366 * mtd_writev - the vector-based MTD write method 2367 * @mtd: mtd device description object pointer 2368 * @vecs: the vectors to write 2369 * @count: count of vectors in @vecs 2370 * @to: the MTD device offset to write to 2371 * @retlen: on exit contains the count of bytes written to the MTD device. 2372 * 2373 * This function returns zero in case of success and a negative error code in 2374 * case of failure. 2375 */ 2376 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2377 unsigned long count, loff_t to, size_t *retlen) 2378 { 2379 struct mtd_info *master = mtd_get_master(mtd); 2380 2381 *retlen = 0; 2382 if (!(mtd->flags & MTD_WRITEABLE)) 2383 return -EROFS; 2384 2385 if (!master->_writev) 2386 return default_mtd_writev(mtd, vecs, count, to, retlen); 2387 2388 return master->_writev(master, vecs, count, 2389 mtd_get_master_ofs(mtd, to), retlen); 2390 } 2391 EXPORT_SYMBOL_GPL(mtd_writev); 2392 2393 /** 2394 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 2395 * @mtd: mtd device description object pointer 2396 * @size: a pointer to the ideal or maximum size of the allocation, points 2397 * to the actual allocation size on success. 2398 * 2399 * This routine attempts to allocate a contiguous kernel buffer up to 2400 * the specified size, backing off the size of the request exponentially 2401 * until the request succeeds or until the allocation size falls below 2402 * the system page size. This attempts to make sure it does not adversely 2403 * impact system performance, so when allocating more than one page, we 2404 * ask the memory allocator to avoid re-trying, swapping, writing back 2405 * or performing I/O. 2406 * 2407 * Note, this function also makes sure that the allocated buffer is aligned to 2408 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 2409 * 2410 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 2411 * to handle smaller (i.e. degraded) buffer allocations under low- or 2412 * fragmented-memory situations where such reduced allocations, from a 2413 * requested ideal, are allowed. 2414 * 2415 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 2416 */ 2417 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 2418 { 2419 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 2420 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 2421 void *kbuf; 2422 2423 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 2424 2425 while (*size > min_alloc) { 2426 kbuf = kmalloc(*size, flags); 2427 if (kbuf) 2428 return kbuf; 2429 2430 *size >>= 1; 2431 *size = ALIGN(*size, mtd->writesize); 2432 } 2433 2434 /* 2435 * For the last resort allocation allow 'kmalloc()' to do all sorts of 2436 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 2437 */ 2438 return kmalloc(*size, GFP_KERNEL); 2439 } 2440 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 2441 2442 #ifdef CONFIG_PROC_FS 2443 2444 /*====================================================================*/ 2445 /* Support for /proc/mtd */ 2446 2447 static int mtd_proc_show(struct seq_file *m, void *v) 2448 { 2449 struct mtd_info *mtd; 2450 2451 seq_puts(m, "dev: size erasesize name\n"); 2452 mutex_lock(&mtd_table_mutex); 2453 mtd_for_each_device(mtd) { 2454 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 2455 mtd->index, (unsigned long long)mtd->size, 2456 mtd->erasesize, mtd->name); 2457 } 2458 mutex_unlock(&mtd_table_mutex); 2459 return 0; 2460 } 2461 #endif /* CONFIG_PROC_FS */ 2462 2463 /*====================================================================*/ 2464 /* Init code */ 2465 2466 static struct backing_dev_info * __init mtd_bdi_init(const char *name) 2467 { 2468 struct backing_dev_info *bdi; 2469 int ret; 2470 2471 bdi = bdi_alloc(NUMA_NO_NODE); 2472 if (!bdi) 2473 return ERR_PTR(-ENOMEM); 2474 bdi->ra_pages = 0; 2475 bdi->io_pages = 0; 2476 2477 /* 2478 * We put '-0' suffix to the name to get the same name format as we 2479 * used to get. Since this is called only once, we get a unique name. 2480 */ 2481 ret = bdi_register(bdi, "%.28s-0", name); 2482 if (ret) 2483 bdi_put(bdi); 2484 2485 return ret ? ERR_PTR(ret) : bdi; 2486 } 2487 2488 static struct proc_dir_entry *proc_mtd; 2489 2490 static int __init init_mtd(void) 2491 { 2492 int ret; 2493 2494 ret = class_register(&mtd_class); 2495 if (ret) 2496 goto err_reg; 2497 2498 mtd_bdi = mtd_bdi_init("mtd"); 2499 if (IS_ERR(mtd_bdi)) { 2500 ret = PTR_ERR(mtd_bdi); 2501 goto err_bdi; 2502 } 2503 2504 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show); 2505 2506 ret = init_mtdchar(); 2507 if (ret) 2508 goto out_procfs; 2509 2510 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 2511 debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd, 2512 &mtd_expert_analysis_mode); 2513 2514 return 0; 2515 2516 out_procfs: 2517 if (proc_mtd) 2518 remove_proc_entry("mtd", NULL); 2519 bdi_unregister(mtd_bdi); 2520 bdi_put(mtd_bdi); 2521 err_bdi: 2522 class_unregister(&mtd_class); 2523 err_reg: 2524 pr_err("Error registering mtd class or bdi: %d\n", ret); 2525 return ret; 2526 } 2527 2528 static void __exit cleanup_mtd(void) 2529 { 2530 debugfs_remove_recursive(dfs_dir_mtd); 2531 cleanup_mtdchar(); 2532 if (proc_mtd) 2533 remove_proc_entry("mtd", NULL); 2534 class_unregister(&mtd_class); 2535 bdi_unregister(mtd_bdi); 2536 bdi_put(mtd_bdi); 2537 idr_destroy(&mtd_idr); 2538 } 2539 2540 module_init(init_mtd); 2541 module_exit(cleanup_mtd); 2542 2543 MODULE_LICENSE("GPL"); 2544 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 2545 MODULE_DESCRIPTION("Core MTD registration and access routines"); 2546