1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Core registration and callback routines for MTD 4 * drivers and users. 5 * 6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 7 * Copyright © 2006 Red Hat UK Limited 8 */ 9 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/ptrace.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/timer.h> 16 #include <linux/major.h> 17 #include <linux/fs.h> 18 #include <linux/err.h> 19 #include <linux/ioctl.h> 20 #include <linux/init.h> 21 #include <linux/of.h> 22 #include <linux/proc_fs.h> 23 #include <linux/idr.h> 24 #include <linux/backing-dev.h> 25 #include <linux/gfp.h> 26 #include <linux/slab.h> 27 #include <linux/reboot.h> 28 #include <linux/leds.h> 29 #include <linux/debugfs.h> 30 #include <linux/nvmem-provider.h> 31 32 #include <linux/mtd/mtd.h> 33 #include <linux/mtd/partitions.h> 34 35 #include "mtdcore.h" 36 37 struct backing_dev_info *mtd_bdi; 38 39 #ifdef CONFIG_PM_SLEEP 40 41 static int mtd_cls_suspend(struct device *dev) 42 { 43 struct mtd_info *mtd = dev_get_drvdata(dev); 44 45 return mtd ? mtd_suspend(mtd) : 0; 46 } 47 48 static int mtd_cls_resume(struct device *dev) 49 { 50 struct mtd_info *mtd = dev_get_drvdata(dev); 51 52 if (mtd) 53 mtd_resume(mtd); 54 return 0; 55 } 56 57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 59 #else 60 #define MTD_CLS_PM_OPS NULL 61 #endif 62 63 static struct class mtd_class = { 64 .name = "mtd", 65 .owner = THIS_MODULE, 66 .pm = MTD_CLS_PM_OPS, 67 }; 68 69 static DEFINE_IDR(mtd_idr); 70 71 /* These are exported solely for the purpose of mtd_blkdevs.c. You 72 should not use them for _anything_ else */ 73 DEFINE_MUTEX(mtd_table_mutex); 74 EXPORT_SYMBOL_GPL(mtd_table_mutex); 75 76 struct mtd_info *__mtd_next_device(int i) 77 { 78 return idr_get_next(&mtd_idr, &i); 79 } 80 EXPORT_SYMBOL_GPL(__mtd_next_device); 81 82 static LIST_HEAD(mtd_notifiers); 83 84 85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 86 87 /* REVISIT once MTD uses the driver model better, whoever allocates 88 * the mtd_info will probably want to use the release() hook... 89 */ 90 static void mtd_release(struct device *dev) 91 { 92 struct mtd_info *mtd = dev_get_drvdata(dev); 93 dev_t index = MTD_DEVT(mtd->index); 94 95 /* remove /dev/mtdXro node */ 96 device_destroy(&mtd_class, index + 1); 97 } 98 99 static ssize_t mtd_type_show(struct device *dev, 100 struct device_attribute *attr, char *buf) 101 { 102 struct mtd_info *mtd = dev_get_drvdata(dev); 103 char *type; 104 105 switch (mtd->type) { 106 case MTD_ABSENT: 107 type = "absent"; 108 break; 109 case MTD_RAM: 110 type = "ram"; 111 break; 112 case MTD_ROM: 113 type = "rom"; 114 break; 115 case MTD_NORFLASH: 116 type = "nor"; 117 break; 118 case MTD_NANDFLASH: 119 type = "nand"; 120 break; 121 case MTD_DATAFLASH: 122 type = "dataflash"; 123 break; 124 case MTD_UBIVOLUME: 125 type = "ubi"; 126 break; 127 case MTD_MLCNANDFLASH: 128 type = "mlc-nand"; 129 break; 130 default: 131 type = "unknown"; 132 } 133 134 return snprintf(buf, PAGE_SIZE, "%s\n", type); 135 } 136 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 137 138 static ssize_t mtd_flags_show(struct device *dev, 139 struct device_attribute *attr, char *buf) 140 { 141 struct mtd_info *mtd = dev_get_drvdata(dev); 142 143 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 144 } 145 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 146 147 static ssize_t mtd_size_show(struct device *dev, 148 struct device_attribute *attr, char *buf) 149 { 150 struct mtd_info *mtd = dev_get_drvdata(dev); 151 152 return snprintf(buf, PAGE_SIZE, "%llu\n", 153 (unsigned long long)mtd->size); 154 } 155 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 156 157 static ssize_t mtd_erasesize_show(struct device *dev, 158 struct device_attribute *attr, char *buf) 159 { 160 struct mtd_info *mtd = dev_get_drvdata(dev); 161 162 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 163 } 164 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 165 166 static ssize_t mtd_writesize_show(struct device *dev, 167 struct device_attribute *attr, char *buf) 168 { 169 struct mtd_info *mtd = dev_get_drvdata(dev); 170 171 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 172 } 173 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 174 175 static ssize_t mtd_subpagesize_show(struct device *dev, 176 struct device_attribute *attr, char *buf) 177 { 178 struct mtd_info *mtd = dev_get_drvdata(dev); 179 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 180 181 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 182 } 183 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 184 185 static ssize_t mtd_oobsize_show(struct device *dev, 186 struct device_attribute *attr, char *buf) 187 { 188 struct mtd_info *mtd = dev_get_drvdata(dev); 189 190 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 191 } 192 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 193 194 static ssize_t mtd_oobavail_show(struct device *dev, 195 struct device_attribute *attr, char *buf) 196 { 197 struct mtd_info *mtd = dev_get_drvdata(dev); 198 199 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail); 200 } 201 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL); 202 203 static ssize_t mtd_numeraseregions_show(struct device *dev, 204 struct device_attribute *attr, char *buf) 205 { 206 struct mtd_info *mtd = dev_get_drvdata(dev); 207 208 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 209 } 210 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 211 NULL); 212 213 static ssize_t mtd_name_show(struct device *dev, 214 struct device_attribute *attr, char *buf) 215 { 216 struct mtd_info *mtd = dev_get_drvdata(dev); 217 218 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 219 } 220 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 221 222 static ssize_t mtd_ecc_strength_show(struct device *dev, 223 struct device_attribute *attr, char *buf) 224 { 225 struct mtd_info *mtd = dev_get_drvdata(dev); 226 227 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 228 } 229 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 230 231 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 232 struct device_attribute *attr, 233 char *buf) 234 { 235 struct mtd_info *mtd = dev_get_drvdata(dev); 236 237 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 238 } 239 240 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 241 struct device_attribute *attr, 242 const char *buf, size_t count) 243 { 244 struct mtd_info *mtd = dev_get_drvdata(dev); 245 unsigned int bitflip_threshold; 246 int retval; 247 248 retval = kstrtouint(buf, 0, &bitflip_threshold); 249 if (retval) 250 return retval; 251 252 mtd->bitflip_threshold = bitflip_threshold; 253 return count; 254 } 255 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 256 mtd_bitflip_threshold_show, 257 mtd_bitflip_threshold_store); 258 259 static ssize_t mtd_ecc_step_size_show(struct device *dev, 260 struct device_attribute *attr, char *buf) 261 { 262 struct mtd_info *mtd = dev_get_drvdata(dev); 263 264 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 265 266 } 267 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 268 269 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev, 270 struct device_attribute *attr, char *buf) 271 { 272 struct mtd_info *mtd = dev_get_drvdata(dev); 273 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 274 275 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected); 276 } 277 static DEVICE_ATTR(corrected_bits, S_IRUGO, 278 mtd_ecc_stats_corrected_show, NULL); 279 280 static ssize_t mtd_ecc_stats_errors_show(struct device *dev, 281 struct device_attribute *attr, char *buf) 282 { 283 struct mtd_info *mtd = dev_get_drvdata(dev); 284 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 285 286 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed); 287 } 288 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL); 289 290 static ssize_t mtd_badblocks_show(struct device *dev, 291 struct device_attribute *attr, char *buf) 292 { 293 struct mtd_info *mtd = dev_get_drvdata(dev); 294 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 295 296 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks); 297 } 298 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL); 299 300 static ssize_t mtd_bbtblocks_show(struct device *dev, 301 struct device_attribute *attr, char *buf) 302 { 303 struct mtd_info *mtd = dev_get_drvdata(dev); 304 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 305 306 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks); 307 } 308 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL); 309 310 static struct attribute *mtd_attrs[] = { 311 &dev_attr_type.attr, 312 &dev_attr_flags.attr, 313 &dev_attr_size.attr, 314 &dev_attr_erasesize.attr, 315 &dev_attr_writesize.attr, 316 &dev_attr_subpagesize.attr, 317 &dev_attr_oobsize.attr, 318 &dev_attr_oobavail.attr, 319 &dev_attr_numeraseregions.attr, 320 &dev_attr_name.attr, 321 &dev_attr_ecc_strength.attr, 322 &dev_attr_ecc_step_size.attr, 323 &dev_attr_corrected_bits.attr, 324 &dev_attr_ecc_failures.attr, 325 &dev_attr_bad_blocks.attr, 326 &dev_attr_bbt_blocks.attr, 327 &dev_attr_bitflip_threshold.attr, 328 NULL, 329 }; 330 ATTRIBUTE_GROUPS(mtd); 331 332 static const struct device_type mtd_devtype = { 333 .name = "mtd", 334 .groups = mtd_groups, 335 .release = mtd_release, 336 }; 337 338 static int mtd_partid_debug_show(struct seq_file *s, void *p) 339 { 340 struct mtd_info *mtd = s->private; 341 342 seq_printf(s, "%s\n", mtd->dbg.partid); 343 344 return 0; 345 } 346 347 DEFINE_SHOW_ATTRIBUTE(mtd_partid_debug); 348 349 static int mtd_partname_debug_show(struct seq_file *s, void *p) 350 { 351 struct mtd_info *mtd = s->private; 352 353 seq_printf(s, "%s\n", mtd->dbg.partname); 354 355 return 0; 356 } 357 358 DEFINE_SHOW_ATTRIBUTE(mtd_partname_debug); 359 360 static struct dentry *dfs_dir_mtd; 361 362 static void mtd_debugfs_populate(struct mtd_info *mtd) 363 { 364 struct device *dev = &mtd->dev; 365 struct dentry *root; 366 367 if (IS_ERR_OR_NULL(dfs_dir_mtd)) 368 return; 369 370 root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd); 371 mtd->dbg.dfs_dir = root; 372 373 if (mtd->dbg.partid) 374 debugfs_create_file("partid", 0400, root, mtd, 375 &mtd_partid_debug_fops); 376 377 if (mtd->dbg.partname) 378 debugfs_create_file("partname", 0400, root, mtd, 379 &mtd_partname_debug_fops); 380 } 381 382 #ifndef CONFIG_MMU 383 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 384 { 385 switch (mtd->type) { 386 case MTD_RAM: 387 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 388 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 389 case MTD_ROM: 390 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 391 NOMMU_MAP_READ; 392 default: 393 return NOMMU_MAP_COPY; 394 } 395 } 396 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 397 #endif 398 399 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 400 void *cmd) 401 { 402 struct mtd_info *mtd; 403 404 mtd = container_of(n, struct mtd_info, reboot_notifier); 405 mtd->_reboot(mtd); 406 407 return NOTIFY_DONE; 408 } 409 410 /** 411 * mtd_wunit_to_pairing_info - get pairing information of a wunit 412 * @mtd: pointer to new MTD device info structure 413 * @wunit: write unit we are interested in 414 * @info: returned pairing information 415 * 416 * Retrieve pairing information associated to the wunit. 417 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 418 * paired together, and where programming a page may influence the page it is 419 * paired with. 420 * The notion of page is replaced by the term wunit (write-unit) to stay 421 * consistent with the ->writesize field. 422 * 423 * The @wunit argument can be extracted from an absolute offset using 424 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 425 * to @wunit. 426 * 427 * From the pairing info the MTD user can find all the wunits paired with 428 * @wunit using the following loop: 429 * 430 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 431 * info.pair = i; 432 * mtd_pairing_info_to_wunit(mtd, &info); 433 * ... 434 * } 435 */ 436 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 437 struct mtd_pairing_info *info) 438 { 439 struct mtd_info *master = mtd_get_master(mtd); 440 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master); 441 442 if (wunit < 0 || wunit >= npairs) 443 return -EINVAL; 444 445 if (master->pairing && master->pairing->get_info) 446 return master->pairing->get_info(master, wunit, info); 447 448 info->group = 0; 449 info->pair = wunit; 450 451 return 0; 452 } 453 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 454 455 /** 456 * mtd_pairing_info_to_wunit - get wunit from pairing information 457 * @mtd: pointer to new MTD device info structure 458 * @info: pairing information struct 459 * 460 * Returns a positive number representing the wunit associated to the info 461 * struct, or a negative error code. 462 * 463 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 464 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 465 * doc). 466 * 467 * It can also be used to only program the first page of each pair (i.e. 468 * page attached to group 0), which allows one to use an MLC NAND in 469 * software-emulated SLC mode: 470 * 471 * info.group = 0; 472 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 473 * for (info.pair = 0; info.pair < npairs; info.pair++) { 474 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 475 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 476 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 477 * } 478 */ 479 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 480 const struct mtd_pairing_info *info) 481 { 482 struct mtd_info *master = mtd_get_master(mtd); 483 int ngroups = mtd_pairing_groups(master); 484 int npairs = mtd_wunit_per_eb(master) / ngroups; 485 486 if (!info || info->pair < 0 || info->pair >= npairs || 487 info->group < 0 || info->group >= ngroups) 488 return -EINVAL; 489 490 if (master->pairing && master->pairing->get_wunit) 491 return mtd->pairing->get_wunit(master, info); 492 493 return info->pair; 494 } 495 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 496 497 /** 498 * mtd_pairing_groups - get the number of pairing groups 499 * @mtd: pointer to new MTD device info structure 500 * 501 * Returns the number of pairing groups. 502 * 503 * This number is usually equal to the number of bits exposed by a single 504 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 505 * to iterate over all pages of a given pair. 506 */ 507 int mtd_pairing_groups(struct mtd_info *mtd) 508 { 509 struct mtd_info *master = mtd_get_master(mtd); 510 511 if (!master->pairing || !master->pairing->ngroups) 512 return 1; 513 514 return master->pairing->ngroups; 515 } 516 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 517 518 static int mtd_nvmem_reg_read(void *priv, unsigned int offset, 519 void *val, size_t bytes) 520 { 521 struct mtd_info *mtd = priv; 522 size_t retlen; 523 int err; 524 525 err = mtd_read(mtd, offset, bytes, &retlen, val); 526 if (err && err != -EUCLEAN) 527 return err; 528 529 return retlen == bytes ? 0 : -EIO; 530 } 531 532 static int mtd_nvmem_add(struct mtd_info *mtd) 533 { 534 struct nvmem_config config = {}; 535 536 config.id = -1; 537 config.dev = &mtd->dev; 538 config.name = dev_name(&mtd->dev); 539 config.owner = THIS_MODULE; 540 config.reg_read = mtd_nvmem_reg_read; 541 config.size = mtd->size; 542 config.word_size = 1; 543 config.stride = 1; 544 config.read_only = true; 545 config.root_only = true; 546 config.no_of_node = true; 547 config.priv = mtd; 548 549 mtd->nvmem = nvmem_register(&config); 550 if (IS_ERR(mtd->nvmem)) { 551 /* Just ignore if there is no NVMEM support in the kernel */ 552 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) { 553 mtd->nvmem = NULL; 554 } else { 555 dev_err(&mtd->dev, "Failed to register NVMEM device\n"); 556 return PTR_ERR(mtd->nvmem); 557 } 558 } 559 560 return 0; 561 } 562 563 /** 564 * add_mtd_device - register an MTD device 565 * @mtd: pointer to new MTD device info structure 566 * 567 * Add a device to the list of MTD devices present in the system, and 568 * notify each currently active MTD 'user' of its arrival. Returns 569 * zero on success or non-zero on failure. 570 */ 571 572 int add_mtd_device(struct mtd_info *mtd) 573 { 574 struct mtd_info *master = mtd_get_master(mtd); 575 struct mtd_notifier *not; 576 int i, error; 577 578 /* 579 * May occur, for instance, on buggy drivers which call 580 * mtd_device_parse_register() multiple times on the same master MTD, 581 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 582 */ 583 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 584 return -EEXIST; 585 586 BUG_ON(mtd->writesize == 0); 587 588 /* 589 * MTD drivers should implement ->_{write,read}() or 590 * ->_{write,read}_oob(), but not both. 591 */ 592 if (WARN_ON((mtd->_write && mtd->_write_oob) || 593 (mtd->_read && mtd->_read_oob))) 594 return -EINVAL; 595 596 if (WARN_ON((!mtd->erasesize || !master->_erase) && 597 !(mtd->flags & MTD_NO_ERASE))) 598 return -EINVAL; 599 600 /* 601 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the 602 * master is an MLC NAND and has a proper pairing scheme defined. 603 * We also reject masters that implement ->_writev() for now, because 604 * NAND controller drivers don't implement this hook, and adding the 605 * SLC -> MLC address/length conversion to this path is useless if we 606 * don't have a user. 607 */ 608 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION && 609 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH || 610 !master->pairing || master->_writev)) 611 return -EINVAL; 612 613 mutex_lock(&mtd_table_mutex); 614 615 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 616 if (i < 0) { 617 error = i; 618 goto fail_locked; 619 } 620 621 mtd->index = i; 622 mtd->usecount = 0; 623 624 /* default value if not set by driver */ 625 if (mtd->bitflip_threshold == 0) 626 mtd->bitflip_threshold = mtd->ecc_strength; 627 628 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 629 int ngroups = mtd_pairing_groups(master); 630 631 mtd->erasesize /= ngroups; 632 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) * 633 mtd->erasesize; 634 } 635 636 if (is_power_of_2(mtd->erasesize)) 637 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 638 else 639 mtd->erasesize_shift = 0; 640 641 if (is_power_of_2(mtd->writesize)) 642 mtd->writesize_shift = ffs(mtd->writesize) - 1; 643 else 644 mtd->writesize_shift = 0; 645 646 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 647 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 648 649 /* Some chips always power up locked. Unlock them now */ 650 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 651 error = mtd_unlock(mtd, 0, mtd->size); 652 if (error && error != -EOPNOTSUPP) 653 printk(KERN_WARNING 654 "%s: unlock failed, writes may not work\n", 655 mtd->name); 656 /* Ignore unlock failures? */ 657 error = 0; 658 } 659 660 /* Caller should have set dev.parent to match the 661 * physical device, if appropriate. 662 */ 663 mtd->dev.type = &mtd_devtype; 664 mtd->dev.class = &mtd_class; 665 mtd->dev.devt = MTD_DEVT(i); 666 dev_set_name(&mtd->dev, "mtd%d", i); 667 dev_set_drvdata(&mtd->dev, mtd); 668 of_node_get(mtd_get_of_node(mtd)); 669 error = device_register(&mtd->dev); 670 if (error) 671 goto fail_added; 672 673 /* Add the nvmem provider */ 674 error = mtd_nvmem_add(mtd); 675 if (error) 676 goto fail_nvmem_add; 677 678 mtd_debugfs_populate(mtd); 679 680 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 681 "mtd%dro", i); 682 683 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 684 /* No need to get a refcount on the module containing 685 the notifier, since we hold the mtd_table_mutex */ 686 list_for_each_entry(not, &mtd_notifiers, list) 687 not->add(mtd); 688 689 mutex_unlock(&mtd_table_mutex); 690 /* We _know_ we aren't being removed, because 691 our caller is still holding us here. So none 692 of this try_ nonsense, and no bitching about it 693 either. :) */ 694 __module_get(THIS_MODULE); 695 return 0; 696 697 fail_nvmem_add: 698 device_unregister(&mtd->dev); 699 fail_added: 700 of_node_put(mtd_get_of_node(mtd)); 701 idr_remove(&mtd_idr, i); 702 fail_locked: 703 mutex_unlock(&mtd_table_mutex); 704 return error; 705 } 706 707 /** 708 * del_mtd_device - unregister an MTD device 709 * @mtd: pointer to MTD device info structure 710 * 711 * Remove a device from the list of MTD devices present in the system, 712 * and notify each currently active MTD 'user' of its departure. 713 * Returns zero on success or 1 on failure, which currently will happen 714 * if the requested device does not appear to be present in the list. 715 */ 716 717 int del_mtd_device(struct mtd_info *mtd) 718 { 719 int ret; 720 struct mtd_notifier *not; 721 722 mutex_lock(&mtd_table_mutex); 723 724 debugfs_remove_recursive(mtd->dbg.dfs_dir); 725 726 if (idr_find(&mtd_idr, mtd->index) != mtd) { 727 ret = -ENODEV; 728 goto out_error; 729 } 730 731 /* No need to get a refcount on the module containing 732 the notifier, since we hold the mtd_table_mutex */ 733 list_for_each_entry(not, &mtd_notifiers, list) 734 not->remove(mtd); 735 736 if (mtd->usecount) { 737 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 738 mtd->index, mtd->name, mtd->usecount); 739 ret = -EBUSY; 740 } else { 741 /* Try to remove the NVMEM provider */ 742 if (mtd->nvmem) 743 nvmem_unregister(mtd->nvmem); 744 745 device_unregister(&mtd->dev); 746 747 idr_remove(&mtd_idr, mtd->index); 748 of_node_put(mtd_get_of_node(mtd)); 749 750 module_put(THIS_MODULE); 751 ret = 0; 752 } 753 754 out_error: 755 mutex_unlock(&mtd_table_mutex); 756 return ret; 757 } 758 759 /* 760 * Set a few defaults based on the parent devices, if not provided by the 761 * driver 762 */ 763 static void mtd_set_dev_defaults(struct mtd_info *mtd) 764 { 765 if (mtd->dev.parent) { 766 if (!mtd->owner && mtd->dev.parent->driver) 767 mtd->owner = mtd->dev.parent->driver->owner; 768 if (!mtd->name) 769 mtd->name = dev_name(mtd->dev.parent); 770 } else { 771 pr_debug("mtd device won't show a device symlink in sysfs\n"); 772 } 773 774 INIT_LIST_HEAD(&mtd->partitions); 775 mutex_init(&mtd->master.partitions_lock); 776 } 777 778 /** 779 * mtd_device_parse_register - parse partitions and register an MTD device. 780 * 781 * @mtd: the MTD device to register 782 * @types: the list of MTD partition probes to try, see 783 * 'parse_mtd_partitions()' for more information 784 * @parser_data: MTD partition parser-specific data 785 * @parts: fallback partition information to register, if parsing fails; 786 * only valid if %nr_parts > %0 787 * @nr_parts: the number of partitions in parts, if zero then the full 788 * MTD device is registered if no partition info is found 789 * 790 * This function aggregates MTD partitions parsing (done by 791 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 792 * basically follows the most common pattern found in many MTD drivers: 793 * 794 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is 795 * registered first. 796 * * Then It tries to probe partitions on MTD device @mtd using parsers 797 * specified in @types (if @types is %NULL, then the default list of parsers 798 * is used, see 'parse_mtd_partitions()' for more information). If none are 799 * found this functions tries to fallback to information specified in 800 * @parts/@nr_parts. 801 * * If no partitions were found this function just registers the MTD device 802 * @mtd and exits. 803 * 804 * Returns zero in case of success and a negative error code in case of failure. 805 */ 806 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 807 struct mtd_part_parser_data *parser_data, 808 const struct mtd_partition *parts, 809 int nr_parts) 810 { 811 int ret; 812 813 mtd_set_dev_defaults(mtd); 814 815 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 816 ret = add_mtd_device(mtd); 817 if (ret) 818 return ret; 819 } 820 821 /* Prefer parsed partitions over driver-provided fallback */ 822 ret = parse_mtd_partitions(mtd, types, parser_data); 823 if (ret > 0) 824 ret = 0; 825 else if (nr_parts) 826 ret = add_mtd_partitions(mtd, parts, nr_parts); 827 else if (!device_is_registered(&mtd->dev)) 828 ret = add_mtd_device(mtd); 829 else 830 ret = 0; 831 832 if (ret) 833 goto out; 834 835 /* 836 * FIXME: some drivers unfortunately call this function more than once. 837 * So we have to check if we've already assigned the reboot notifier. 838 * 839 * Generally, we can make multiple calls work for most cases, but it 840 * does cause problems with parse_mtd_partitions() above (e.g., 841 * cmdlineparts will register partitions more than once). 842 */ 843 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 844 "MTD already registered\n"); 845 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 846 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 847 register_reboot_notifier(&mtd->reboot_notifier); 848 } 849 850 out: 851 if (ret && device_is_registered(&mtd->dev)) 852 del_mtd_device(mtd); 853 854 return ret; 855 } 856 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 857 858 /** 859 * mtd_device_unregister - unregister an existing MTD device. 860 * 861 * @master: the MTD device to unregister. This will unregister both the master 862 * and any partitions if registered. 863 */ 864 int mtd_device_unregister(struct mtd_info *master) 865 { 866 int err; 867 868 if (master->_reboot) 869 unregister_reboot_notifier(&master->reboot_notifier); 870 871 err = del_mtd_partitions(master); 872 if (err) 873 return err; 874 875 if (!device_is_registered(&master->dev)) 876 return 0; 877 878 return del_mtd_device(master); 879 } 880 EXPORT_SYMBOL_GPL(mtd_device_unregister); 881 882 /** 883 * register_mtd_user - register a 'user' of MTD devices. 884 * @new: pointer to notifier info structure 885 * 886 * Registers a pair of callbacks function to be called upon addition 887 * or removal of MTD devices. Causes the 'add' callback to be immediately 888 * invoked for each MTD device currently present in the system. 889 */ 890 void register_mtd_user (struct mtd_notifier *new) 891 { 892 struct mtd_info *mtd; 893 894 mutex_lock(&mtd_table_mutex); 895 896 list_add(&new->list, &mtd_notifiers); 897 898 __module_get(THIS_MODULE); 899 900 mtd_for_each_device(mtd) 901 new->add(mtd); 902 903 mutex_unlock(&mtd_table_mutex); 904 } 905 EXPORT_SYMBOL_GPL(register_mtd_user); 906 907 /** 908 * unregister_mtd_user - unregister a 'user' of MTD devices. 909 * @old: pointer to notifier info structure 910 * 911 * Removes a callback function pair from the list of 'users' to be 912 * notified upon addition or removal of MTD devices. Causes the 913 * 'remove' callback to be immediately invoked for each MTD device 914 * currently present in the system. 915 */ 916 int unregister_mtd_user (struct mtd_notifier *old) 917 { 918 struct mtd_info *mtd; 919 920 mutex_lock(&mtd_table_mutex); 921 922 module_put(THIS_MODULE); 923 924 mtd_for_each_device(mtd) 925 old->remove(mtd); 926 927 list_del(&old->list); 928 mutex_unlock(&mtd_table_mutex); 929 return 0; 930 } 931 EXPORT_SYMBOL_GPL(unregister_mtd_user); 932 933 /** 934 * get_mtd_device - obtain a validated handle for an MTD device 935 * @mtd: last known address of the required MTD device 936 * @num: internal device number of the required MTD device 937 * 938 * Given a number and NULL address, return the num'th entry in the device 939 * table, if any. Given an address and num == -1, search the device table 940 * for a device with that address and return if it's still present. Given 941 * both, return the num'th driver only if its address matches. Return 942 * error code if not. 943 */ 944 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 945 { 946 struct mtd_info *ret = NULL, *other; 947 int err = -ENODEV; 948 949 mutex_lock(&mtd_table_mutex); 950 951 if (num == -1) { 952 mtd_for_each_device(other) { 953 if (other == mtd) { 954 ret = mtd; 955 break; 956 } 957 } 958 } else if (num >= 0) { 959 ret = idr_find(&mtd_idr, num); 960 if (mtd && mtd != ret) 961 ret = NULL; 962 } 963 964 if (!ret) { 965 ret = ERR_PTR(err); 966 goto out; 967 } 968 969 err = __get_mtd_device(ret); 970 if (err) 971 ret = ERR_PTR(err); 972 out: 973 mutex_unlock(&mtd_table_mutex); 974 return ret; 975 } 976 EXPORT_SYMBOL_GPL(get_mtd_device); 977 978 979 int __get_mtd_device(struct mtd_info *mtd) 980 { 981 struct mtd_info *master = mtd_get_master(mtd); 982 int err; 983 984 if (!try_module_get(master->owner)) 985 return -ENODEV; 986 987 if (master->_get_device) { 988 err = master->_get_device(mtd); 989 990 if (err) { 991 module_put(master->owner); 992 return err; 993 } 994 } 995 996 while (mtd->parent) { 997 mtd->usecount++; 998 mtd = mtd->parent; 999 } 1000 1001 return 0; 1002 } 1003 EXPORT_SYMBOL_GPL(__get_mtd_device); 1004 1005 /** 1006 * get_mtd_device_nm - obtain a validated handle for an MTD device by 1007 * device name 1008 * @name: MTD device name to open 1009 * 1010 * This function returns MTD device description structure in case of 1011 * success and an error code in case of failure. 1012 */ 1013 struct mtd_info *get_mtd_device_nm(const char *name) 1014 { 1015 int err = -ENODEV; 1016 struct mtd_info *mtd = NULL, *other; 1017 1018 mutex_lock(&mtd_table_mutex); 1019 1020 mtd_for_each_device(other) { 1021 if (!strcmp(name, other->name)) { 1022 mtd = other; 1023 break; 1024 } 1025 } 1026 1027 if (!mtd) 1028 goto out_unlock; 1029 1030 err = __get_mtd_device(mtd); 1031 if (err) 1032 goto out_unlock; 1033 1034 mutex_unlock(&mtd_table_mutex); 1035 return mtd; 1036 1037 out_unlock: 1038 mutex_unlock(&mtd_table_mutex); 1039 return ERR_PTR(err); 1040 } 1041 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 1042 1043 void put_mtd_device(struct mtd_info *mtd) 1044 { 1045 mutex_lock(&mtd_table_mutex); 1046 __put_mtd_device(mtd); 1047 mutex_unlock(&mtd_table_mutex); 1048 1049 } 1050 EXPORT_SYMBOL_GPL(put_mtd_device); 1051 1052 void __put_mtd_device(struct mtd_info *mtd) 1053 { 1054 struct mtd_info *master = mtd_get_master(mtd); 1055 1056 while (mtd->parent) { 1057 --mtd->usecount; 1058 BUG_ON(mtd->usecount < 0); 1059 mtd = mtd->parent; 1060 } 1061 1062 if (master->_put_device) 1063 master->_put_device(master); 1064 1065 module_put(master->owner); 1066 } 1067 EXPORT_SYMBOL_GPL(__put_mtd_device); 1068 1069 /* 1070 * Erase is an synchronous operation. Device drivers are epected to return a 1071 * negative error code if the operation failed and update instr->fail_addr 1072 * to point the portion that was not properly erased. 1073 */ 1074 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 1075 { 1076 struct mtd_info *master = mtd_get_master(mtd); 1077 u64 mst_ofs = mtd_get_master_ofs(mtd, 0); 1078 struct erase_info adjinstr; 1079 int ret; 1080 1081 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 1082 adjinstr = *instr; 1083 1084 if (!mtd->erasesize || !master->_erase) 1085 return -ENOTSUPP; 1086 1087 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 1088 return -EINVAL; 1089 if (!(mtd->flags & MTD_WRITEABLE)) 1090 return -EROFS; 1091 1092 if (!instr->len) 1093 return 0; 1094 1095 ledtrig_mtd_activity(); 1096 1097 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1098 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) * 1099 master->erasesize; 1100 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) * 1101 master->erasesize) - 1102 adjinstr.addr; 1103 } 1104 1105 adjinstr.addr += mst_ofs; 1106 1107 ret = master->_erase(master, &adjinstr); 1108 1109 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) { 1110 instr->fail_addr = adjinstr.fail_addr - mst_ofs; 1111 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1112 instr->fail_addr = mtd_div_by_eb(instr->fail_addr, 1113 master); 1114 instr->fail_addr *= mtd->erasesize; 1115 } 1116 } 1117 1118 return ret; 1119 } 1120 EXPORT_SYMBOL_GPL(mtd_erase); 1121 1122 /* 1123 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 1124 */ 1125 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1126 void **virt, resource_size_t *phys) 1127 { 1128 struct mtd_info *master = mtd_get_master(mtd); 1129 1130 *retlen = 0; 1131 *virt = NULL; 1132 if (phys) 1133 *phys = 0; 1134 if (!master->_point) 1135 return -EOPNOTSUPP; 1136 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1137 return -EINVAL; 1138 if (!len) 1139 return 0; 1140 1141 from = mtd_get_master_ofs(mtd, from); 1142 return master->_point(master, from, len, retlen, virt, phys); 1143 } 1144 EXPORT_SYMBOL_GPL(mtd_point); 1145 1146 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 1147 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1148 { 1149 struct mtd_info *master = mtd_get_master(mtd); 1150 1151 if (!master->_unpoint) 1152 return -EOPNOTSUPP; 1153 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1154 return -EINVAL; 1155 if (!len) 1156 return 0; 1157 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len); 1158 } 1159 EXPORT_SYMBOL_GPL(mtd_unpoint); 1160 1161 /* 1162 * Allow NOMMU mmap() to directly map the device (if not NULL) 1163 * - return the address to which the offset maps 1164 * - return -ENOSYS to indicate refusal to do the mapping 1165 */ 1166 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1167 unsigned long offset, unsigned long flags) 1168 { 1169 size_t retlen; 1170 void *virt; 1171 int ret; 1172 1173 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); 1174 if (ret) 1175 return ret; 1176 if (retlen != len) { 1177 mtd_unpoint(mtd, offset, retlen); 1178 return -ENOSYS; 1179 } 1180 return (unsigned long)virt; 1181 } 1182 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1183 1184 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master, 1185 const struct mtd_ecc_stats *old_stats) 1186 { 1187 struct mtd_ecc_stats diff; 1188 1189 if (master == mtd) 1190 return; 1191 1192 diff = master->ecc_stats; 1193 diff.failed -= old_stats->failed; 1194 diff.corrected -= old_stats->corrected; 1195 1196 while (mtd->parent) { 1197 mtd->ecc_stats.failed += diff.failed; 1198 mtd->ecc_stats.corrected += diff.corrected; 1199 mtd = mtd->parent; 1200 } 1201 } 1202 1203 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1204 u_char *buf) 1205 { 1206 struct mtd_oob_ops ops = { 1207 .len = len, 1208 .datbuf = buf, 1209 }; 1210 int ret; 1211 1212 ret = mtd_read_oob(mtd, from, &ops); 1213 *retlen = ops.retlen; 1214 1215 return ret; 1216 } 1217 EXPORT_SYMBOL_GPL(mtd_read); 1218 1219 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1220 const u_char *buf) 1221 { 1222 struct mtd_oob_ops ops = { 1223 .len = len, 1224 .datbuf = (u8 *)buf, 1225 }; 1226 int ret; 1227 1228 ret = mtd_write_oob(mtd, to, &ops); 1229 *retlen = ops.retlen; 1230 1231 return ret; 1232 } 1233 EXPORT_SYMBOL_GPL(mtd_write); 1234 1235 /* 1236 * In blackbox flight recorder like scenarios we want to make successful writes 1237 * in interrupt context. panic_write() is only intended to be called when its 1238 * known the kernel is about to panic and we need the write to succeed. Since 1239 * the kernel is not going to be running for much longer, this function can 1240 * break locks and delay to ensure the write succeeds (but not sleep). 1241 */ 1242 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1243 const u_char *buf) 1244 { 1245 struct mtd_info *master = mtd_get_master(mtd); 1246 1247 *retlen = 0; 1248 if (!master->_panic_write) 1249 return -EOPNOTSUPP; 1250 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1251 return -EINVAL; 1252 if (!(mtd->flags & MTD_WRITEABLE)) 1253 return -EROFS; 1254 if (!len) 1255 return 0; 1256 if (!master->oops_panic_write) 1257 master->oops_panic_write = true; 1258 1259 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len, 1260 retlen, buf); 1261 } 1262 EXPORT_SYMBOL_GPL(mtd_panic_write); 1263 1264 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1265 struct mtd_oob_ops *ops) 1266 { 1267 /* 1268 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1269 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1270 * this case. 1271 */ 1272 if (!ops->datbuf) 1273 ops->len = 0; 1274 1275 if (!ops->oobbuf) 1276 ops->ooblen = 0; 1277 1278 if (offs < 0 || offs + ops->len > mtd->size) 1279 return -EINVAL; 1280 1281 if (ops->ooblen) { 1282 size_t maxooblen; 1283 1284 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1285 return -EINVAL; 1286 1287 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) - 1288 mtd_div_by_ws(offs, mtd)) * 1289 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1290 if (ops->ooblen > maxooblen) 1291 return -EINVAL; 1292 } 1293 1294 return 0; 1295 } 1296 1297 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from, 1298 struct mtd_oob_ops *ops) 1299 { 1300 struct mtd_info *master = mtd_get_master(mtd); 1301 int ret; 1302 1303 from = mtd_get_master_ofs(mtd, from); 1304 if (master->_read_oob) 1305 ret = master->_read_oob(master, from, ops); 1306 else 1307 ret = master->_read(master, from, ops->len, &ops->retlen, 1308 ops->datbuf); 1309 1310 return ret; 1311 } 1312 1313 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to, 1314 struct mtd_oob_ops *ops) 1315 { 1316 struct mtd_info *master = mtd_get_master(mtd); 1317 int ret; 1318 1319 to = mtd_get_master_ofs(mtd, to); 1320 if (master->_write_oob) 1321 ret = master->_write_oob(master, to, ops); 1322 else 1323 ret = master->_write(master, to, ops->len, &ops->retlen, 1324 ops->datbuf); 1325 1326 return ret; 1327 } 1328 1329 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read, 1330 struct mtd_oob_ops *ops) 1331 { 1332 struct mtd_info *master = mtd_get_master(mtd); 1333 int ngroups = mtd_pairing_groups(master); 1334 int npairs = mtd_wunit_per_eb(master) / ngroups; 1335 struct mtd_oob_ops adjops = *ops; 1336 unsigned int wunit, oobavail; 1337 struct mtd_pairing_info info; 1338 int max_bitflips = 0; 1339 u32 ebofs, pageofs; 1340 loff_t base, pos; 1341 1342 ebofs = mtd_mod_by_eb(start, mtd); 1343 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize; 1344 info.group = 0; 1345 info.pair = mtd_div_by_ws(ebofs, mtd); 1346 pageofs = mtd_mod_by_ws(ebofs, mtd); 1347 oobavail = mtd_oobavail(mtd, ops); 1348 1349 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) { 1350 int ret; 1351 1352 if (info.pair >= npairs) { 1353 info.pair = 0; 1354 base += master->erasesize; 1355 } 1356 1357 wunit = mtd_pairing_info_to_wunit(master, &info); 1358 pos = mtd_wunit_to_offset(mtd, base, wunit); 1359 1360 adjops.len = ops->len - ops->retlen; 1361 if (adjops.len > mtd->writesize - pageofs) 1362 adjops.len = mtd->writesize - pageofs; 1363 1364 adjops.ooblen = ops->ooblen - ops->oobretlen; 1365 if (adjops.ooblen > oobavail - adjops.ooboffs) 1366 adjops.ooblen = oobavail - adjops.ooboffs; 1367 1368 if (read) { 1369 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops); 1370 if (ret > 0) 1371 max_bitflips = max(max_bitflips, ret); 1372 } else { 1373 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops); 1374 } 1375 1376 if (ret < 0) 1377 return ret; 1378 1379 max_bitflips = max(max_bitflips, ret); 1380 ops->retlen += adjops.retlen; 1381 ops->oobretlen += adjops.oobretlen; 1382 adjops.datbuf += adjops.retlen; 1383 adjops.oobbuf += adjops.oobretlen; 1384 adjops.ooboffs = 0; 1385 pageofs = 0; 1386 info.pair++; 1387 } 1388 1389 return max_bitflips; 1390 } 1391 1392 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1393 { 1394 struct mtd_info *master = mtd_get_master(mtd); 1395 struct mtd_ecc_stats old_stats = master->ecc_stats; 1396 int ret_code; 1397 1398 ops->retlen = ops->oobretlen = 0; 1399 1400 ret_code = mtd_check_oob_ops(mtd, from, ops); 1401 if (ret_code) 1402 return ret_code; 1403 1404 ledtrig_mtd_activity(); 1405 1406 /* Check the validity of a potential fallback on mtd->_read */ 1407 if (!master->_read_oob && (!master->_read || ops->oobbuf)) 1408 return -EOPNOTSUPP; 1409 1410 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1411 ret_code = mtd_io_emulated_slc(mtd, from, true, ops); 1412 else 1413 ret_code = mtd_read_oob_std(mtd, from, ops); 1414 1415 mtd_update_ecc_stats(mtd, master, &old_stats); 1416 1417 /* 1418 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1419 * similar to mtd->_read(), returning a non-negative integer 1420 * representing max bitflips. In other cases, mtd->_read_oob() may 1421 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1422 */ 1423 if (unlikely(ret_code < 0)) 1424 return ret_code; 1425 if (mtd->ecc_strength == 0) 1426 return 0; /* device lacks ecc */ 1427 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1428 } 1429 EXPORT_SYMBOL_GPL(mtd_read_oob); 1430 1431 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1432 struct mtd_oob_ops *ops) 1433 { 1434 struct mtd_info *master = mtd_get_master(mtd); 1435 int ret; 1436 1437 ops->retlen = ops->oobretlen = 0; 1438 1439 if (!(mtd->flags & MTD_WRITEABLE)) 1440 return -EROFS; 1441 1442 ret = mtd_check_oob_ops(mtd, to, ops); 1443 if (ret) 1444 return ret; 1445 1446 ledtrig_mtd_activity(); 1447 1448 /* Check the validity of a potential fallback on mtd->_write */ 1449 if (!master->_write_oob && (!master->_write || ops->oobbuf)) 1450 return -EOPNOTSUPP; 1451 1452 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1453 return mtd_io_emulated_slc(mtd, to, false, ops); 1454 1455 return mtd_write_oob_std(mtd, to, ops); 1456 } 1457 EXPORT_SYMBOL_GPL(mtd_write_oob); 1458 1459 /** 1460 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1461 * @mtd: MTD device structure 1462 * @section: ECC section. Depending on the layout you may have all the ECC 1463 * bytes stored in a single contiguous section, or one section 1464 * per ECC chunk (and sometime several sections for a single ECC 1465 * ECC chunk) 1466 * @oobecc: OOB region struct filled with the appropriate ECC position 1467 * information 1468 * 1469 * This function returns ECC section information in the OOB area. If you want 1470 * to get all the ECC bytes information, then you should call 1471 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1472 * 1473 * Returns zero on success, a negative error code otherwise. 1474 */ 1475 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1476 struct mtd_oob_region *oobecc) 1477 { 1478 struct mtd_info *master = mtd_get_master(mtd); 1479 1480 memset(oobecc, 0, sizeof(*oobecc)); 1481 1482 if (!master || section < 0) 1483 return -EINVAL; 1484 1485 if (!master->ooblayout || !master->ooblayout->ecc) 1486 return -ENOTSUPP; 1487 1488 return master->ooblayout->ecc(master, section, oobecc); 1489 } 1490 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1491 1492 /** 1493 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1494 * section 1495 * @mtd: MTD device structure 1496 * @section: Free section you are interested in. Depending on the layout 1497 * you may have all the free bytes stored in a single contiguous 1498 * section, or one section per ECC chunk plus an extra section 1499 * for the remaining bytes (or other funky layout). 1500 * @oobfree: OOB region struct filled with the appropriate free position 1501 * information 1502 * 1503 * This function returns free bytes position in the OOB area. If you want 1504 * to get all the free bytes information, then you should call 1505 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1506 * 1507 * Returns zero on success, a negative error code otherwise. 1508 */ 1509 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1510 struct mtd_oob_region *oobfree) 1511 { 1512 struct mtd_info *master = mtd_get_master(mtd); 1513 1514 memset(oobfree, 0, sizeof(*oobfree)); 1515 1516 if (!master || section < 0) 1517 return -EINVAL; 1518 1519 if (!master->ooblayout || !master->ooblayout->free) 1520 return -ENOTSUPP; 1521 1522 return master->ooblayout->free(master, section, oobfree); 1523 } 1524 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1525 1526 /** 1527 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1528 * @mtd: mtd info structure 1529 * @byte: the byte we are searching for 1530 * @sectionp: pointer where the section id will be stored 1531 * @oobregion: used to retrieve the ECC position 1532 * @iter: iterator function. Should be either mtd_ooblayout_free or 1533 * mtd_ooblayout_ecc depending on the region type you're searching for 1534 * 1535 * This function returns the section id and oobregion information of a 1536 * specific byte. For example, say you want to know where the 4th ECC byte is 1537 * stored, you'll use: 1538 * 1539 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1540 * 1541 * Returns zero on success, a negative error code otherwise. 1542 */ 1543 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1544 int *sectionp, struct mtd_oob_region *oobregion, 1545 int (*iter)(struct mtd_info *, 1546 int section, 1547 struct mtd_oob_region *oobregion)) 1548 { 1549 int pos = 0, ret, section = 0; 1550 1551 memset(oobregion, 0, sizeof(*oobregion)); 1552 1553 while (1) { 1554 ret = iter(mtd, section, oobregion); 1555 if (ret) 1556 return ret; 1557 1558 if (pos + oobregion->length > byte) 1559 break; 1560 1561 pos += oobregion->length; 1562 section++; 1563 } 1564 1565 /* 1566 * Adjust region info to make it start at the beginning at the 1567 * 'start' ECC byte. 1568 */ 1569 oobregion->offset += byte - pos; 1570 oobregion->length -= byte - pos; 1571 *sectionp = section; 1572 1573 return 0; 1574 } 1575 1576 /** 1577 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1578 * ECC byte 1579 * @mtd: mtd info structure 1580 * @eccbyte: the byte we are searching for 1581 * @sectionp: pointer where the section id will be stored 1582 * @oobregion: OOB region information 1583 * 1584 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1585 * byte. 1586 * 1587 * Returns zero on success, a negative error code otherwise. 1588 */ 1589 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1590 int *section, 1591 struct mtd_oob_region *oobregion) 1592 { 1593 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1594 mtd_ooblayout_ecc); 1595 } 1596 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1597 1598 /** 1599 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1600 * @mtd: mtd info structure 1601 * @buf: destination buffer to store OOB bytes 1602 * @oobbuf: OOB buffer 1603 * @start: first byte to retrieve 1604 * @nbytes: number of bytes to retrieve 1605 * @iter: section iterator 1606 * 1607 * Extract bytes attached to a specific category (ECC or free) 1608 * from the OOB buffer and copy them into buf. 1609 * 1610 * Returns zero on success, a negative error code otherwise. 1611 */ 1612 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1613 const u8 *oobbuf, int start, int nbytes, 1614 int (*iter)(struct mtd_info *, 1615 int section, 1616 struct mtd_oob_region *oobregion)) 1617 { 1618 struct mtd_oob_region oobregion; 1619 int section, ret; 1620 1621 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1622 &oobregion, iter); 1623 1624 while (!ret) { 1625 int cnt; 1626 1627 cnt = min_t(int, nbytes, oobregion.length); 1628 memcpy(buf, oobbuf + oobregion.offset, cnt); 1629 buf += cnt; 1630 nbytes -= cnt; 1631 1632 if (!nbytes) 1633 break; 1634 1635 ret = iter(mtd, ++section, &oobregion); 1636 } 1637 1638 return ret; 1639 } 1640 1641 /** 1642 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1643 * @mtd: mtd info structure 1644 * @buf: source buffer to get OOB bytes from 1645 * @oobbuf: OOB buffer 1646 * @start: first OOB byte to set 1647 * @nbytes: number of OOB bytes to set 1648 * @iter: section iterator 1649 * 1650 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1651 * is selected by passing the appropriate iterator. 1652 * 1653 * Returns zero on success, a negative error code otherwise. 1654 */ 1655 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1656 u8 *oobbuf, int start, int nbytes, 1657 int (*iter)(struct mtd_info *, 1658 int section, 1659 struct mtd_oob_region *oobregion)) 1660 { 1661 struct mtd_oob_region oobregion; 1662 int section, ret; 1663 1664 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1665 &oobregion, iter); 1666 1667 while (!ret) { 1668 int cnt; 1669 1670 cnt = min_t(int, nbytes, oobregion.length); 1671 memcpy(oobbuf + oobregion.offset, buf, cnt); 1672 buf += cnt; 1673 nbytes -= cnt; 1674 1675 if (!nbytes) 1676 break; 1677 1678 ret = iter(mtd, ++section, &oobregion); 1679 } 1680 1681 return ret; 1682 } 1683 1684 /** 1685 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1686 * @mtd: mtd info structure 1687 * @iter: category iterator 1688 * 1689 * Count the number of bytes in a given category. 1690 * 1691 * Returns a positive value on success, a negative error code otherwise. 1692 */ 1693 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1694 int (*iter)(struct mtd_info *, 1695 int section, 1696 struct mtd_oob_region *oobregion)) 1697 { 1698 struct mtd_oob_region oobregion; 1699 int section = 0, ret, nbytes = 0; 1700 1701 while (1) { 1702 ret = iter(mtd, section++, &oobregion); 1703 if (ret) { 1704 if (ret == -ERANGE) 1705 ret = nbytes; 1706 break; 1707 } 1708 1709 nbytes += oobregion.length; 1710 } 1711 1712 return ret; 1713 } 1714 1715 /** 1716 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1717 * @mtd: mtd info structure 1718 * @eccbuf: destination buffer to store ECC bytes 1719 * @oobbuf: OOB buffer 1720 * @start: first ECC byte to retrieve 1721 * @nbytes: number of ECC bytes to retrieve 1722 * 1723 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1724 * 1725 * Returns zero on success, a negative error code otherwise. 1726 */ 1727 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1728 const u8 *oobbuf, int start, int nbytes) 1729 { 1730 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1731 mtd_ooblayout_ecc); 1732 } 1733 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1734 1735 /** 1736 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1737 * @mtd: mtd info structure 1738 * @eccbuf: source buffer to get ECC bytes from 1739 * @oobbuf: OOB buffer 1740 * @start: first ECC byte to set 1741 * @nbytes: number of ECC bytes to set 1742 * 1743 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 1744 * 1745 * Returns zero on success, a negative error code otherwise. 1746 */ 1747 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 1748 u8 *oobbuf, int start, int nbytes) 1749 { 1750 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1751 mtd_ooblayout_ecc); 1752 } 1753 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 1754 1755 /** 1756 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 1757 * @mtd: mtd info structure 1758 * @databuf: destination buffer to store ECC bytes 1759 * @oobbuf: OOB buffer 1760 * @start: first ECC byte to retrieve 1761 * @nbytes: number of ECC bytes to retrieve 1762 * 1763 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1764 * 1765 * Returns zero on success, a negative error code otherwise. 1766 */ 1767 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 1768 const u8 *oobbuf, int start, int nbytes) 1769 { 1770 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 1771 mtd_ooblayout_free); 1772 } 1773 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 1774 1775 /** 1776 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer 1777 * @mtd: mtd info structure 1778 * @databuf: source buffer to get data bytes from 1779 * @oobbuf: OOB buffer 1780 * @start: first ECC byte to set 1781 * @nbytes: number of ECC bytes to set 1782 * 1783 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes. 1784 * 1785 * Returns zero on success, a negative error code otherwise. 1786 */ 1787 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 1788 u8 *oobbuf, int start, int nbytes) 1789 { 1790 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 1791 mtd_ooblayout_free); 1792 } 1793 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 1794 1795 /** 1796 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 1797 * @mtd: mtd info structure 1798 * 1799 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 1800 * 1801 * Returns zero on success, a negative error code otherwise. 1802 */ 1803 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 1804 { 1805 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 1806 } 1807 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 1808 1809 /** 1810 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB 1811 * @mtd: mtd info structure 1812 * 1813 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 1814 * 1815 * Returns zero on success, a negative error code otherwise. 1816 */ 1817 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 1818 { 1819 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 1820 } 1821 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 1822 1823 /* 1824 * Method to access the protection register area, present in some flash 1825 * devices. The user data is one time programmable but the factory data is read 1826 * only. 1827 */ 1828 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1829 struct otp_info *buf) 1830 { 1831 struct mtd_info *master = mtd_get_master(mtd); 1832 1833 if (!master->_get_fact_prot_info) 1834 return -EOPNOTSUPP; 1835 if (!len) 1836 return 0; 1837 return master->_get_fact_prot_info(master, len, retlen, buf); 1838 } 1839 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 1840 1841 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1842 size_t *retlen, u_char *buf) 1843 { 1844 struct mtd_info *master = mtd_get_master(mtd); 1845 1846 *retlen = 0; 1847 if (!master->_read_fact_prot_reg) 1848 return -EOPNOTSUPP; 1849 if (!len) 1850 return 0; 1851 return master->_read_fact_prot_reg(master, from, len, retlen, buf); 1852 } 1853 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 1854 1855 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1856 struct otp_info *buf) 1857 { 1858 struct mtd_info *master = mtd_get_master(mtd); 1859 1860 if (!master->_get_user_prot_info) 1861 return -EOPNOTSUPP; 1862 if (!len) 1863 return 0; 1864 return master->_get_user_prot_info(master, len, retlen, buf); 1865 } 1866 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 1867 1868 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1869 size_t *retlen, u_char *buf) 1870 { 1871 struct mtd_info *master = mtd_get_master(mtd); 1872 1873 *retlen = 0; 1874 if (!master->_read_user_prot_reg) 1875 return -EOPNOTSUPP; 1876 if (!len) 1877 return 0; 1878 return master->_read_user_prot_reg(master, from, len, retlen, buf); 1879 } 1880 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 1881 1882 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 1883 size_t *retlen, u_char *buf) 1884 { 1885 struct mtd_info *master = mtd_get_master(mtd); 1886 int ret; 1887 1888 *retlen = 0; 1889 if (!master->_write_user_prot_reg) 1890 return -EOPNOTSUPP; 1891 if (!len) 1892 return 0; 1893 ret = master->_write_user_prot_reg(master, to, len, retlen, buf); 1894 if (ret) 1895 return ret; 1896 1897 /* 1898 * If no data could be written at all, we are out of memory and 1899 * must return -ENOSPC. 1900 */ 1901 return (*retlen) ? 0 : -ENOSPC; 1902 } 1903 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1904 1905 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1906 { 1907 struct mtd_info *master = mtd_get_master(mtd); 1908 1909 if (!master->_lock_user_prot_reg) 1910 return -EOPNOTSUPP; 1911 if (!len) 1912 return 0; 1913 return master->_lock_user_prot_reg(master, from, len); 1914 } 1915 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1916 1917 /* Chip-supported device locking */ 1918 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1919 { 1920 struct mtd_info *master = mtd_get_master(mtd); 1921 1922 if (!master->_lock) 1923 return -EOPNOTSUPP; 1924 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1925 return -EINVAL; 1926 if (!len) 1927 return 0; 1928 1929 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1930 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 1931 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 1932 } 1933 1934 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len); 1935 } 1936 EXPORT_SYMBOL_GPL(mtd_lock); 1937 1938 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1939 { 1940 struct mtd_info *master = mtd_get_master(mtd); 1941 1942 if (!master->_unlock) 1943 return -EOPNOTSUPP; 1944 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1945 return -EINVAL; 1946 if (!len) 1947 return 0; 1948 1949 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1950 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 1951 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 1952 } 1953 1954 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len); 1955 } 1956 EXPORT_SYMBOL_GPL(mtd_unlock); 1957 1958 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1959 { 1960 struct mtd_info *master = mtd_get_master(mtd); 1961 1962 if (!master->_is_locked) 1963 return -EOPNOTSUPP; 1964 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1965 return -EINVAL; 1966 if (!len) 1967 return 0; 1968 1969 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1970 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 1971 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 1972 } 1973 1974 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len); 1975 } 1976 EXPORT_SYMBOL_GPL(mtd_is_locked); 1977 1978 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 1979 { 1980 struct mtd_info *master = mtd_get_master(mtd); 1981 1982 if (ofs < 0 || ofs >= mtd->size) 1983 return -EINVAL; 1984 if (!master->_block_isreserved) 1985 return 0; 1986 1987 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1988 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 1989 1990 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs)); 1991 } 1992 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 1993 1994 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 1995 { 1996 struct mtd_info *master = mtd_get_master(mtd); 1997 1998 if (ofs < 0 || ofs >= mtd->size) 1999 return -EINVAL; 2000 if (!master->_block_isbad) 2001 return 0; 2002 2003 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2004 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2005 2006 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs)); 2007 } 2008 EXPORT_SYMBOL_GPL(mtd_block_isbad); 2009 2010 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 2011 { 2012 struct mtd_info *master = mtd_get_master(mtd); 2013 int ret; 2014 2015 if (!master->_block_markbad) 2016 return -EOPNOTSUPP; 2017 if (ofs < 0 || ofs >= mtd->size) 2018 return -EINVAL; 2019 if (!(mtd->flags & MTD_WRITEABLE)) 2020 return -EROFS; 2021 2022 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2023 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2024 2025 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs)); 2026 if (ret) 2027 return ret; 2028 2029 while (mtd->parent) { 2030 mtd->ecc_stats.badblocks++; 2031 mtd = mtd->parent; 2032 } 2033 2034 return 0; 2035 } 2036 EXPORT_SYMBOL_GPL(mtd_block_markbad); 2037 2038 /* 2039 * default_mtd_writev - the default writev method 2040 * @mtd: mtd device description object pointer 2041 * @vecs: the vectors to write 2042 * @count: count of vectors in @vecs 2043 * @to: the MTD device offset to write to 2044 * @retlen: on exit contains the count of bytes written to the MTD device. 2045 * 2046 * This function returns zero in case of success and a negative error code in 2047 * case of failure. 2048 */ 2049 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2050 unsigned long count, loff_t to, size_t *retlen) 2051 { 2052 unsigned long i; 2053 size_t totlen = 0, thislen; 2054 int ret = 0; 2055 2056 for (i = 0; i < count; i++) { 2057 if (!vecs[i].iov_len) 2058 continue; 2059 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 2060 vecs[i].iov_base); 2061 totlen += thislen; 2062 if (ret || thislen != vecs[i].iov_len) 2063 break; 2064 to += vecs[i].iov_len; 2065 } 2066 *retlen = totlen; 2067 return ret; 2068 } 2069 2070 /* 2071 * mtd_writev - the vector-based MTD write method 2072 * @mtd: mtd device description object pointer 2073 * @vecs: the vectors to write 2074 * @count: count of vectors in @vecs 2075 * @to: the MTD device offset to write to 2076 * @retlen: on exit contains the count of bytes written to the MTD device. 2077 * 2078 * This function returns zero in case of success and a negative error code in 2079 * case of failure. 2080 */ 2081 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2082 unsigned long count, loff_t to, size_t *retlen) 2083 { 2084 struct mtd_info *master = mtd_get_master(mtd); 2085 2086 *retlen = 0; 2087 if (!(mtd->flags & MTD_WRITEABLE)) 2088 return -EROFS; 2089 2090 if (!master->_writev) 2091 return default_mtd_writev(mtd, vecs, count, to, retlen); 2092 2093 return master->_writev(master, vecs, count, 2094 mtd_get_master_ofs(mtd, to), retlen); 2095 } 2096 EXPORT_SYMBOL_GPL(mtd_writev); 2097 2098 /** 2099 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 2100 * @mtd: mtd device description object pointer 2101 * @size: a pointer to the ideal or maximum size of the allocation, points 2102 * to the actual allocation size on success. 2103 * 2104 * This routine attempts to allocate a contiguous kernel buffer up to 2105 * the specified size, backing off the size of the request exponentially 2106 * until the request succeeds or until the allocation size falls below 2107 * the system page size. This attempts to make sure it does not adversely 2108 * impact system performance, so when allocating more than one page, we 2109 * ask the memory allocator to avoid re-trying, swapping, writing back 2110 * or performing I/O. 2111 * 2112 * Note, this function also makes sure that the allocated buffer is aligned to 2113 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 2114 * 2115 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 2116 * to handle smaller (i.e. degraded) buffer allocations under low- or 2117 * fragmented-memory situations where such reduced allocations, from a 2118 * requested ideal, are allowed. 2119 * 2120 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 2121 */ 2122 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 2123 { 2124 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 2125 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 2126 void *kbuf; 2127 2128 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 2129 2130 while (*size > min_alloc) { 2131 kbuf = kmalloc(*size, flags); 2132 if (kbuf) 2133 return kbuf; 2134 2135 *size >>= 1; 2136 *size = ALIGN(*size, mtd->writesize); 2137 } 2138 2139 /* 2140 * For the last resort allocation allow 'kmalloc()' to do all sorts of 2141 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 2142 */ 2143 return kmalloc(*size, GFP_KERNEL); 2144 } 2145 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 2146 2147 #ifdef CONFIG_PROC_FS 2148 2149 /*====================================================================*/ 2150 /* Support for /proc/mtd */ 2151 2152 static int mtd_proc_show(struct seq_file *m, void *v) 2153 { 2154 struct mtd_info *mtd; 2155 2156 seq_puts(m, "dev: size erasesize name\n"); 2157 mutex_lock(&mtd_table_mutex); 2158 mtd_for_each_device(mtd) { 2159 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 2160 mtd->index, (unsigned long long)mtd->size, 2161 mtd->erasesize, mtd->name); 2162 } 2163 mutex_unlock(&mtd_table_mutex); 2164 return 0; 2165 } 2166 #endif /* CONFIG_PROC_FS */ 2167 2168 /*====================================================================*/ 2169 /* Init code */ 2170 2171 static struct backing_dev_info * __init mtd_bdi_init(char *name) 2172 { 2173 struct backing_dev_info *bdi; 2174 int ret; 2175 2176 bdi = bdi_alloc(NUMA_NO_NODE); 2177 if (!bdi) 2178 return ERR_PTR(-ENOMEM); 2179 bdi->ra_pages = 0; 2180 bdi->io_pages = 0; 2181 2182 /* 2183 * We put '-0' suffix to the name to get the same name format as we 2184 * used to get. Since this is called only once, we get a unique name. 2185 */ 2186 ret = bdi_register(bdi, "%.28s-0", name); 2187 if (ret) 2188 bdi_put(bdi); 2189 2190 return ret ? ERR_PTR(ret) : bdi; 2191 } 2192 2193 static struct proc_dir_entry *proc_mtd; 2194 2195 static int __init init_mtd(void) 2196 { 2197 int ret; 2198 2199 ret = class_register(&mtd_class); 2200 if (ret) 2201 goto err_reg; 2202 2203 mtd_bdi = mtd_bdi_init("mtd"); 2204 if (IS_ERR(mtd_bdi)) { 2205 ret = PTR_ERR(mtd_bdi); 2206 goto err_bdi; 2207 } 2208 2209 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show); 2210 2211 ret = init_mtdchar(); 2212 if (ret) 2213 goto out_procfs; 2214 2215 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 2216 2217 return 0; 2218 2219 out_procfs: 2220 if (proc_mtd) 2221 remove_proc_entry("mtd", NULL); 2222 bdi_put(mtd_bdi); 2223 err_bdi: 2224 class_unregister(&mtd_class); 2225 err_reg: 2226 pr_err("Error registering mtd class or bdi: %d\n", ret); 2227 return ret; 2228 } 2229 2230 static void __exit cleanup_mtd(void) 2231 { 2232 debugfs_remove_recursive(dfs_dir_mtd); 2233 cleanup_mtdchar(); 2234 if (proc_mtd) 2235 remove_proc_entry("mtd", NULL); 2236 class_unregister(&mtd_class); 2237 bdi_put(mtd_bdi); 2238 idr_destroy(&mtd_idr); 2239 } 2240 2241 module_init(init_mtd); 2242 module_exit(cleanup_mtd); 2243 2244 MODULE_LICENSE("GPL"); 2245 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 2246 MODULE_DESCRIPTION("Core MTD registration and access routines"); 2247