xref: /openbmc/linux/drivers/mtd/mtdcore.c (revision 61c1f340bc809a1ca1e3c8794207a91cde1a7c78)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/slab.h>
27 #include <linux/reboot.h>
28 #include <linux/leds.h>
29 #include <linux/debugfs.h>
30 #include <linux/nvmem-provider.h>
31 
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/partitions.h>
34 
35 #include "mtdcore.h"
36 
37 struct backing_dev_info *mtd_bdi;
38 
39 #ifdef CONFIG_PM_SLEEP
40 
41 static int mtd_cls_suspend(struct device *dev)
42 {
43 	struct mtd_info *mtd = dev_get_drvdata(dev);
44 
45 	return mtd ? mtd_suspend(mtd) : 0;
46 }
47 
48 static int mtd_cls_resume(struct device *dev)
49 {
50 	struct mtd_info *mtd = dev_get_drvdata(dev);
51 
52 	if (mtd)
53 		mtd_resume(mtd);
54 	return 0;
55 }
56 
57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59 #else
60 #define MTD_CLS_PM_OPS NULL
61 #endif
62 
63 static struct class mtd_class = {
64 	.name = "mtd",
65 	.owner = THIS_MODULE,
66 	.pm = MTD_CLS_PM_OPS,
67 };
68 
69 static DEFINE_IDR(mtd_idr);
70 
71 /* These are exported solely for the purpose of mtd_blkdevs.c. You
72    should not use them for _anything_ else */
73 DEFINE_MUTEX(mtd_table_mutex);
74 EXPORT_SYMBOL_GPL(mtd_table_mutex);
75 
76 struct mtd_info *__mtd_next_device(int i)
77 {
78 	return idr_get_next(&mtd_idr, &i);
79 }
80 EXPORT_SYMBOL_GPL(__mtd_next_device);
81 
82 static LIST_HEAD(mtd_notifiers);
83 
84 
85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
86 
87 /* REVISIT once MTD uses the driver model better, whoever allocates
88  * the mtd_info will probably want to use the release() hook...
89  */
90 static void mtd_release(struct device *dev)
91 {
92 	struct mtd_info *mtd = dev_get_drvdata(dev);
93 	dev_t index = MTD_DEVT(mtd->index);
94 
95 	/* remove /dev/mtdXro node */
96 	device_destroy(&mtd_class, index + 1);
97 }
98 
99 #define MTD_DEVICE_ATTR_RO(name) \
100 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
101 
102 #define MTD_DEVICE_ATTR_RW(name) \
103 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
104 
105 static ssize_t mtd_type_show(struct device *dev,
106 		struct device_attribute *attr, char *buf)
107 {
108 	struct mtd_info *mtd = dev_get_drvdata(dev);
109 	char *type;
110 
111 	switch (mtd->type) {
112 	case MTD_ABSENT:
113 		type = "absent";
114 		break;
115 	case MTD_RAM:
116 		type = "ram";
117 		break;
118 	case MTD_ROM:
119 		type = "rom";
120 		break;
121 	case MTD_NORFLASH:
122 		type = "nor";
123 		break;
124 	case MTD_NANDFLASH:
125 		type = "nand";
126 		break;
127 	case MTD_DATAFLASH:
128 		type = "dataflash";
129 		break;
130 	case MTD_UBIVOLUME:
131 		type = "ubi";
132 		break;
133 	case MTD_MLCNANDFLASH:
134 		type = "mlc-nand";
135 		break;
136 	default:
137 		type = "unknown";
138 	}
139 
140 	return sysfs_emit(buf, "%s\n", type);
141 }
142 MTD_DEVICE_ATTR_RO(type);
143 
144 static ssize_t mtd_flags_show(struct device *dev,
145 		struct device_attribute *attr, char *buf)
146 {
147 	struct mtd_info *mtd = dev_get_drvdata(dev);
148 
149 	return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
150 }
151 MTD_DEVICE_ATTR_RO(flags);
152 
153 static ssize_t mtd_size_show(struct device *dev,
154 		struct device_attribute *attr, char *buf)
155 {
156 	struct mtd_info *mtd = dev_get_drvdata(dev);
157 
158 	return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
159 }
160 MTD_DEVICE_ATTR_RO(size);
161 
162 static ssize_t mtd_erasesize_show(struct device *dev,
163 		struct device_attribute *attr, char *buf)
164 {
165 	struct mtd_info *mtd = dev_get_drvdata(dev);
166 
167 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
168 }
169 MTD_DEVICE_ATTR_RO(erasesize);
170 
171 static ssize_t mtd_writesize_show(struct device *dev,
172 		struct device_attribute *attr, char *buf)
173 {
174 	struct mtd_info *mtd = dev_get_drvdata(dev);
175 
176 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
177 }
178 MTD_DEVICE_ATTR_RO(writesize);
179 
180 static ssize_t mtd_subpagesize_show(struct device *dev,
181 		struct device_attribute *attr, char *buf)
182 {
183 	struct mtd_info *mtd = dev_get_drvdata(dev);
184 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
185 
186 	return sysfs_emit(buf, "%u\n", subpagesize);
187 }
188 MTD_DEVICE_ATTR_RO(subpagesize);
189 
190 static ssize_t mtd_oobsize_show(struct device *dev,
191 		struct device_attribute *attr, char *buf)
192 {
193 	struct mtd_info *mtd = dev_get_drvdata(dev);
194 
195 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
196 }
197 MTD_DEVICE_ATTR_RO(oobsize);
198 
199 static ssize_t mtd_oobavail_show(struct device *dev,
200 				 struct device_attribute *attr, char *buf)
201 {
202 	struct mtd_info *mtd = dev_get_drvdata(dev);
203 
204 	return sysfs_emit(buf, "%u\n", mtd->oobavail);
205 }
206 MTD_DEVICE_ATTR_RO(oobavail);
207 
208 static ssize_t mtd_numeraseregions_show(struct device *dev,
209 		struct device_attribute *attr, char *buf)
210 {
211 	struct mtd_info *mtd = dev_get_drvdata(dev);
212 
213 	return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
214 }
215 MTD_DEVICE_ATTR_RO(numeraseregions);
216 
217 static ssize_t mtd_name_show(struct device *dev,
218 		struct device_attribute *attr, char *buf)
219 {
220 	struct mtd_info *mtd = dev_get_drvdata(dev);
221 
222 	return sysfs_emit(buf, "%s\n", mtd->name);
223 }
224 MTD_DEVICE_ATTR_RO(name);
225 
226 static ssize_t mtd_ecc_strength_show(struct device *dev,
227 				     struct device_attribute *attr, char *buf)
228 {
229 	struct mtd_info *mtd = dev_get_drvdata(dev);
230 
231 	return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
232 }
233 MTD_DEVICE_ATTR_RO(ecc_strength);
234 
235 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
236 					  struct device_attribute *attr,
237 					  char *buf)
238 {
239 	struct mtd_info *mtd = dev_get_drvdata(dev);
240 
241 	return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
242 }
243 
244 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
245 					   struct device_attribute *attr,
246 					   const char *buf, size_t count)
247 {
248 	struct mtd_info *mtd = dev_get_drvdata(dev);
249 	unsigned int bitflip_threshold;
250 	int retval;
251 
252 	retval = kstrtouint(buf, 0, &bitflip_threshold);
253 	if (retval)
254 		return retval;
255 
256 	mtd->bitflip_threshold = bitflip_threshold;
257 	return count;
258 }
259 MTD_DEVICE_ATTR_RW(bitflip_threshold);
260 
261 static ssize_t mtd_ecc_step_size_show(struct device *dev,
262 		struct device_attribute *attr, char *buf)
263 {
264 	struct mtd_info *mtd = dev_get_drvdata(dev);
265 
266 	return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
267 
268 }
269 MTD_DEVICE_ATTR_RO(ecc_step_size);
270 
271 static ssize_t mtd_corrected_bits_show(struct device *dev,
272 		struct device_attribute *attr, char *buf)
273 {
274 	struct mtd_info *mtd = dev_get_drvdata(dev);
275 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
276 
277 	return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
278 }
279 MTD_DEVICE_ATTR_RO(corrected_bits);	/* ecc stats corrected */
280 
281 static ssize_t mtd_ecc_failures_show(struct device *dev,
282 		struct device_attribute *attr, char *buf)
283 {
284 	struct mtd_info *mtd = dev_get_drvdata(dev);
285 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
286 
287 	return sysfs_emit(buf, "%u\n", ecc_stats->failed);
288 }
289 MTD_DEVICE_ATTR_RO(ecc_failures);	/* ecc stats errors */
290 
291 static ssize_t mtd_bad_blocks_show(struct device *dev,
292 		struct device_attribute *attr, char *buf)
293 {
294 	struct mtd_info *mtd = dev_get_drvdata(dev);
295 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
296 
297 	return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
298 }
299 MTD_DEVICE_ATTR_RO(bad_blocks);
300 
301 static ssize_t mtd_bbt_blocks_show(struct device *dev,
302 		struct device_attribute *attr, char *buf)
303 {
304 	struct mtd_info *mtd = dev_get_drvdata(dev);
305 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306 
307 	return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
308 }
309 MTD_DEVICE_ATTR_RO(bbt_blocks);
310 
311 static struct attribute *mtd_attrs[] = {
312 	&dev_attr_type.attr,
313 	&dev_attr_flags.attr,
314 	&dev_attr_size.attr,
315 	&dev_attr_erasesize.attr,
316 	&dev_attr_writesize.attr,
317 	&dev_attr_subpagesize.attr,
318 	&dev_attr_oobsize.attr,
319 	&dev_attr_oobavail.attr,
320 	&dev_attr_numeraseregions.attr,
321 	&dev_attr_name.attr,
322 	&dev_attr_ecc_strength.attr,
323 	&dev_attr_ecc_step_size.attr,
324 	&dev_attr_corrected_bits.attr,
325 	&dev_attr_ecc_failures.attr,
326 	&dev_attr_bad_blocks.attr,
327 	&dev_attr_bbt_blocks.attr,
328 	&dev_attr_bitflip_threshold.attr,
329 	NULL,
330 };
331 ATTRIBUTE_GROUPS(mtd);
332 
333 static const struct device_type mtd_devtype = {
334 	.name		= "mtd",
335 	.groups		= mtd_groups,
336 	.release	= mtd_release,
337 };
338 
339 static bool mtd_expert_analysis_mode;
340 
341 #ifdef CONFIG_DEBUG_FS
342 bool mtd_check_expert_analysis_mode(void)
343 {
344 	const char *mtd_expert_analysis_warning =
345 		"Bad block checks have been entirely disabled.\n"
346 		"This is only reserved for post-mortem forensics and debug purposes.\n"
347 		"Never enable this mode if you do not know what you are doing!\n";
348 
349 	return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning);
350 }
351 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode);
352 #endif
353 
354 static struct dentry *dfs_dir_mtd;
355 
356 static void mtd_debugfs_populate(struct mtd_info *mtd)
357 {
358 	struct device *dev = &mtd->dev;
359 
360 	if (IS_ERR_OR_NULL(dfs_dir_mtd))
361 		return;
362 
363 	mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
364 }
365 
366 #ifndef CONFIG_MMU
367 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
368 {
369 	switch (mtd->type) {
370 	case MTD_RAM:
371 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
372 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
373 	case MTD_ROM:
374 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
375 			NOMMU_MAP_READ;
376 	default:
377 		return NOMMU_MAP_COPY;
378 	}
379 }
380 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
381 #endif
382 
383 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
384 			       void *cmd)
385 {
386 	struct mtd_info *mtd;
387 
388 	mtd = container_of(n, struct mtd_info, reboot_notifier);
389 	mtd->_reboot(mtd);
390 
391 	return NOTIFY_DONE;
392 }
393 
394 /**
395  * mtd_wunit_to_pairing_info - get pairing information of a wunit
396  * @mtd: pointer to new MTD device info structure
397  * @wunit: write unit we are interested in
398  * @info: returned pairing information
399  *
400  * Retrieve pairing information associated to the wunit.
401  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
402  * paired together, and where programming a page may influence the page it is
403  * paired with.
404  * The notion of page is replaced by the term wunit (write-unit) to stay
405  * consistent with the ->writesize field.
406  *
407  * The @wunit argument can be extracted from an absolute offset using
408  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
409  * to @wunit.
410  *
411  * From the pairing info the MTD user can find all the wunits paired with
412  * @wunit using the following loop:
413  *
414  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
415  *	info.pair = i;
416  *	mtd_pairing_info_to_wunit(mtd, &info);
417  *	...
418  * }
419  */
420 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
421 			      struct mtd_pairing_info *info)
422 {
423 	struct mtd_info *master = mtd_get_master(mtd);
424 	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
425 
426 	if (wunit < 0 || wunit >= npairs)
427 		return -EINVAL;
428 
429 	if (master->pairing && master->pairing->get_info)
430 		return master->pairing->get_info(master, wunit, info);
431 
432 	info->group = 0;
433 	info->pair = wunit;
434 
435 	return 0;
436 }
437 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
438 
439 /**
440  * mtd_pairing_info_to_wunit - get wunit from pairing information
441  * @mtd: pointer to new MTD device info structure
442  * @info: pairing information struct
443  *
444  * Returns a positive number representing the wunit associated to the info
445  * struct, or a negative error code.
446  *
447  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
448  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
449  * doc).
450  *
451  * It can also be used to only program the first page of each pair (i.e.
452  * page attached to group 0), which allows one to use an MLC NAND in
453  * software-emulated SLC mode:
454  *
455  * info.group = 0;
456  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
457  * for (info.pair = 0; info.pair < npairs; info.pair++) {
458  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
459  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
460  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
461  * }
462  */
463 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
464 			      const struct mtd_pairing_info *info)
465 {
466 	struct mtd_info *master = mtd_get_master(mtd);
467 	int ngroups = mtd_pairing_groups(master);
468 	int npairs = mtd_wunit_per_eb(master) / ngroups;
469 
470 	if (!info || info->pair < 0 || info->pair >= npairs ||
471 	    info->group < 0 || info->group >= ngroups)
472 		return -EINVAL;
473 
474 	if (master->pairing && master->pairing->get_wunit)
475 		return mtd->pairing->get_wunit(master, info);
476 
477 	return info->pair;
478 }
479 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
480 
481 /**
482  * mtd_pairing_groups - get the number of pairing groups
483  * @mtd: pointer to new MTD device info structure
484  *
485  * Returns the number of pairing groups.
486  *
487  * This number is usually equal to the number of bits exposed by a single
488  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
489  * to iterate over all pages of a given pair.
490  */
491 int mtd_pairing_groups(struct mtd_info *mtd)
492 {
493 	struct mtd_info *master = mtd_get_master(mtd);
494 
495 	if (!master->pairing || !master->pairing->ngroups)
496 		return 1;
497 
498 	return master->pairing->ngroups;
499 }
500 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
501 
502 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
503 			      void *val, size_t bytes)
504 {
505 	struct mtd_info *mtd = priv;
506 	size_t retlen;
507 	int err;
508 
509 	err = mtd_read(mtd, offset, bytes, &retlen, val);
510 	if (err && err != -EUCLEAN)
511 		return err;
512 
513 	return retlen == bytes ? 0 : -EIO;
514 }
515 
516 static int mtd_nvmem_add(struct mtd_info *mtd)
517 {
518 	struct device_node *node = mtd_get_of_node(mtd);
519 	struct nvmem_config config = {};
520 
521 	config.id = -1;
522 	config.dev = &mtd->dev;
523 	config.name = dev_name(&mtd->dev);
524 	config.owner = THIS_MODULE;
525 	config.reg_read = mtd_nvmem_reg_read;
526 	config.size = mtd->size;
527 	config.word_size = 1;
528 	config.stride = 1;
529 	config.read_only = true;
530 	config.root_only = true;
531 	config.ignore_wp = true;
532 	config.no_of_node = !of_device_is_compatible(node, "nvmem-cells");
533 	config.priv = mtd;
534 
535 	mtd->nvmem = nvmem_register(&config);
536 	if (IS_ERR(mtd->nvmem)) {
537 		/* Just ignore if there is no NVMEM support in the kernel */
538 		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
539 			mtd->nvmem = NULL;
540 		} else {
541 			dev_err(&mtd->dev, "Failed to register NVMEM device\n");
542 			return PTR_ERR(mtd->nvmem);
543 		}
544 	}
545 
546 	return 0;
547 }
548 
549 /**
550  *	add_mtd_device - register an MTD device
551  *	@mtd: pointer to new MTD device info structure
552  *
553  *	Add a device to the list of MTD devices present in the system, and
554  *	notify each currently active MTD 'user' of its arrival. Returns
555  *	zero on success or non-zero on failure.
556  */
557 
558 int add_mtd_device(struct mtd_info *mtd)
559 {
560 	struct device_node *np = mtd_get_of_node(mtd);
561 	struct mtd_info *master = mtd_get_master(mtd);
562 	struct mtd_notifier *not;
563 	int i, error, ofidx;
564 
565 	/*
566 	 * May occur, for instance, on buggy drivers which call
567 	 * mtd_device_parse_register() multiple times on the same master MTD,
568 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
569 	 */
570 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
571 		return -EEXIST;
572 
573 	BUG_ON(mtd->writesize == 0);
574 
575 	/*
576 	 * MTD drivers should implement ->_{write,read}() or
577 	 * ->_{write,read}_oob(), but not both.
578 	 */
579 	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
580 		    (mtd->_read && mtd->_read_oob)))
581 		return -EINVAL;
582 
583 	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
584 		    !(mtd->flags & MTD_NO_ERASE)))
585 		return -EINVAL;
586 
587 	/*
588 	 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
589 	 * master is an MLC NAND and has a proper pairing scheme defined.
590 	 * We also reject masters that implement ->_writev() for now, because
591 	 * NAND controller drivers don't implement this hook, and adding the
592 	 * SLC -> MLC address/length conversion to this path is useless if we
593 	 * don't have a user.
594 	 */
595 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
596 	    (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
597 	     !master->pairing || master->_writev))
598 		return -EINVAL;
599 
600 	mutex_lock(&mtd_table_mutex);
601 
602 	ofidx = -1;
603 	if (np)
604 		ofidx = of_alias_get_id(np, "mtd");
605 	if (ofidx >= 0)
606 		i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
607 	else
608 		i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
609 	if (i < 0) {
610 		error = i;
611 		goto fail_locked;
612 	}
613 
614 	mtd->index = i;
615 	mtd->usecount = 0;
616 
617 	/* default value if not set by driver */
618 	if (mtd->bitflip_threshold == 0)
619 		mtd->bitflip_threshold = mtd->ecc_strength;
620 
621 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
622 		int ngroups = mtd_pairing_groups(master);
623 
624 		mtd->erasesize /= ngroups;
625 		mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
626 			    mtd->erasesize;
627 	}
628 
629 	if (is_power_of_2(mtd->erasesize))
630 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
631 	else
632 		mtd->erasesize_shift = 0;
633 
634 	if (is_power_of_2(mtd->writesize))
635 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
636 	else
637 		mtd->writesize_shift = 0;
638 
639 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
640 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
641 
642 	/* Some chips always power up locked. Unlock them now */
643 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
644 		error = mtd_unlock(mtd, 0, mtd->size);
645 		if (error && error != -EOPNOTSUPP)
646 			printk(KERN_WARNING
647 			       "%s: unlock failed, writes may not work\n",
648 			       mtd->name);
649 		/* Ignore unlock failures? */
650 		error = 0;
651 	}
652 
653 	/* Caller should have set dev.parent to match the
654 	 * physical device, if appropriate.
655 	 */
656 	mtd->dev.type = &mtd_devtype;
657 	mtd->dev.class = &mtd_class;
658 	mtd->dev.devt = MTD_DEVT(i);
659 	dev_set_name(&mtd->dev, "mtd%d", i);
660 	dev_set_drvdata(&mtd->dev, mtd);
661 	of_node_get(mtd_get_of_node(mtd));
662 	error = device_register(&mtd->dev);
663 	if (error)
664 		goto fail_added;
665 
666 	/* Add the nvmem provider */
667 	error = mtd_nvmem_add(mtd);
668 	if (error)
669 		goto fail_nvmem_add;
670 
671 	mtd_debugfs_populate(mtd);
672 
673 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
674 		      "mtd%dro", i);
675 
676 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
677 	/* No need to get a refcount on the module containing
678 	   the notifier, since we hold the mtd_table_mutex */
679 	list_for_each_entry(not, &mtd_notifiers, list)
680 		not->add(mtd);
681 
682 	mutex_unlock(&mtd_table_mutex);
683 	/* We _know_ we aren't being removed, because
684 	   our caller is still holding us here. So none
685 	   of this try_ nonsense, and no bitching about it
686 	   either. :) */
687 	__module_get(THIS_MODULE);
688 	return 0;
689 
690 fail_nvmem_add:
691 	device_unregister(&mtd->dev);
692 fail_added:
693 	of_node_put(mtd_get_of_node(mtd));
694 	idr_remove(&mtd_idr, i);
695 fail_locked:
696 	mutex_unlock(&mtd_table_mutex);
697 	return error;
698 }
699 
700 /**
701  *	del_mtd_device - unregister an MTD device
702  *	@mtd: pointer to MTD device info structure
703  *
704  *	Remove a device from the list of MTD devices present in the system,
705  *	and notify each currently active MTD 'user' of its departure.
706  *	Returns zero on success or 1 on failure, which currently will happen
707  *	if the requested device does not appear to be present in the list.
708  */
709 
710 int del_mtd_device(struct mtd_info *mtd)
711 {
712 	int ret;
713 	struct mtd_notifier *not;
714 
715 	mutex_lock(&mtd_table_mutex);
716 
717 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
718 		ret = -ENODEV;
719 		goto out_error;
720 	}
721 
722 	/* No need to get a refcount on the module containing
723 		the notifier, since we hold the mtd_table_mutex */
724 	list_for_each_entry(not, &mtd_notifiers, list)
725 		not->remove(mtd);
726 
727 	if (mtd->usecount) {
728 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
729 		       mtd->index, mtd->name, mtd->usecount);
730 		ret = -EBUSY;
731 	} else {
732 		debugfs_remove_recursive(mtd->dbg.dfs_dir);
733 
734 		/* Try to remove the NVMEM provider */
735 		nvmem_unregister(mtd->nvmem);
736 
737 		device_unregister(&mtd->dev);
738 
739 		/* Clear dev so mtd can be safely re-registered later if desired */
740 		memset(&mtd->dev, 0, sizeof(mtd->dev));
741 
742 		idr_remove(&mtd_idr, mtd->index);
743 		of_node_put(mtd_get_of_node(mtd));
744 
745 		module_put(THIS_MODULE);
746 		ret = 0;
747 	}
748 
749 out_error:
750 	mutex_unlock(&mtd_table_mutex);
751 	return ret;
752 }
753 
754 /*
755  * Set a few defaults based on the parent devices, if not provided by the
756  * driver
757  */
758 static void mtd_set_dev_defaults(struct mtd_info *mtd)
759 {
760 	if (mtd->dev.parent) {
761 		if (!mtd->owner && mtd->dev.parent->driver)
762 			mtd->owner = mtd->dev.parent->driver->owner;
763 		if (!mtd->name)
764 			mtd->name = dev_name(mtd->dev.parent);
765 	} else {
766 		pr_debug("mtd device won't show a device symlink in sysfs\n");
767 	}
768 
769 	INIT_LIST_HEAD(&mtd->partitions);
770 	mutex_init(&mtd->master.partitions_lock);
771 	mutex_init(&mtd->master.chrdev_lock);
772 }
773 
774 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
775 {
776 	struct otp_info *info;
777 	ssize_t size = 0;
778 	unsigned int i;
779 	size_t retlen;
780 	int ret;
781 
782 	info = kmalloc(PAGE_SIZE, GFP_KERNEL);
783 	if (!info)
784 		return -ENOMEM;
785 
786 	if (is_user)
787 		ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
788 	else
789 		ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
790 	if (ret)
791 		goto err;
792 
793 	for (i = 0; i < retlen / sizeof(*info); i++)
794 		size += info[i].length;
795 
796 	kfree(info);
797 	return size;
798 
799 err:
800 	kfree(info);
801 
802 	/* ENODATA means there is no OTP region. */
803 	return ret == -ENODATA ? 0 : ret;
804 }
805 
806 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
807 						   const char *compatible,
808 						   int size,
809 						   nvmem_reg_read_t reg_read)
810 {
811 	struct nvmem_device *nvmem = NULL;
812 	struct nvmem_config config = {};
813 	struct device_node *np;
814 
815 	/* DT binding is optional */
816 	np = of_get_compatible_child(mtd->dev.of_node, compatible);
817 
818 	/* OTP nvmem will be registered on the physical device */
819 	config.dev = mtd->dev.parent;
820 	config.name = kasprintf(GFP_KERNEL, "%s-%s", dev_name(&mtd->dev), compatible);
821 	config.id = NVMEM_DEVID_NONE;
822 	config.owner = THIS_MODULE;
823 	config.type = NVMEM_TYPE_OTP;
824 	config.root_only = true;
825 	config.ignore_wp = true;
826 	config.reg_read = reg_read;
827 	config.size = size;
828 	config.of_node = np;
829 	config.priv = mtd;
830 
831 	nvmem = nvmem_register(&config);
832 	/* Just ignore if there is no NVMEM support in the kernel */
833 	if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
834 		nvmem = NULL;
835 
836 	of_node_put(np);
837 	kfree(config.name);
838 
839 	return nvmem;
840 }
841 
842 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
843 				       void *val, size_t bytes)
844 {
845 	struct mtd_info *mtd = priv;
846 	size_t retlen;
847 	int ret;
848 
849 	ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
850 	if (ret)
851 		return ret;
852 
853 	return retlen == bytes ? 0 : -EIO;
854 }
855 
856 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
857 				       void *val, size_t bytes)
858 {
859 	struct mtd_info *mtd = priv;
860 	size_t retlen;
861 	int ret;
862 
863 	ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
864 	if (ret)
865 		return ret;
866 
867 	return retlen == bytes ? 0 : -EIO;
868 }
869 
870 static int mtd_otp_nvmem_add(struct mtd_info *mtd)
871 {
872 	struct nvmem_device *nvmem;
873 	ssize_t size;
874 	int err;
875 
876 	if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
877 		size = mtd_otp_size(mtd, true);
878 		if (size < 0)
879 			return size;
880 
881 		if (size > 0) {
882 			nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
883 						       mtd_nvmem_user_otp_reg_read);
884 			if (IS_ERR(nvmem)) {
885 				dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n");
886 				return PTR_ERR(nvmem);
887 			}
888 			mtd->otp_user_nvmem = nvmem;
889 		}
890 	}
891 
892 	if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
893 		size = mtd_otp_size(mtd, false);
894 		if (size < 0) {
895 			err = size;
896 			goto err;
897 		}
898 
899 		if (size > 0) {
900 			nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
901 						       mtd_nvmem_fact_otp_reg_read);
902 			if (IS_ERR(nvmem)) {
903 				dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n");
904 				err = PTR_ERR(nvmem);
905 				goto err;
906 			}
907 			mtd->otp_factory_nvmem = nvmem;
908 		}
909 	}
910 
911 	return 0;
912 
913 err:
914 	nvmem_unregister(mtd->otp_user_nvmem);
915 	return err;
916 }
917 
918 /**
919  * mtd_device_parse_register - parse partitions and register an MTD device.
920  *
921  * @mtd: the MTD device to register
922  * @types: the list of MTD partition probes to try, see
923  *         'parse_mtd_partitions()' for more information
924  * @parser_data: MTD partition parser-specific data
925  * @parts: fallback partition information to register, if parsing fails;
926  *         only valid if %nr_parts > %0
927  * @nr_parts: the number of partitions in parts, if zero then the full
928  *            MTD device is registered if no partition info is found
929  *
930  * This function aggregates MTD partitions parsing (done by
931  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
932  * basically follows the most common pattern found in many MTD drivers:
933  *
934  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
935  *   registered first.
936  * * Then It tries to probe partitions on MTD device @mtd using parsers
937  *   specified in @types (if @types is %NULL, then the default list of parsers
938  *   is used, see 'parse_mtd_partitions()' for more information). If none are
939  *   found this functions tries to fallback to information specified in
940  *   @parts/@nr_parts.
941  * * If no partitions were found this function just registers the MTD device
942  *   @mtd and exits.
943  *
944  * Returns zero in case of success and a negative error code in case of failure.
945  */
946 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
947 			      struct mtd_part_parser_data *parser_data,
948 			      const struct mtd_partition *parts,
949 			      int nr_parts)
950 {
951 	int ret;
952 
953 	mtd_set_dev_defaults(mtd);
954 
955 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
956 		ret = add_mtd_device(mtd);
957 		if (ret)
958 			return ret;
959 	}
960 
961 	/* Prefer parsed partitions over driver-provided fallback */
962 	ret = parse_mtd_partitions(mtd, types, parser_data);
963 	if (ret == -EPROBE_DEFER)
964 		goto out;
965 
966 	if (ret > 0)
967 		ret = 0;
968 	else if (nr_parts)
969 		ret = add_mtd_partitions(mtd, parts, nr_parts);
970 	else if (!device_is_registered(&mtd->dev))
971 		ret = add_mtd_device(mtd);
972 	else
973 		ret = 0;
974 
975 	if (ret)
976 		goto out;
977 
978 	/*
979 	 * FIXME: some drivers unfortunately call this function more than once.
980 	 * So we have to check if we've already assigned the reboot notifier.
981 	 *
982 	 * Generally, we can make multiple calls work for most cases, but it
983 	 * does cause problems with parse_mtd_partitions() above (e.g.,
984 	 * cmdlineparts will register partitions more than once).
985 	 */
986 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
987 		  "MTD already registered\n");
988 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
989 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
990 		register_reboot_notifier(&mtd->reboot_notifier);
991 	}
992 
993 	ret = mtd_otp_nvmem_add(mtd);
994 
995 out:
996 	if (ret && device_is_registered(&mtd->dev))
997 		del_mtd_device(mtd);
998 
999 	return ret;
1000 }
1001 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1002 
1003 /**
1004  * mtd_device_unregister - unregister an existing MTD device.
1005  *
1006  * @master: the MTD device to unregister.  This will unregister both the master
1007  *          and any partitions if registered.
1008  */
1009 int mtd_device_unregister(struct mtd_info *master)
1010 {
1011 	int err;
1012 
1013 	if (master->_reboot) {
1014 		unregister_reboot_notifier(&master->reboot_notifier);
1015 		memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1016 	}
1017 
1018 	nvmem_unregister(master->otp_user_nvmem);
1019 	nvmem_unregister(master->otp_factory_nvmem);
1020 
1021 	err = del_mtd_partitions(master);
1022 	if (err)
1023 		return err;
1024 
1025 	if (!device_is_registered(&master->dev))
1026 		return 0;
1027 
1028 	return del_mtd_device(master);
1029 }
1030 EXPORT_SYMBOL_GPL(mtd_device_unregister);
1031 
1032 /**
1033  *	register_mtd_user - register a 'user' of MTD devices.
1034  *	@new: pointer to notifier info structure
1035  *
1036  *	Registers a pair of callbacks function to be called upon addition
1037  *	or removal of MTD devices. Causes the 'add' callback to be immediately
1038  *	invoked for each MTD device currently present in the system.
1039  */
1040 void register_mtd_user (struct mtd_notifier *new)
1041 {
1042 	struct mtd_info *mtd;
1043 
1044 	mutex_lock(&mtd_table_mutex);
1045 
1046 	list_add(&new->list, &mtd_notifiers);
1047 
1048 	__module_get(THIS_MODULE);
1049 
1050 	mtd_for_each_device(mtd)
1051 		new->add(mtd);
1052 
1053 	mutex_unlock(&mtd_table_mutex);
1054 }
1055 EXPORT_SYMBOL_GPL(register_mtd_user);
1056 
1057 /**
1058  *	unregister_mtd_user - unregister a 'user' of MTD devices.
1059  *	@old: pointer to notifier info structure
1060  *
1061  *	Removes a callback function pair from the list of 'users' to be
1062  *	notified upon addition or removal of MTD devices. Causes the
1063  *	'remove' callback to be immediately invoked for each MTD device
1064  *	currently present in the system.
1065  */
1066 int unregister_mtd_user (struct mtd_notifier *old)
1067 {
1068 	struct mtd_info *mtd;
1069 
1070 	mutex_lock(&mtd_table_mutex);
1071 
1072 	module_put(THIS_MODULE);
1073 
1074 	mtd_for_each_device(mtd)
1075 		old->remove(mtd);
1076 
1077 	list_del(&old->list);
1078 	mutex_unlock(&mtd_table_mutex);
1079 	return 0;
1080 }
1081 EXPORT_SYMBOL_GPL(unregister_mtd_user);
1082 
1083 /**
1084  *	get_mtd_device - obtain a validated handle for an MTD device
1085  *	@mtd: last known address of the required MTD device
1086  *	@num: internal device number of the required MTD device
1087  *
1088  *	Given a number and NULL address, return the num'th entry in the device
1089  *	table, if any.	Given an address and num == -1, search the device table
1090  *	for a device with that address and return if it's still present. Given
1091  *	both, return the num'th driver only if its address matches. Return
1092  *	error code if not.
1093  */
1094 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1095 {
1096 	struct mtd_info *ret = NULL, *other;
1097 	int err = -ENODEV;
1098 
1099 	mutex_lock(&mtd_table_mutex);
1100 
1101 	if (num == -1) {
1102 		mtd_for_each_device(other) {
1103 			if (other == mtd) {
1104 				ret = mtd;
1105 				break;
1106 			}
1107 		}
1108 	} else if (num >= 0) {
1109 		ret = idr_find(&mtd_idr, num);
1110 		if (mtd && mtd != ret)
1111 			ret = NULL;
1112 	}
1113 
1114 	if (!ret) {
1115 		ret = ERR_PTR(err);
1116 		goto out;
1117 	}
1118 
1119 	err = __get_mtd_device(ret);
1120 	if (err)
1121 		ret = ERR_PTR(err);
1122 out:
1123 	mutex_unlock(&mtd_table_mutex);
1124 	return ret;
1125 }
1126 EXPORT_SYMBOL_GPL(get_mtd_device);
1127 
1128 
1129 int __get_mtd_device(struct mtd_info *mtd)
1130 {
1131 	struct mtd_info *master = mtd_get_master(mtd);
1132 	int err;
1133 
1134 	if (!try_module_get(master->owner))
1135 		return -ENODEV;
1136 
1137 	if (master->_get_device) {
1138 		err = master->_get_device(mtd);
1139 
1140 		if (err) {
1141 			module_put(master->owner);
1142 			return err;
1143 		}
1144 	}
1145 
1146 	master->usecount++;
1147 
1148 	while (mtd->parent) {
1149 		mtd->usecount++;
1150 		mtd = mtd->parent;
1151 	}
1152 
1153 	return 0;
1154 }
1155 EXPORT_SYMBOL_GPL(__get_mtd_device);
1156 
1157 /**
1158  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1159  *	device name
1160  *	@name: MTD device name to open
1161  *
1162  * 	This function returns MTD device description structure in case of
1163  * 	success and an error code in case of failure.
1164  */
1165 struct mtd_info *get_mtd_device_nm(const char *name)
1166 {
1167 	int err = -ENODEV;
1168 	struct mtd_info *mtd = NULL, *other;
1169 
1170 	mutex_lock(&mtd_table_mutex);
1171 
1172 	mtd_for_each_device(other) {
1173 		if (!strcmp(name, other->name)) {
1174 			mtd = other;
1175 			break;
1176 		}
1177 	}
1178 
1179 	if (!mtd)
1180 		goto out_unlock;
1181 
1182 	err = __get_mtd_device(mtd);
1183 	if (err)
1184 		goto out_unlock;
1185 
1186 	mutex_unlock(&mtd_table_mutex);
1187 	return mtd;
1188 
1189 out_unlock:
1190 	mutex_unlock(&mtd_table_mutex);
1191 	return ERR_PTR(err);
1192 }
1193 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1194 
1195 void put_mtd_device(struct mtd_info *mtd)
1196 {
1197 	mutex_lock(&mtd_table_mutex);
1198 	__put_mtd_device(mtd);
1199 	mutex_unlock(&mtd_table_mutex);
1200 
1201 }
1202 EXPORT_SYMBOL_GPL(put_mtd_device);
1203 
1204 void __put_mtd_device(struct mtd_info *mtd)
1205 {
1206 	struct mtd_info *master = mtd_get_master(mtd);
1207 
1208 	while (mtd->parent) {
1209 		--mtd->usecount;
1210 		BUG_ON(mtd->usecount < 0);
1211 		mtd = mtd->parent;
1212 	}
1213 
1214 	master->usecount--;
1215 
1216 	if (master->_put_device)
1217 		master->_put_device(master);
1218 
1219 	module_put(master->owner);
1220 }
1221 EXPORT_SYMBOL_GPL(__put_mtd_device);
1222 
1223 /*
1224  * Erase is an synchronous operation. Device drivers are epected to return a
1225  * negative error code if the operation failed and update instr->fail_addr
1226  * to point the portion that was not properly erased.
1227  */
1228 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1229 {
1230 	struct mtd_info *master = mtd_get_master(mtd);
1231 	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1232 	struct erase_info adjinstr;
1233 	int ret;
1234 
1235 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1236 	adjinstr = *instr;
1237 
1238 	if (!mtd->erasesize || !master->_erase)
1239 		return -ENOTSUPP;
1240 
1241 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1242 		return -EINVAL;
1243 	if (!(mtd->flags & MTD_WRITEABLE))
1244 		return -EROFS;
1245 
1246 	if (!instr->len)
1247 		return 0;
1248 
1249 	ledtrig_mtd_activity();
1250 
1251 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1252 		adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1253 				master->erasesize;
1254 		adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1255 				master->erasesize) -
1256 			       adjinstr.addr;
1257 	}
1258 
1259 	adjinstr.addr += mst_ofs;
1260 
1261 	ret = master->_erase(master, &adjinstr);
1262 
1263 	if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1264 		instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1265 		if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1266 			instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1267 							 master);
1268 			instr->fail_addr *= mtd->erasesize;
1269 		}
1270 	}
1271 
1272 	return ret;
1273 }
1274 EXPORT_SYMBOL_GPL(mtd_erase);
1275 
1276 /*
1277  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1278  */
1279 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1280 	      void **virt, resource_size_t *phys)
1281 {
1282 	struct mtd_info *master = mtd_get_master(mtd);
1283 
1284 	*retlen = 0;
1285 	*virt = NULL;
1286 	if (phys)
1287 		*phys = 0;
1288 	if (!master->_point)
1289 		return -EOPNOTSUPP;
1290 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1291 		return -EINVAL;
1292 	if (!len)
1293 		return 0;
1294 
1295 	from = mtd_get_master_ofs(mtd, from);
1296 	return master->_point(master, from, len, retlen, virt, phys);
1297 }
1298 EXPORT_SYMBOL_GPL(mtd_point);
1299 
1300 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1301 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1302 {
1303 	struct mtd_info *master = mtd_get_master(mtd);
1304 
1305 	if (!master->_unpoint)
1306 		return -EOPNOTSUPP;
1307 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1308 		return -EINVAL;
1309 	if (!len)
1310 		return 0;
1311 	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1312 }
1313 EXPORT_SYMBOL_GPL(mtd_unpoint);
1314 
1315 /*
1316  * Allow NOMMU mmap() to directly map the device (if not NULL)
1317  * - return the address to which the offset maps
1318  * - return -ENOSYS to indicate refusal to do the mapping
1319  */
1320 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1321 				    unsigned long offset, unsigned long flags)
1322 {
1323 	size_t retlen;
1324 	void *virt;
1325 	int ret;
1326 
1327 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1328 	if (ret)
1329 		return ret;
1330 	if (retlen != len) {
1331 		mtd_unpoint(mtd, offset, retlen);
1332 		return -ENOSYS;
1333 	}
1334 	return (unsigned long)virt;
1335 }
1336 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1337 
1338 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1339 				 const struct mtd_ecc_stats *old_stats)
1340 {
1341 	struct mtd_ecc_stats diff;
1342 
1343 	if (master == mtd)
1344 		return;
1345 
1346 	diff = master->ecc_stats;
1347 	diff.failed -= old_stats->failed;
1348 	diff.corrected -= old_stats->corrected;
1349 
1350 	while (mtd->parent) {
1351 		mtd->ecc_stats.failed += diff.failed;
1352 		mtd->ecc_stats.corrected += diff.corrected;
1353 		mtd = mtd->parent;
1354 	}
1355 }
1356 
1357 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1358 	     u_char *buf)
1359 {
1360 	struct mtd_oob_ops ops = {
1361 		.len = len,
1362 		.datbuf = buf,
1363 	};
1364 	int ret;
1365 
1366 	ret = mtd_read_oob(mtd, from, &ops);
1367 	*retlen = ops.retlen;
1368 
1369 	return ret;
1370 }
1371 EXPORT_SYMBOL_GPL(mtd_read);
1372 
1373 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1374 	      const u_char *buf)
1375 {
1376 	struct mtd_oob_ops ops = {
1377 		.len = len,
1378 		.datbuf = (u8 *)buf,
1379 	};
1380 	int ret;
1381 
1382 	ret = mtd_write_oob(mtd, to, &ops);
1383 	*retlen = ops.retlen;
1384 
1385 	return ret;
1386 }
1387 EXPORT_SYMBOL_GPL(mtd_write);
1388 
1389 /*
1390  * In blackbox flight recorder like scenarios we want to make successful writes
1391  * in interrupt context. panic_write() is only intended to be called when its
1392  * known the kernel is about to panic and we need the write to succeed. Since
1393  * the kernel is not going to be running for much longer, this function can
1394  * break locks and delay to ensure the write succeeds (but not sleep).
1395  */
1396 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1397 		    const u_char *buf)
1398 {
1399 	struct mtd_info *master = mtd_get_master(mtd);
1400 
1401 	*retlen = 0;
1402 	if (!master->_panic_write)
1403 		return -EOPNOTSUPP;
1404 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1405 		return -EINVAL;
1406 	if (!(mtd->flags & MTD_WRITEABLE))
1407 		return -EROFS;
1408 	if (!len)
1409 		return 0;
1410 	if (!master->oops_panic_write)
1411 		master->oops_panic_write = true;
1412 
1413 	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1414 				    retlen, buf);
1415 }
1416 EXPORT_SYMBOL_GPL(mtd_panic_write);
1417 
1418 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1419 			     struct mtd_oob_ops *ops)
1420 {
1421 	/*
1422 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1423 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1424 	 *  this case.
1425 	 */
1426 	if (!ops->datbuf)
1427 		ops->len = 0;
1428 
1429 	if (!ops->oobbuf)
1430 		ops->ooblen = 0;
1431 
1432 	if (offs < 0 || offs + ops->len > mtd->size)
1433 		return -EINVAL;
1434 
1435 	if (ops->ooblen) {
1436 		size_t maxooblen;
1437 
1438 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1439 			return -EINVAL;
1440 
1441 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1442 				      mtd_div_by_ws(offs, mtd)) *
1443 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1444 		if (ops->ooblen > maxooblen)
1445 			return -EINVAL;
1446 	}
1447 
1448 	return 0;
1449 }
1450 
1451 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1452 			    struct mtd_oob_ops *ops)
1453 {
1454 	struct mtd_info *master = mtd_get_master(mtd);
1455 	int ret;
1456 
1457 	from = mtd_get_master_ofs(mtd, from);
1458 	if (master->_read_oob)
1459 		ret = master->_read_oob(master, from, ops);
1460 	else
1461 		ret = master->_read(master, from, ops->len, &ops->retlen,
1462 				    ops->datbuf);
1463 
1464 	return ret;
1465 }
1466 
1467 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1468 			     struct mtd_oob_ops *ops)
1469 {
1470 	struct mtd_info *master = mtd_get_master(mtd);
1471 	int ret;
1472 
1473 	to = mtd_get_master_ofs(mtd, to);
1474 	if (master->_write_oob)
1475 		ret = master->_write_oob(master, to, ops);
1476 	else
1477 		ret = master->_write(master, to, ops->len, &ops->retlen,
1478 				     ops->datbuf);
1479 
1480 	return ret;
1481 }
1482 
1483 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1484 			       struct mtd_oob_ops *ops)
1485 {
1486 	struct mtd_info *master = mtd_get_master(mtd);
1487 	int ngroups = mtd_pairing_groups(master);
1488 	int npairs = mtd_wunit_per_eb(master) / ngroups;
1489 	struct mtd_oob_ops adjops = *ops;
1490 	unsigned int wunit, oobavail;
1491 	struct mtd_pairing_info info;
1492 	int max_bitflips = 0;
1493 	u32 ebofs, pageofs;
1494 	loff_t base, pos;
1495 
1496 	ebofs = mtd_mod_by_eb(start, mtd);
1497 	base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1498 	info.group = 0;
1499 	info.pair = mtd_div_by_ws(ebofs, mtd);
1500 	pageofs = mtd_mod_by_ws(ebofs, mtd);
1501 	oobavail = mtd_oobavail(mtd, ops);
1502 
1503 	while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1504 		int ret;
1505 
1506 		if (info.pair >= npairs) {
1507 			info.pair = 0;
1508 			base += master->erasesize;
1509 		}
1510 
1511 		wunit = mtd_pairing_info_to_wunit(master, &info);
1512 		pos = mtd_wunit_to_offset(mtd, base, wunit);
1513 
1514 		adjops.len = ops->len - ops->retlen;
1515 		if (adjops.len > mtd->writesize - pageofs)
1516 			adjops.len = mtd->writesize - pageofs;
1517 
1518 		adjops.ooblen = ops->ooblen - ops->oobretlen;
1519 		if (adjops.ooblen > oobavail - adjops.ooboffs)
1520 			adjops.ooblen = oobavail - adjops.ooboffs;
1521 
1522 		if (read) {
1523 			ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1524 			if (ret > 0)
1525 				max_bitflips = max(max_bitflips, ret);
1526 		} else {
1527 			ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1528 		}
1529 
1530 		if (ret < 0)
1531 			return ret;
1532 
1533 		max_bitflips = max(max_bitflips, ret);
1534 		ops->retlen += adjops.retlen;
1535 		ops->oobretlen += adjops.oobretlen;
1536 		adjops.datbuf += adjops.retlen;
1537 		adjops.oobbuf += adjops.oobretlen;
1538 		adjops.ooboffs = 0;
1539 		pageofs = 0;
1540 		info.pair++;
1541 	}
1542 
1543 	return max_bitflips;
1544 }
1545 
1546 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1547 {
1548 	struct mtd_info *master = mtd_get_master(mtd);
1549 	struct mtd_ecc_stats old_stats = master->ecc_stats;
1550 	int ret_code;
1551 
1552 	ops->retlen = ops->oobretlen = 0;
1553 
1554 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1555 	if (ret_code)
1556 		return ret_code;
1557 
1558 	ledtrig_mtd_activity();
1559 
1560 	/* Check the validity of a potential fallback on mtd->_read */
1561 	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1562 		return -EOPNOTSUPP;
1563 
1564 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1565 		ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1566 	else
1567 		ret_code = mtd_read_oob_std(mtd, from, ops);
1568 
1569 	mtd_update_ecc_stats(mtd, master, &old_stats);
1570 
1571 	/*
1572 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1573 	 * similar to mtd->_read(), returning a non-negative integer
1574 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1575 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1576 	 */
1577 	if (unlikely(ret_code < 0))
1578 		return ret_code;
1579 	if (mtd->ecc_strength == 0)
1580 		return 0;	/* device lacks ecc */
1581 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1582 }
1583 EXPORT_SYMBOL_GPL(mtd_read_oob);
1584 
1585 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1586 				struct mtd_oob_ops *ops)
1587 {
1588 	struct mtd_info *master = mtd_get_master(mtd);
1589 	int ret;
1590 
1591 	ops->retlen = ops->oobretlen = 0;
1592 
1593 	if (!(mtd->flags & MTD_WRITEABLE))
1594 		return -EROFS;
1595 
1596 	ret = mtd_check_oob_ops(mtd, to, ops);
1597 	if (ret)
1598 		return ret;
1599 
1600 	ledtrig_mtd_activity();
1601 
1602 	/* Check the validity of a potential fallback on mtd->_write */
1603 	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1604 		return -EOPNOTSUPP;
1605 
1606 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1607 		return mtd_io_emulated_slc(mtd, to, false, ops);
1608 
1609 	return mtd_write_oob_std(mtd, to, ops);
1610 }
1611 EXPORT_SYMBOL_GPL(mtd_write_oob);
1612 
1613 /**
1614  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1615  * @mtd: MTD device structure
1616  * @section: ECC section. Depending on the layout you may have all the ECC
1617  *	     bytes stored in a single contiguous section, or one section
1618  *	     per ECC chunk (and sometime several sections for a single ECC
1619  *	     ECC chunk)
1620  * @oobecc: OOB region struct filled with the appropriate ECC position
1621  *	    information
1622  *
1623  * This function returns ECC section information in the OOB area. If you want
1624  * to get all the ECC bytes information, then you should call
1625  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1626  *
1627  * Returns zero on success, a negative error code otherwise.
1628  */
1629 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1630 		      struct mtd_oob_region *oobecc)
1631 {
1632 	struct mtd_info *master = mtd_get_master(mtd);
1633 
1634 	memset(oobecc, 0, sizeof(*oobecc));
1635 
1636 	if (!master || section < 0)
1637 		return -EINVAL;
1638 
1639 	if (!master->ooblayout || !master->ooblayout->ecc)
1640 		return -ENOTSUPP;
1641 
1642 	return master->ooblayout->ecc(master, section, oobecc);
1643 }
1644 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1645 
1646 /**
1647  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1648  *			section
1649  * @mtd: MTD device structure
1650  * @section: Free section you are interested in. Depending on the layout
1651  *	     you may have all the free bytes stored in a single contiguous
1652  *	     section, or one section per ECC chunk plus an extra section
1653  *	     for the remaining bytes (or other funky layout).
1654  * @oobfree: OOB region struct filled with the appropriate free position
1655  *	     information
1656  *
1657  * This function returns free bytes position in the OOB area. If you want
1658  * to get all the free bytes information, then you should call
1659  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1660  *
1661  * Returns zero on success, a negative error code otherwise.
1662  */
1663 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1664 		       struct mtd_oob_region *oobfree)
1665 {
1666 	struct mtd_info *master = mtd_get_master(mtd);
1667 
1668 	memset(oobfree, 0, sizeof(*oobfree));
1669 
1670 	if (!master || section < 0)
1671 		return -EINVAL;
1672 
1673 	if (!master->ooblayout || !master->ooblayout->free)
1674 		return -ENOTSUPP;
1675 
1676 	return master->ooblayout->free(master, section, oobfree);
1677 }
1678 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1679 
1680 /**
1681  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1682  * @mtd: mtd info structure
1683  * @byte: the byte we are searching for
1684  * @sectionp: pointer where the section id will be stored
1685  * @oobregion: used to retrieve the ECC position
1686  * @iter: iterator function. Should be either mtd_ooblayout_free or
1687  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1688  *
1689  * This function returns the section id and oobregion information of a
1690  * specific byte. For example, say you want to know where the 4th ECC byte is
1691  * stored, you'll use:
1692  *
1693  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1694  *
1695  * Returns zero on success, a negative error code otherwise.
1696  */
1697 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1698 				int *sectionp, struct mtd_oob_region *oobregion,
1699 				int (*iter)(struct mtd_info *,
1700 					    int section,
1701 					    struct mtd_oob_region *oobregion))
1702 {
1703 	int pos = 0, ret, section = 0;
1704 
1705 	memset(oobregion, 0, sizeof(*oobregion));
1706 
1707 	while (1) {
1708 		ret = iter(mtd, section, oobregion);
1709 		if (ret)
1710 			return ret;
1711 
1712 		if (pos + oobregion->length > byte)
1713 			break;
1714 
1715 		pos += oobregion->length;
1716 		section++;
1717 	}
1718 
1719 	/*
1720 	 * Adjust region info to make it start at the beginning at the
1721 	 * 'start' ECC byte.
1722 	 */
1723 	oobregion->offset += byte - pos;
1724 	oobregion->length -= byte - pos;
1725 	*sectionp = section;
1726 
1727 	return 0;
1728 }
1729 
1730 /**
1731  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1732  *				  ECC byte
1733  * @mtd: mtd info structure
1734  * @eccbyte: the byte we are searching for
1735  * @section: pointer where the section id will be stored
1736  * @oobregion: OOB region information
1737  *
1738  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1739  * byte.
1740  *
1741  * Returns zero on success, a negative error code otherwise.
1742  */
1743 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1744 				 int *section,
1745 				 struct mtd_oob_region *oobregion)
1746 {
1747 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1748 					 mtd_ooblayout_ecc);
1749 }
1750 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1751 
1752 /**
1753  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1754  * @mtd: mtd info structure
1755  * @buf: destination buffer to store OOB bytes
1756  * @oobbuf: OOB buffer
1757  * @start: first byte to retrieve
1758  * @nbytes: number of bytes to retrieve
1759  * @iter: section iterator
1760  *
1761  * Extract bytes attached to a specific category (ECC or free)
1762  * from the OOB buffer and copy them into buf.
1763  *
1764  * Returns zero on success, a negative error code otherwise.
1765  */
1766 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1767 				const u8 *oobbuf, int start, int nbytes,
1768 				int (*iter)(struct mtd_info *,
1769 					    int section,
1770 					    struct mtd_oob_region *oobregion))
1771 {
1772 	struct mtd_oob_region oobregion;
1773 	int section, ret;
1774 
1775 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1776 					&oobregion, iter);
1777 
1778 	while (!ret) {
1779 		int cnt;
1780 
1781 		cnt = min_t(int, nbytes, oobregion.length);
1782 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1783 		buf += cnt;
1784 		nbytes -= cnt;
1785 
1786 		if (!nbytes)
1787 			break;
1788 
1789 		ret = iter(mtd, ++section, &oobregion);
1790 	}
1791 
1792 	return ret;
1793 }
1794 
1795 /**
1796  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1797  * @mtd: mtd info structure
1798  * @buf: source buffer to get OOB bytes from
1799  * @oobbuf: OOB buffer
1800  * @start: first OOB byte to set
1801  * @nbytes: number of OOB bytes to set
1802  * @iter: section iterator
1803  *
1804  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1805  * is selected by passing the appropriate iterator.
1806  *
1807  * Returns zero on success, a negative error code otherwise.
1808  */
1809 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1810 				u8 *oobbuf, int start, int nbytes,
1811 				int (*iter)(struct mtd_info *,
1812 					    int section,
1813 					    struct mtd_oob_region *oobregion))
1814 {
1815 	struct mtd_oob_region oobregion;
1816 	int section, ret;
1817 
1818 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1819 					&oobregion, iter);
1820 
1821 	while (!ret) {
1822 		int cnt;
1823 
1824 		cnt = min_t(int, nbytes, oobregion.length);
1825 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1826 		buf += cnt;
1827 		nbytes -= cnt;
1828 
1829 		if (!nbytes)
1830 			break;
1831 
1832 		ret = iter(mtd, ++section, &oobregion);
1833 	}
1834 
1835 	return ret;
1836 }
1837 
1838 /**
1839  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1840  * @mtd: mtd info structure
1841  * @iter: category iterator
1842  *
1843  * Count the number of bytes in a given category.
1844  *
1845  * Returns a positive value on success, a negative error code otherwise.
1846  */
1847 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1848 				int (*iter)(struct mtd_info *,
1849 					    int section,
1850 					    struct mtd_oob_region *oobregion))
1851 {
1852 	struct mtd_oob_region oobregion;
1853 	int section = 0, ret, nbytes = 0;
1854 
1855 	while (1) {
1856 		ret = iter(mtd, section++, &oobregion);
1857 		if (ret) {
1858 			if (ret == -ERANGE)
1859 				ret = nbytes;
1860 			break;
1861 		}
1862 
1863 		nbytes += oobregion.length;
1864 	}
1865 
1866 	return ret;
1867 }
1868 
1869 /**
1870  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1871  * @mtd: mtd info structure
1872  * @eccbuf: destination buffer to store ECC bytes
1873  * @oobbuf: OOB buffer
1874  * @start: first ECC byte to retrieve
1875  * @nbytes: number of ECC bytes to retrieve
1876  *
1877  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1878  *
1879  * Returns zero on success, a negative error code otherwise.
1880  */
1881 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1882 			       const u8 *oobbuf, int start, int nbytes)
1883 {
1884 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1885 				       mtd_ooblayout_ecc);
1886 }
1887 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1888 
1889 /**
1890  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1891  * @mtd: mtd info structure
1892  * @eccbuf: source buffer to get ECC bytes from
1893  * @oobbuf: OOB buffer
1894  * @start: first ECC byte to set
1895  * @nbytes: number of ECC bytes to set
1896  *
1897  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1898  *
1899  * Returns zero on success, a negative error code otherwise.
1900  */
1901 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1902 			       u8 *oobbuf, int start, int nbytes)
1903 {
1904 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1905 				       mtd_ooblayout_ecc);
1906 }
1907 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1908 
1909 /**
1910  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1911  * @mtd: mtd info structure
1912  * @databuf: destination buffer to store ECC bytes
1913  * @oobbuf: OOB buffer
1914  * @start: first ECC byte to retrieve
1915  * @nbytes: number of ECC bytes to retrieve
1916  *
1917  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1918  *
1919  * Returns zero on success, a negative error code otherwise.
1920  */
1921 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1922 				const u8 *oobbuf, int start, int nbytes)
1923 {
1924 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1925 				       mtd_ooblayout_free);
1926 }
1927 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1928 
1929 /**
1930  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1931  * @mtd: mtd info structure
1932  * @databuf: source buffer to get data bytes from
1933  * @oobbuf: OOB buffer
1934  * @start: first ECC byte to set
1935  * @nbytes: number of ECC bytes to set
1936  *
1937  * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
1938  *
1939  * Returns zero on success, a negative error code otherwise.
1940  */
1941 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1942 				u8 *oobbuf, int start, int nbytes)
1943 {
1944 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1945 				       mtd_ooblayout_free);
1946 }
1947 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1948 
1949 /**
1950  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1951  * @mtd: mtd info structure
1952  *
1953  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1954  *
1955  * Returns zero on success, a negative error code otherwise.
1956  */
1957 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1958 {
1959 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1960 }
1961 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1962 
1963 /**
1964  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1965  * @mtd: mtd info structure
1966  *
1967  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1968  *
1969  * Returns zero on success, a negative error code otherwise.
1970  */
1971 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1972 {
1973 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1974 }
1975 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1976 
1977 /*
1978  * Method to access the protection register area, present in some flash
1979  * devices. The user data is one time programmable but the factory data is read
1980  * only.
1981  */
1982 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1983 			   struct otp_info *buf)
1984 {
1985 	struct mtd_info *master = mtd_get_master(mtd);
1986 
1987 	if (!master->_get_fact_prot_info)
1988 		return -EOPNOTSUPP;
1989 	if (!len)
1990 		return 0;
1991 	return master->_get_fact_prot_info(master, len, retlen, buf);
1992 }
1993 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1994 
1995 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1996 			   size_t *retlen, u_char *buf)
1997 {
1998 	struct mtd_info *master = mtd_get_master(mtd);
1999 
2000 	*retlen = 0;
2001 	if (!master->_read_fact_prot_reg)
2002 		return -EOPNOTSUPP;
2003 	if (!len)
2004 		return 0;
2005 	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2006 }
2007 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2008 
2009 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2010 			   struct otp_info *buf)
2011 {
2012 	struct mtd_info *master = mtd_get_master(mtd);
2013 
2014 	if (!master->_get_user_prot_info)
2015 		return -EOPNOTSUPP;
2016 	if (!len)
2017 		return 0;
2018 	return master->_get_user_prot_info(master, len, retlen, buf);
2019 }
2020 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2021 
2022 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2023 			   size_t *retlen, u_char *buf)
2024 {
2025 	struct mtd_info *master = mtd_get_master(mtd);
2026 
2027 	*retlen = 0;
2028 	if (!master->_read_user_prot_reg)
2029 		return -EOPNOTSUPP;
2030 	if (!len)
2031 		return 0;
2032 	return master->_read_user_prot_reg(master, from, len, retlen, buf);
2033 }
2034 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2035 
2036 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2037 			    size_t *retlen, const u_char *buf)
2038 {
2039 	struct mtd_info *master = mtd_get_master(mtd);
2040 	int ret;
2041 
2042 	*retlen = 0;
2043 	if (!master->_write_user_prot_reg)
2044 		return -EOPNOTSUPP;
2045 	if (!len)
2046 		return 0;
2047 	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2048 	if (ret)
2049 		return ret;
2050 
2051 	/*
2052 	 * If no data could be written at all, we are out of memory and
2053 	 * must return -ENOSPC.
2054 	 */
2055 	return (*retlen) ? 0 : -ENOSPC;
2056 }
2057 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2058 
2059 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2060 {
2061 	struct mtd_info *master = mtd_get_master(mtd);
2062 
2063 	if (!master->_lock_user_prot_reg)
2064 		return -EOPNOTSUPP;
2065 	if (!len)
2066 		return 0;
2067 	return master->_lock_user_prot_reg(master, from, len);
2068 }
2069 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2070 
2071 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2072 {
2073 	struct mtd_info *master = mtd_get_master(mtd);
2074 
2075 	if (!master->_erase_user_prot_reg)
2076 		return -EOPNOTSUPP;
2077 	if (!len)
2078 		return 0;
2079 	return master->_erase_user_prot_reg(master, from, len);
2080 }
2081 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2082 
2083 /* Chip-supported device locking */
2084 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2085 {
2086 	struct mtd_info *master = mtd_get_master(mtd);
2087 
2088 	if (!master->_lock)
2089 		return -EOPNOTSUPP;
2090 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2091 		return -EINVAL;
2092 	if (!len)
2093 		return 0;
2094 
2095 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2096 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2097 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2098 	}
2099 
2100 	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2101 }
2102 EXPORT_SYMBOL_GPL(mtd_lock);
2103 
2104 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2105 {
2106 	struct mtd_info *master = mtd_get_master(mtd);
2107 
2108 	if (!master->_unlock)
2109 		return -EOPNOTSUPP;
2110 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2111 		return -EINVAL;
2112 	if (!len)
2113 		return 0;
2114 
2115 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2116 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2117 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2118 	}
2119 
2120 	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2121 }
2122 EXPORT_SYMBOL_GPL(mtd_unlock);
2123 
2124 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2125 {
2126 	struct mtd_info *master = mtd_get_master(mtd);
2127 
2128 	if (!master->_is_locked)
2129 		return -EOPNOTSUPP;
2130 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2131 		return -EINVAL;
2132 	if (!len)
2133 		return 0;
2134 
2135 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2136 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2137 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2138 	}
2139 
2140 	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2141 }
2142 EXPORT_SYMBOL_GPL(mtd_is_locked);
2143 
2144 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2145 {
2146 	struct mtd_info *master = mtd_get_master(mtd);
2147 
2148 	if (ofs < 0 || ofs >= mtd->size)
2149 		return -EINVAL;
2150 	if (!master->_block_isreserved)
2151 		return 0;
2152 
2153 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2154 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2155 
2156 	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2157 }
2158 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2159 
2160 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2161 {
2162 	struct mtd_info *master = mtd_get_master(mtd);
2163 
2164 	if (ofs < 0 || ofs >= mtd->size)
2165 		return -EINVAL;
2166 	if (!master->_block_isbad)
2167 		return 0;
2168 
2169 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2170 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2171 
2172 	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2173 }
2174 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2175 
2176 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2177 {
2178 	struct mtd_info *master = mtd_get_master(mtd);
2179 	int ret;
2180 
2181 	if (!master->_block_markbad)
2182 		return -EOPNOTSUPP;
2183 	if (ofs < 0 || ofs >= mtd->size)
2184 		return -EINVAL;
2185 	if (!(mtd->flags & MTD_WRITEABLE))
2186 		return -EROFS;
2187 
2188 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2189 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2190 
2191 	ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2192 	if (ret)
2193 		return ret;
2194 
2195 	while (mtd->parent) {
2196 		mtd->ecc_stats.badblocks++;
2197 		mtd = mtd->parent;
2198 	}
2199 
2200 	return 0;
2201 }
2202 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2203 
2204 /*
2205  * default_mtd_writev - the default writev method
2206  * @mtd: mtd device description object pointer
2207  * @vecs: the vectors to write
2208  * @count: count of vectors in @vecs
2209  * @to: the MTD device offset to write to
2210  * @retlen: on exit contains the count of bytes written to the MTD device.
2211  *
2212  * This function returns zero in case of success and a negative error code in
2213  * case of failure.
2214  */
2215 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2216 			      unsigned long count, loff_t to, size_t *retlen)
2217 {
2218 	unsigned long i;
2219 	size_t totlen = 0, thislen;
2220 	int ret = 0;
2221 
2222 	for (i = 0; i < count; i++) {
2223 		if (!vecs[i].iov_len)
2224 			continue;
2225 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2226 				vecs[i].iov_base);
2227 		totlen += thislen;
2228 		if (ret || thislen != vecs[i].iov_len)
2229 			break;
2230 		to += vecs[i].iov_len;
2231 	}
2232 	*retlen = totlen;
2233 	return ret;
2234 }
2235 
2236 /*
2237  * mtd_writev - the vector-based MTD write method
2238  * @mtd: mtd device description object pointer
2239  * @vecs: the vectors to write
2240  * @count: count of vectors in @vecs
2241  * @to: the MTD device offset to write to
2242  * @retlen: on exit contains the count of bytes written to the MTD device.
2243  *
2244  * This function returns zero in case of success and a negative error code in
2245  * case of failure.
2246  */
2247 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2248 	       unsigned long count, loff_t to, size_t *retlen)
2249 {
2250 	struct mtd_info *master = mtd_get_master(mtd);
2251 
2252 	*retlen = 0;
2253 	if (!(mtd->flags & MTD_WRITEABLE))
2254 		return -EROFS;
2255 
2256 	if (!master->_writev)
2257 		return default_mtd_writev(mtd, vecs, count, to, retlen);
2258 
2259 	return master->_writev(master, vecs, count,
2260 			       mtd_get_master_ofs(mtd, to), retlen);
2261 }
2262 EXPORT_SYMBOL_GPL(mtd_writev);
2263 
2264 /**
2265  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2266  * @mtd: mtd device description object pointer
2267  * @size: a pointer to the ideal or maximum size of the allocation, points
2268  *        to the actual allocation size on success.
2269  *
2270  * This routine attempts to allocate a contiguous kernel buffer up to
2271  * the specified size, backing off the size of the request exponentially
2272  * until the request succeeds or until the allocation size falls below
2273  * the system page size. This attempts to make sure it does not adversely
2274  * impact system performance, so when allocating more than one page, we
2275  * ask the memory allocator to avoid re-trying, swapping, writing back
2276  * or performing I/O.
2277  *
2278  * Note, this function also makes sure that the allocated buffer is aligned to
2279  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2280  *
2281  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2282  * to handle smaller (i.e. degraded) buffer allocations under low- or
2283  * fragmented-memory situations where such reduced allocations, from a
2284  * requested ideal, are allowed.
2285  *
2286  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2287  */
2288 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2289 {
2290 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2291 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2292 	void *kbuf;
2293 
2294 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2295 
2296 	while (*size > min_alloc) {
2297 		kbuf = kmalloc(*size, flags);
2298 		if (kbuf)
2299 			return kbuf;
2300 
2301 		*size >>= 1;
2302 		*size = ALIGN(*size, mtd->writesize);
2303 	}
2304 
2305 	/*
2306 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2307 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2308 	 */
2309 	return kmalloc(*size, GFP_KERNEL);
2310 }
2311 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2312 
2313 #ifdef CONFIG_PROC_FS
2314 
2315 /*====================================================================*/
2316 /* Support for /proc/mtd */
2317 
2318 static int mtd_proc_show(struct seq_file *m, void *v)
2319 {
2320 	struct mtd_info *mtd;
2321 
2322 	seq_puts(m, "dev:    size   erasesize  name\n");
2323 	mutex_lock(&mtd_table_mutex);
2324 	mtd_for_each_device(mtd) {
2325 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2326 			   mtd->index, (unsigned long long)mtd->size,
2327 			   mtd->erasesize, mtd->name);
2328 	}
2329 	mutex_unlock(&mtd_table_mutex);
2330 	return 0;
2331 }
2332 #endif /* CONFIG_PROC_FS */
2333 
2334 /*====================================================================*/
2335 /* Init code */
2336 
2337 static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2338 {
2339 	struct backing_dev_info *bdi;
2340 	int ret;
2341 
2342 	bdi = bdi_alloc(NUMA_NO_NODE);
2343 	if (!bdi)
2344 		return ERR_PTR(-ENOMEM);
2345 	bdi->ra_pages = 0;
2346 	bdi->io_pages = 0;
2347 
2348 	/*
2349 	 * We put '-0' suffix to the name to get the same name format as we
2350 	 * used to get. Since this is called only once, we get a unique name.
2351 	 */
2352 	ret = bdi_register(bdi, "%.28s-0", name);
2353 	if (ret)
2354 		bdi_put(bdi);
2355 
2356 	return ret ? ERR_PTR(ret) : bdi;
2357 }
2358 
2359 static struct proc_dir_entry *proc_mtd;
2360 
2361 static int __init init_mtd(void)
2362 {
2363 	int ret;
2364 
2365 	ret = class_register(&mtd_class);
2366 	if (ret)
2367 		goto err_reg;
2368 
2369 	mtd_bdi = mtd_bdi_init("mtd");
2370 	if (IS_ERR(mtd_bdi)) {
2371 		ret = PTR_ERR(mtd_bdi);
2372 		goto err_bdi;
2373 	}
2374 
2375 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2376 
2377 	ret = init_mtdchar();
2378 	if (ret)
2379 		goto out_procfs;
2380 
2381 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2382 	debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2383 			    &mtd_expert_analysis_mode);
2384 
2385 	return 0;
2386 
2387 out_procfs:
2388 	if (proc_mtd)
2389 		remove_proc_entry("mtd", NULL);
2390 	bdi_put(mtd_bdi);
2391 err_bdi:
2392 	class_unregister(&mtd_class);
2393 err_reg:
2394 	pr_err("Error registering mtd class or bdi: %d\n", ret);
2395 	return ret;
2396 }
2397 
2398 static void __exit cleanup_mtd(void)
2399 {
2400 	debugfs_remove_recursive(dfs_dir_mtd);
2401 	cleanup_mtdchar();
2402 	if (proc_mtd)
2403 		remove_proc_entry("mtd", NULL);
2404 	class_unregister(&mtd_class);
2405 	bdi_unregister(mtd_bdi);
2406 	bdi_put(mtd_bdi);
2407 	idr_destroy(&mtd_idr);
2408 }
2409 
2410 module_init(init_mtd);
2411 module_exit(cleanup_mtd);
2412 
2413 MODULE_LICENSE("GPL");
2414 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2415 MODULE_DESCRIPTION("Core MTD registration and access routines");
2416