xref: /openbmc/linux/drivers/mtd/mtdcore.c (revision 588b48ca)
1 /*
2  * Core registration and callback routines for MTD
3  * drivers and users.
4  *
5  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6  * Copyright © 2006      Red Hat UK Limited
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/proc_fs.h>
36 #include <linux/idr.h>
37 #include <linux/backing-dev.h>
38 #include <linux/gfp.h>
39 #include <linux/slab.h>
40 
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/partitions.h>
43 
44 #include "mtdcore.h"
45 
46 /*
47  * backing device capabilities for non-mappable devices (such as NAND flash)
48  * - permits private mappings, copies are taken of the data
49  */
50 static struct backing_dev_info mtd_bdi_unmappable = {
51 	.capabilities	= BDI_CAP_MAP_COPY,
52 };
53 
54 /*
55  * backing device capabilities for R/O mappable devices (such as ROM)
56  * - permits private mappings, copies are taken of the data
57  * - permits non-writable shared mappings
58  */
59 static struct backing_dev_info mtd_bdi_ro_mappable = {
60 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
61 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
62 };
63 
64 /*
65  * backing device capabilities for writable mappable devices (such as RAM)
66  * - permits private mappings, copies are taken of the data
67  * - permits non-writable shared mappings
68  */
69 static struct backing_dev_info mtd_bdi_rw_mappable = {
70 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
71 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
72 			   BDI_CAP_WRITE_MAP),
73 };
74 
75 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
76 static int mtd_cls_resume(struct device *dev);
77 
78 static struct class mtd_class = {
79 	.name = "mtd",
80 	.owner = THIS_MODULE,
81 	.suspend = mtd_cls_suspend,
82 	.resume = mtd_cls_resume,
83 };
84 
85 static DEFINE_IDR(mtd_idr);
86 
87 /* These are exported solely for the purpose of mtd_blkdevs.c. You
88    should not use them for _anything_ else */
89 DEFINE_MUTEX(mtd_table_mutex);
90 EXPORT_SYMBOL_GPL(mtd_table_mutex);
91 
92 struct mtd_info *__mtd_next_device(int i)
93 {
94 	return idr_get_next(&mtd_idr, &i);
95 }
96 EXPORT_SYMBOL_GPL(__mtd_next_device);
97 
98 static LIST_HEAD(mtd_notifiers);
99 
100 
101 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
102 
103 /* REVISIT once MTD uses the driver model better, whoever allocates
104  * the mtd_info will probably want to use the release() hook...
105  */
106 static void mtd_release(struct device *dev)
107 {
108 	struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
109 	dev_t index = MTD_DEVT(mtd->index);
110 
111 	/* remove /dev/mtdXro node if needed */
112 	if (index)
113 		device_destroy(&mtd_class, index + 1);
114 }
115 
116 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
117 {
118 	struct mtd_info *mtd = dev_get_drvdata(dev);
119 
120 	return mtd ? mtd_suspend(mtd) : 0;
121 }
122 
123 static int mtd_cls_resume(struct device *dev)
124 {
125 	struct mtd_info *mtd = dev_get_drvdata(dev);
126 
127 	if (mtd)
128 		mtd_resume(mtd);
129 	return 0;
130 }
131 
132 static ssize_t mtd_type_show(struct device *dev,
133 		struct device_attribute *attr, char *buf)
134 {
135 	struct mtd_info *mtd = dev_get_drvdata(dev);
136 	char *type;
137 
138 	switch (mtd->type) {
139 	case MTD_ABSENT:
140 		type = "absent";
141 		break;
142 	case MTD_RAM:
143 		type = "ram";
144 		break;
145 	case MTD_ROM:
146 		type = "rom";
147 		break;
148 	case MTD_NORFLASH:
149 		type = "nor";
150 		break;
151 	case MTD_NANDFLASH:
152 		type = "nand";
153 		break;
154 	case MTD_DATAFLASH:
155 		type = "dataflash";
156 		break;
157 	case MTD_UBIVOLUME:
158 		type = "ubi";
159 		break;
160 	case MTD_MLCNANDFLASH:
161 		type = "mlc-nand";
162 		break;
163 	default:
164 		type = "unknown";
165 	}
166 
167 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
168 }
169 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
170 
171 static ssize_t mtd_flags_show(struct device *dev,
172 		struct device_attribute *attr, char *buf)
173 {
174 	struct mtd_info *mtd = dev_get_drvdata(dev);
175 
176 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
177 
178 }
179 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
180 
181 static ssize_t mtd_size_show(struct device *dev,
182 		struct device_attribute *attr, char *buf)
183 {
184 	struct mtd_info *mtd = dev_get_drvdata(dev);
185 
186 	return snprintf(buf, PAGE_SIZE, "%llu\n",
187 		(unsigned long long)mtd->size);
188 
189 }
190 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
191 
192 static ssize_t mtd_erasesize_show(struct device *dev,
193 		struct device_attribute *attr, char *buf)
194 {
195 	struct mtd_info *mtd = dev_get_drvdata(dev);
196 
197 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
198 
199 }
200 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
201 
202 static ssize_t mtd_writesize_show(struct device *dev,
203 		struct device_attribute *attr, char *buf)
204 {
205 	struct mtd_info *mtd = dev_get_drvdata(dev);
206 
207 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
208 
209 }
210 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
211 
212 static ssize_t mtd_subpagesize_show(struct device *dev,
213 		struct device_attribute *attr, char *buf)
214 {
215 	struct mtd_info *mtd = dev_get_drvdata(dev);
216 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
217 
218 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
219 
220 }
221 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
222 
223 static ssize_t mtd_oobsize_show(struct device *dev,
224 		struct device_attribute *attr, char *buf)
225 {
226 	struct mtd_info *mtd = dev_get_drvdata(dev);
227 
228 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
229 
230 }
231 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
232 
233 static ssize_t mtd_numeraseregions_show(struct device *dev,
234 		struct device_attribute *attr, char *buf)
235 {
236 	struct mtd_info *mtd = dev_get_drvdata(dev);
237 
238 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
239 
240 }
241 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
242 	NULL);
243 
244 static ssize_t mtd_name_show(struct device *dev,
245 		struct device_attribute *attr, char *buf)
246 {
247 	struct mtd_info *mtd = dev_get_drvdata(dev);
248 
249 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
250 
251 }
252 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
253 
254 static ssize_t mtd_ecc_strength_show(struct device *dev,
255 				     struct device_attribute *attr, char *buf)
256 {
257 	struct mtd_info *mtd = dev_get_drvdata(dev);
258 
259 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
260 }
261 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
262 
263 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
264 					  struct device_attribute *attr,
265 					  char *buf)
266 {
267 	struct mtd_info *mtd = dev_get_drvdata(dev);
268 
269 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
270 }
271 
272 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
273 					   struct device_attribute *attr,
274 					   const char *buf, size_t count)
275 {
276 	struct mtd_info *mtd = dev_get_drvdata(dev);
277 	unsigned int bitflip_threshold;
278 	int retval;
279 
280 	retval = kstrtouint(buf, 0, &bitflip_threshold);
281 	if (retval)
282 		return retval;
283 
284 	mtd->bitflip_threshold = bitflip_threshold;
285 	return count;
286 }
287 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
288 		   mtd_bitflip_threshold_show,
289 		   mtd_bitflip_threshold_store);
290 
291 static ssize_t mtd_ecc_step_size_show(struct device *dev,
292 		struct device_attribute *attr, char *buf)
293 {
294 	struct mtd_info *mtd = dev_get_drvdata(dev);
295 
296 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
297 
298 }
299 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
300 
301 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
302 		struct device_attribute *attr, char *buf)
303 {
304 	struct mtd_info *mtd = dev_get_drvdata(dev);
305 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306 
307 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
308 }
309 static DEVICE_ATTR(corrected_bits, S_IRUGO,
310 		   mtd_ecc_stats_corrected_show, NULL);
311 
312 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
313 		struct device_attribute *attr, char *buf)
314 {
315 	struct mtd_info *mtd = dev_get_drvdata(dev);
316 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
317 
318 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
319 }
320 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
321 
322 static ssize_t mtd_badblocks_show(struct device *dev,
323 		struct device_attribute *attr, char *buf)
324 {
325 	struct mtd_info *mtd = dev_get_drvdata(dev);
326 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
327 
328 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
329 }
330 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
331 
332 static ssize_t mtd_bbtblocks_show(struct device *dev,
333 		struct device_attribute *attr, char *buf)
334 {
335 	struct mtd_info *mtd = dev_get_drvdata(dev);
336 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
337 
338 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
339 }
340 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
341 
342 static struct attribute *mtd_attrs[] = {
343 	&dev_attr_type.attr,
344 	&dev_attr_flags.attr,
345 	&dev_attr_size.attr,
346 	&dev_attr_erasesize.attr,
347 	&dev_attr_writesize.attr,
348 	&dev_attr_subpagesize.attr,
349 	&dev_attr_oobsize.attr,
350 	&dev_attr_numeraseregions.attr,
351 	&dev_attr_name.attr,
352 	&dev_attr_ecc_strength.attr,
353 	&dev_attr_ecc_step_size.attr,
354 	&dev_attr_corrected_bits.attr,
355 	&dev_attr_ecc_failures.attr,
356 	&dev_attr_bad_blocks.attr,
357 	&dev_attr_bbt_blocks.attr,
358 	&dev_attr_bitflip_threshold.attr,
359 	NULL,
360 };
361 ATTRIBUTE_GROUPS(mtd);
362 
363 static struct device_type mtd_devtype = {
364 	.name		= "mtd",
365 	.groups		= mtd_groups,
366 	.release	= mtd_release,
367 };
368 
369 /**
370  *	add_mtd_device - register an MTD device
371  *	@mtd: pointer to new MTD device info structure
372  *
373  *	Add a device to the list of MTD devices present in the system, and
374  *	notify each currently active MTD 'user' of its arrival. Returns
375  *	zero on success or 1 on failure, which currently will only happen
376  *	if there is insufficient memory or a sysfs error.
377  */
378 
379 int add_mtd_device(struct mtd_info *mtd)
380 {
381 	struct mtd_notifier *not;
382 	int i, error;
383 
384 	if (!mtd->backing_dev_info) {
385 		switch (mtd->type) {
386 		case MTD_RAM:
387 			mtd->backing_dev_info = &mtd_bdi_rw_mappable;
388 			break;
389 		case MTD_ROM:
390 			mtd->backing_dev_info = &mtd_bdi_ro_mappable;
391 			break;
392 		default:
393 			mtd->backing_dev_info = &mtd_bdi_unmappable;
394 			break;
395 		}
396 	}
397 
398 	BUG_ON(mtd->writesize == 0);
399 	mutex_lock(&mtd_table_mutex);
400 
401 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
402 	if (i < 0)
403 		goto fail_locked;
404 
405 	mtd->index = i;
406 	mtd->usecount = 0;
407 
408 	/* default value if not set by driver */
409 	if (mtd->bitflip_threshold == 0)
410 		mtd->bitflip_threshold = mtd->ecc_strength;
411 
412 	if (is_power_of_2(mtd->erasesize))
413 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
414 	else
415 		mtd->erasesize_shift = 0;
416 
417 	if (is_power_of_2(mtd->writesize))
418 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
419 	else
420 		mtd->writesize_shift = 0;
421 
422 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
423 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
424 
425 	/* Some chips always power up locked. Unlock them now */
426 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
427 		error = mtd_unlock(mtd, 0, mtd->size);
428 		if (error && error != -EOPNOTSUPP)
429 			printk(KERN_WARNING
430 			       "%s: unlock failed, writes may not work\n",
431 			       mtd->name);
432 	}
433 
434 	/* Caller should have set dev.parent to match the
435 	 * physical device.
436 	 */
437 	mtd->dev.type = &mtd_devtype;
438 	mtd->dev.class = &mtd_class;
439 	mtd->dev.devt = MTD_DEVT(i);
440 	dev_set_name(&mtd->dev, "mtd%d", i);
441 	dev_set_drvdata(&mtd->dev, mtd);
442 	if (device_register(&mtd->dev) != 0)
443 		goto fail_added;
444 
445 	if (MTD_DEVT(i))
446 		device_create(&mtd_class, mtd->dev.parent,
447 			      MTD_DEVT(i) + 1,
448 			      NULL, "mtd%dro", i);
449 
450 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
451 	/* No need to get a refcount on the module containing
452 	   the notifier, since we hold the mtd_table_mutex */
453 	list_for_each_entry(not, &mtd_notifiers, list)
454 		not->add(mtd);
455 
456 	mutex_unlock(&mtd_table_mutex);
457 	/* We _know_ we aren't being removed, because
458 	   our caller is still holding us here. So none
459 	   of this try_ nonsense, and no bitching about it
460 	   either. :) */
461 	__module_get(THIS_MODULE);
462 	return 0;
463 
464 fail_added:
465 	idr_remove(&mtd_idr, i);
466 fail_locked:
467 	mutex_unlock(&mtd_table_mutex);
468 	return 1;
469 }
470 
471 /**
472  *	del_mtd_device - unregister an MTD device
473  *	@mtd: pointer to MTD device info structure
474  *
475  *	Remove a device from the list of MTD devices present in the system,
476  *	and notify each currently active MTD 'user' of its departure.
477  *	Returns zero on success or 1 on failure, which currently will happen
478  *	if the requested device does not appear to be present in the list.
479  */
480 
481 int del_mtd_device(struct mtd_info *mtd)
482 {
483 	int ret;
484 	struct mtd_notifier *not;
485 
486 	mutex_lock(&mtd_table_mutex);
487 
488 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
489 		ret = -ENODEV;
490 		goto out_error;
491 	}
492 
493 	/* No need to get a refcount on the module containing
494 		the notifier, since we hold the mtd_table_mutex */
495 	list_for_each_entry(not, &mtd_notifiers, list)
496 		not->remove(mtd);
497 
498 	if (mtd->usecount) {
499 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
500 		       mtd->index, mtd->name, mtd->usecount);
501 		ret = -EBUSY;
502 	} else {
503 		device_unregister(&mtd->dev);
504 
505 		idr_remove(&mtd_idr, mtd->index);
506 
507 		module_put(THIS_MODULE);
508 		ret = 0;
509 	}
510 
511 out_error:
512 	mutex_unlock(&mtd_table_mutex);
513 	return ret;
514 }
515 
516 /**
517  * mtd_device_parse_register - parse partitions and register an MTD device.
518  *
519  * @mtd: the MTD device to register
520  * @types: the list of MTD partition probes to try, see
521  *         'parse_mtd_partitions()' for more information
522  * @parser_data: MTD partition parser-specific data
523  * @parts: fallback partition information to register, if parsing fails;
524  *         only valid if %nr_parts > %0
525  * @nr_parts: the number of partitions in parts, if zero then the full
526  *            MTD device is registered if no partition info is found
527  *
528  * This function aggregates MTD partitions parsing (done by
529  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
530  * basically follows the most common pattern found in many MTD drivers:
531  *
532  * * It first tries to probe partitions on MTD device @mtd using parsers
533  *   specified in @types (if @types is %NULL, then the default list of parsers
534  *   is used, see 'parse_mtd_partitions()' for more information). If none are
535  *   found this functions tries to fallback to information specified in
536  *   @parts/@nr_parts.
537  * * If any partitioning info was found, this function registers the found
538  *   partitions.
539  * * If no partitions were found this function just registers the MTD device
540  *   @mtd and exits.
541  *
542  * Returns zero in case of success and a negative error code in case of failure.
543  */
544 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
545 			      struct mtd_part_parser_data *parser_data,
546 			      const struct mtd_partition *parts,
547 			      int nr_parts)
548 {
549 	int err;
550 	struct mtd_partition *real_parts;
551 
552 	err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
553 	if (err <= 0 && nr_parts && parts) {
554 		real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
555 				     GFP_KERNEL);
556 		if (!real_parts)
557 			err = -ENOMEM;
558 		else
559 			err = nr_parts;
560 	}
561 
562 	if (err > 0) {
563 		err = add_mtd_partitions(mtd, real_parts, err);
564 		kfree(real_parts);
565 	} else if (err == 0) {
566 		err = add_mtd_device(mtd);
567 		if (err == 1)
568 			err = -ENODEV;
569 	}
570 
571 	return err;
572 }
573 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
574 
575 /**
576  * mtd_device_unregister - unregister an existing MTD device.
577  *
578  * @master: the MTD device to unregister.  This will unregister both the master
579  *          and any partitions if registered.
580  */
581 int mtd_device_unregister(struct mtd_info *master)
582 {
583 	int err;
584 
585 	err = del_mtd_partitions(master);
586 	if (err)
587 		return err;
588 
589 	if (!device_is_registered(&master->dev))
590 		return 0;
591 
592 	return del_mtd_device(master);
593 }
594 EXPORT_SYMBOL_GPL(mtd_device_unregister);
595 
596 /**
597  *	register_mtd_user - register a 'user' of MTD devices.
598  *	@new: pointer to notifier info structure
599  *
600  *	Registers a pair of callbacks function to be called upon addition
601  *	or removal of MTD devices. Causes the 'add' callback to be immediately
602  *	invoked for each MTD device currently present in the system.
603  */
604 void register_mtd_user (struct mtd_notifier *new)
605 {
606 	struct mtd_info *mtd;
607 
608 	mutex_lock(&mtd_table_mutex);
609 
610 	list_add(&new->list, &mtd_notifiers);
611 
612 	__module_get(THIS_MODULE);
613 
614 	mtd_for_each_device(mtd)
615 		new->add(mtd);
616 
617 	mutex_unlock(&mtd_table_mutex);
618 }
619 EXPORT_SYMBOL_GPL(register_mtd_user);
620 
621 /**
622  *	unregister_mtd_user - unregister a 'user' of MTD devices.
623  *	@old: pointer to notifier info structure
624  *
625  *	Removes a callback function pair from the list of 'users' to be
626  *	notified upon addition or removal of MTD devices. Causes the
627  *	'remove' callback to be immediately invoked for each MTD device
628  *	currently present in the system.
629  */
630 int unregister_mtd_user (struct mtd_notifier *old)
631 {
632 	struct mtd_info *mtd;
633 
634 	mutex_lock(&mtd_table_mutex);
635 
636 	module_put(THIS_MODULE);
637 
638 	mtd_for_each_device(mtd)
639 		old->remove(mtd);
640 
641 	list_del(&old->list);
642 	mutex_unlock(&mtd_table_mutex);
643 	return 0;
644 }
645 EXPORT_SYMBOL_GPL(unregister_mtd_user);
646 
647 /**
648  *	get_mtd_device - obtain a validated handle for an MTD device
649  *	@mtd: last known address of the required MTD device
650  *	@num: internal device number of the required MTD device
651  *
652  *	Given a number and NULL address, return the num'th entry in the device
653  *	table, if any.	Given an address and num == -1, search the device table
654  *	for a device with that address and return if it's still present. Given
655  *	both, return the num'th driver only if its address matches. Return
656  *	error code if not.
657  */
658 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
659 {
660 	struct mtd_info *ret = NULL, *other;
661 	int err = -ENODEV;
662 
663 	mutex_lock(&mtd_table_mutex);
664 
665 	if (num == -1) {
666 		mtd_for_each_device(other) {
667 			if (other == mtd) {
668 				ret = mtd;
669 				break;
670 			}
671 		}
672 	} else if (num >= 0) {
673 		ret = idr_find(&mtd_idr, num);
674 		if (mtd && mtd != ret)
675 			ret = NULL;
676 	}
677 
678 	if (!ret) {
679 		ret = ERR_PTR(err);
680 		goto out;
681 	}
682 
683 	err = __get_mtd_device(ret);
684 	if (err)
685 		ret = ERR_PTR(err);
686 out:
687 	mutex_unlock(&mtd_table_mutex);
688 	return ret;
689 }
690 EXPORT_SYMBOL_GPL(get_mtd_device);
691 
692 
693 int __get_mtd_device(struct mtd_info *mtd)
694 {
695 	int err;
696 
697 	if (!try_module_get(mtd->owner))
698 		return -ENODEV;
699 
700 	if (mtd->_get_device) {
701 		err = mtd->_get_device(mtd);
702 
703 		if (err) {
704 			module_put(mtd->owner);
705 			return err;
706 		}
707 	}
708 	mtd->usecount++;
709 	return 0;
710 }
711 EXPORT_SYMBOL_GPL(__get_mtd_device);
712 
713 /**
714  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
715  *	device name
716  *	@name: MTD device name to open
717  *
718  * 	This function returns MTD device description structure in case of
719  * 	success and an error code in case of failure.
720  */
721 struct mtd_info *get_mtd_device_nm(const char *name)
722 {
723 	int err = -ENODEV;
724 	struct mtd_info *mtd = NULL, *other;
725 
726 	mutex_lock(&mtd_table_mutex);
727 
728 	mtd_for_each_device(other) {
729 		if (!strcmp(name, other->name)) {
730 			mtd = other;
731 			break;
732 		}
733 	}
734 
735 	if (!mtd)
736 		goto out_unlock;
737 
738 	err = __get_mtd_device(mtd);
739 	if (err)
740 		goto out_unlock;
741 
742 	mutex_unlock(&mtd_table_mutex);
743 	return mtd;
744 
745 out_unlock:
746 	mutex_unlock(&mtd_table_mutex);
747 	return ERR_PTR(err);
748 }
749 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
750 
751 void put_mtd_device(struct mtd_info *mtd)
752 {
753 	mutex_lock(&mtd_table_mutex);
754 	__put_mtd_device(mtd);
755 	mutex_unlock(&mtd_table_mutex);
756 
757 }
758 EXPORT_SYMBOL_GPL(put_mtd_device);
759 
760 void __put_mtd_device(struct mtd_info *mtd)
761 {
762 	--mtd->usecount;
763 	BUG_ON(mtd->usecount < 0);
764 
765 	if (mtd->_put_device)
766 		mtd->_put_device(mtd);
767 
768 	module_put(mtd->owner);
769 }
770 EXPORT_SYMBOL_GPL(__put_mtd_device);
771 
772 /*
773  * Erase is an asynchronous operation.  Device drivers are supposed
774  * to call instr->callback() whenever the operation completes, even
775  * if it completes with a failure.
776  * Callers are supposed to pass a callback function and wait for it
777  * to be called before writing to the block.
778  */
779 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
780 {
781 	if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
782 		return -EINVAL;
783 	if (!(mtd->flags & MTD_WRITEABLE))
784 		return -EROFS;
785 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
786 	if (!instr->len) {
787 		instr->state = MTD_ERASE_DONE;
788 		mtd_erase_callback(instr);
789 		return 0;
790 	}
791 	return mtd->_erase(mtd, instr);
792 }
793 EXPORT_SYMBOL_GPL(mtd_erase);
794 
795 /*
796  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
797  */
798 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
799 	      void **virt, resource_size_t *phys)
800 {
801 	*retlen = 0;
802 	*virt = NULL;
803 	if (phys)
804 		*phys = 0;
805 	if (!mtd->_point)
806 		return -EOPNOTSUPP;
807 	if (from < 0 || from > mtd->size || len > mtd->size - from)
808 		return -EINVAL;
809 	if (!len)
810 		return 0;
811 	return mtd->_point(mtd, from, len, retlen, virt, phys);
812 }
813 EXPORT_SYMBOL_GPL(mtd_point);
814 
815 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
816 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
817 {
818 	if (!mtd->_point)
819 		return -EOPNOTSUPP;
820 	if (from < 0 || from > mtd->size || len > mtd->size - from)
821 		return -EINVAL;
822 	if (!len)
823 		return 0;
824 	return mtd->_unpoint(mtd, from, len);
825 }
826 EXPORT_SYMBOL_GPL(mtd_unpoint);
827 
828 /*
829  * Allow NOMMU mmap() to directly map the device (if not NULL)
830  * - return the address to which the offset maps
831  * - return -ENOSYS to indicate refusal to do the mapping
832  */
833 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
834 				    unsigned long offset, unsigned long flags)
835 {
836 	if (!mtd->_get_unmapped_area)
837 		return -EOPNOTSUPP;
838 	if (offset > mtd->size || len > mtd->size - offset)
839 		return -EINVAL;
840 	return mtd->_get_unmapped_area(mtd, len, offset, flags);
841 }
842 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
843 
844 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
845 	     u_char *buf)
846 {
847 	int ret_code;
848 	*retlen = 0;
849 	if (from < 0 || from > mtd->size || len > mtd->size - from)
850 		return -EINVAL;
851 	if (!len)
852 		return 0;
853 
854 	/*
855 	 * In the absence of an error, drivers return a non-negative integer
856 	 * representing the maximum number of bitflips that were corrected on
857 	 * any one ecc region (if applicable; zero otherwise).
858 	 */
859 	ret_code = mtd->_read(mtd, from, len, retlen, buf);
860 	if (unlikely(ret_code < 0))
861 		return ret_code;
862 	if (mtd->ecc_strength == 0)
863 		return 0;	/* device lacks ecc */
864 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
865 }
866 EXPORT_SYMBOL_GPL(mtd_read);
867 
868 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
869 	      const u_char *buf)
870 {
871 	*retlen = 0;
872 	if (to < 0 || to > mtd->size || len > mtd->size - to)
873 		return -EINVAL;
874 	if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
875 		return -EROFS;
876 	if (!len)
877 		return 0;
878 	return mtd->_write(mtd, to, len, retlen, buf);
879 }
880 EXPORT_SYMBOL_GPL(mtd_write);
881 
882 /*
883  * In blackbox flight recorder like scenarios we want to make successful writes
884  * in interrupt context. panic_write() is only intended to be called when its
885  * known the kernel is about to panic and we need the write to succeed. Since
886  * the kernel is not going to be running for much longer, this function can
887  * break locks and delay to ensure the write succeeds (but not sleep).
888  */
889 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
890 		    const u_char *buf)
891 {
892 	*retlen = 0;
893 	if (!mtd->_panic_write)
894 		return -EOPNOTSUPP;
895 	if (to < 0 || to > mtd->size || len > mtd->size - to)
896 		return -EINVAL;
897 	if (!(mtd->flags & MTD_WRITEABLE))
898 		return -EROFS;
899 	if (!len)
900 		return 0;
901 	return mtd->_panic_write(mtd, to, len, retlen, buf);
902 }
903 EXPORT_SYMBOL_GPL(mtd_panic_write);
904 
905 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
906 {
907 	int ret_code;
908 	ops->retlen = ops->oobretlen = 0;
909 	if (!mtd->_read_oob)
910 		return -EOPNOTSUPP;
911 	/*
912 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
913 	 * similar to mtd->_read(), returning a non-negative integer
914 	 * representing max bitflips. In other cases, mtd->_read_oob() may
915 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
916 	 */
917 	ret_code = mtd->_read_oob(mtd, from, ops);
918 	if (unlikely(ret_code < 0))
919 		return ret_code;
920 	if (mtd->ecc_strength == 0)
921 		return 0;	/* device lacks ecc */
922 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
923 }
924 EXPORT_SYMBOL_GPL(mtd_read_oob);
925 
926 /*
927  * Method to access the protection register area, present in some flash
928  * devices. The user data is one time programmable but the factory data is read
929  * only.
930  */
931 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
932 			   struct otp_info *buf)
933 {
934 	if (!mtd->_get_fact_prot_info)
935 		return -EOPNOTSUPP;
936 	if (!len)
937 		return 0;
938 	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
939 }
940 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
941 
942 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
943 			   size_t *retlen, u_char *buf)
944 {
945 	*retlen = 0;
946 	if (!mtd->_read_fact_prot_reg)
947 		return -EOPNOTSUPP;
948 	if (!len)
949 		return 0;
950 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
951 }
952 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
953 
954 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
955 			   struct otp_info *buf)
956 {
957 	if (!mtd->_get_user_prot_info)
958 		return -EOPNOTSUPP;
959 	if (!len)
960 		return 0;
961 	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
962 }
963 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
964 
965 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
966 			   size_t *retlen, u_char *buf)
967 {
968 	*retlen = 0;
969 	if (!mtd->_read_user_prot_reg)
970 		return -EOPNOTSUPP;
971 	if (!len)
972 		return 0;
973 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
974 }
975 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
976 
977 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
978 			    size_t *retlen, u_char *buf)
979 {
980 	int ret;
981 
982 	*retlen = 0;
983 	if (!mtd->_write_user_prot_reg)
984 		return -EOPNOTSUPP;
985 	if (!len)
986 		return 0;
987 	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
988 	if (ret)
989 		return ret;
990 
991 	/*
992 	 * If no data could be written at all, we are out of memory and
993 	 * must return -ENOSPC.
994 	 */
995 	return (*retlen) ? 0 : -ENOSPC;
996 }
997 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
998 
999 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1000 {
1001 	if (!mtd->_lock_user_prot_reg)
1002 		return -EOPNOTSUPP;
1003 	if (!len)
1004 		return 0;
1005 	return mtd->_lock_user_prot_reg(mtd, from, len);
1006 }
1007 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1008 
1009 /* Chip-supported device locking */
1010 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1011 {
1012 	if (!mtd->_lock)
1013 		return -EOPNOTSUPP;
1014 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1015 		return -EINVAL;
1016 	if (!len)
1017 		return 0;
1018 	return mtd->_lock(mtd, ofs, len);
1019 }
1020 EXPORT_SYMBOL_GPL(mtd_lock);
1021 
1022 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1023 {
1024 	if (!mtd->_unlock)
1025 		return -EOPNOTSUPP;
1026 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1027 		return -EINVAL;
1028 	if (!len)
1029 		return 0;
1030 	return mtd->_unlock(mtd, ofs, len);
1031 }
1032 EXPORT_SYMBOL_GPL(mtd_unlock);
1033 
1034 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1035 {
1036 	if (!mtd->_is_locked)
1037 		return -EOPNOTSUPP;
1038 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1039 		return -EINVAL;
1040 	if (!len)
1041 		return 0;
1042 	return mtd->_is_locked(mtd, ofs, len);
1043 }
1044 EXPORT_SYMBOL_GPL(mtd_is_locked);
1045 
1046 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1047 {
1048 	if (ofs < 0 || ofs > mtd->size)
1049 		return -EINVAL;
1050 	if (!mtd->_block_isreserved)
1051 		return 0;
1052 	return mtd->_block_isreserved(mtd, ofs);
1053 }
1054 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1055 
1056 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1057 {
1058 	if (ofs < 0 || ofs > mtd->size)
1059 		return -EINVAL;
1060 	if (!mtd->_block_isbad)
1061 		return 0;
1062 	return mtd->_block_isbad(mtd, ofs);
1063 }
1064 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1065 
1066 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1067 {
1068 	if (!mtd->_block_markbad)
1069 		return -EOPNOTSUPP;
1070 	if (ofs < 0 || ofs > mtd->size)
1071 		return -EINVAL;
1072 	if (!(mtd->flags & MTD_WRITEABLE))
1073 		return -EROFS;
1074 	return mtd->_block_markbad(mtd, ofs);
1075 }
1076 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1077 
1078 /*
1079  * default_mtd_writev - the default writev method
1080  * @mtd: mtd device description object pointer
1081  * @vecs: the vectors to write
1082  * @count: count of vectors in @vecs
1083  * @to: the MTD device offset to write to
1084  * @retlen: on exit contains the count of bytes written to the MTD device.
1085  *
1086  * This function returns zero in case of success and a negative error code in
1087  * case of failure.
1088  */
1089 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1090 			      unsigned long count, loff_t to, size_t *retlen)
1091 {
1092 	unsigned long i;
1093 	size_t totlen = 0, thislen;
1094 	int ret = 0;
1095 
1096 	for (i = 0; i < count; i++) {
1097 		if (!vecs[i].iov_len)
1098 			continue;
1099 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1100 				vecs[i].iov_base);
1101 		totlen += thislen;
1102 		if (ret || thislen != vecs[i].iov_len)
1103 			break;
1104 		to += vecs[i].iov_len;
1105 	}
1106 	*retlen = totlen;
1107 	return ret;
1108 }
1109 
1110 /*
1111  * mtd_writev - the vector-based MTD write method
1112  * @mtd: mtd device description object pointer
1113  * @vecs: the vectors to write
1114  * @count: count of vectors in @vecs
1115  * @to: the MTD device offset to write to
1116  * @retlen: on exit contains the count of bytes written to the MTD device.
1117  *
1118  * This function returns zero in case of success and a negative error code in
1119  * case of failure.
1120  */
1121 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1122 	       unsigned long count, loff_t to, size_t *retlen)
1123 {
1124 	*retlen = 0;
1125 	if (!(mtd->flags & MTD_WRITEABLE))
1126 		return -EROFS;
1127 	if (!mtd->_writev)
1128 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1129 	return mtd->_writev(mtd, vecs, count, to, retlen);
1130 }
1131 EXPORT_SYMBOL_GPL(mtd_writev);
1132 
1133 /**
1134  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1135  * @mtd: mtd device description object pointer
1136  * @size: a pointer to the ideal or maximum size of the allocation, points
1137  *        to the actual allocation size on success.
1138  *
1139  * This routine attempts to allocate a contiguous kernel buffer up to
1140  * the specified size, backing off the size of the request exponentially
1141  * until the request succeeds or until the allocation size falls below
1142  * the system page size. This attempts to make sure it does not adversely
1143  * impact system performance, so when allocating more than one page, we
1144  * ask the memory allocator to avoid re-trying, swapping, writing back
1145  * or performing I/O.
1146  *
1147  * Note, this function also makes sure that the allocated buffer is aligned to
1148  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1149  *
1150  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1151  * to handle smaller (i.e. degraded) buffer allocations under low- or
1152  * fragmented-memory situations where such reduced allocations, from a
1153  * requested ideal, are allowed.
1154  *
1155  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1156  */
1157 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1158 {
1159 	gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1160 		       __GFP_NORETRY | __GFP_NO_KSWAPD;
1161 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1162 	void *kbuf;
1163 
1164 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1165 
1166 	while (*size > min_alloc) {
1167 		kbuf = kmalloc(*size, flags);
1168 		if (kbuf)
1169 			return kbuf;
1170 
1171 		*size >>= 1;
1172 		*size = ALIGN(*size, mtd->writesize);
1173 	}
1174 
1175 	/*
1176 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1177 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1178 	 */
1179 	return kmalloc(*size, GFP_KERNEL);
1180 }
1181 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1182 
1183 #ifdef CONFIG_PROC_FS
1184 
1185 /*====================================================================*/
1186 /* Support for /proc/mtd */
1187 
1188 static int mtd_proc_show(struct seq_file *m, void *v)
1189 {
1190 	struct mtd_info *mtd;
1191 
1192 	seq_puts(m, "dev:    size   erasesize  name\n");
1193 	mutex_lock(&mtd_table_mutex);
1194 	mtd_for_each_device(mtd) {
1195 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1196 			   mtd->index, (unsigned long long)mtd->size,
1197 			   mtd->erasesize, mtd->name);
1198 	}
1199 	mutex_unlock(&mtd_table_mutex);
1200 	return 0;
1201 }
1202 
1203 static int mtd_proc_open(struct inode *inode, struct file *file)
1204 {
1205 	return single_open(file, mtd_proc_show, NULL);
1206 }
1207 
1208 static const struct file_operations mtd_proc_ops = {
1209 	.open		= mtd_proc_open,
1210 	.read		= seq_read,
1211 	.llseek		= seq_lseek,
1212 	.release	= single_release,
1213 };
1214 #endif /* CONFIG_PROC_FS */
1215 
1216 /*====================================================================*/
1217 /* Init code */
1218 
1219 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1220 {
1221 	int ret;
1222 
1223 	ret = bdi_init(bdi);
1224 	if (!ret)
1225 		ret = bdi_register(bdi, NULL, "%s", name);
1226 
1227 	if (ret)
1228 		bdi_destroy(bdi);
1229 
1230 	return ret;
1231 }
1232 
1233 static struct proc_dir_entry *proc_mtd;
1234 
1235 static int __init init_mtd(void)
1236 {
1237 	int ret;
1238 
1239 	ret = class_register(&mtd_class);
1240 	if (ret)
1241 		goto err_reg;
1242 
1243 	ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1244 	if (ret)
1245 		goto err_bdi1;
1246 
1247 	ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1248 	if (ret)
1249 		goto err_bdi2;
1250 
1251 	ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1252 	if (ret)
1253 		goto err_bdi3;
1254 
1255 	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1256 
1257 	ret = init_mtdchar();
1258 	if (ret)
1259 		goto out_procfs;
1260 
1261 	return 0;
1262 
1263 out_procfs:
1264 	if (proc_mtd)
1265 		remove_proc_entry("mtd", NULL);
1266 err_bdi3:
1267 	bdi_destroy(&mtd_bdi_ro_mappable);
1268 err_bdi2:
1269 	bdi_destroy(&mtd_bdi_unmappable);
1270 err_bdi1:
1271 	class_unregister(&mtd_class);
1272 err_reg:
1273 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1274 	return ret;
1275 }
1276 
1277 static void __exit cleanup_mtd(void)
1278 {
1279 	cleanup_mtdchar();
1280 	if (proc_mtd)
1281 		remove_proc_entry("mtd", NULL);
1282 	class_unregister(&mtd_class);
1283 	bdi_destroy(&mtd_bdi_unmappable);
1284 	bdi_destroy(&mtd_bdi_ro_mappable);
1285 	bdi_destroy(&mtd_bdi_rw_mappable);
1286 }
1287 
1288 module_init(init_mtd);
1289 module_exit(cleanup_mtd);
1290 
1291 MODULE_LICENSE("GPL");
1292 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1293 MODULE_DESCRIPTION("Core MTD registration and access routines");
1294