1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Core registration and callback routines for MTD 4 * drivers and users. 5 * 6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 7 * Copyright © 2006 Red Hat UK Limited 8 */ 9 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/ptrace.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/timer.h> 16 #include <linux/major.h> 17 #include <linux/fs.h> 18 #include <linux/err.h> 19 #include <linux/ioctl.h> 20 #include <linux/init.h> 21 #include <linux/of.h> 22 #include <linux/proc_fs.h> 23 #include <linux/idr.h> 24 #include <linux/backing-dev.h> 25 #include <linux/gfp.h> 26 #include <linux/slab.h> 27 #include <linux/reboot.h> 28 #include <linux/leds.h> 29 #include <linux/debugfs.h> 30 #include <linux/nvmem-provider.h> 31 32 #include <linux/mtd/mtd.h> 33 #include <linux/mtd/partitions.h> 34 35 #include "mtdcore.h" 36 37 struct backing_dev_info *mtd_bdi; 38 39 #ifdef CONFIG_PM_SLEEP 40 41 static int mtd_cls_suspend(struct device *dev) 42 { 43 struct mtd_info *mtd = dev_get_drvdata(dev); 44 45 return mtd ? mtd_suspend(mtd) : 0; 46 } 47 48 static int mtd_cls_resume(struct device *dev) 49 { 50 struct mtd_info *mtd = dev_get_drvdata(dev); 51 52 if (mtd) 53 mtd_resume(mtd); 54 return 0; 55 } 56 57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 59 #else 60 #define MTD_CLS_PM_OPS NULL 61 #endif 62 63 static struct class mtd_class = { 64 .name = "mtd", 65 .owner = THIS_MODULE, 66 .pm = MTD_CLS_PM_OPS, 67 }; 68 69 static DEFINE_IDR(mtd_idr); 70 71 /* These are exported solely for the purpose of mtd_blkdevs.c. You 72 should not use them for _anything_ else */ 73 DEFINE_MUTEX(mtd_table_mutex); 74 EXPORT_SYMBOL_GPL(mtd_table_mutex); 75 76 struct mtd_info *__mtd_next_device(int i) 77 { 78 return idr_get_next(&mtd_idr, &i); 79 } 80 EXPORT_SYMBOL_GPL(__mtd_next_device); 81 82 static LIST_HEAD(mtd_notifiers); 83 84 85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 86 87 /* REVISIT once MTD uses the driver model better, whoever allocates 88 * the mtd_info will probably want to use the release() hook... 89 */ 90 static void mtd_release(struct device *dev) 91 { 92 struct mtd_info *mtd = dev_get_drvdata(dev); 93 dev_t index = MTD_DEVT(mtd->index); 94 95 /* remove /dev/mtdXro node */ 96 device_destroy(&mtd_class, index + 1); 97 } 98 99 static ssize_t mtd_type_show(struct device *dev, 100 struct device_attribute *attr, char *buf) 101 { 102 struct mtd_info *mtd = dev_get_drvdata(dev); 103 char *type; 104 105 switch (mtd->type) { 106 case MTD_ABSENT: 107 type = "absent"; 108 break; 109 case MTD_RAM: 110 type = "ram"; 111 break; 112 case MTD_ROM: 113 type = "rom"; 114 break; 115 case MTD_NORFLASH: 116 type = "nor"; 117 break; 118 case MTD_NANDFLASH: 119 type = "nand"; 120 break; 121 case MTD_DATAFLASH: 122 type = "dataflash"; 123 break; 124 case MTD_UBIVOLUME: 125 type = "ubi"; 126 break; 127 case MTD_MLCNANDFLASH: 128 type = "mlc-nand"; 129 break; 130 default: 131 type = "unknown"; 132 } 133 134 return snprintf(buf, PAGE_SIZE, "%s\n", type); 135 } 136 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 137 138 static ssize_t mtd_flags_show(struct device *dev, 139 struct device_attribute *attr, char *buf) 140 { 141 struct mtd_info *mtd = dev_get_drvdata(dev); 142 143 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 144 } 145 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 146 147 static ssize_t mtd_size_show(struct device *dev, 148 struct device_attribute *attr, char *buf) 149 { 150 struct mtd_info *mtd = dev_get_drvdata(dev); 151 152 return snprintf(buf, PAGE_SIZE, "%llu\n", 153 (unsigned long long)mtd->size); 154 } 155 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 156 157 static ssize_t mtd_erasesize_show(struct device *dev, 158 struct device_attribute *attr, char *buf) 159 { 160 struct mtd_info *mtd = dev_get_drvdata(dev); 161 162 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 163 } 164 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 165 166 static ssize_t mtd_writesize_show(struct device *dev, 167 struct device_attribute *attr, char *buf) 168 { 169 struct mtd_info *mtd = dev_get_drvdata(dev); 170 171 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 172 } 173 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 174 175 static ssize_t mtd_subpagesize_show(struct device *dev, 176 struct device_attribute *attr, char *buf) 177 { 178 struct mtd_info *mtd = dev_get_drvdata(dev); 179 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 180 181 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 182 } 183 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 184 185 static ssize_t mtd_oobsize_show(struct device *dev, 186 struct device_attribute *attr, char *buf) 187 { 188 struct mtd_info *mtd = dev_get_drvdata(dev); 189 190 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 191 } 192 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 193 194 static ssize_t mtd_oobavail_show(struct device *dev, 195 struct device_attribute *attr, char *buf) 196 { 197 struct mtd_info *mtd = dev_get_drvdata(dev); 198 199 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail); 200 } 201 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL); 202 203 static ssize_t mtd_numeraseregions_show(struct device *dev, 204 struct device_attribute *attr, char *buf) 205 { 206 struct mtd_info *mtd = dev_get_drvdata(dev); 207 208 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 209 } 210 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 211 NULL); 212 213 static ssize_t mtd_name_show(struct device *dev, 214 struct device_attribute *attr, char *buf) 215 { 216 struct mtd_info *mtd = dev_get_drvdata(dev); 217 218 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 219 } 220 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 221 222 static ssize_t mtd_ecc_strength_show(struct device *dev, 223 struct device_attribute *attr, char *buf) 224 { 225 struct mtd_info *mtd = dev_get_drvdata(dev); 226 227 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 228 } 229 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 230 231 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 232 struct device_attribute *attr, 233 char *buf) 234 { 235 struct mtd_info *mtd = dev_get_drvdata(dev); 236 237 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 238 } 239 240 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 241 struct device_attribute *attr, 242 const char *buf, size_t count) 243 { 244 struct mtd_info *mtd = dev_get_drvdata(dev); 245 unsigned int bitflip_threshold; 246 int retval; 247 248 retval = kstrtouint(buf, 0, &bitflip_threshold); 249 if (retval) 250 return retval; 251 252 mtd->bitflip_threshold = bitflip_threshold; 253 return count; 254 } 255 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 256 mtd_bitflip_threshold_show, 257 mtd_bitflip_threshold_store); 258 259 static ssize_t mtd_ecc_step_size_show(struct device *dev, 260 struct device_attribute *attr, char *buf) 261 { 262 struct mtd_info *mtd = dev_get_drvdata(dev); 263 264 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 265 266 } 267 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 268 269 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev, 270 struct device_attribute *attr, char *buf) 271 { 272 struct mtd_info *mtd = dev_get_drvdata(dev); 273 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 274 275 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected); 276 } 277 static DEVICE_ATTR(corrected_bits, S_IRUGO, 278 mtd_ecc_stats_corrected_show, NULL); 279 280 static ssize_t mtd_ecc_stats_errors_show(struct device *dev, 281 struct device_attribute *attr, char *buf) 282 { 283 struct mtd_info *mtd = dev_get_drvdata(dev); 284 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 285 286 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed); 287 } 288 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL); 289 290 static ssize_t mtd_badblocks_show(struct device *dev, 291 struct device_attribute *attr, char *buf) 292 { 293 struct mtd_info *mtd = dev_get_drvdata(dev); 294 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 295 296 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks); 297 } 298 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL); 299 300 static ssize_t mtd_bbtblocks_show(struct device *dev, 301 struct device_attribute *attr, char *buf) 302 { 303 struct mtd_info *mtd = dev_get_drvdata(dev); 304 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 305 306 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks); 307 } 308 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL); 309 310 static struct attribute *mtd_attrs[] = { 311 &dev_attr_type.attr, 312 &dev_attr_flags.attr, 313 &dev_attr_size.attr, 314 &dev_attr_erasesize.attr, 315 &dev_attr_writesize.attr, 316 &dev_attr_subpagesize.attr, 317 &dev_attr_oobsize.attr, 318 &dev_attr_oobavail.attr, 319 &dev_attr_numeraseregions.attr, 320 &dev_attr_name.attr, 321 &dev_attr_ecc_strength.attr, 322 &dev_attr_ecc_step_size.attr, 323 &dev_attr_corrected_bits.attr, 324 &dev_attr_ecc_failures.attr, 325 &dev_attr_bad_blocks.attr, 326 &dev_attr_bbt_blocks.attr, 327 &dev_attr_bitflip_threshold.attr, 328 NULL, 329 }; 330 ATTRIBUTE_GROUPS(mtd); 331 332 static const struct device_type mtd_devtype = { 333 .name = "mtd", 334 .groups = mtd_groups, 335 .release = mtd_release, 336 }; 337 338 static int mtd_partid_show(struct seq_file *s, void *p) 339 { 340 struct mtd_info *mtd = s->private; 341 342 seq_printf(s, "%s\n", mtd->dbg.partid); 343 344 return 0; 345 } 346 347 static int mtd_partid_debugfs_open(struct inode *inode, struct file *file) 348 { 349 return single_open(file, mtd_partid_show, inode->i_private); 350 } 351 352 static const struct file_operations mtd_partid_debug_fops = { 353 .open = mtd_partid_debugfs_open, 354 .read = seq_read, 355 .llseek = seq_lseek, 356 .release = single_release, 357 }; 358 359 static int mtd_partname_show(struct seq_file *s, void *p) 360 { 361 struct mtd_info *mtd = s->private; 362 363 seq_printf(s, "%s\n", mtd->dbg.partname); 364 365 return 0; 366 } 367 368 static int mtd_partname_debugfs_open(struct inode *inode, struct file *file) 369 { 370 return single_open(file, mtd_partname_show, inode->i_private); 371 } 372 373 static const struct file_operations mtd_partname_debug_fops = { 374 .open = mtd_partname_debugfs_open, 375 .read = seq_read, 376 .llseek = seq_lseek, 377 .release = single_release, 378 }; 379 380 static struct dentry *dfs_dir_mtd; 381 382 static void mtd_debugfs_populate(struct mtd_info *mtd) 383 { 384 struct device *dev = &mtd->dev; 385 struct dentry *root; 386 387 if (IS_ERR_OR_NULL(dfs_dir_mtd)) 388 return; 389 390 root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd); 391 mtd->dbg.dfs_dir = root; 392 393 if (mtd->dbg.partid) 394 debugfs_create_file("partid", 0400, root, mtd, 395 &mtd_partid_debug_fops); 396 397 if (mtd->dbg.partname) 398 debugfs_create_file("partname", 0400, root, mtd, 399 &mtd_partname_debug_fops); 400 } 401 402 #ifndef CONFIG_MMU 403 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 404 { 405 switch (mtd->type) { 406 case MTD_RAM: 407 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 408 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 409 case MTD_ROM: 410 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 411 NOMMU_MAP_READ; 412 default: 413 return NOMMU_MAP_COPY; 414 } 415 } 416 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 417 #endif 418 419 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 420 void *cmd) 421 { 422 struct mtd_info *mtd; 423 424 mtd = container_of(n, struct mtd_info, reboot_notifier); 425 mtd->_reboot(mtd); 426 427 return NOTIFY_DONE; 428 } 429 430 /** 431 * mtd_wunit_to_pairing_info - get pairing information of a wunit 432 * @mtd: pointer to new MTD device info structure 433 * @wunit: write unit we are interested in 434 * @info: returned pairing information 435 * 436 * Retrieve pairing information associated to the wunit. 437 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 438 * paired together, and where programming a page may influence the page it is 439 * paired with. 440 * The notion of page is replaced by the term wunit (write-unit) to stay 441 * consistent with the ->writesize field. 442 * 443 * The @wunit argument can be extracted from an absolute offset using 444 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 445 * to @wunit. 446 * 447 * From the pairing info the MTD user can find all the wunits paired with 448 * @wunit using the following loop: 449 * 450 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 451 * info.pair = i; 452 * mtd_pairing_info_to_wunit(mtd, &info); 453 * ... 454 * } 455 */ 456 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 457 struct mtd_pairing_info *info) 458 { 459 struct mtd_info *master = mtd_get_master(mtd); 460 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master); 461 462 if (wunit < 0 || wunit >= npairs) 463 return -EINVAL; 464 465 if (master->pairing && master->pairing->get_info) 466 return master->pairing->get_info(master, wunit, info); 467 468 info->group = 0; 469 info->pair = wunit; 470 471 return 0; 472 } 473 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 474 475 /** 476 * mtd_pairing_info_to_wunit - get wunit from pairing information 477 * @mtd: pointer to new MTD device info structure 478 * @info: pairing information struct 479 * 480 * Returns a positive number representing the wunit associated to the info 481 * struct, or a negative error code. 482 * 483 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 484 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 485 * doc). 486 * 487 * It can also be used to only program the first page of each pair (i.e. 488 * page attached to group 0), which allows one to use an MLC NAND in 489 * software-emulated SLC mode: 490 * 491 * info.group = 0; 492 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 493 * for (info.pair = 0; info.pair < npairs; info.pair++) { 494 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 495 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 496 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 497 * } 498 */ 499 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 500 const struct mtd_pairing_info *info) 501 { 502 struct mtd_info *master = mtd_get_master(mtd); 503 int ngroups = mtd_pairing_groups(master); 504 int npairs = mtd_wunit_per_eb(master) / ngroups; 505 506 if (!info || info->pair < 0 || info->pair >= npairs || 507 info->group < 0 || info->group >= ngroups) 508 return -EINVAL; 509 510 if (master->pairing && master->pairing->get_wunit) 511 return mtd->pairing->get_wunit(master, info); 512 513 return info->pair; 514 } 515 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 516 517 /** 518 * mtd_pairing_groups - get the number of pairing groups 519 * @mtd: pointer to new MTD device info structure 520 * 521 * Returns the number of pairing groups. 522 * 523 * This number is usually equal to the number of bits exposed by a single 524 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 525 * to iterate over all pages of a given pair. 526 */ 527 int mtd_pairing_groups(struct mtd_info *mtd) 528 { 529 struct mtd_info *master = mtd_get_master(mtd); 530 531 if (!master->pairing || !master->pairing->ngroups) 532 return 1; 533 534 return master->pairing->ngroups; 535 } 536 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 537 538 static int mtd_nvmem_reg_read(void *priv, unsigned int offset, 539 void *val, size_t bytes) 540 { 541 struct mtd_info *mtd = priv; 542 size_t retlen; 543 int err; 544 545 err = mtd_read(mtd, offset, bytes, &retlen, val); 546 if (err && err != -EUCLEAN) 547 return err; 548 549 return retlen == bytes ? 0 : -EIO; 550 } 551 552 static int mtd_nvmem_add(struct mtd_info *mtd) 553 { 554 struct nvmem_config config = {}; 555 556 config.id = -1; 557 config.dev = &mtd->dev; 558 config.name = dev_name(&mtd->dev); 559 config.owner = THIS_MODULE; 560 config.reg_read = mtd_nvmem_reg_read; 561 config.size = mtd->size; 562 config.word_size = 1; 563 config.stride = 1; 564 config.read_only = true; 565 config.root_only = true; 566 config.no_of_node = true; 567 config.priv = mtd; 568 569 mtd->nvmem = nvmem_register(&config); 570 if (IS_ERR(mtd->nvmem)) { 571 /* Just ignore if there is no NVMEM support in the kernel */ 572 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) { 573 mtd->nvmem = NULL; 574 } else { 575 dev_err(&mtd->dev, "Failed to register NVMEM device\n"); 576 return PTR_ERR(mtd->nvmem); 577 } 578 } 579 580 return 0; 581 } 582 583 /** 584 * add_mtd_device - register an MTD device 585 * @mtd: pointer to new MTD device info structure 586 * 587 * Add a device to the list of MTD devices present in the system, and 588 * notify each currently active MTD 'user' of its arrival. Returns 589 * zero on success or non-zero on failure. 590 */ 591 592 int add_mtd_device(struct mtd_info *mtd) 593 { 594 struct mtd_info *master = mtd_get_master(mtd); 595 struct mtd_notifier *not; 596 int i, error; 597 598 /* 599 * May occur, for instance, on buggy drivers which call 600 * mtd_device_parse_register() multiple times on the same master MTD, 601 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 602 */ 603 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 604 return -EEXIST; 605 606 BUG_ON(mtd->writesize == 0); 607 608 /* 609 * MTD drivers should implement ->_{write,read}() or 610 * ->_{write,read}_oob(), but not both. 611 */ 612 if (WARN_ON((mtd->_write && mtd->_write_oob) || 613 (mtd->_read && mtd->_read_oob))) 614 return -EINVAL; 615 616 if (WARN_ON((!mtd->erasesize || !master->_erase) && 617 !(mtd->flags & MTD_NO_ERASE))) 618 return -EINVAL; 619 620 mutex_lock(&mtd_table_mutex); 621 622 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 623 if (i < 0) { 624 error = i; 625 goto fail_locked; 626 } 627 628 mtd->index = i; 629 mtd->usecount = 0; 630 631 /* default value if not set by driver */ 632 if (mtd->bitflip_threshold == 0) 633 mtd->bitflip_threshold = mtd->ecc_strength; 634 635 if (is_power_of_2(mtd->erasesize)) 636 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 637 else 638 mtd->erasesize_shift = 0; 639 640 if (is_power_of_2(mtd->writesize)) 641 mtd->writesize_shift = ffs(mtd->writesize) - 1; 642 else 643 mtd->writesize_shift = 0; 644 645 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 646 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 647 648 /* Some chips always power up locked. Unlock them now */ 649 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 650 error = mtd_unlock(mtd, 0, mtd->size); 651 if (error && error != -EOPNOTSUPP) 652 printk(KERN_WARNING 653 "%s: unlock failed, writes may not work\n", 654 mtd->name); 655 /* Ignore unlock failures? */ 656 error = 0; 657 } 658 659 /* Caller should have set dev.parent to match the 660 * physical device, if appropriate. 661 */ 662 mtd->dev.type = &mtd_devtype; 663 mtd->dev.class = &mtd_class; 664 mtd->dev.devt = MTD_DEVT(i); 665 dev_set_name(&mtd->dev, "mtd%d", i); 666 dev_set_drvdata(&mtd->dev, mtd); 667 of_node_get(mtd_get_of_node(mtd)); 668 error = device_register(&mtd->dev); 669 if (error) 670 goto fail_added; 671 672 /* Add the nvmem provider */ 673 error = mtd_nvmem_add(mtd); 674 if (error) 675 goto fail_nvmem_add; 676 677 mtd_debugfs_populate(mtd); 678 679 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 680 "mtd%dro", i); 681 682 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 683 /* No need to get a refcount on the module containing 684 the notifier, since we hold the mtd_table_mutex */ 685 list_for_each_entry(not, &mtd_notifiers, list) 686 not->add(mtd); 687 688 mutex_unlock(&mtd_table_mutex); 689 /* We _know_ we aren't being removed, because 690 our caller is still holding us here. So none 691 of this try_ nonsense, and no bitching about it 692 either. :) */ 693 __module_get(THIS_MODULE); 694 return 0; 695 696 fail_nvmem_add: 697 device_unregister(&mtd->dev); 698 fail_added: 699 of_node_put(mtd_get_of_node(mtd)); 700 idr_remove(&mtd_idr, i); 701 fail_locked: 702 mutex_unlock(&mtd_table_mutex); 703 return error; 704 } 705 706 /** 707 * del_mtd_device - unregister an MTD device 708 * @mtd: pointer to MTD device info structure 709 * 710 * Remove a device from the list of MTD devices present in the system, 711 * and notify each currently active MTD 'user' of its departure. 712 * Returns zero on success or 1 on failure, which currently will happen 713 * if the requested device does not appear to be present in the list. 714 */ 715 716 int del_mtd_device(struct mtd_info *mtd) 717 { 718 int ret; 719 struct mtd_notifier *not; 720 721 mutex_lock(&mtd_table_mutex); 722 723 debugfs_remove_recursive(mtd->dbg.dfs_dir); 724 725 if (idr_find(&mtd_idr, mtd->index) != mtd) { 726 ret = -ENODEV; 727 goto out_error; 728 } 729 730 /* No need to get a refcount on the module containing 731 the notifier, since we hold the mtd_table_mutex */ 732 list_for_each_entry(not, &mtd_notifiers, list) 733 not->remove(mtd); 734 735 if (mtd->usecount) { 736 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 737 mtd->index, mtd->name, mtd->usecount); 738 ret = -EBUSY; 739 } else { 740 /* Try to remove the NVMEM provider */ 741 if (mtd->nvmem) 742 nvmem_unregister(mtd->nvmem); 743 744 device_unregister(&mtd->dev); 745 746 idr_remove(&mtd_idr, mtd->index); 747 of_node_put(mtd_get_of_node(mtd)); 748 749 module_put(THIS_MODULE); 750 ret = 0; 751 } 752 753 out_error: 754 mutex_unlock(&mtd_table_mutex); 755 return ret; 756 } 757 758 /* 759 * Set a few defaults based on the parent devices, if not provided by the 760 * driver 761 */ 762 static void mtd_set_dev_defaults(struct mtd_info *mtd) 763 { 764 if (mtd->dev.parent) { 765 if (!mtd->owner && mtd->dev.parent->driver) 766 mtd->owner = mtd->dev.parent->driver->owner; 767 if (!mtd->name) 768 mtd->name = dev_name(mtd->dev.parent); 769 } else { 770 pr_debug("mtd device won't show a device symlink in sysfs\n"); 771 } 772 773 INIT_LIST_HEAD(&mtd->partitions); 774 mutex_init(&mtd->master.partitions_lock); 775 } 776 777 /** 778 * mtd_device_parse_register - parse partitions and register an MTD device. 779 * 780 * @mtd: the MTD device to register 781 * @types: the list of MTD partition probes to try, see 782 * 'parse_mtd_partitions()' for more information 783 * @parser_data: MTD partition parser-specific data 784 * @parts: fallback partition information to register, if parsing fails; 785 * only valid if %nr_parts > %0 786 * @nr_parts: the number of partitions in parts, if zero then the full 787 * MTD device is registered if no partition info is found 788 * 789 * This function aggregates MTD partitions parsing (done by 790 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 791 * basically follows the most common pattern found in many MTD drivers: 792 * 793 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is 794 * registered first. 795 * * Then It tries to probe partitions on MTD device @mtd using parsers 796 * specified in @types (if @types is %NULL, then the default list of parsers 797 * is used, see 'parse_mtd_partitions()' for more information). If none are 798 * found this functions tries to fallback to information specified in 799 * @parts/@nr_parts. 800 * * If no partitions were found this function just registers the MTD device 801 * @mtd and exits. 802 * 803 * Returns zero in case of success and a negative error code in case of failure. 804 */ 805 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 806 struct mtd_part_parser_data *parser_data, 807 const struct mtd_partition *parts, 808 int nr_parts) 809 { 810 int ret; 811 812 mtd_set_dev_defaults(mtd); 813 814 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 815 ret = add_mtd_device(mtd); 816 if (ret) 817 return ret; 818 } 819 820 /* Prefer parsed partitions over driver-provided fallback */ 821 ret = parse_mtd_partitions(mtd, types, parser_data); 822 if (ret > 0) 823 ret = 0; 824 else if (nr_parts) 825 ret = add_mtd_partitions(mtd, parts, nr_parts); 826 else if (!device_is_registered(&mtd->dev)) 827 ret = add_mtd_device(mtd); 828 else 829 ret = 0; 830 831 if (ret) 832 goto out; 833 834 /* 835 * FIXME: some drivers unfortunately call this function more than once. 836 * So we have to check if we've already assigned the reboot notifier. 837 * 838 * Generally, we can make multiple calls work for most cases, but it 839 * does cause problems with parse_mtd_partitions() above (e.g., 840 * cmdlineparts will register partitions more than once). 841 */ 842 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 843 "MTD already registered\n"); 844 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 845 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 846 register_reboot_notifier(&mtd->reboot_notifier); 847 } 848 849 out: 850 if (ret && device_is_registered(&mtd->dev)) 851 del_mtd_device(mtd); 852 853 return ret; 854 } 855 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 856 857 /** 858 * mtd_device_unregister - unregister an existing MTD device. 859 * 860 * @master: the MTD device to unregister. This will unregister both the master 861 * and any partitions if registered. 862 */ 863 int mtd_device_unregister(struct mtd_info *master) 864 { 865 int err; 866 867 if (master->_reboot) 868 unregister_reboot_notifier(&master->reboot_notifier); 869 870 err = del_mtd_partitions(master); 871 if (err) 872 return err; 873 874 if (!device_is_registered(&master->dev)) 875 return 0; 876 877 return del_mtd_device(master); 878 } 879 EXPORT_SYMBOL_GPL(mtd_device_unregister); 880 881 /** 882 * register_mtd_user - register a 'user' of MTD devices. 883 * @new: pointer to notifier info structure 884 * 885 * Registers a pair of callbacks function to be called upon addition 886 * or removal of MTD devices. Causes the 'add' callback to be immediately 887 * invoked for each MTD device currently present in the system. 888 */ 889 void register_mtd_user (struct mtd_notifier *new) 890 { 891 struct mtd_info *mtd; 892 893 mutex_lock(&mtd_table_mutex); 894 895 list_add(&new->list, &mtd_notifiers); 896 897 __module_get(THIS_MODULE); 898 899 mtd_for_each_device(mtd) 900 new->add(mtd); 901 902 mutex_unlock(&mtd_table_mutex); 903 } 904 EXPORT_SYMBOL_GPL(register_mtd_user); 905 906 /** 907 * unregister_mtd_user - unregister a 'user' of MTD devices. 908 * @old: pointer to notifier info structure 909 * 910 * Removes a callback function pair from the list of 'users' to be 911 * notified upon addition or removal of MTD devices. Causes the 912 * 'remove' callback to be immediately invoked for each MTD device 913 * currently present in the system. 914 */ 915 int unregister_mtd_user (struct mtd_notifier *old) 916 { 917 struct mtd_info *mtd; 918 919 mutex_lock(&mtd_table_mutex); 920 921 module_put(THIS_MODULE); 922 923 mtd_for_each_device(mtd) 924 old->remove(mtd); 925 926 list_del(&old->list); 927 mutex_unlock(&mtd_table_mutex); 928 return 0; 929 } 930 EXPORT_SYMBOL_GPL(unregister_mtd_user); 931 932 /** 933 * get_mtd_device - obtain a validated handle for an MTD device 934 * @mtd: last known address of the required MTD device 935 * @num: internal device number of the required MTD device 936 * 937 * Given a number and NULL address, return the num'th entry in the device 938 * table, if any. Given an address and num == -1, search the device table 939 * for a device with that address and return if it's still present. Given 940 * both, return the num'th driver only if its address matches. Return 941 * error code if not. 942 */ 943 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 944 { 945 struct mtd_info *ret = NULL, *other; 946 int err = -ENODEV; 947 948 mutex_lock(&mtd_table_mutex); 949 950 if (num == -1) { 951 mtd_for_each_device(other) { 952 if (other == mtd) { 953 ret = mtd; 954 break; 955 } 956 } 957 } else if (num >= 0) { 958 ret = idr_find(&mtd_idr, num); 959 if (mtd && mtd != ret) 960 ret = NULL; 961 } 962 963 if (!ret) { 964 ret = ERR_PTR(err); 965 goto out; 966 } 967 968 err = __get_mtd_device(ret); 969 if (err) 970 ret = ERR_PTR(err); 971 out: 972 mutex_unlock(&mtd_table_mutex); 973 return ret; 974 } 975 EXPORT_SYMBOL_GPL(get_mtd_device); 976 977 978 int __get_mtd_device(struct mtd_info *mtd) 979 { 980 struct mtd_info *master = mtd_get_master(mtd); 981 int err; 982 983 if (!try_module_get(master->owner)) 984 return -ENODEV; 985 986 if (master->_get_device) { 987 err = master->_get_device(mtd); 988 989 if (err) { 990 module_put(master->owner); 991 return err; 992 } 993 } 994 995 while (mtd->parent) { 996 mtd->usecount++; 997 mtd = mtd->parent; 998 } 999 1000 return 0; 1001 } 1002 EXPORT_SYMBOL_GPL(__get_mtd_device); 1003 1004 /** 1005 * get_mtd_device_nm - obtain a validated handle for an MTD device by 1006 * device name 1007 * @name: MTD device name to open 1008 * 1009 * This function returns MTD device description structure in case of 1010 * success and an error code in case of failure. 1011 */ 1012 struct mtd_info *get_mtd_device_nm(const char *name) 1013 { 1014 int err = -ENODEV; 1015 struct mtd_info *mtd = NULL, *other; 1016 1017 mutex_lock(&mtd_table_mutex); 1018 1019 mtd_for_each_device(other) { 1020 if (!strcmp(name, other->name)) { 1021 mtd = other; 1022 break; 1023 } 1024 } 1025 1026 if (!mtd) 1027 goto out_unlock; 1028 1029 err = __get_mtd_device(mtd); 1030 if (err) 1031 goto out_unlock; 1032 1033 mutex_unlock(&mtd_table_mutex); 1034 return mtd; 1035 1036 out_unlock: 1037 mutex_unlock(&mtd_table_mutex); 1038 return ERR_PTR(err); 1039 } 1040 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 1041 1042 void put_mtd_device(struct mtd_info *mtd) 1043 { 1044 mutex_lock(&mtd_table_mutex); 1045 __put_mtd_device(mtd); 1046 mutex_unlock(&mtd_table_mutex); 1047 1048 } 1049 EXPORT_SYMBOL_GPL(put_mtd_device); 1050 1051 void __put_mtd_device(struct mtd_info *mtd) 1052 { 1053 struct mtd_info *master = mtd_get_master(mtd); 1054 1055 while (mtd->parent) { 1056 --mtd->usecount; 1057 BUG_ON(mtd->usecount < 0); 1058 mtd = mtd->parent; 1059 } 1060 1061 if (master->_put_device) 1062 master->_put_device(master); 1063 1064 module_put(master->owner); 1065 } 1066 EXPORT_SYMBOL_GPL(__put_mtd_device); 1067 1068 /* 1069 * Erase is an synchronous operation. Device drivers are epected to return a 1070 * negative error code if the operation failed and update instr->fail_addr 1071 * to point the portion that was not properly erased. 1072 */ 1073 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 1074 { 1075 struct mtd_info *master = mtd_get_master(mtd); 1076 u64 mst_ofs = mtd_get_master_ofs(mtd, 0); 1077 int ret; 1078 1079 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 1080 1081 if (!mtd->erasesize || !master->_erase) 1082 return -ENOTSUPP; 1083 1084 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 1085 return -EINVAL; 1086 if (!(mtd->flags & MTD_WRITEABLE)) 1087 return -EROFS; 1088 1089 if (!instr->len) 1090 return 0; 1091 1092 ledtrig_mtd_activity(); 1093 1094 instr->addr += mst_ofs; 1095 ret = master->_erase(master, instr); 1096 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 1097 instr->fail_addr -= mst_ofs; 1098 1099 instr->addr -= mst_ofs; 1100 return ret; 1101 } 1102 EXPORT_SYMBOL_GPL(mtd_erase); 1103 1104 /* 1105 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 1106 */ 1107 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1108 void **virt, resource_size_t *phys) 1109 { 1110 struct mtd_info *master = mtd_get_master(mtd); 1111 1112 *retlen = 0; 1113 *virt = NULL; 1114 if (phys) 1115 *phys = 0; 1116 if (!master->_point) 1117 return -EOPNOTSUPP; 1118 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1119 return -EINVAL; 1120 if (!len) 1121 return 0; 1122 1123 from = mtd_get_master_ofs(mtd, from); 1124 return master->_point(master, from, len, retlen, virt, phys); 1125 } 1126 EXPORT_SYMBOL_GPL(mtd_point); 1127 1128 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 1129 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1130 { 1131 struct mtd_info *master = mtd_get_master(mtd); 1132 1133 if (!master->_unpoint) 1134 return -EOPNOTSUPP; 1135 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1136 return -EINVAL; 1137 if (!len) 1138 return 0; 1139 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len); 1140 } 1141 EXPORT_SYMBOL_GPL(mtd_unpoint); 1142 1143 /* 1144 * Allow NOMMU mmap() to directly map the device (if not NULL) 1145 * - return the address to which the offset maps 1146 * - return -ENOSYS to indicate refusal to do the mapping 1147 */ 1148 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1149 unsigned long offset, unsigned long flags) 1150 { 1151 size_t retlen; 1152 void *virt; 1153 int ret; 1154 1155 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); 1156 if (ret) 1157 return ret; 1158 if (retlen != len) { 1159 mtd_unpoint(mtd, offset, retlen); 1160 return -ENOSYS; 1161 } 1162 return (unsigned long)virt; 1163 } 1164 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1165 1166 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master, 1167 const struct mtd_ecc_stats *old_stats) 1168 { 1169 struct mtd_ecc_stats diff; 1170 1171 if (master == mtd) 1172 return; 1173 1174 diff = master->ecc_stats; 1175 diff.failed -= old_stats->failed; 1176 diff.corrected -= old_stats->corrected; 1177 1178 while (mtd->parent) { 1179 mtd->ecc_stats.failed += diff.failed; 1180 mtd->ecc_stats.corrected += diff.corrected; 1181 mtd = mtd->parent; 1182 } 1183 } 1184 1185 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1186 u_char *buf) 1187 { 1188 struct mtd_oob_ops ops = { 1189 .len = len, 1190 .datbuf = buf, 1191 }; 1192 int ret; 1193 1194 ret = mtd_read_oob(mtd, from, &ops); 1195 *retlen = ops.retlen; 1196 1197 return ret; 1198 } 1199 EXPORT_SYMBOL_GPL(mtd_read); 1200 1201 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1202 const u_char *buf) 1203 { 1204 struct mtd_oob_ops ops = { 1205 .len = len, 1206 .datbuf = (u8 *)buf, 1207 }; 1208 int ret; 1209 1210 ret = mtd_write_oob(mtd, to, &ops); 1211 *retlen = ops.retlen; 1212 1213 return ret; 1214 } 1215 EXPORT_SYMBOL_GPL(mtd_write); 1216 1217 /* 1218 * In blackbox flight recorder like scenarios we want to make successful writes 1219 * in interrupt context. panic_write() is only intended to be called when its 1220 * known the kernel is about to panic and we need the write to succeed. Since 1221 * the kernel is not going to be running for much longer, this function can 1222 * break locks and delay to ensure the write succeeds (but not sleep). 1223 */ 1224 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1225 const u_char *buf) 1226 { 1227 struct mtd_info *master = mtd_get_master(mtd); 1228 1229 *retlen = 0; 1230 if (!master->_panic_write) 1231 return -EOPNOTSUPP; 1232 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1233 return -EINVAL; 1234 if (!(mtd->flags & MTD_WRITEABLE)) 1235 return -EROFS; 1236 if (!len) 1237 return 0; 1238 if (!mtd->oops_panic_write) 1239 mtd->oops_panic_write = true; 1240 1241 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len, 1242 retlen, buf); 1243 } 1244 EXPORT_SYMBOL_GPL(mtd_panic_write); 1245 1246 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1247 struct mtd_oob_ops *ops) 1248 { 1249 /* 1250 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1251 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1252 * this case. 1253 */ 1254 if (!ops->datbuf) 1255 ops->len = 0; 1256 1257 if (!ops->oobbuf) 1258 ops->ooblen = 0; 1259 1260 if (offs < 0 || offs + ops->len > mtd->size) 1261 return -EINVAL; 1262 1263 if (ops->ooblen) { 1264 size_t maxooblen; 1265 1266 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1267 return -EINVAL; 1268 1269 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) - 1270 mtd_div_by_ws(offs, mtd)) * 1271 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1272 if (ops->ooblen > maxooblen) 1273 return -EINVAL; 1274 } 1275 1276 return 0; 1277 } 1278 1279 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1280 { 1281 struct mtd_info *master = mtd_get_master(mtd); 1282 struct mtd_ecc_stats old_stats = master->ecc_stats; 1283 int ret_code; 1284 1285 ops->retlen = ops->oobretlen = 0; 1286 1287 ret_code = mtd_check_oob_ops(mtd, from, ops); 1288 if (ret_code) 1289 return ret_code; 1290 1291 ledtrig_mtd_activity(); 1292 1293 /* Check the validity of a potential fallback on mtd->_read */ 1294 if (!master->_read_oob && (!master->_read || ops->oobbuf)) 1295 return -EOPNOTSUPP; 1296 1297 from = mtd_get_master_ofs(mtd, from); 1298 if (master->_read_oob) 1299 ret_code = master->_read_oob(master, from, ops); 1300 else 1301 ret_code = master->_read(master, from, ops->len, &ops->retlen, 1302 ops->datbuf); 1303 1304 mtd_update_ecc_stats(mtd, master, &old_stats); 1305 1306 /* 1307 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1308 * similar to mtd->_read(), returning a non-negative integer 1309 * representing max bitflips. In other cases, mtd->_read_oob() may 1310 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1311 */ 1312 if (unlikely(ret_code < 0)) 1313 return ret_code; 1314 if (mtd->ecc_strength == 0) 1315 return 0; /* device lacks ecc */ 1316 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1317 } 1318 EXPORT_SYMBOL_GPL(mtd_read_oob); 1319 1320 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1321 struct mtd_oob_ops *ops) 1322 { 1323 struct mtd_info *master = mtd_get_master(mtd); 1324 int ret; 1325 1326 ops->retlen = ops->oobretlen = 0; 1327 1328 if (!(mtd->flags & MTD_WRITEABLE)) 1329 return -EROFS; 1330 1331 ret = mtd_check_oob_ops(mtd, to, ops); 1332 if (ret) 1333 return ret; 1334 1335 ledtrig_mtd_activity(); 1336 1337 /* Check the validity of a potential fallback on mtd->_write */ 1338 if (!master->_write_oob && (!master->_write || ops->oobbuf)) 1339 return -EOPNOTSUPP; 1340 1341 to = mtd_get_master_ofs(mtd, to); 1342 1343 if (master->_write_oob) 1344 return master->_write_oob(master, to, ops); 1345 else 1346 return master->_write(master, to, ops->len, &ops->retlen, 1347 ops->datbuf); 1348 } 1349 EXPORT_SYMBOL_GPL(mtd_write_oob); 1350 1351 /** 1352 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1353 * @mtd: MTD device structure 1354 * @section: ECC section. Depending on the layout you may have all the ECC 1355 * bytes stored in a single contiguous section, or one section 1356 * per ECC chunk (and sometime several sections for a single ECC 1357 * ECC chunk) 1358 * @oobecc: OOB region struct filled with the appropriate ECC position 1359 * information 1360 * 1361 * This function returns ECC section information in the OOB area. If you want 1362 * to get all the ECC bytes information, then you should call 1363 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1364 * 1365 * Returns zero on success, a negative error code otherwise. 1366 */ 1367 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1368 struct mtd_oob_region *oobecc) 1369 { 1370 struct mtd_info *master = mtd_get_master(mtd); 1371 1372 memset(oobecc, 0, sizeof(*oobecc)); 1373 1374 if (!master || section < 0) 1375 return -EINVAL; 1376 1377 if (!master->ooblayout || !master->ooblayout->ecc) 1378 return -ENOTSUPP; 1379 1380 return master->ooblayout->ecc(master, section, oobecc); 1381 } 1382 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1383 1384 /** 1385 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1386 * section 1387 * @mtd: MTD device structure 1388 * @section: Free section you are interested in. Depending on the layout 1389 * you may have all the free bytes stored in a single contiguous 1390 * section, or one section per ECC chunk plus an extra section 1391 * for the remaining bytes (or other funky layout). 1392 * @oobfree: OOB region struct filled with the appropriate free position 1393 * information 1394 * 1395 * This function returns free bytes position in the OOB area. If you want 1396 * to get all the free bytes information, then you should call 1397 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1398 * 1399 * Returns zero on success, a negative error code otherwise. 1400 */ 1401 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1402 struct mtd_oob_region *oobfree) 1403 { 1404 struct mtd_info *master = mtd_get_master(mtd); 1405 1406 memset(oobfree, 0, sizeof(*oobfree)); 1407 1408 if (!master || section < 0) 1409 return -EINVAL; 1410 1411 if (!master->ooblayout || !master->ooblayout->free) 1412 return -ENOTSUPP; 1413 1414 return master->ooblayout->free(master, section, oobfree); 1415 } 1416 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1417 1418 /** 1419 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1420 * @mtd: mtd info structure 1421 * @byte: the byte we are searching for 1422 * @sectionp: pointer where the section id will be stored 1423 * @oobregion: used to retrieve the ECC position 1424 * @iter: iterator function. Should be either mtd_ooblayout_free or 1425 * mtd_ooblayout_ecc depending on the region type you're searching for 1426 * 1427 * This function returns the section id and oobregion information of a 1428 * specific byte. For example, say you want to know where the 4th ECC byte is 1429 * stored, you'll use: 1430 * 1431 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1432 * 1433 * Returns zero on success, a negative error code otherwise. 1434 */ 1435 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1436 int *sectionp, struct mtd_oob_region *oobregion, 1437 int (*iter)(struct mtd_info *, 1438 int section, 1439 struct mtd_oob_region *oobregion)) 1440 { 1441 int pos = 0, ret, section = 0; 1442 1443 memset(oobregion, 0, sizeof(*oobregion)); 1444 1445 while (1) { 1446 ret = iter(mtd, section, oobregion); 1447 if (ret) 1448 return ret; 1449 1450 if (pos + oobregion->length > byte) 1451 break; 1452 1453 pos += oobregion->length; 1454 section++; 1455 } 1456 1457 /* 1458 * Adjust region info to make it start at the beginning at the 1459 * 'start' ECC byte. 1460 */ 1461 oobregion->offset += byte - pos; 1462 oobregion->length -= byte - pos; 1463 *sectionp = section; 1464 1465 return 0; 1466 } 1467 1468 /** 1469 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1470 * ECC byte 1471 * @mtd: mtd info structure 1472 * @eccbyte: the byte we are searching for 1473 * @sectionp: pointer where the section id will be stored 1474 * @oobregion: OOB region information 1475 * 1476 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1477 * byte. 1478 * 1479 * Returns zero on success, a negative error code otherwise. 1480 */ 1481 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1482 int *section, 1483 struct mtd_oob_region *oobregion) 1484 { 1485 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1486 mtd_ooblayout_ecc); 1487 } 1488 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1489 1490 /** 1491 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1492 * @mtd: mtd info structure 1493 * @buf: destination buffer to store OOB bytes 1494 * @oobbuf: OOB buffer 1495 * @start: first byte to retrieve 1496 * @nbytes: number of bytes to retrieve 1497 * @iter: section iterator 1498 * 1499 * Extract bytes attached to a specific category (ECC or free) 1500 * from the OOB buffer and copy them into buf. 1501 * 1502 * Returns zero on success, a negative error code otherwise. 1503 */ 1504 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1505 const u8 *oobbuf, int start, int nbytes, 1506 int (*iter)(struct mtd_info *, 1507 int section, 1508 struct mtd_oob_region *oobregion)) 1509 { 1510 struct mtd_oob_region oobregion; 1511 int section, ret; 1512 1513 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1514 &oobregion, iter); 1515 1516 while (!ret) { 1517 int cnt; 1518 1519 cnt = min_t(int, nbytes, oobregion.length); 1520 memcpy(buf, oobbuf + oobregion.offset, cnt); 1521 buf += cnt; 1522 nbytes -= cnt; 1523 1524 if (!nbytes) 1525 break; 1526 1527 ret = iter(mtd, ++section, &oobregion); 1528 } 1529 1530 return ret; 1531 } 1532 1533 /** 1534 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1535 * @mtd: mtd info structure 1536 * @buf: source buffer to get OOB bytes from 1537 * @oobbuf: OOB buffer 1538 * @start: first OOB byte to set 1539 * @nbytes: number of OOB bytes to set 1540 * @iter: section iterator 1541 * 1542 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1543 * is selected by passing the appropriate iterator. 1544 * 1545 * Returns zero on success, a negative error code otherwise. 1546 */ 1547 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1548 u8 *oobbuf, int start, int nbytes, 1549 int (*iter)(struct mtd_info *, 1550 int section, 1551 struct mtd_oob_region *oobregion)) 1552 { 1553 struct mtd_oob_region oobregion; 1554 int section, ret; 1555 1556 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1557 &oobregion, iter); 1558 1559 while (!ret) { 1560 int cnt; 1561 1562 cnt = min_t(int, nbytes, oobregion.length); 1563 memcpy(oobbuf + oobregion.offset, buf, cnt); 1564 buf += cnt; 1565 nbytes -= cnt; 1566 1567 if (!nbytes) 1568 break; 1569 1570 ret = iter(mtd, ++section, &oobregion); 1571 } 1572 1573 return ret; 1574 } 1575 1576 /** 1577 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1578 * @mtd: mtd info structure 1579 * @iter: category iterator 1580 * 1581 * Count the number of bytes in a given category. 1582 * 1583 * Returns a positive value on success, a negative error code otherwise. 1584 */ 1585 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1586 int (*iter)(struct mtd_info *, 1587 int section, 1588 struct mtd_oob_region *oobregion)) 1589 { 1590 struct mtd_oob_region oobregion; 1591 int section = 0, ret, nbytes = 0; 1592 1593 while (1) { 1594 ret = iter(mtd, section++, &oobregion); 1595 if (ret) { 1596 if (ret == -ERANGE) 1597 ret = nbytes; 1598 break; 1599 } 1600 1601 nbytes += oobregion.length; 1602 } 1603 1604 return ret; 1605 } 1606 1607 /** 1608 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1609 * @mtd: mtd info structure 1610 * @eccbuf: destination buffer to store ECC bytes 1611 * @oobbuf: OOB buffer 1612 * @start: first ECC byte to retrieve 1613 * @nbytes: number of ECC bytes to retrieve 1614 * 1615 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1616 * 1617 * Returns zero on success, a negative error code otherwise. 1618 */ 1619 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1620 const u8 *oobbuf, int start, int nbytes) 1621 { 1622 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1623 mtd_ooblayout_ecc); 1624 } 1625 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1626 1627 /** 1628 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1629 * @mtd: mtd info structure 1630 * @eccbuf: source buffer to get ECC bytes from 1631 * @oobbuf: OOB buffer 1632 * @start: first ECC byte to set 1633 * @nbytes: number of ECC bytes to set 1634 * 1635 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 1636 * 1637 * Returns zero on success, a negative error code otherwise. 1638 */ 1639 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 1640 u8 *oobbuf, int start, int nbytes) 1641 { 1642 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1643 mtd_ooblayout_ecc); 1644 } 1645 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 1646 1647 /** 1648 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 1649 * @mtd: mtd info structure 1650 * @databuf: destination buffer to store ECC bytes 1651 * @oobbuf: OOB buffer 1652 * @start: first ECC byte to retrieve 1653 * @nbytes: number of ECC bytes to retrieve 1654 * 1655 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1656 * 1657 * Returns zero on success, a negative error code otherwise. 1658 */ 1659 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 1660 const u8 *oobbuf, int start, int nbytes) 1661 { 1662 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 1663 mtd_ooblayout_free); 1664 } 1665 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 1666 1667 /** 1668 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer 1669 * @mtd: mtd info structure 1670 * @databuf: source buffer to get data bytes from 1671 * @oobbuf: OOB buffer 1672 * @start: first ECC byte to set 1673 * @nbytes: number of ECC bytes to set 1674 * 1675 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1676 * 1677 * Returns zero on success, a negative error code otherwise. 1678 */ 1679 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 1680 u8 *oobbuf, int start, int nbytes) 1681 { 1682 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 1683 mtd_ooblayout_free); 1684 } 1685 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 1686 1687 /** 1688 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 1689 * @mtd: mtd info structure 1690 * 1691 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 1692 * 1693 * Returns zero on success, a negative error code otherwise. 1694 */ 1695 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 1696 { 1697 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 1698 } 1699 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 1700 1701 /** 1702 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB 1703 * @mtd: mtd info structure 1704 * 1705 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 1706 * 1707 * Returns zero on success, a negative error code otherwise. 1708 */ 1709 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 1710 { 1711 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 1712 } 1713 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 1714 1715 /* 1716 * Method to access the protection register area, present in some flash 1717 * devices. The user data is one time programmable but the factory data is read 1718 * only. 1719 */ 1720 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1721 struct otp_info *buf) 1722 { 1723 struct mtd_info *master = mtd_get_master(mtd); 1724 1725 if (!master->_get_fact_prot_info) 1726 return -EOPNOTSUPP; 1727 if (!len) 1728 return 0; 1729 return master->_get_fact_prot_info(master, len, retlen, buf); 1730 } 1731 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 1732 1733 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1734 size_t *retlen, u_char *buf) 1735 { 1736 struct mtd_info *master = mtd_get_master(mtd); 1737 1738 *retlen = 0; 1739 if (!master->_read_fact_prot_reg) 1740 return -EOPNOTSUPP; 1741 if (!len) 1742 return 0; 1743 return master->_read_fact_prot_reg(master, from, len, retlen, buf); 1744 } 1745 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 1746 1747 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1748 struct otp_info *buf) 1749 { 1750 struct mtd_info *master = mtd_get_master(mtd); 1751 1752 if (!master->_get_user_prot_info) 1753 return -EOPNOTSUPP; 1754 if (!len) 1755 return 0; 1756 return master->_get_user_prot_info(master, len, retlen, buf); 1757 } 1758 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 1759 1760 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1761 size_t *retlen, u_char *buf) 1762 { 1763 struct mtd_info *master = mtd_get_master(mtd); 1764 1765 *retlen = 0; 1766 if (!master->_read_user_prot_reg) 1767 return -EOPNOTSUPP; 1768 if (!len) 1769 return 0; 1770 return master->_read_user_prot_reg(master, from, len, retlen, buf); 1771 } 1772 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 1773 1774 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 1775 size_t *retlen, u_char *buf) 1776 { 1777 struct mtd_info *master = mtd_get_master(mtd); 1778 int ret; 1779 1780 *retlen = 0; 1781 if (!master->_write_user_prot_reg) 1782 return -EOPNOTSUPP; 1783 if (!len) 1784 return 0; 1785 ret = master->_write_user_prot_reg(master, to, len, retlen, buf); 1786 if (ret) 1787 return ret; 1788 1789 /* 1790 * If no data could be written at all, we are out of memory and 1791 * must return -ENOSPC. 1792 */ 1793 return (*retlen) ? 0 : -ENOSPC; 1794 } 1795 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1796 1797 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1798 { 1799 struct mtd_info *master = mtd_get_master(mtd); 1800 1801 if (!master->_lock_user_prot_reg) 1802 return -EOPNOTSUPP; 1803 if (!len) 1804 return 0; 1805 return master->_lock_user_prot_reg(master, from, len); 1806 } 1807 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1808 1809 /* Chip-supported device locking */ 1810 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1811 { 1812 struct mtd_info *master = mtd_get_master(mtd); 1813 1814 if (!master->_lock) 1815 return -EOPNOTSUPP; 1816 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1817 return -EINVAL; 1818 if (!len) 1819 return 0; 1820 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len); 1821 } 1822 EXPORT_SYMBOL_GPL(mtd_lock); 1823 1824 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1825 { 1826 struct mtd_info *master = mtd_get_master(mtd); 1827 1828 if (!master->_unlock) 1829 return -EOPNOTSUPP; 1830 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1831 return -EINVAL; 1832 if (!len) 1833 return 0; 1834 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len); 1835 } 1836 EXPORT_SYMBOL_GPL(mtd_unlock); 1837 1838 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1839 { 1840 struct mtd_info *master = mtd_get_master(mtd); 1841 1842 if (!master->_is_locked) 1843 return -EOPNOTSUPP; 1844 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1845 return -EINVAL; 1846 if (!len) 1847 return 0; 1848 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len); 1849 } 1850 EXPORT_SYMBOL_GPL(mtd_is_locked); 1851 1852 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 1853 { 1854 struct mtd_info *master = mtd_get_master(mtd); 1855 1856 if (ofs < 0 || ofs >= mtd->size) 1857 return -EINVAL; 1858 if (!master->_block_isreserved) 1859 return 0; 1860 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs)); 1861 } 1862 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 1863 1864 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 1865 { 1866 struct mtd_info *master = mtd_get_master(mtd); 1867 1868 if (ofs < 0 || ofs >= mtd->size) 1869 return -EINVAL; 1870 if (!master->_block_isbad) 1871 return 0; 1872 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs)); 1873 } 1874 EXPORT_SYMBOL_GPL(mtd_block_isbad); 1875 1876 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 1877 { 1878 struct mtd_info *master = mtd_get_master(mtd); 1879 int ret; 1880 1881 if (!master->_block_markbad) 1882 return -EOPNOTSUPP; 1883 if (ofs < 0 || ofs >= mtd->size) 1884 return -EINVAL; 1885 if (!(mtd->flags & MTD_WRITEABLE)) 1886 return -EROFS; 1887 1888 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs)); 1889 if (ret) 1890 return ret; 1891 1892 while (mtd->parent) { 1893 mtd->ecc_stats.badblocks++; 1894 mtd = mtd->parent; 1895 } 1896 1897 return 0; 1898 } 1899 EXPORT_SYMBOL_GPL(mtd_block_markbad); 1900 1901 /* 1902 * default_mtd_writev - the default writev method 1903 * @mtd: mtd device description object pointer 1904 * @vecs: the vectors to write 1905 * @count: count of vectors in @vecs 1906 * @to: the MTD device offset to write to 1907 * @retlen: on exit contains the count of bytes written to the MTD device. 1908 * 1909 * This function returns zero in case of success and a negative error code in 1910 * case of failure. 1911 */ 1912 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1913 unsigned long count, loff_t to, size_t *retlen) 1914 { 1915 unsigned long i; 1916 size_t totlen = 0, thislen; 1917 int ret = 0; 1918 1919 for (i = 0; i < count; i++) { 1920 if (!vecs[i].iov_len) 1921 continue; 1922 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1923 vecs[i].iov_base); 1924 totlen += thislen; 1925 if (ret || thislen != vecs[i].iov_len) 1926 break; 1927 to += vecs[i].iov_len; 1928 } 1929 *retlen = totlen; 1930 return ret; 1931 } 1932 1933 /* 1934 * mtd_writev - the vector-based MTD write method 1935 * @mtd: mtd device description object pointer 1936 * @vecs: the vectors to write 1937 * @count: count of vectors in @vecs 1938 * @to: the MTD device offset to write to 1939 * @retlen: on exit contains the count of bytes written to the MTD device. 1940 * 1941 * This function returns zero in case of success and a negative error code in 1942 * case of failure. 1943 */ 1944 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1945 unsigned long count, loff_t to, size_t *retlen) 1946 { 1947 struct mtd_info *master = mtd_get_master(mtd); 1948 1949 *retlen = 0; 1950 if (!(mtd->flags & MTD_WRITEABLE)) 1951 return -EROFS; 1952 1953 if (!master->_writev) 1954 return default_mtd_writev(mtd, vecs, count, to, retlen); 1955 1956 return master->_writev(master, vecs, count, 1957 mtd_get_master_ofs(mtd, to), retlen); 1958 } 1959 EXPORT_SYMBOL_GPL(mtd_writev); 1960 1961 /** 1962 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1963 * @mtd: mtd device description object pointer 1964 * @size: a pointer to the ideal or maximum size of the allocation, points 1965 * to the actual allocation size on success. 1966 * 1967 * This routine attempts to allocate a contiguous kernel buffer up to 1968 * the specified size, backing off the size of the request exponentially 1969 * until the request succeeds or until the allocation size falls below 1970 * the system page size. This attempts to make sure it does not adversely 1971 * impact system performance, so when allocating more than one page, we 1972 * ask the memory allocator to avoid re-trying, swapping, writing back 1973 * or performing I/O. 1974 * 1975 * Note, this function also makes sure that the allocated buffer is aligned to 1976 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1977 * 1978 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1979 * to handle smaller (i.e. degraded) buffer allocations under low- or 1980 * fragmented-memory situations where such reduced allocations, from a 1981 * requested ideal, are allowed. 1982 * 1983 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1984 */ 1985 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1986 { 1987 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 1988 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1989 void *kbuf; 1990 1991 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1992 1993 while (*size > min_alloc) { 1994 kbuf = kmalloc(*size, flags); 1995 if (kbuf) 1996 return kbuf; 1997 1998 *size >>= 1; 1999 *size = ALIGN(*size, mtd->writesize); 2000 } 2001 2002 /* 2003 * For the last resort allocation allow 'kmalloc()' to do all sorts of 2004 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 2005 */ 2006 return kmalloc(*size, GFP_KERNEL); 2007 } 2008 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 2009 2010 #ifdef CONFIG_PROC_FS 2011 2012 /*====================================================================*/ 2013 /* Support for /proc/mtd */ 2014 2015 static int mtd_proc_show(struct seq_file *m, void *v) 2016 { 2017 struct mtd_info *mtd; 2018 2019 seq_puts(m, "dev: size erasesize name\n"); 2020 mutex_lock(&mtd_table_mutex); 2021 mtd_for_each_device(mtd) { 2022 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 2023 mtd->index, (unsigned long long)mtd->size, 2024 mtd->erasesize, mtd->name); 2025 } 2026 mutex_unlock(&mtd_table_mutex); 2027 return 0; 2028 } 2029 #endif /* CONFIG_PROC_FS */ 2030 2031 /*====================================================================*/ 2032 /* Init code */ 2033 2034 static struct backing_dev_info * __init mtd_bdi_init(char *name) 2035 { 2036 struct backing_dev_info *bdi; 2037 int ret; 2038 2039 bdi = bdi_alloc(NUMA_NO_NODE); 2040 if (!bdi) 2041 return ERR_PTR(-ENOMEM); 2042 2043 /* 2044 * We put '-0' suffix to the name to get the same name format as we 2045 * used to get. Since this is called only once, we get a unique name. 2046 */ 2047 ret = bdi_register(bdi, "%.28s-0", name); 2048 if (ret) 2049 bdi_put(bdi); 2050 2051 return ret ? ERR_PTR(ret) : bdi; 2052 } 2053 2054 static struct proc_dir_entry *proc_mtd; 2055 2056 static int __init init_mtd(void) 2057 { 2058 int ret; 2059 2060 ret = class_register(&mtd_class); 2061 if (ret) 2062 goto err_reg; 2063 2064 mtd_bdi = mtd_bdi_init("mtd"); 2065 if (IS_ERR(mtd_bdi)) { 2066 ret = PTR_ERR(mtd_bdi); 2067 goto err_bdi; 2068 } 2069 2070 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show); 2071 2072 ret = init_mtdchar(); 2073 if (ret) 2074 goto out_procfs; 2075 2076 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 2077 2078 return 0; 2079 2080 out_procfs: 2081 if (proc_mtd) 2082 remove_proc_entry("mtd", NULL); 2083 bdi_put(mtd_bdi); 2084 err_bdi: 2085 class_unregister(&mtd_class); 2086 err_reg: 2087 pr_err("Error registering mtd class or bdi: %d\n", ret); 2088 return ret; 2089 } 2090 2091 static void __exit cleanup_mtd(void) 2092 { 2093 debugfs_remove_recursive(dfs_dir_mtd); 2094 cleanup_mtdchar(); 2095 if (proc_mtd) 2096 remove_proc_entry("mtd", NULL); 2097 class_unregister(&mtd_class); 2098 bdi_put(mtd_bdi); 2099 idr_destroy(&mtd_idr); 2100 } 2101 2102 module_init(init_mtd); 2103 module_exit(cleanup_mtd); 2104 2105 MODULE_LICENSE("GPL"); 2106 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 2107 MODULE_DESCRIPTION("Core MTD registration and access routines"); 2108