xref: /openbmc/linux/drivers/mtd/mtdcore.c (revision 4f3db074)
1 /*
2  * Core registration and callback routines for MTD
3  * drivers and users.
4  *
5  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6  * Copyright © 2006      Red Hat UK Limited
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/proc_fs.h>
36 #include <linux/idr.h>
37 #include <linux/backing-dev.h>
38 #include <linux/gfp.h>
39 #include <linux/slab.h>
40 #include <linux/reboot.h>
41 #include <linux/kconfig.h>
42 
43 #include <linux/mtd/mtd.h>
44 #include <linux/mtd/partitions.h>
45 
46 #include "mtdcore.h"
47 
48 static struct backing_dev_info mtd_bdi = {
49 };
50 
51 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
52 static int mtd_cls_resume(struct device *dev);
53 
54 static struct class mtd_class = {
55 	.name = "mtd",
56 	.owner = THIS_MODULE,
57 	.suspend = mtd_cls_suspend,
58 	.resume = mtd_cls_resume,
59 };
60 
61 static DEFINE_IDR(mtd_idr);
62 
63 /* These are exported solely for the purpose of mtd_blkdevs.c. You
64    should not use them for _anything_ else */
65 DEFINE_MUTEX(mtd_table_mutex);
66 EXPORT_SYMBOL_GPL(mtd_table_mutex);
67 
68 struct mtd_info *__mtd_next_device(int i)
69 {
70 	return idr_get_next(&mtd_idr, &i);
71 }
72 EXPORT_SYMBOL_GPL(__mtd_next_device);
73 
74 static LIST_HEAD(mtd_notifiers);
75 
76 
77 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
78 
79 /* REVISIT once MTD uses the driver model better, whoever allocates
80  * the mtd_info will probably want to use the release() hook...
81  */
82 static void mtd_release(struct device *dev)
83 {
84 	struct mtd_info *mtd = dev_get_drvdata(dev);
85 	dev_t index = MTD_DEVT(mtd->index);
86 
87 	/* remove /dev/mtdXro node */
88 	device_destroy(&mtd_class, index + 1);
89 }
90 
91 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
92 {
93 	struct mtd_info *mtd = dev_get_drvdata(dev);
94 
95 	return mtd ? mtd_suspend(mtd) : 0;
96 }
97 
98 static int mtd_cls_resume(struct device *dev)
99 {
100 	struct mtd_info *mtd = dev_get_drvdata(dev);
101 
102 	if (mtd)
103 		mtd_resume(mtd);
104 	return 0;
105 }
106 
107 static ssize_t mtd_type_show(struct device *dev,
108 		struct device_attribute *attr, char *buf)
109 {
110 	struct mtd_info *mtd = dev_get_drvdata(dev);
111 	char *type;
112 
113 	switch (mtd->type) {
114 	case MTD_ABSENT:
115 		type = "absent";
116 		break;
117 	case MTD_RAM:
118 		type = "ram";
119 		break;
120 	case MTD_ROM:
121 		type = "rom";
122 		break;
123 	case MTD_NORFLASH:
124 		type = "nor";
125 		break;
126 	case MTD_NANDFLASH:
127 		type = "nand";
128 		break;
129 	case MTD_DATAFLASH:
130 		type = "dataflash";
131 		break;
132 	case MTD_UBIVOLUME:
133 		type = "ubi";
134 		break;
135 	case MTD_MLCNANDFLASH:
136 		type = "mlc-nand";
137 		break;
138 	default:
139 		type = "unknown";
140 	}
141 
142 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
143 }
144 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
145 
146 static ssize_t mtd_flags_show(struct device *dev,
147 		struct device_attribute *attr, char *buf)
148 {
149 	struct mtd_info *mtd = dev_get_drvdata(dev);
150 
151 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
152 
153 }
154 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
155 
156 static ssize_t mtd_size_show(struct device *dev,
157 		struct device_attribute *attr, char *buf)
158 {
159 	struct mtd_info *mtd = dev_get_drvdata(dev);
160 
161 	return snprintf(buf, PAGE_SIZE, "%llu\n",
162 		(unsigned long long)mtd->size);
163 
164 }
165 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
166 
167 static ssize_t mtd_erasesize_show(struct device *dev,
168 		struct device_attribute *attr, char *buf)
169 {
170 	struct mtd_info *mtd = dev_get_drvdata(dev);
171 
172 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
173 
174 }
175 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
176 
177 static ssize_t mtd_writesize_show(struct device *dev,
178 		struct device_attribute *attr, char *buf)
179 {
180 	struct mtd_info *mtd = dev_get_drvdata(dev);
181 
182 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
183 
184 }
185 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
186 
187 static ssize_t mtd_subpagesize_show(struct device *dev,
188 		struct device_attribute *attr, char *buf)
189 {
190 	struct mtd_info *mtd = dev_get_drvdata(dev);
191 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
192 
193 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
194 
195 }
196 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
197 
198 static ssize_t mtd_oobsize_show(struct device *dev,
199 		struct device_attribute *attr, char *buf)
200 {
201 	struct mtd_info *mtd = dev_get_drvdata(dev);
202 
203 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
204 
205 }
206 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
207 
208 static ssize_t mtd_numeraseregions_show(struct device *dev,
209 		struct device_attribute *attr, char *buf)
210 {
211 	struct mtd_info *mtd = dev_get_drvdata(dev);
212 
213 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
214 
215 }
216 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
217 	NULL);
218 
219 static ssize_t mtd_name_show(struct device *dev,
220 		struct device_attribute *attr, char *buf)
221 {
222 	struct mtd_info *mtd = dev_get_drvdata(dev);
223 
224 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
225 
226 }
227 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
228 
229 static ssize_t mtd_ecc_strength_show(struct device *dev,
230 				     struct device_attribute *attr, char *buf)
231 {
232 	struct mtd_info *mtd = dev_get_drvdata(dev);
233 
234 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
235 }
236 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
237 
238 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
239 					  struct device_attribute *attr,
240 					  char *buf)
241 {
242 	struct mtd_info *mtd = dev_get_drvdata(dev);
243 
244 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
245 }
246 
247 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
248 					   struct device_attribute *attr,
249 					   const char *buf, size_t count)
250 {
251 	struct mtd_info *mtd = dev_get_drvdata(dev);
252 	unsigned int bitflip_threshold;
253 	int retval;
254 
255 	retval = kstrtouint(buf, 0, &bitflip_threshold);
256 	if (retval)
257 		return retval;
258 
259 	mtd->bitflip_threshold = bitflip_threshold;
260 	return count;
261 }
262 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
263 		   mtd_bitflip_threshold_show,
264 		   mtd_bitflip_threshold_store);
265 
266 static ssize_t mtd_ecc_step_size_show(struct device *dev,
267 		struct device_attribute *attr, char *buf)
268 {
269 	struct mtd_info *mtd = dev_get_drvdata(dev);
270 
271 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
272 
273 }
274 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
275 
276 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
277 		struct device_attribute *attr, char *buf)
278 {
279 	struct mtd_info *mtd = dev_get_drvdata(dev);
280 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
281 
282 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
283 }
284 static DEVICE_ATTR(corrected_bits, S_IRUGO,
285 		   mtd_ecc_stats_corrected_show, NULL);
286 
287 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
288 		struct device_attribute *attr, char *buf)
289 {
290 	struct mtd_info *mtd = dev_get_drvdata(dev);
291 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
292 
293 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
294 }
295 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
296 
297 static ssize_t mtd_badblocks_show(struct device *dev,
298 		struct device_attribute *attr, char *buf)
299 {
300 	struct mtd_info *mtd = dev_get_drvdata(dev);
301 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
302 
303 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
304 }
305 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
306 
307 static ssize_t mtd_bbtblocks_show(struct device *dev,
308 		struct device_attribute *attr, char *buf)
309 {
310 	struct mtd_info *mtd = dev_get_drvdata(dev);
311 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
312 
313 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
314 }
315 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
316 
317 static struct attribute *mtd_attrs[] = {
318 	&dev_attr_type.attr,
319 	&dev_attr_flags.attr,
320 	&dev_attr_size.attr,
321 	&dev_attr_erasesize.attr,
322 	&dev_attr_writesize.attr,
323 	&dev_attr_subpagesize.attr,
324 	&dev_attr_oobsize.attr,
325 	&dev_attr_numeraseregions.attr,
326 	&dev_attr_name.attr,
327 	&dev_attr_ecc_strength.attr,
328 	&dev_attr_ecc_step_size.attr,
329 	&dev_attr_corrected_bits.attr,
330 	&dev_attr_ecc_failures.attr,
331 	&dev_attr_bad_blocks.attr,
332 	&dev_attr_bbt_blocks.attr,
333 	&dev_attr_bitflip_threshold.attr,
334 	NULL,
335 };
336 ATTRIBUTE_GROUPS(mtd);
337 
338 static struct device_type mtd_devtype = {
339 	.name		= "mtd",
340 	.groups		= mtd_groups,
341 	.release	= mtd_release,
342 };
343 
344 #ifndef CONFIG_MMU
345 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
346 {
347 	switch (mtd->type) {
348 	case MTD_RAM:
349 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
350 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
351 	case MTD_ROM:
352 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
353 			NOMMU_MAP_READ;
354 	default:
355 		return NOMMU_MAP_COPY;
356 	}
357 }
358 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
359 #endif
360 
361 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
362 			       void *cmd)
363 {
364 	struct mtd_info *mtd;
365 
366 	mtd = container_of(n, struct mtd_info, reboot_notifier);
367 	mtd->_reboot(mtd);
368 
369 	return NOTIFY_DONE;
370 }
371 
372 /**
373  *	add_mtd_device - register an MTD device
374  *	@mtd: pointer to new MTD device info structure
375  *
376  *	Add a device to the list of MTD devices present in the system, and
377  *	notify each currently active MTD 'user' of its arrival. Returns
378  *	zero on success or 1 on failure, which currently will only happen
379  *	if there is insufficient memory or a sysfs error.
380  */
381 
382 int add_mtd_device(struct mtd_info *mtd)
383 {
384 	struct mtd_notifier *not;
385 	int i, error;
386 
387 	mtd->backing_dev_info = &mtd_bdi;
388 
389 	BUG_ON(mtd->writesize == 0);
390 	mutex_lock(&mtd_table_mutex);
391 
392 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
393 	if (i < 0)
394 		goto fail_locked;
395 
396 	mtd->index = i;
397 	mtd->usecount = 0;
398 
399 	/* default value if not set by driver */
400 	if (mtd->bitflip_threshold == 0)
401 		mtd->bitflip_threshold = mtd->ecc_strength;
402 
403 	if (is_power_of_2(mtd->erasesize))
404 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
405 	else
406 		mtd->erasesize_shift = 0;
407 
408 	if (is_power_of_2(mtd->writesize))
409 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
410 	else
411 		mtd->writesize_shift = 0;
412 
413 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
414 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
415 
416 	/* Some chips always power up locked. Unlock them now */
417 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
418 		error = mtd_unlock(mtd, 0, mtd->size);
419 		if (error && error != -EOPNOTSUPP)
420 			printk(KERN_WARNING
421 			       "%s: unlock failed, writes may not work\n",
422 			       mtd->name);
423 	}
424 
425 	/* Caller should have set dev.parent to match the
426 	 * physical device.
427 	 */
428 	mtd->dev.type = &mtd_devtype;
429 	mtd->dev.class = &mtd_class;
430 	mtd->dev.devt = MTD_DEVT(i);
431 	dev_set_name(&mtd->dev, "mtd%d", i);
432 	dev_set_drvdata(&mtd->dev, mtd);
433 	if (device_register(&mtd->dev) != 0)
434 		goto fail_added;
435 
436 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
437 		      "mtd%dro", i);
438 
439 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
440 	/* No need to get a refcount on the module containing
441 	   the notifier, since we hold the mtd_table_mutex */
442 	list_for_each_entry(not, &mtd_notifiers, list)
443 		not->add(mtd);
444 
445 	mutex_unlock(&mtd_table_mutex);
446 	/* We _know_ we aren't being removed, because
447 	   our caller is still holding us here. So none
448 	   of this try_ nonsense, and no bitching about it
449 	   either. :) */
450 	__module_get(THIS_MODULE);
451 	return 0;
452 
453 fail_added:
454 	idr_remove(&mtd_idr, i);
455 fail_locked:
456 	mutex_unlock(&mtd_table_mutex);
457 	return 1;
458 }
459 
460 /**
461  *	del_mtd_device - unregister an MTD device
462  *	@mtd: pointer to MTD device info structure
463  *
464  *	Remove a device from the list of MTD devices present in the system,
465  *	and notify each currently active MTD 'user' of its departure.
466  *	Returns zero on success or 1 on failure, which currently will happen
467  *	if the requested device does not appear to be present in the list.
468  */
469 
470 int del_mtd_device(struct mtd_info *mtd)
471 {
472 	int ret;
473 	struct mtd_notifier *not;
474 
475 	mutex_lock(&mtd_table_mutex);
476 
477 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
478 		ret = -ENODEV;
479 		goto out_error;
480 	}
481 
482 	/* No need to get a refcount on the module containing
483 		the notifier, since we hold the mtd_table_mutex */
484 	list_for_each_entry(not, &mtd_notifiers, list)
485 		not->remove(mtd);
486 
487 	if (mtd->usecount) {
488 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
489 		       mtd->index, mtd->name, mtd->usecount);
490 		ret = -EBUSY;
491 	} else {
492 		device_unregister(&mtd->dev);
493 
494 		idr_remove(&mtd_idr, mtd->index);
495 
496 		module_put(THIS_MODULE);
497 		ret = 0;
498 	}
499 
500 out_error:
501 	mutex_unlock(&mtd_table_mutex);
502 	return ret;
503 }
504 
505 static int mtd_add_device_partitions(struct mtd_info *mtd,
506 				     struct mtd_partition *real_parts,
507 				     int nbparts)
508 {
509 	int ret;
510 
511 	if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
512 		ret = add_mtd_device(mtd);
513 		if (ret == 1)
514 			return -ENODEV;
515 	}
516 
517 	if (nbparts > 0) {
518 		ret = add_mtd_partitions(mtd, real_parts, nbparts);
519 		if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
520 			del_mtd_device(mtd);
521 		return ret;
522 	}
523 
524 	return 0;
525 }
526 
527 
528 /**
529  * mtd_device_parse_register - parse partitions and register an MTD device.
530  *
531  * @mtd: the MTD device to register
532  * @types: the list of MTD partition probes to try, see
533  *         'parse_mtd_partitions()' for more information
534  * @parser_data: MTD partition parser-specific data
535  * @parts: fallback partition information to register, if parsing fails;
536  *         only valid if %nr_parts > %0
537  * @nr_parts: the number of partitions in parts, if zero then the full
538  *            MTD device is registered if no partition info is found
539  *
540  * This function aggregates MTD partitions parsing (done by
541  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
542  * basically follows the most common pattern found in many MTD drivers:
543  *
544  * * It first tries to probe partitions on MTD device @mtd using parsers
545  *   specified in @types (if @types is %NULL, then the default list of parsers
546  *   is used, see 'parse_mtd_partitions()' for more information). If none are
547  *   found this functions tries to fallback to information specified in
548  *   @parts/@nr_parts.
549  * * If any partitioning info was found, this function registers the found
550  *   partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
551  *   as a whole is registered first.
552  * * If no partitions were found this function just registers the MTD device
553  *   @mtd and exits.
554  *
555  * Returns zero in case of success and a negative error code in case of failure.
556  */
557 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
558 			      struct mtd_part_parser_data *parser_data,
559 			      const struct mtd_partition *parts,
560 			      int nr_parts)
561 {
562 	int ret;
563 	struct mtd_partition *real_parts = NULL;
564 
565 	ret = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
566 	if (ret <= 0 && nr_parts && parts) {
567 		real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
568 				     GFP_KERNEL);
569 		if (!real_parts)
570 			ret = -ENOMEM;
571 		else
572 			ret = nr_parts;
573 	}
574 
575 	if (ret >= 0)
576 		ret = mtd_add_device_partitions(mtd, real_parts, ret);
577 
578 	/*
579 	 * FIXME: some drivers unfortunately call this function more than once.
580 	 * So we have to check if we've already assigned the reboot notifier.
581 	 *
582 	 * Generally, we can make multiple calls work for most cases, but it
583 	 * does cause problems with parse_mtd_partitions() above (e.g.,
584 	 * cmdlineparts will register partitions more than once).
585 	 */
586 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
587 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
588 		register_reboot_notifier(&mtd->reboot_notifier);
589 	}
590 
591 	kfree(real_parts);
592 	return ret;
593 }
594 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
595 
596 /**
597  * mtd_device_unregister - unregister an existing MTD device.
598  *
599  * @master: the MTD device to unregister.  This will unregister both the master
600  *          and any partitions if registered.
601  */
602 int mtd_device_unregister(struct mtd_info *master)
603 {
604 	int err;
605 
606 	if (master->_reboot)
607 		unregister_reboot_notifier(&master->reboot_notifier);
608 
609 	err = del_mtd_partitions(master);
610 	if (err)
611 		return err;
612 
613 	if (!device_is_registered(&master->dev))
614 		return 0;
615 
616 	return del_mtd_device(master);
617 }
618 EXPORT_SYMBOL_GPL(mtd_device_unregister);
619 
620 /**
621  *	register_mtd_user - register a 'user' of MTD devices.
622  *	@new: pointer to notifier info structure
623  *
624  *	Registers a pair of callbacks function to be called upon addition
625  *	or removal of MTD devices. Causes the 'add' callback to be immediately
626  *	invoked for each MTD device currently present in the system.
627  */
628 void register_mtd_user (struct mtd_notifier *new)
629 {
630 	struct mtd_info *mtd;
631 
632 	mutex_lock(&mtd_table_mutex);
633 
634 	list_add(&new->list, &mtd_notifiers);
635 
636 	__module_get(THIS_MODULE);
637 
638 	mtd_for_each_device(mtd)
639 		new->add(mtd);
640 
641 	mutex_unlock(&mtd_table_mutex);
642 }
643 EXPORT_SYMBOL_GPL(register_mtd_user);
644 
645 /**
646  *	unregister_mtd_user - unregister a 'user' of MTD devices.
647  *	@old: pointer to notifier info structure
648  *
649  *	Removes a callback function pair from the list of 'users' to be
650  *	notified upon addition or removal of MTD devices. Causes the
651  *	'remove' callback to be immediately invoked for each MTD device
652  *	currently present in the system.
653  */
654 int unregister_mtd_user (struct mtd_notifier *old)
655 {
656 	struct mtd_info *mtd;
657 
658 	mutex_lock(&mtd_table_mutex);
659 
660 	module_put(THIS_MODULE);
661 
662 	mtd_for_each_device(mtd)
663 		old->remove(mtd);
664 
665 	list_del(&old->list);
666 	mutex_unlock(&mtd_table_mutex);
667 	return 0;
668 }
669 EXPORT_SYMBOL_GPL(unregister_mtd_user);
670 
671 /**
672  *	get_mtd_device - obtain a validated handle for an MTD device
673  *	@mtd: last known address of the required MTD device
674  *	@num: internal device number of the required MTD device
675  *
676  *	Given a number and NULL address, return the num'th entry in the device
677  *	table, if any.	Given an address and num == -1, search the device table
678  *	for a device with that address and return if it's still present. Given
679  *	both, return the num'th driver only if its address matches. Return
680  *	error code if not.
681  */
682 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
683 {
684 	struct mtd_info *ret = NULL, *other;
685 	int err = -ENODEV;
686 
687 	mutex_lock(&mtd_table_mutex);
688 
689 	if (num == -1) {
690 		mtd_for_each_device(other) {
691 			if (other == mtd) {
692 				ret = mtd;
693 				break;
694 			}
695 		}
696 	} else if (num >= 0) {
697 		ret = idr_find(&mtd_idr, num);
698 		if (mtd && mtd != ret)
699 			ret = NULL;
700 	}
701 
702 	if (!ret) {
703 		ret = ERR_PTR(err);
704 		goto out;
705 	}
706 
707 	err = __get_mtd_device(ret);
708 	if (err)
709 		ret = ERR_PTR(err);
710 out:
711 	mutex_unlock(&mtd_table_mutex);
712 	return ret;
713 }
714 EXPORT_SYMBOL_GPL(get_mtd_device);
715 
716 
717 int __get_mtd_device(struct mtd_info *mtd)
718 {
719 	int err;
720 
721 	if (!try_module_get(mtd->owner))
722 		return -ENODEV;
723 
724 	if (mtd->_get_device) {
725 		err = mtd->_get_device(mtd);
726 
727 		if (err) {
728 			module_put(mtd->owner);
729 			return err;
730 		}
731 	}
732 	mtd->usecount++;
733 	return 0;
734 }
735 EXPORT_SYMBOL_GPL(__get_mtd_device);
736 
737 /**
738  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
739  *	device name
740  *	@name: MTD device name to open
741  *
742  * 	This function returns MTD device description structure in case of
743  * 	success and an error code in case of failure.
744  */
745 struct mtd_info *get_mtd_device_nm(const char *name)
746 {
747 	int err = -ENODEV;
748 	struct mtd_info *mtd = NULL, *other;
749 
750 	mutex_lock(&mtd_table_mutex);
751 
752 	mtd_for_each_device(other) {
753 		if (!strcmp(name, other->name)) {
754 			mtd = other;
755 			break;
756 		}
757 	}
758 
759 	if (!mtd)
760 		goto out_unlock;
761 
762 	err = __get_mtd_device(mtd);
763 	if (err)
764 		goto out_unlock;
765 
766 	mutex_unlock(&mtd_table_mutex);
767 	return mtd;
768 
769 out_unlock:
770 	mutex_unlock(&mtd_table_mutex);
771 	return ERR_PTR(err);
772 }
773 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
774 
775 void put_mtd_device(struct mtd_info *mtd)
776 {
777 	mutex_lock(&mtd_table_mutex);
778 	__put_mtd_device(mtd);
779 	mutex_unlock(&mtd_table_mutex);
780 
781 }
782 EXPORT_SYMBOL_GPL(put_mtd_device);
783 
784 void __put_mtd_device(struct mtd_info *mtd)
785 {
786 	--mtd->usecount;
787 	BUG_ON(mtd->usecount < 0);
788 
789 	if (mtd->_put_device)
790 		mtd->_put_device(mtd);
791 
792 	module_put(mtd->owner);
793 }
794 EXPORT_SYMBOL_GPL(__put_mtd_device);
795 
796 /*
797  * Erase is an asynchronous operation.  Device drivers are supposed
798  * to call instr->callback() whenever the operation completes, even
799  * if it completes with a failure.
800  * Callers are supposed to pass a callback function and wait for it
801  * to be called before writing to the block.
802  */
803 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
804 {
805 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
806 		return -EINVAL;
807 	if (!(mtd->flags & MTD_WRITEABLE))
808 		return -EROFS;
809 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
810 	if (!instr->len) {
811 		instr->state = MTD_ERASE_DONE;
812 		mtd_erase_callback(instr);
813 		return 0;
814 	}
815 	return mtd->_erase(mtd, instr);
816 }
817 EXPORT_SYMBOL_GPL(mtd_erase);
818 
819 /*
820  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
821  */
822 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
823 	      void **virt, resource_size_t *phys)
824 {
825 	*retlen = 0;
826 	*virt = NULL;
827 	if (phys)
828 		*phys = 0;
829 	if (!mtd->_point)
830 		return -EOPNOTSUPP;
831 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
832 		return -EINVAL;
833 	if (!len)
834 		return 0;
835 	return mtd->_point(mtd, from, len, retlen, virt, phys);
836 }
837 EXPORT_SYMBOL_GPL(mtd_point);
838 
839 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
840 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
841 {
842 	if (!mtd->_point)
843 		return -EOPNOTSUPP;
844 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
845 		return -EINVAL;
846 	if (!len)
847 		return 0;
848 	return mtd->_unpoint(mtd, from, len);
849 }
850 EXPORT_SYMBOL_GPL(mtd_unpoint);
851 
852 /*
853  * Allow NOMMU mmap() to directly map the device (if not NULL)
854  * - return the address to which the offset maps
855  * - return -ENOSYS to indicate refusal to do the mapping
856  */
857 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
858 				    unsigned long offset, unsigned long flags)
859 {
860 	if (!mtd->_get_unmapped_area)
861 		return -EOPNOTSUPP;
862 	if (offset >= mtd->size || len > mtd->size - offset)
863 		return -EINVAL;
864 	return mtd->_get_unmapped_area(mtd, len, offset, flags);
865 }
866 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
867 
868 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
869 	     u_char *buf)
870 {
871 	int ret_code;
872 	*retlen = 0;
873 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
874 		return -EINVAL;
875 	if (!len)
876 		return 0;
877 
878 	/*
879 	 * In the absence of an error, drivers return a non-negative integer
880 	 * representing the maximum number of bitflips that were corrected on
881 	 * any one ecc region (if applicable; zero otherwise).
882 	 */
883 	ret_code = mtd->_read(mtd, from, len, retlen, buf);
884 	if (unlikely(ret_code < 0))
885 		return ret_code;
886 	if (mtd->ecc_strength == 0)
887 		return 0;	/* device lacks ecc */
888 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
889 }
890 EXPORT_SYMBOL_GPL(mtd_read);
891 
892 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
893 	      const u_char *buf)
894 {
895 	*retlen = 0;
896 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
897 		return -EINVAL;
898 	if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
899 		return -EROFS;
900 	if (!len)
901 		return 0;
902 	return mtd->_write(mtd, to, len, retlen, buf);
903 }
904 EXPORT_SYMBOL_GPL(mtd_write);
905 
906 /*
907  * In blackbox flight recorder like scenarios we want to make successful writes
908  * in interrupt context. panic_write() is only intended to be called when its
909  * known the kernel is about to panic and we need the write to succeed. Since
910  * the kernel is not going to be running for much longer, this function can
911  * break locks and delay to ensure the write succeeds (but not sleep).
912  */
913 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
914 		    const u_char *buf)
915 {
916 	*retlen = 0;
917 	if (!mtd->_panic_write)
918 		return -EOPNOTSUPP;
919 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
920 		return -EINVAL;
921 	if (!(mtd->flags & MTD_WRITEABLE))
922 		return -EROFS;
923 	if (!len)
924 		return 0;
925 	return mtd->_panic_write(mtd, to, len, retlen, buf);
926 }
927 EXPORT_SYMBOL_GPL(mtd_panic_write);
928 
929 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
930 {
931 	int ret_code;
932 	ops->retlen = ops->oobretlen = 0;
933 	if (!mtd->_read_oob)
934 		return -EOPNOTSUPP;
935 	/*
936 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
937 	 * similar to mtd->_read(), returning a non-negative integer
938 	 * representing max bitflips. In other cases, mtd->_read_oob() may
939 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
940 	 */
941 	ret_code = mtd->_read_oob(mtd, from, ops);
942 	if (unlikely(ret_code < 0))
943 		return ret_code;
944 	if (mtd->ecc_strength == 0)
945 		return 0;	/* device lacks ecc */
946 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
947 }
948 EXPORT_SYMBOL_GPL(mtd_read_oob);
949 
950 /*
951  * Method to access the protection register area, present in some flash
952  * devices. The user data is one time programmable but the factory data is read
953  * only.
954  */
955 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
956 			   struct otp_info *buf)
957 {
958 	if (!mtd->_get_fact_prot_info)
959 		return -EOPNOTSUPP;
960 	if (!len)
961 		return 0;
962 	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
963 }
964 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
965 
966 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
967 			   size_t *retlen, u_char *buf)
968 {
969 	*retlen = 0;
970 	if (!mtd->_read_fact_prot_reg)
971 		return -EOPNOTSUPP;
972 	if (!len)
973 		return 0;
974 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
975 }
976 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
977 
978 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
979 			   struct otp_info *buf)
980 {
981 	if (!mtd->_get_user_prot_info)
982 		return -EOPNOTSUPP;
983 	if (!len)
984 		return 0;
985 	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
986 }
987 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
988 
989 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
990 			   size_t *retlen, u_char *buf)
991 {
992 	*retlen = 0;
993 	if (!mtd->_read_user_prot_reg)
994 		return -EOPNOTSUPP;
995 	if (!len)
996 		return 0;
997 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
998 }
999 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1000 
1001 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1002 			    size_t *retlen, u_char *buf)
1003 {
1004 	int ret;
1005 
1006 	*retlen = 0;
1007 	if (!mtd->_write_user_prot_reg)
1008 		return -EOPNOTSUPP;
1009 	if (!len)
1010 		return 0;
1011 	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1012 	if (ret)
1013 		return ret;
1014 
1015 	/*
1016 	 * If no data could be written at all, we are out of memory and
1017 	 * must return -ENOSPC.
1018 	 */
1019 	return (*retlen) ? 0 : -ENOSPC;
1020 }
1021 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1022 
1023 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1024 {
1025 	if (!mtd->_lock_user_prot_reg)
1026 		return -EOPNOTSUPP;
1027 	if (!len)
1028 		return 0;
1029 	return mtd->_lock_user_prot_reg(mtd, from, len);
1030 }
1031 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1032 
1033 /* Chip-supported device locking */
1034 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1035 {
1036 	if (!mtd->_lock)
1037 		return -EOPNOTSUPP;
1038 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1039 		return -EINVAL;
1040 	if (!len)
1041 		return 0;
1042 	return mtd->_lock(mtd, ofs, len);
1043 }
1044 EXPORT_SYMBOL_GPL(mtd_lock);
1045 
1046 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1047 {
1048 	if (!mtd->_unlock)
1049 		return -EOPNOTSUPP;
1050 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1051 		return -EINVAL;
1052 	if (!len)
1053 		return 0;
1054 	return mtd->_unlock(mtd, ofs, len);
1055 }
1056 EXPORT_SYMBOL_GPL(mtd_unlock);
1057 
1058 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1059 {
1060 	if (!mtd->_is_locked)
1061 		return -EOPNOTSUPP;
1062 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1063 		return -EINVAL;
1064 	if (!len)
1065 		return 0;
1066 	return mtd->_is_locked(mtd, ofs, len);
1067 }
1068 EXPORT_SYMBOL_GPL(mtd_is_locked);
1069 
1070 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1071 {
1072 	if (ofs < 0 || ofs >= mtd->size)
1073 		return -EINVAL;
1074 	if (!mtd->_block_isreserved)
1075 		return 0;
1076 	return mtd->_block_isreserved(mtd, ofs);
1077 }
1078 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1079 
1080 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1081 {
1082 	if (ofs < 0 || ofs >= mtd->size)
1083 		return -EINVAL;
1084 	if (!mtd->_block_isbad)
1085 		return 0;
1086 	return mtd->_block_isbad(mtd, ofs);
1087 }
1088 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1089 
1090 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1091 {
1092 	if (!mtd->_block_markbad)
1093 		return -EOPNOTSUPP;
1094 	if (ofs < 0 || ofs >= mtd->size)
1095 		return -EINVAL;
1096 	if (!(mtd->flags & MTD_WRITEABLE))
1097 		return -EROFS;
1098 	return mtd->_block_markbad(mtd, ofs);
1099 }
1100 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1101 
1102 /*
1103  * default_mtd_writev - the default writev method
1104  * @mtd: mtd device description object pointer
1105  * @vecs: the vectors to write
1106  * @count: count of vectors in @vecs
1107  * @to: the MTD device offset to write to
1108  * @retlen: on exit contains the count of bytes written to the MTD device.
1109  *
1110  * This function returns zero in case of success and a negative error code in
1111  * case of failure.
1112  */
1113 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1114 			      unsigned long count, loff_t to, size_t *retlen)
1115 {
1116 	unsigned long i;
1117 	size_t totlen = 0, thislen;
1118 	int ret = 0;
1119 
1120 	for (i = 0; i < count; i++) {
1121 		if (!vecs[i].iov_len)
1122 			continue;
1123 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1124 				vecs[i].iov_base);
1125 		totlen += thislen;
1126 		if (ret || thislen != vecs[i].iov_len)
1127 			break;
1128 		to += vecs[i].iov_len;
1129 	}
1130 	*retlen = totlen;
1131 	return ret;
1132 }
1133 
1134 /*
1135  * mtd_writev - the vector-based MTD write method
1136  * @mtd: mtd device description object pointer
1137  * @vecs: the vectors to write
1138  * @count: count of vectors in @vecs
1139  * @to: the MTD device offset to write to
1140  * @retlen: on exit contains the count of bytes written to the MTD device.
1141  *
1142  * This function returns zero in case of success and a negative error code in
1143  * case of failure.
1144  */
1145 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1146 	       unsigned long count, loff_t to, size_t *retlen)
1147 {
1148 	*retlen = 0;
1149 	if (!(mtd->flags & MTD_WRITEABLE))
1150 		return -EROFS;
1151 	if (!mtd->_writev)
1152 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1153 	return mtd->_writev(mtd, vecs, count, to, retlen);
1154 }
1155 EXPORT_SYMBOL_GPL(mtd_writev);
1156 
1157 /**
1158  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1159  * @mtd: mtd device description object pointer
1160  * @size: a pointer to the ideal or maximum size of the allocation, points
1161  *        to the actual allocation size on success.
1162  *
1163  * This routine attempts to allocate a contiguous kernel buffer up to
1164  * the specified size, backing off the size of the request exponentially
1165  * until the request succeeds or until the allocation size falls below
1166  * the system page size. This attempts to make sure it does not adversely
1167  * impact system performance, so when allocating more than one page, we
1168  * ask the memory allocator to avoid re-trying, swapping, writing back
1169  * or performing I/O.
1170  *
1171  * Note, this function also makes sure that the allocated buffer is aligned to
1172  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1173  *
1174  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1175  * to handle smaller (i.e. degraded) buffer allocations under low- or
1176  * fragmented-memory situations where such reduced allocations, from a
1177  * requested ideal, are allowed.
1178  *
1179  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1180  */
1181 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1182 {
1183 	gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1184 		       __GFP_NORETRY | __GFP_NO_KSWAPD;
1185 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1186 	void *kbuf;
1187 
1188 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1189 
1190 	while (*size > min_alloc) {
1191 		kbuf = kmalloc(*size, flags);
1192 		if (kbuf)
1193 			return kbuf;
1194 
1195 		*size >>= 1;
1196 		*size = ALIGN(*size, mtd->writesize);
1197 	}
1198 
1199 	/*
1200 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1201 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1202 	 */
1203 	return kmalloc(*size, GFP_KERNEL);
1204 }
1205 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1206 
1207 #ifdef CONFIG_PROC_FS
1208 
1209 /*====================================================================*/
1210 /* Support for /proc/mtd */
1211 
1212 static int mtd_proc_show(struct seq_file *m, void *v)
1213 {
1214 	struct mtd_info *mtd;
1215 
1216 	seq_puts(m, "dev:    size   erasesize  name\n");
1217 	mutex_lock(&mtd_table_mutex);
1218 	mtd_for_each_device(mtd) {
1219 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1220 			   mtd->index, (unsigned long long)mtd->size,
1221 			   mtd->erasesize, mtd->name);
1222 	}
1223 	mutex_unlock(&mtd_table_mutex);
1224 	return 0;
1225 }
1226 
1227 static int mtd_proc_open(struct inode *inode, struct file *file)
1228 {
1229 	return single_open(file, mtd_proc_show, NULL);
1230 }
1231 
1232 static const struct file_operations mtd_proc_ops = {
1233 	.open		= mtd_proc_open,
1234 	.read		= seq_read,
1235 	.llseek		= seq_lseek,
1236 	.release	= single_release,
1237 };
1238 #endif /* CONFIG_PROC_FS */
1239 
1240 /*====================================================================*/
1241 /* Init code */
1242 
1243 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1244 {
1245 	int ret;
1246 
1247 	ret = bdi_init(bdi);
1248 	if (!ret)
1249 		ret = bdi_register(bdi, NULL, "%s", name);
1250 
1251 	if (ret)
1252 		bdi_destroy(bdi);
1253 
1254 	return ret;
1255 }
1256 
1257 static struct proc_dir_entry *proc_mtd;
1258 
1259 static int __init init_mtd(void)
1260 {
1261 	int ret;
1262 
1263 	ret = class_register(&mtd_class);
1264 	if (ret)
1265 		goto err_reg;
1266 
1267 	ret = mtd_bdi_init(&mtd_bdi, "mtd");
1268 	if (ret)
1269 		goto err_bdi;
1270 
1271 	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1272 
1273 	ret = init_mtdchar();
1274 	if (ret)
1275 		goto out_procfs;
1276 
1277 	return 0;
1278 
1279 out_procfs:
1280 	if (proc_mtd)
1281 		remove_proc_entry("mtd", NULL);
1282 err_bdi:
1283 	class_unregister(&mtd_class);
1284 err_reg:
1285 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1286 	return ret;
1287 }
1288 
1289 static void __exit cleanup_mtd(void)
1290 {
1291 	cleanup_mtdchar();
1292 	if (proc_mtd)
1293 		remove_proc_entry("mtd", NULL);
1294 	class_unregister(&mtd_class);
1295 	bdi_destroy(&mtd_bdi);
1296 }
1297 
1298 module_init(init_mtd);
1299 module_exit(cleanup_mtd);
1300 
1301 MODULE_LICENSE("GPL");
1302 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1303 MODULE_DESCRIPTION("Core MTD registration and access routines");
1304