xref: /openbmc/linux/drivers/mtd/mtdcore.c (revision 3d40aed8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/random.h>
27 #include <linux/slab.h>
28 #include <linux/reboot.h>
29 #include <linux/leds.h>
30 #include <linux/debugfs.h>
31 #include <linux/nvmem-provider.h>
32 #include <linux/root_dev.h>
33 
34 #include <linux/mtd/mtd.h>
35 #include <linux/mtd/partitions.h>
36 
37 #include "mtdcore.h"
38 
39 struct backing_dev_info *mtd_bdi;
40 
41 #ifdef CONFIG_PM_SLEEP
42 
43 static int mtd_cls_suspend(struct device *dev)
44 {
45 	struct mtd_info *mtd = dev_get_drvdata(dev);
46 
47 	return mtd ? mtd_suspend(mtd) : 0;
48 }
49 
50 static int mtd_cls_resume(struct device *dev)
51 {
52 	struct mtd_info *mtd = dev_get_drvdata(dev);
53 
54 	if (mtd)
55 		mtd_resume(mtd);
56 	return 0;
57 }
58 
59 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
60 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
61 #else
62 #define MTD_CLS_PM_OPS NULL
63 #endif
64 
65 static struct class mtd_class = {
66 	.name = "mtd",
67 	.pm = MTD_CLS_PM_OPS,
68 };
69 
70 static DEFINE_IDR(mtd_idr);
71 
72 /* These are exported solely for the purpose of mtd_blkdevs.c. You
73    should not use them for _anything_ else */
74 DEFINE_MUTEX(mtd_table_mutex);
75 EXPORT_SYMBOL_GPL(mtd_table_mutex);
76 
77 struct mtd_info *__mtd_next_device(int i)
78 {
79 	return idr_get_next(&mtd_idr, &i);
80 }
81 EXPORT_SYMBOL_GPL(__mtd_next_device);
82 
83 static LIST_HEAD(mtd_notifiers);
84 
85 
86 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
87 
88 /* REVISIT once MTD uses the driver model better, whoever allocates
89  * the mtd_info will probably want to use the release() hook...
90  */
91 static void mtd_release(struct device *dev)
92 {
93 	struct mtd_info *mtd = dev_get_drvdata(dev);
94 	dev_t index = MTD_DEVT(mtd->index);
95 
96 	/* remove /dev/mtdXro node */
97 	device_destroy(&mtd_class, index + 1);
98 }
99 
100 #define MTD_DEVICE_ATTR_RO(name) \
101 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
102 
103 #define MTD_DEVICE_ATTR_RW(name) \
104 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
105 
106 static ssize_t mtd_type_show(struct device *dev,
107 		struct device_attribute *attr, char *buf)
108 {
109 	struct mtd_info *mtd = dev_get_drvdata(dev);
110 	char *type;
111 
112 	switch (mtd->type) {
113 	case MTD_ABSENT:
114 		type = "absent";
115 		break;
116 	case MTD_RAM:
117 		type = "ram";
118 		break;
119 	case MTD_ROM:
120 		type = "rom";
121 		break;
122 	case MTD_NORFLASH:
123 		type = "nor";
124 		break;
125 	case MTD_NANDFLASH:
126 		type = "nand";
127 		break;
128 	case MTD_DATAFLASH:
129 		type = "dataflash";
130 		break;
131 	case MTD_UBIVOLUME:
132 		type = "ubi";
133 		break;
134 	case MTD_MLCNANDFLASH:
135 		type = "mlc-nand";
136 		break;
137 	default:
138 		type = "unknown";
139 	}
140 
141 	return sysfs_emit(buf, "%s\n", type);
142 }
143 MTD_DEVICE_ATTR_RO(type);
144 
145 static ssize_t mtd_flags_show(struct device *dev,
146 		struct device_attribute *attr, char *buf)
147 {
148 	struct mtd_info *mtd = dev_get_drvdata(dev);
149 
150 	return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
151 }
152 MTD_DEVICE_ATTR_RO(flags);
153 
154 static ssize_t mtd_size_show(struct device *dev,
155 		struct device_attribute *attr, char *buf)
156 {
157 	struct mtd_info *mtd = dev_get_drvdata(dev);
158 
159 	return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
160 }
161 MTD_DEVICE_ATTR_RO(size);
162 
163 static ssize_t mtd_erasesize_show(struct device *dev,
164 		struct device_attribute *attr, char *buf)
165 {
166 	struct mtd_info *mtd = dev_get_drvdata(dev);
167 
168 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
169 }
170 MTD_DEVICE_ATTR_RO(erasesize);
171 
172 static ssize_t mtd_writesize_show(struct device *dev,
173 		struct device_attribute *attr, char *buf)
174 {
175 	struct mtd_info *mtd = dev_get_drvdata(dev);
176 
177 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
178 }
179 MTD_DEVICE_ATTR_RO(writesize);
180 
181 static ssize_t mtd_subpagesize_show(struct device *dev,
182 		struct device_attribute *attr, char *buf)
183 {
184 	struct mtd_info *mtd = dev_get_drvdata(dev);
185 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
186 
187 	return sysfs_emit(buf, "%u\n", subpagesize);
188 }
189 MTD_DEVICE_ATTR_RO(subpagesize);
190 
191 static ssize_t mtd_oobsize_show(struct device *dev,
192 		struct device_attribute *attr, char *buf)
193 {
194 	struct mtd_info *mtd = dev_get_drvdata(dev);
195 
196 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
197 }
198 MTD_DEVICE_ATTR_RO(oobsize);
199 
200 static ssize_t mtd_oobavail_show(struct device *dev,
201 				 struct device_attribute *attr, char *buf)
202 {
203 	struct mtd_info *mtd = dev_get_drvdata(dev);
204 
205 	return sysfs_emit(buf, "%u\n", mtd->oobavail);
206 }
207 MTD_DEVICE_ATTR_RO(oobavail);
208 
209 static ssize_t mtd_numeraseregions_show(struct device *dev,
210 		struct device_attribute *attr, char *buf)
211 {
212 	struct mtd_info *mtd = dev_get_drvdata(dev);
213 
214 	return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
215 }
216 MTD_DEVICE_ATTR_RO(numeraseregions);
217 
218 static ssize_t mtd_name_show(struct device *dev,
219 		struct device_attribute *attr, char *buf)
220 {
221 	struct mtd_info *mtd = dev_get_drvdata(dev);
222 
223 	return sysfs_emit(buf, "%s\n", mtd->name);
224 }
225 MTD_DEVICE_ATTR_RO(name);
226 
227 static ssize_t mtd_ecc_strength_show(struct device *dev,
228 				     struct device_attribute *attr, char *buf)
229 {
230 	struct mtd_info *mtd = dev_get_drvdata(dev);
231 
232 	return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
233 }
234 MTD_DEVICE_ATTR_RO(ecc_strength);
235 
236 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
237 					  struct device_attribute *attr,
238 					  char *buf)
239 {
240 	struct mtd_info *mtd = dev_get_drvdata(dev);
241 
242 	return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
243 }
244 
245 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
246 					   struct device_attribute *attr,
247 					   const char *buf, size_t count)
248 {
249 	struct mtd_info *mtd = dev_get_drvdata(dev);
250 	unsigned int bitflip_threshold;
251 	int retval;
252 
253 	retval = kstrtouint(buf, 0, &bitflip_threshold);
254 	if (retval)
255 		return retval;
256 
257 	mtd->bitflip_threshold = bitflip_threshold;
258 	return count;
259 }
260 MTD_DEVICE_ATTR_RW(bitflip_threshold);
261 
262 static ssize_t mtd_ecc_step_size_show(struct device *dev,
263 		struct device_attribute *attr, char *buf)
264 {
265 	struct mtd_info *mtd = dev_get_drvdata(dev);
266 
267 	return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
268 
269 }
270 MTD_DEVICE_ATTR_RO(ecc_step_size);
271 
272 static ssize_t mtd_corrected_bits_show(struct device *dev,
273 		struct device_attribute *attr, char *buf)
274 {
275 	struct mtd_info *mtd = dev_get_drvdata(dev);
276 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
277 
278 	return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
279 }
280 MTD_DEVICE_ATTR_RO(corrected_bits);	/* ecc stats corrected */
281 
282 static ssize_t mtd_ecc_failures_show(struct device *dev,
283 		struct device_attribute *attr, char *buf)
284 {
285 	struct mtd_info *mtd = dev_get_drvdata(dev);
286 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
287 
288 	return sysfs_emit(buf, "%u\n", ecc_stats->failed);
289 }
290 MTD_DEVICE_ATTR_RO(ecc_failures);	/* ecc stats errors */
291 
292 static ssize_t mtd_bad_blocks_show(struct device *dev,
293 		struct device_attribute *attr, char *buf)
294 {
295 	struct mtd_info *mtd = dev_get_drvdata(dev);
296 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
297 
298 	return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
299 }
300 MTD_DEVICE_ATTR_RO(bad_blocks);
301 
302 static ssize_t mtd_bbt_blocks_show(struct device *dev,
303 		struct device_attribute *attr, char *buf)
304 {
305 	struct mtd_info *mtd = dev_get_drvdata(dev);
306 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
307 
308 	return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
309 }
310 MTD_DEVICE_ATTR_RO(bbt_blocks);
311 
312 static struct attribute *mtd_attrs[] = {
313 	&dev_attr_type.attr,
314 	&dev_attr_flags.attr,
315 	&dev_attr_size.attr,
316 	&dev_attr_erasesize.attr,
317 	&dev_attr_writesize.attr,
318 	&dev_attr_subpagesize.attr,
319 	&dev_attr_oobsize.attr,
320 	&dev_attr_oobavail.attr,
321 	&dev_attr_numeraseregions.attr,
322 	&dev_attr_name.attr,
323 	&dev_attr_ecc_strength.attr,
324 	&dev_attr_ecc_step_size.attr,
325 	&dev_attr_corrected_bits.attr,
326 	&dev_attr_ecc_failures.attr,
327 	&dev_attr_bad_blocks.attr,
328 	&dev_attr_bbt_blocks.attr,
329 	&dev_attr_bitflip_threshold.attr,
330 	NULL,
331 };
332 ATTRIBUTE_GROUPS(mtd);
333 
334 static const struct device_type mtd_devtype = {
335 	.name		= "mtd",
336 	.groups		= mtd_groups,
337 	.release	= mtd_release,
338 };
339 
340 static bool mtd_expert_analysis_mode;
341 
342 #ifdef CONFIG_DEBUG_FS
343 bool mtd_check_expert_analysis_mode(void)
344 {
345 	const char *mtd_expert_analysis_warning =
346 		"Bad block checks have been entirely disabled.\n"
347 		"This is only reserved for post-mortem forensics and debug purposes.\n"
348 		"Never enable this mode if you do not know what you are doing!\n";
349 
350 	return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning);
351 }
352 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode);
353 #endif
354 
355 static struct dentry *dfs_dir_mtd;
356 
357 static void mtd_debugfs_populate(struct mtd_info *mtd)
358 {
359 	struct device *dev = &mtd->dev;
360 
361 	if (IS_ERR_OR_NULL(dfs_dir_mtd))
362 		return;
363 
364 	mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
365 }
366 
367 #ifndef CONFIG_MMU
368 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
369 {
370 	switch (mtd->type) {
371 	case MTD_RAM:
372 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
373 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
374 	case MTD_ROM:
375 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
376 			NOMMU_MAP_READ;
377 	default:
378 		return NOMMU_MAP_COPY;
379 	}
380 }
381 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
382 #endif
383 
384 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
385 			       void *cmd)
386 {
387 	struct mtd_info *mtd;
388 
389 	mtd = container_of(n, struct mtd_info, reboot_notifier);
390 	mtd->_reboot(mtd);
391 
392 	return NOTIFY_DONE;
393 }
394 
395 /**
396  * mtd_wunit_to_pairing_info - get pairing information of a wunit
397  * @mtd: pointer to new MTD device info structure
398  * @wunit: write unit we are interested in
399  * @info: returned pairing information
400  *
401  * Retrieve pairing information associated to the wunit.
402  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
403  * paired together, and where programming a page may influence the page it is
404  * paired with.
405  * The notion of page is replaced by the term wunit (write-unit) to stay
406  * consistent with the ->writesize field.
407  *
408  * The @wunit argument can be extracted from an absolute offset using
409  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
410  * to @wunit.
411  *
412  * From the pairing info the MTD user can find all the wunits paired with
413  * @wunit using the following loop:
414  *
415  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
416  *	info.pair = i;
417  *	mtd_pairing_info_to_wunit(mtd, &info);
418  *	...
419  * }
420  */
421 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
422 			      struct mtd_pairing_info *info)
423 {
424 	struct mtd_info *master = mtd_get_master(mtd);
425 	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
426 
427 	if (wunit < 0 || wunit >= npairs)
428 		return -EINVAL;
429 
430 	if (master->pairing && master->pairing->get_info)
431 		return master->pairing->get_info(master, wunit, info);
432 
433 	info->group = 0;
434 	info->pair = wunit;
435 
436 	return 0;
437 }
438 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
439 
440 /**
441  * mtd_pairing_info_to_wunit - get wunit from pairing information
442  * @mtd: pointer to new MTD device info structure
443  * @info: pairing information struct
444  *
445  * Returns a positive number representing the wunit associated to the info
446  * struct, or a negative error code.
447  *
448  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
449  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
450  * doc).
451  *
452  * It can also be used to only program the first page of each pair (i.e.
453  * page attached to group 0), which allows one to use an MLC NAND in
454  * software-emulated SLC mode:
455  *
456  * info.group = 0;
457  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
458  * for (info.pair = 0; info.pair < npairs; info.pair++) {
459  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
460  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
461  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
462  * }
463  */
464 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
465 			      const struct mtd_pairing_info *info)
466 {
467 	struct mtd_info *master = mtd_get_master(mtd);
468 	int ngroups = mtd_pairing_groups(master);
469 	int npairs = mtd_wunit_per_eb(master) / ngroups;
470 
471 	if (!info || info->pair < 0 || info->pair >= npairs ||
472 	    info->group < 0 || info->group >= ngroups)
473 		return -EINVAL;
474 
475 	if (master->pairing && master->pairing->get_wunit)
476 		return mtd->pairing->get_wunit(master, info);
477 
478 	return info->pair;
479 }
480 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
481 
482 /**
483  * mtd_pairing_groups - get the number of pairing groups
484  * @mtd: pointer to new MTD device info structure
485  *
486  * Returns the number of pairing groups.
487  *
488  * This number is usually equal to the number of bits exposed by a single
489  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
490  * to iterate over all pages of a given pair.
491  */
492 int mtd_pairing_groups(struct mtd_info *mtd)
493 {
494 	struct mtd_info *master = mtd_get_master(mtd);
495 
496 	if (!master->pairing || !master->pairing->ngroups)
497 		return 1;
498 
499 	return master->pairing->ngroups;
500 }
501 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
502 
503 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
504 			      void *val, size_t bytes)
505 {
506 	struct mtd_info *mtd = priv;
507 	size_t retlen;
508 	int err;
509 
510 	err = mtd_read(mtd, offset, bytes, &retlen, val);
511 	if (err && err != -EUCLEAN)
512 		return err;
513 
514 	return retlen == bytes ? 0 : -EIO;
515 }
516 
517 static int mtd_nvmem_add(struct mtd_info *mtd)
518 {
519 	struct device_node *node = mtd_get_of_node(mtd);
520 	struct nvmem_config config = {};
521 
522 	config.id = NVMEM_DEVID_NONE;
523 	config.dev = &mtd->dev;
524 	config.name = dev_name(&mtd->dev);
525 	config.owner = THIS_MODULE;
526 	config.reg_read = mtd_nvmem_reg_read;
527 	config.size = mtd->size;
528 	config.word_size = 1;
529 	config.stride = 1;
530 	config.read_only = true;
531 	config.root_only = true;
532 	config.ignore_wp = true;
533 	config.no_of_node = !of_device_is_compatible(node, "nvmem-cells");
534 	config.priv = mtd;
535 
536 	mtd->nvmem = nvmem_register(&config);
537 	if (IS_ERR(mtd->nvmem)) {
538 		/* Just ignore if there is no NVMEM support in the kernel */
539 		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP)
540 			mtd->nvmem = NULL;
541 		else
542 			return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem),
543 					     "Failed to register NVMEM device\n");
544 	}
545 
546 	return 0;
547 }
548 
549 static void mtd_check_of_node(struct mtd_info *mtd)
550 {
551 	struct device_node *partitions, *parent_dn, *mtd_dn = NULL;
552 	const char *pname, *prefix = "partition-";
553 	int plen, mtd_name_len, offset, prefix_len;
554 
555 	/* Check if MTD already has a device node */
556 	if (mtd_get_of_node(mtd))
557 		return;
558 
559 	if (!mtd_is_partition(mtd))
560 		return;
561 
562 	parent_dn = of_node_get(mtd_get_of_node(mtd->parent));
563 	if (!parent_dn)
564 		return;
565 
566 	if (mtd_is_partition(mtd->parent))
567 		partitions = of_node_get(parent_dn);
568 	else
569 		partitions = of_get_child_by_name(parent_dn, "partitions");
570 	if (!partitions)
571 		goto exit_parent;
572 
573 	prefix_len = strlen(prefix);
574 	mtd_name_len = strlen(mtd->name);
575 
576 	/* Search if a partition is defined with the same name */
577 	for_each_child_of_node(partitions, mtd_dn) {
578 		/* Skip partition with no/wrong prefix */
579 		if (!of_node_name_prefix(mtd_dn, prefix))
580 			continue;
581 
582 		/* Label have priority. Check that first */
583 		if (!of_property_read_string(mtd_dn, "label", &pname)) {
584 			offset = 0;
585 		} else {
586 			pname = mtd_dn->name;
587 			offset = prefix_len;
588 		}
589 
590 		plen = strlen(pname) - offset;
591 		if (plen == mtd_name_len &&
592 		    !strncmp(mtd->name, pname + offset, plen)) {
593 			mtd_set_of_node(mtd, mtd_dn);
594 			break;
595 		}
596 	}
597 
598 	of_node_put(partitions);
599 exit_parent:
600 	of_node_put(parent_dn);
601 }
602 
603 /**
604  *	add_mtd_device - register an MTD device
605  *	@mtd: pointer to new MTD device info structure
606  *
607  *	Add a device to the list of MTD devices present in the system, and
608  *	notify each currently active MTD 'user' of its arrival. Returns
609  *	zero on success or non-zero on failure.
610  */
611 
612 int add_mtd_device(struct mtd_info *mtd)
613 {
614 	struct device_node *np = mtd_get_of_node(mtd);
615 	struct mtd_info *master = mtd_get_master(mtd);
616 	struct mtd_notifier *not;
617 	int i, error, ofidx;
618 
619 	/*
620 	 * May occur, for instance, on buggy drivers which call
621 	 * mtd_device_parse_register() multiple times on the same master MTD,
622 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
623 	 */
624 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
625 		return -EEXIST;
626 
627 	BUG_ON(mtd->writesize == 0);
628 
629 	/*
630 	 * MTD drivers should implement ->_{write,read}() or
631 	 * ->_{write,read}_oob(), but not both.
632 	 */
633 	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
634 		    (mtd->_read && mtd->_read_oob)))
635 		return -EINVAL;
636 
637 	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
638 		    !(mtd->flags & MTD_NO_ERASE)))
639 		return -EINVAL;
640 
641 	/*
642 	 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
643 	 * master is an MLC NAND and has a proper pairing scheme defined.
644 	 * We also reject masters that implement ->_writev() for now, because
645 	 * NAND controller drivers don't implement this hook, and adding the
646 	 * SLC -> MLC address/length conversion to this path is useless if we
647 	 * don't have a user.
648 	 */
649 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
650 	    (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
651 	     !master->pairing || master->_writev))
652 		return -EINVAL;
653 
654 	mutex_lock(&mtd_table_mutex);
655 
656 	ofidx = -1;
657 	if (np)
658 		ofidx = of_alias_get_id(np, "mtd");
659 	if (ofidx >= 0)
660 		i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
661 	else
662 		i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
663 	if (i < 0) {
664 		error = i;
665 		goto fail_locked;
666 	}
667 
668 	mtd->index = i;
669 	mtd->usecount = 0;
670 
671 	/* default value if not set by driver */
672 	if (mtd->bitflip_threshold == 0)
673 		mtd->bitflip_threshold = mtd->ecc_strength;
674 
675 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
676 		int ngroups = mtd_pairing_groups(master);
677 
678 		mtd->erasesize /= ngroups;
679 		mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
680 			    mtd->erasesize;
681 	}
682 
683 	if (is_power_of_2(mtd->erasesize))
684 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
685 	else
686 		mtd->erasesize_shift = 0;
687 
688 	if (is_power_of_2(mtd->writesize))
689 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
690 	else
691 		mtd->writesize_shift = 0;
692 
693 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
694 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
695 
696 	/* Some chips always power up locked. Unlock them now */
697 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
698 		error = mtd_unlock(mtd, 0, mtd->size);
699 		if (error && error != -EOPNOTSUPP)
700 			printk(KERN_WARNING
701 			       "%s: unlock failed, writes may not work\n",
702 			       mtd->name);
703 		/* Ignore unlock failures? */
704 		error = 0;
705 	}
706 
707 	/* Caller should have set dev.parent to match the
708 	 * physical device, if appropriate.
709 	 */
710 	mtd->dev.type = &mtd_devtype;
711 	mtd->dev.class = &mtd_class;
712 	mtd->dev.devt = MTD_DEVT(i);
713 	dev_set_name(&mtd->dev, "mtd%d", i);
714 	dev_set_drvdata(&mtd->dev, mtd);
715 	mtd_check_of_node(mtd);
716 	of_node_get(mtd_get_of_node(mtd));
717 	error = device_register(&mtd->dev);
718 	if (error) {
719 		put_device(&mtd->dev);
720 		goto fail_added;
721 	}
722 
723 	/* Add the nvmem provider */
724 	error = mtd_nvmem_add(mtd);
725 	if (error)
726 		goto fail_nvmem_add;
727 
728 	mtd_debugfs_populate(mtd);
729 
730 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
731 		      "mtd%dro", i);
732 
733 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
734 	/* No need to get a refcount on the module containing
735 	   the notifier, since we hold the mtd_table_mutex */
736 	list_for_each_entry(not, &mtd_notifiers, list)
737 		not->add(mtd);
738 
739 	mutex_unlock(&mtd_table_mutex);
740 
741 	if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) {
742 		if (IS_BUILTIN(CONFIG_MTD)) {
743 			pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name);
744 			ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index);
745 		} else {
746 			pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n",
747 				mtd->index, mtd->name);
748 		}
749 	}
750 
751 	/* We _know_ we aren't being removed, because
752 	   our caller is still holding us here. So none
753 	   of this try_ nonsense, and no bitching about it
754 	   either. :) */
755 	__module_get(THIS_MODULE);
756 	return 0;
757 
758 fail_nvmem_add:
759 	device_unregister(&mtd->dev);
760 fail_added:
761 	of_node_put(mtd_get_of_node(mtd));
762 	idr_remove(&mtd_idr, i);
763 fail_locked:
764 	mutex_unlock(&mtd_table_mutex);
765 	return error;
766 }
767 
768 /**
769  *	del_mtd_device - unregister an MTD device
770  *	@mtd: pointer to MTD device info structure
771  *
772  *	Remove a device from the list of MTD devices present in the system,
773  *	and notify each currently active MTD 'user' of its departure.
774  *	Returns zero on success or 1 on failure, which currently will happen
775  *	if the requested device does not appear to be present in the list.
776  */
777 
778 int del_mtd_device(struct mtd_info *mtd)
779 {
780 	int ret;
781 	struct mtd_notifier *not;
782 	struct device_node *mtd_of_node;
783 
784 	mutex_lock(&mtd_table_mutex);
785 
786 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
787 		ret = -ENODEV;
788 		goto out_error;
789 	}
790 
791 	/* No need to get a refcount on the module containing
792 		the notifier, since we hold the mtd_table_mutex */
793 	list_for_each_entry(not, &mtd_notifiers, list)
794 		not->remove(mtd);
795 
796 	if (mtd->usecount) {
797 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
798 		       mtd->index, mtd->name, mtd->usecount);
799 		ret = -EBUSY;
800 	} else {
801 		mtd_of_node = mtd_get_of_node(mtd);
802 		debugfs_remove_recursive(mtd->dbg.dfs_dir);
803 
804 		/* Try to remove the NVMEM provider */
805 		nvmem_unregister(mtd->nvmem);
806 
807 		device_unregister(&mtd->dev);
808 
809 		/* Clear dev so mtd can be safely re-registered later if desired */
810 		memset(&mtd->dev, 0, sizeof(mtd->dev));
811 
812 		idr_remove(&mtd_idr, mtd->index);
813 		of_node_put(mtd_of_node);
814 
815 		module_put(THIS_MODULE);
816 		ret = 0;
817 	}
818 
819 out_error:
820 	mutex_unlock(&mtd_table_mutex);
821 	return ret;
822 }
823 
824 /*
825  * Set a few defaults based on the parent devices, if not provided by the
826  * driver
827  */
828 static void mtd_set_dev_defaults(struct mtd_info *mtd)
829 {
830 	if (mtd->dev.parent) {
831 		if (!mtd->owner && mtd->dev.parent->driver)
832 			mtd->owner = mtd->dev.parent->driver->owner;
833 		if (!mtd->name)
834 			mtd->name = dev_name(mtd->dev.parent);
835 	} else {
836 		pr_debug("mtd device won't show a device symlink in sysfs\n");
837 	}
838 
839 	INIT_LIST_HEAD(&mtd->partitions);
840 	mutex_init(&mtd->master.partitions_lock);
841 	mutex_init(&mtd->master.chrdev_lock);
842 }
843 
844 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
845 {
846 	struct otp_info *info;
847 	ssize_t size = 0;
848 	unsigned int i;
849 	size_t retlen;
850 	int ret;
851 
852 	info = kmalloc(PAGE_SIZE, GFP_KERNEL);
853 	if (!info)
854 		return -ENOMEM;
855 
856 	if (is_user)
857 		ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
858 	else
859 		ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
860 	if (ret)
861 		goto err;
862 
863 	for (i = 0; i < retlen / sizeof(*info); i++)
864 		size += info[i].length;
865 
866 	kfree(info);
867 	return size;
868 
869 err:
870 	kfree(info);
871 
872 	/* ENODATA means there is no OTP region. */
873 	return ret == -ENODATA ? 0 : ret;
874 }
875 
876 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
877 						   const char *compatible,
878 						   int size,
879 						   nvmem_reg_read_t reg_read)
880 {
881 	struct nvmem_device *nvmem = NULL;
882 	struct nvmem_config config = {};
883 	struct device_node *np;
884 
885 	/* DT binding is optional */
886 	np = of_get_compatible_child(mtd->dev.of_node, compatible);
887 
888 	/* OTP nvmem will be registered on the physical device */
889 	config.dev = mtd->dev.parent;
890 	config.name = compatible;
891 	config.id = NVMEM_DEVID_AUTO;
892 	config.owner = THIS_MODULE;
893 	config.type = NVMEM_TYPE_OTP;
894 	config.root_only = true;
895 	config.ignore_wp = true;
896 	config.reg_read = reg_read;
897 	config.size = size;
898 	config.of_node = np;
899 	config.priv = mtd;
900 
901 	nvmem = nvmem_register(&config);
902 	/* Just ignore if there is no NVMEM support in the kernel */
903 	if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
904 		nvmem = NULL;
905 
906 	of_node_put(np);
907 
908 	return nvmem;
909 }
910 
911 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
912 				       void *val, size_t bytes)
913 {
914 	struct mtd_info *mtd = priv;
915 	size_t retlen;
916 	int ret;
917 
918 	ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
919 	if (ret)
920 		return ret;
921 
922 	return retlen == bytes ? 0 : -EIO;
923 }
924 
925 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
926 				       void *val, size_t bytes)
927 {
928 	struct mtd_info *mtd = priv;
929 	size_t retlen;
930 	int ret;
931 
932 	ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
933 	if (ret)
934 		return ret;
935 
936 	return retlen == bytes ? 0 : -EIO;
937 }
938 
939 static int mtd_otp_nvmem_add(struct mtd_info *mtd)
940 {
941 	struct device *dev = mtd->dev.parent;
942 	struct nvmem_device *nvmem;
943 	ssize_t size;
944 	int err;
945 
946 	if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
947 		size = mtd_otp_size(mtd, true);
948 		if (size < 0)
949 			return size;
950 
951 		if (size > 0) {
952 			nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
953 						       mtd_nvmem_user_otp_reg_read);
954 			if (IS_ERR(nvmem)) {
955 				err = PTR_ERR(nvmem);
956 				goto err;
957 			}
958 			mtd->otp_user_nvmem = nvmem;
959 		}
960 	}
961 
962 	if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
963 		size = mtd_otp_size(mtd, false);
964 		if (size < 0) {
965 			err = size;
966 			goto err;
967 		}
968 
969 		if (size > 0) {
970 			/*
971 			 * The factory OTP contains thing such as a unique serial
972 			 * number and is small, so let's read it out and put it
973 			 * into the entropy pool.
974 			 */
975 			void *otp;
976 
977 			otp = kmalloc(size, GFP_KERNEL);
978 			if (!otp) {
979 				err = -ENOMEM;
980 				goto err;
981 			}
982 			err = mtd_nvmem_fact_otp_reg_read(mtd, 0, otp, size);
983 			if (err < 0) {
984 				kfree(otp);
985 				goto err;
986 			}
987 			add_device_randomness(otp, err);
988 			kfree(otp);
989 
990 			nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
991 						       mtd_nvmem_fact_otp_reg_read);
992 			if (IS_ERR(nvmem)) {
993 				err = PTR_ERR(nvmem);
994 				goto err;
995 			}
996 			mtd->otp_factory_nvmem = nvmem;
997 		}
998 	}
999 
1000 	return 0;
1001 
1002 err:
1003 	nvmem_unregister(mtd->otp_user_nvmem);
1004 	return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n");
1005 }
1006 
1007 /**
1008  * mtd_device_parse_register - parse partitions and register an MTD device.
1009  *
1010  * @mtd: the MTD device to register
1011  * @types: the list of MTD partition probes to try, see
1012  *         'parse_mtd_partitions()' for more information
1013  * @parser_data: MTD partition parser-specific data
1014  * @parts: fallback partition information to register, if parsing fails;
1015  *         only valid if %nr_parts > %0
1016  * @nr_parts: the number of partitions in parts, if zero then the full
1017  *            MTD device is registered if no partition info is found
1018  *
1019  * This function aggregates MTD partitions parsing (done by
1020  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
1021  * basically follows the most common pattern found in many MTD drivers:
1022  *
1023  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
1024  *   registered first.
1025  * * Then It tries to probe partitions on MTD device @mtd using parsers
1026  *   specified in @types (if @types is %NULL, then the default list of parsers
1027  *   is used, see 'parse_mtd_partitions()' for more information). If none are
1028  *   found this functions tries to fallback to information specified in
1029  *   @parts/@nr_parts.
1030  * * If no partitions were found this function just registers the MTD device
1031  *   @mtd and exits.
1032  *
1033  * Returns zero in case of success and a negative error code in case of failure.
1034  */
1035 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
1036 			      struct mtd_part_parser_data *parser_data,
1037 			      const struct mtd_partition *parts,
1038 			      int nr_parts)
1039 {
1040 	int ret;
1041 
1042 	mtd_set_dev_defaults(mtd);
1043 
1044 	ret = mtd_otp_nvmem_add(mtd);
1045 	if (ret)
1046 		goto out;
1047 
1048 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
1049 		ret = add_mtd_device(mtd);
1050 		if (ret)
1051 			goto out;
1052 	}
1053 
1054 	/* Prefer parsed partitions over driver-provided fallback */
1055 	ret = parse_mtd_partitions(mtd, types, parser_data);
1056 	if (ret == -EPROBE_DEFER)
1057 		goto out;
1058 
1059 	if (ret > 0)
1060 		ret = 0;
1061 	else if (nr_parts)
1062 		ret = add_mtd_partitions(mtd, parts, nr_parts);
1063 	else if (!device_is_registered(&mtd->dev))
1064 		ret = add_mtd_device(mtd);
1065 	else
1066 		ret = 0;
1067 
1068 	if (ret)
1069 		goto out;
1070 
1071 	/*
1072 	 * FIXME: some drivers unfortunately call this function more than once.
1073 	 * So we have to check if we've already assigned the reboot notifier.
1074 	 *
1075 	 * Generally, we can make multiple calls work for most cases, but it
1076 	 * does cause problems with parse_mtd_partitions() above (e.g.,
1077 	 * cmdlineparts will register partitions more than once).
1078 	 */
1079 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
1080 		  "MTD already registered\n");
1081 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
1082 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1083 		register_reboot_notifier(&mtd->reboot_notifier);
1084 	}
1085 
1086 out:
1087 	if (ret) {
1088 		nvmem_unregister(mtd->otp_user_nvmem);
1089 		nvmem_unregister(mtd->otp_factory_nvmem);
1090 	}
1091 
1092 	if (ret && device_is_registered(&mtd->dev))
1093 		del_mtd_device(mtd);
1094 
1095 	return ret;
1096 }
1097 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1098 
1099 /**
1100  * mtd_device_unregister - unregister an existing MTD device.
1101  *
1102  * @master: the MTD device to unregister.  This will unregister both the master
1103  *          and any partitions if registered.
1104  */
1105 int mtd_device_unregister(struct mtd_info *master)
1106 {
1107 	int err;
1108 
1109 	if (master->_reboot) {
1110 		unregister_reboot_notifier(&master->reboot_notifier);
1111 		memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1112 	}
1113 
1114 	nvmem_unregister(master->otp_user_nvmem);
1115 	nvmem_unregister(master->otp_factory_nvmem);
1116 
1117 	err = del_mtd_partitions(master);
1118 	if (err)
1119 		return err;
1120 
1121 	if (!device_is_registered(&master->dev))
1122 		return 0;
1123 
1124 	return del_mtd_device(master);
1125 }
1126 EXPORT_SYMBOL_GPL(mtd_device_unregister);
1127 
1128 /**
1129  *	register_mtd_user - register a 'user' of MTD devices.
1130  *	@new: pointer to notifier info structure
1131  *
1132  *	Registers a pair of callbacks function to be called upon addition
1133  *	or removal of MTD devices. Causes the 'add' callback to be immediately
1134  *	invoked for each MTD device currently present in the system.
1135  */
1136 void register_mtd_user (struct mtd_notifier *new)
1137 {
1138 	struct mtd_info *mtd;
1139 
1140 	mutex_lock(&mtd_table_mutex);
1141 
1142 	list_add(&new->list, &mtd_notifiers);
1143 
1144 	__module_get(THIS_MODULE);
1145 
1146 	mtd_for_each_device(mtd)
1147 		new->add(mtd);
1148 
1149 	mutex_unlock(&mtd_table_mutex);
1150 }
1151 EXPORT_SYMBOL_GPL(register_mtd_user);
1152 
1153 /**
1154  *	unregister_mtd_user - unregister a 'user' of MTD devices.
1155  *	@old: pointer to notifier info structure
1156  *
1157  *	Removes a callback function pair from the list of 'users' to be
1158  *	notified upon addition or removal of MTD devices. Causes the
1159  *	'remove' callback to be immediately invoked for each MTD device
1160  *	currently present in the system.
1161  */
1162 int unregister_mtd_user (struct mtd_notifier *old)
1163 {
1164 	struct mtd_info *mtd;
1165 
1166 	mutex_lock(&mtd_table_mutex);
1167 
1168 	module_put(THIS_MODULE);
1169 
1170 	mtd_for_each_device(mtd)
1171 		old->remove(mtd);
1172 
1173 	list_del(&old->list);
1174 	mutex_unlock(&mtd_table_mutex);
1175 	return 0;
1176 }
1177 EXPORT_SYMBOL_GPL(unregister_mtd_user);
1178 
1179 /**
1180  *	get_mtd_device - obtain a validated handle for an MTD device
1181  *	@mtd: last known address of the required MTD device
1182  *	@num: internal device number of the required MTD device
1183  *
1184  *	Given a number and NULL address, return the num'th entry in the device
1185  *	table, if any.	Given an address and num == -1, search the device table
1186  *	for a device with that address and return if it's still present. Given
1187  *	both, return the num'th driver only if its address matches. Return
1188  *	error code if not.
1189  */
1190 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1191 {
1192 	struct mtd_info *ret = NULL, *other;
1193 	int err = -ENODEV;
1194 
1195 	mutex_lock(&mtd_table_mutex);
1196 
1197 	if (num == -1) {
1198 		mtd_for_each_device(other) {
1199 			if (other == mtd) {
1200 				ret = mtd;
1201 				break;
1202 			}
1203 		}
1204 	} else if (num >= 0) {
1205 		ret = idr_find(&mtd_idr, num);
1206 		if (mtd && mtd != ret)
1207 			ret = NULL;
1208 	}
1209 
1210 	if (!ret) {
1211 		ret = ERR_PTR(err);
1212 		goto out;
1213 	}
1214 
1215 	err = __get_mtd_device(ret);
1216 	if (err)
1217 		ret = ERR_PTR(err);
1218 out:
1219 	mutex_unlock(&mtd_table_mutex);
1220 	return ret;
1221 }
1222 EXPORT_SYMBOL_GPL(get_mtd_device);
1223 
1224 
1225 int __get_mtd_device(struct mtd_info *mtd)
1226 {
1227 	struct mtd_info *master = mtd_get_master(mtd);
1228 	int err;
1229 
1230 	if (!try_module_get(master->owner))
1231 		return -ENODEV;
1232 
1233 	if (master->_get_device) {
1234 		err = master->_get_device(mtd);
1235 
1236 		if (err) {
1237 			module_put(master->owner);
1238 			return err;
1239 		}
1240 	}
1241 
1242 	master->usecount++;
1243 
1244 	while (mtd->parent) {
1245 		mtd->usecount++;
1246 		mtd = mtd->parent;
1247 	}
1248 
1249 	return 0;
1250 }
1251 EXPORT_SYMBOL_GPL(__get_mtd_device);
1252 
1253 /**
1254  * of_get_mtd_device_by_node - obtain an MTD device associated with a given node
1255  *
1256  * @np: device tree node
1257  */
1258 struct mtd_info *of_get_mtd_device_by_node(struct device_node *np)
1259 {
1260 	struct mtd_info *mtd = NULL;
1261 	struct mtd_info *tmp;
1262 	int err;
1263 
1264 	mutex_lock(&mtd_table_mutex);
1265 
1266 	err = -EPROBE_DEFER;
1267 	mtd_for_each_device(tmp) {
1268 		if (mtd_get_of_node(tmp) == np) {
1269 			mtd = tmp;
1270 			err = __get_mtd_device(mtd);
1271 			break;
1272 		}
1273 	}
1274 
1275 	mutex_unlock(&mtd_table_mutex);
1276 
1277 	return err ? ERR_PTR(err) : mtd;
1278 }
1279 EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node);
1280 
1281 /**
1282  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1283  *	device name
1284  *	@name: MTD device name to open
1285  *
1286  * 	This function returns MTD device description structure in case of
1287  * 	success and an error code in case of failure.
1288  */
1289 struct mtd_info *get_mtd_device_nm(const char *name)
1290 {
1291 	int err = -ENODEV;
1292 	struct mtd_info *mtd = NULL, *other;
1293 
1294 	mutex_lock(&mtd_table_mutex);
1295 
1296 	mtd_for_each_device(other) {
1297 		if (!strcmp(name, other->name)) {
1298 			mtd = other;
1299 			break;
1300 		}
1301 	}
1302 
1303 	if (!mtd)
1304 		goto out_unlock;
1305 
1306 	err = __get_mtd_device(mtd);
1307 	if (err)
1308 		goto out_unlock;
1309 
1310 	mutex_unlock(&mtd_table_mutex);
1311 	return mtd;
1312 
1313 out_unlock:
1314 	mutex_unlock(&mtd_table_mutex);
1315 	return ERR_PTR(err);
1316 }
1317 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1318 
1319 void put_mtd_device(struct mtd_info *mtd)
1320 {
1321 	mutex_lock(&mtd_table_mutex);
1322 	__put_mtd_device(mtd);
1323 	mutex_unlock(&mtd_table_mutex);
1324 
1325 }
1326 EXPORT_SYMBOL_GPL(put_mtd_device);
1327 
1328 void __put_mtd_device(struct mtd_info *mtd)
1329 {
1330 	struct mtd_info *master = mtd_get_master(mtd);
1331 
1332 	while (mtd->parent) {
1333 		--mtd->usecount;
1334 		BUG_ON(mtd->usecount < 0);
1335 		mtd = mtd->parent;
1336 	}
1337 
1338 	master->usecount--;
1339 
1340 	if (master->_put_device)
1341 		master->_put_device(master);
1342 
1343 	module_put(master->owner);
1344 }
1345 EXPORT_SYMBOL_GPL(__put_mtd_device);
1346 
1347 /*
1348  * Erase is an synchronous operation. Device drivers are epected to return a
1349  * negative error code if the operation failed and update instr->fail_addr
1350  * to point the portion that was not properly erased.
1351  */
1352 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1353 {
1354 	struct mtd_info *master = mtd_get_master(mtd);
1355 	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1356 	struct erase_info adjinstr;
1357 	int ret;
1358 
1359 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1360 	adjinstr = *instr;
1361 
1362 	if (!mtd->erasesize || !master->_erase)
1363 		return -ENOTSUPP;
1364 
1365 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1366 		return -EINVAL;
1367 	if (!(mtd->flags & MTD_WRITEABLE))
1368 		return -EROFS;
1369 
1370 	if (!instr->len)
1371 		return 0;
1372 
1373 	ledtrig_mtd_activity();
1374 
1375 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1376 		adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1377 				master->erasesize;
1378 		adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1379 				master->erasesize) -
1380 			       adjinstr.addr;
1381 	}
1382 
1383 	adjinstr.addr += mst_ofs;
1384 
1385 	ret = master->_erase(master, &adjinstr);
1386 
1387 	if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1388 		instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1389 		if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1390 			instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1391 							 master);
1392 			instr->fail_addr *= mtd->erasesize;
1393 		}
1394 	}
1395 
1396 	return ret;
1397 }
1398 EXPORT_SYMBOL_GPL(mtd_erase);
1399 
1400 /*
1401  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1402  */
1403 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1404 	      void **virt, resource_size_t *phys)
1405 {
1406 	struct mtd_info *master = mtd_get_master(mtd);
1407 
1408 	*retlen = 0;
1409 	*virt = NULL;
1410 	if (phys)
1411 		*phys = 0;
1412 	if (!master->_point)
1413 		return -EOPNOTSUPP;
1414 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1415 		return -EINVAL;
1416 	if (!len)
1417 		return 0;
1418 
1419 	from = mtd_get_master_ofs(mtd, from);
1420 	return master->_point(master, from, len, retlen, virt, phys);
1421 }
1422 EXPORT_SYMBOL_GPL(mtd_point);
1423 
1424 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1425 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1426 {
1427 	struct mtd_info *master = mtd_get_master(mtd);
1428 
1429 	if (!master->_unpoint)
1430 		return -EOPNOTSUPP;
1431 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1432 		return -EINVAL;
1433 	if (!len)
1434 		return 0;
1435 	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1436 }
1437 EXPORT_SYMBOL_GPL(mtd_unpoint);
1438 
1439 /*
1440  * Allow NOMMU mmap() to directly map the device (if not NULL)
1441  * - return the address to which the offset maps
1442  * - return -ENOSYS to indicate refusal to do the mapping
1443  */
1444 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1445 				    unsigned long offset, unsigned long flags)
1446 {
1447 	size_t retlen;
1448 	void *virt;
1449 	int ret;
1450 
1451 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1452 	if (ret)
1453 		return ret;
1454 	if (retlen != len) {
1455 		mtd_unpoint(mtd, offset, retlen);
1456 		return -ENOSYS;
1457 	}
1458 	return (unsigned long)virt;
1459 }
1460 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1461 
1462 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1463 				 const struct mtd_ecc_stats *old_stats)
1464 {
1465 	struct mtd_ecc_stats diff;
1466 
1467 	if (master == mtd)
1468 		return;
1469 
1470 	diff = master->ecc_stats;
1471 	diff.failed -= old_stats->failed;
1472 	diff.corrected -= old_stats->corrected;
1473 
1474 	while (mtd->parent) {
1475 		mtd->ecc_stats.failed += diff.failed;
1476 		mtd->ecc_stats.corrected += diff.corrected;
1477 		mtd = mtd->parent;
1478 	}
1479 }
1480 
1481 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1482 	     u_char *buf)
1483 {
1484 	struct mtd_oob_ops ops = {
1485 		.len = len,
1486 		.datbuf = buf,
1487 	};
1488 	int ret;
1489 
1490 	ret = mtd_read_oob(mtd, from, &ops);
1491 	*retlen = ops.retlen;
1492 
1493 	return ret;
1494 }
1495 EXPORT_SYMBOL_GPL(mtd_read);
1496 
1497 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1498 	      const u_char *buf)
1499 {
1500 	struct mtd_oob_ops ops = {
1501 		.len = len,
1502 		.datbuf = (u8 *)buf,
1503 	};
1504 	int ret;
1505 
1506 	ret = mtd_write_oob(mtd, to, &ops);
1507 	*retlen = ops.retlen;
1508 
1509 	return ret;
1510 }
1511 EXPORT_SYMBOL_GPL(mtd_write);
1512 
1513 /*
1514  * In blackbox flight recorder like scenarios we want to make successful writes
1515  * in interrupt context. panic_write() is only intended to be called when its
1516  * known the kernel is about to panic and we need the write to succeed. Since
1517  * the kernel is not going to be running for much longer, this function can
1518  * break locks and delay to ensure the write succeeds (but not sleep).
1519  */
1520 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1521 		    const u_char *buf)
1522 {
1523 	struct mtd_info *master = mtd_get_master(mtd);
1524 
1525 	*retlen = 0;
1526 	if (!master->_panic_write)
1527 		return -EOPNOTSUPP;
1528 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1529 		return -EINVAL;
1530 	if (!(mtd->flags & MTD_WRITEABLE))
1531 		return -EROFS;
1532 	if (!len)
1533 		return 0;
1534 	if (!master->oops_panic_write)
1535 		master->oops_panic_write = true;
1536 
1537 	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1538 				    retlen, buf);
1539 }
1540 EXPORT_SYMBOL_GPL(mtd_panic_write);
1541 
1542 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1543 			     struct mtd_oob_ops *ops)
1544 {
1545 	/*
1546 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1547 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1548 	 *  this case.
1549 	 */
1550 	if (!ops->datbuf)
1551 		ops->len = 0;
1552 
1553 	if (!ops->oobbuf)
1554 		ops->ooblen = 0;
1555 
1556 	if (offs < 0 || offs + ops->len > mtd->size)
1557 		return -EINVAL;
1558 
1559 	if (ops->ooblen) {
1560 		size_t maxooblen;
1561 
1562 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1563 			return -EINVAL;
1564 
1565 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1566 				      mtd_div_by_ws(offs, mtd)) *
1567 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1568 		if (ops->ooblen > maxooblen)
1569 			return -EINVAL;
1570 	}
1571 
1572 	return 0;
1573 }
1574 
1575 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1576 			    struct mtd_oob_ops *ops)
1577 {
1578 	struct mtd_info *master = mtd_get_master(mtd);
1579 	int ret;
1580 
1581 	from = mtd_get_master_ofs(mtd, from);
1582 	if (master->_read_oob)
1583 		ret = master->_read_oob(master, from, ops);
1584 	else
1585 		ret = master->_read(master, from, ops->len, &ops->retlen,
1586 				    ops->datbuf);
1587 
1588 	return ret;
1589 }
1590 
1591 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1592 			     struct mtd_oob_ops *ops)
1593 {
1594 	struct mtd_info *master = mtd_get_master(mtd);
1595 	int ret;
1596 
1597 	to = mtd_get_master_ofs(mtd, to);
1598 	if (master->_write_oob)
1599 		ret = master->_write_oob(master, to, ops);
1600 	else
1601 		ret = master->_write(master, to, ops->len, &ops->retlen,
1602 				     ops->datbuf);
1603 
1604 	return ret;
1605 }
1606 
1607 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1608 			       struct mtd_oob_ops *ops)
1609 {
1610 	struct mtd_info *master = mtd_get_master(mtd);
1611 	int ngroups = mtd_pairing_groups(master);
1612 	int npairs = mtd_wunit_per_eb(master) / ngroups;
1613 	struct mtd_oob_ops adjops = *ops;
1614 	unsigned int wunit, oobavail;
1615 	struct mtd_pairing_info info;
1616 	int max_bitflips = 0;
1617 	u32 ebofs, pageofs;
1618 	loff_t base, pos;
1619 
1620 	ebofs = mtd_mod_by_eb(start, mtd);
1621 	base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1622 	info.group = 0;
1623 	info.pair = mtd_div_by_ws(ebofs, mtd);
1624 	pageofs = mtd_mod_by_ws(ebofs, mtd);
1625 	oobavail = mtd_oobavail(mtd, ops);
1626 
1627 	while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1628 		int ret;
1629 
1630 		if (info.pair >= npairs) {
1631 			info.pair = 0;
1632 			base += master->erasesize;
1633 		}
1634 
1635 		wunit = mtd_pairing_info_to_wunit(master, &info);
1636 		pos = mtd_wunit_to_offset(mtd, base, wunit);
1637 
1638 		adjops.len = ops->len - ops->retlen;
1639 		if (adjops.len > mtd->writesize - pageofs)
1640 			adjops.len = mtd->writesize - pageofs;
1641 
1642 		adjops.ooblen = ops->ooblen - ops->oobretlen;
1643 		if (adjops.ooblen > oobavail - adjops.ooboffs)
1644 			adjops.ooblen = oobavail - adjops.ooboffs;
1645 
1646 		if (read) {
1647 			ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1648 			if (ret > 0)
1649 				max_bitflips = max(max_bitflips, ret);
1650 		} else {
1651 			ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1652 		}
1653 
1654 		if (ret < 0)
1655 			return ret;
1656 
1657 		max_bitflips = max(max_bitflips, ret);
1658 		ops->retlen += adjops.retlen;
1659 		ops->oobretlen += adjops.oobretlen;
1660 		adjops.datbuf += adjops.retlen;
1661 		adjops.oobbuf += adjops.oobretlen;
1662 		adjops.ooboffs = 0;
1663 		pageofs = 0;
1664 		info.pair++;
1665 	}
1666 
1667 	return max_bitflips;
1668 }
1669 
1670 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1671 {
1672 	struct mtd_info *master = mtd_get_master(mtd);
1673 	struct mtd_ecc_stats old_stats = master->ecc_stats;
1674 	int ret_code;
1675 
1676 	ops->retlen = ops->oobretlen = 0;
1677 
1678 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1679 	if (ret_code)
1680 		return ret_code;
1681 
1682 	ledtrig_mtd_activity();
1683 
1684 	/* Check the validity of a potential fallback on mtd->_read */
1685 	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1686 		return -EOPNOTSUPP;
1687 
1688 	if (ops->stats)
1689 		memset(ops->stats, 0, sizeof(*ops->stats));
1690 
1691 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1692 		ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1693 	else
1694 		ret_code = mtd_read_oob_std(mtd, from, ops);
1695 
1696 	mtd_update_ecc_stats(mtd, master, &old_stats);
1697 
1698 	/*
1699 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1700 	 * similar to mtd->_read(), returning a non-negative integer
1701 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1702 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1703 	 */
1704 	if (unlikely(ret_code < 0))
1705 		return ret_code;
1706 	if (mtd->ecc_strength == 0)
1707 		return 0;	/* device lacks ecc */
1708 	if (ops->stats)
1709 		ops->stats->max_bitflips = ret_code;
1710 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1711 }
1712 EXPORT_SYMBOL_GPL(mtd_read_oob);
1713 
1714 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1715 				struct mtd_oob_ops *ops)
1716 {
1717 	struct mtd_info *master = mtd_get_master(mtd);
1718 	int ret;
1719 
1720 	ops->retlen = ops->oobretlen = 0;
1721 
1722 	if (!(mtd->flags & MTD_WRITEABLE))
1723 		return -EROFS;
1724 
1725 	ret = mtd_check_oob_ops(mtd, to, ops);
1726 	if (ret)
1727 		return ret;
1728 
1729 	ledtrig_mtd_activity();
1730 
1731 	/* Check the validity of a potential fallback on mtd->_write */
1732 	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1733 		return -EOPNOTSUPP;
1734 
1735 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1736 		return mtd_io_emulated_slc(mtd, to, false, ops);
1737 
1738 	return mtd_write_oob_std(mtd, to, ops);
1739 }
1740 EXPORT_SYMBOL_GPL(mtd_write_oob);
1741 
1742 /**
1743  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1744  * @mtd: MTD device structure
1745  * @section: ECC section. Depending on the layout you may have all the ECC
1746  *	     bytes stored in a single contiguous section, or one section
1747  *	     per ECC chunk (and sometime several sections for a single ECC
1748  *	     ECC chunk)
1749  * @oobecc: OOB region struct filled with the appropriate ECC position
1750  *	    information
1751  *
1752  * This function returns ECC section information in the OOB area. If you want
1753  * to get all the ECC bytes information, then you should call
1754  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1755  *
1756  * Returns zero on success, a negative error code otherwise.
1757  */
1758 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1759 		      struct mtd_oob_region *oobecc)
1760 {
1761 	struct mtd_info *master = mtd_get_master(mtd);
1762 
1763 	memset(oobecc, 0, sizeof(*oobecc));
1764 
1765 	if (!master || section < 0)
1766 		return -EINVAL;
1767 
1768 	if (!master->ooblayout || !master->ooblayout->ecc)
1769 		return -ENOTSUPP;
1770 
1771 	return master->ooblayout->ecc(master, section, oobecc);
1772 }
1773 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1774 
1775 /**
1776  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1777  *			section
1778  * @mtd: MTD device structure
1779  * @section: Free section you are interested in. Depending on the layout
1780  *	     you may have all the free bytes stored in a single contiguous
1781  *	     section, or one section per ECC chunk plus an extra section
1782  *	     for the remaining bytes (or other funky layout).
1783  * @oobfree: OOB region struct filled with the appropriate free position
1784  *	     information
1785  *
1786  * This function returns free bytes position in the OOB area. If you want
1787  * to get all the free bytes information, then you should call
1788  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1789  *
1790  * Returns zero on success, a negative error code otherwise.
1791  */
1792 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1793 		       struct mtd_oob_region *oobfree)
1794 {
1795 	struct mtd_info *master = mtd_get_master(mtd);
1796 
1797 	memset(oobfree, 0, sizeof(*oobfree));
1798 
1799 	if (!master || section < 0)
1800 		return -EINVAL;
1801 
1802 	if (!master->ooblayout || !master->ooblayout->free)
1803 		return -ENOTSUPP;
1804 
1805 	return master->ooblayout->free(master, section, oobfree);
1806 }
1807 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1808 
1809 /**
1810  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1811  * @mtd: mtd info structure
1812  * @byte: the byte we are searching for
1813  * @sectionp: pointer where the section id will be stored
1814  * @oobregion: used to retrieve the ECC position
1815  * @iter: iterator function. Should be either mtd_ooblayout_free or
1816  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1817  *
1818  * This function returns the section id and oobregion information of a
1819  * specific byte. For example, say you want to know where the 4th ECC byte is
1820  * stored, you'll use:
1821  *
1822  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1823  *
1824  * Returns zero on success, a negative error code otherwise.
1825  */
1826 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1827 				int *sectionp, struct mtd_oob_region *oobregion,
1828 				int (*iter)(struct mtd_info *,
1829 					    int section,
1830 					    struct mtd_oob_region *oobregion))
1831 {
1832 	int pos = 0, ret, section = 0;
1833 
1834 	memset(oobregion, 0, sizeof(*oobregion));
1835 
1836 	while (1) {
1837 		ret = iter(mtd, section, oobregion);
1838 		if (ret)
1839 			return ret;
1840 
1841 		if (pos + oobregion->length > byte)
1842 			break;
1843 
1844 		pos += oobregion->length;
1845 		section++;
1846 	}
1847 
1848 	/*
1849 	 * Adjust region info to make it start at the beginning at the
1850 	 * 'start' ECC byte.
1851 	 */
1852 	oobregion->offset += byte - pos;
1853 	oobregion->length -= byte - pos;
1854 	*sectionp = section;
1855 
1856 	return 0;
1857 }
1858 
1859 /**
1860  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1861  *				  ECC byte
1862  * @mtd: mtd info structure
1863  * @eccbyte: the byte we are searching for
1864  * @section: pointer where the section id will be stored
1865  * @oobregion: OOB region information
1866  *
1867  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1868  * byte.
1869  *
1870  * Returns zero on success, a negative error code otherwise.
1871  */
1872 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1873 				 int *section,
1874 				 struct mtd_oob_region *oobregion)
1875 {
1876 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1877 					 mtd_ooblayout_ecc);
1878 }
1879 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1880 
1881 /**
1882  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1883  * @mtd: mtd info structure
1884  * @buf: destination buffer to store OOB bytes
1885  * @oobbuf: OOB buffer
1886  * @start: first byte to retrieve
1887  * @nbytes: number of bytes to retrieve
1888  * @iter: section iterator
1889  *
1890  * Extract bytes attached to a specific category (ECC or free)
1891  * from the OOB buffer and copy them into buf.
1892  *
1893  * Returns zero on success, a negative error code otherwise.
1894  */
1895 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1896 				const u8 *oobbuf, int start, int nbytes,
1897 				int (*iter)(struct mtd_info *,
1898 					    int section,
1899 					    struct mtd_oob_region *oobregion))
1900 {
1901 	struct mtd_oob_region oobregion;
1902 	int section, ret;
1903 
1904 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1905 					&oobregion, iter);
1906 
1907 	while (!ret) {
1908 		int cnt;
1909 
1910 		cnt = min_t(int, nbytes, oobregion.length);
1911 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1912 		buf += cnt;
1913 		nbytes -= cnt;
1914 
1915 		if (!nbytes)
1916 			break;
1917 
1918 		ret = iter(mtd, ++section, &oobregion);
1919 	}
1920 
1921 	return ret;
1922 }
1923 
1924 /**
1925  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1926  * @mtd: mtd info structure
1927  * @buf: source buffer to get OOB bytes from
1928  * @oobbuf: OOB buffer
1929  * @start: first OOB byte to set
1930  * @nbytes: number of OOB bytes to set
1931  * @iter: section iterator
1932  *
1933  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1934  * is selected by passing the appropriate iterator.
1935  *
1936  * Returns zero on success, a negative error code otherwise.
1937  */
1938 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1939 				u8 *oobbuf, int start, int nbytes,
1940 				int (*iter)(struct mtd_info *,
1941 					    int section,
1942 					    struct mtd_oob_region *oobregion))
1943 {
1944 	struct mtd_oob_region oobregion;
1945 	int section, ret;
1946 
1947 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1948 					&oobregion, iter);
1949 
1950 	while (!ret) {
1951 		int cnt;
1952 
1953 		cnt = min_t(int, nbytes, oobregion.length);
1954 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1955 		buf += cnt;
1956 		nbytes -= cnt;
1957 
1958 		if (!nbytes)
1959 			break;
1960 
1961 		ret = iter(mtd, ++section, &oobregion);
1962 	}
1963 
1964 	return ret;
1965 }
1966 
1967 /**
1968  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1969  * @mtd: mtd info structure
1970  * @iter: category iterator
1971  *
1972  * Count the number of bytes in a given category.
1973  *
1974  * Returns a positive value on success, a negative error code otherwise.
1975  */
1976 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1977 				int (*iter)(struct mtd_info *,
1978 					    int section,
1979 					    struct mtd_oob_region *oobregion))
1980 {
1981 	struct mtd_oob_region oobregion;
1982 	int section = 0, ret, nbytes = 0;
1983 
1984 	while (1) {
1985 		ret = iter(mtd, section++, &oobregion);
1986 		if (ret) {
1987 			if (ret == -ERANGE)
1988 				ret = nbytes;
1989 			break;
1990 		}
1991 
1992 		nbytes += oobregion.length;
1993 	}
1994 
1995 	return ret;
1996 }
1997 
1998 /**
1999  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
2000  * @mtd: mtd info structure
2001  * @eccbuf: destination buffer to store ECC bytes
2002  * @oobbuf: OOB buffer
2003  * @start: first ECC byte to retrieve
2004  * @nbytes: number of ECC bytes to retrieve
2005  *
2006  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
2007  *
2008  * Returns zero on success, a negative error code otherwise.
2009  */
2010 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
2011 			       const u8 *oobbuf, int start, int nbytes)
2012 {
2013 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2014 				       mtd_ooblayout_ecc);
2015 }
2016 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
2017 
2018 /**
2019  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
2020  * @mtd: mtd info structure
2021  * @eccbuf: source buffer to get ECC bytes from
2022  * @oobbuf: OOB buffer
2023  * @start: first ECC byte to set
2024  * @nbytes: number of ECC bytes to set
2025  *
2026  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
2027  *
2028  * Returns zero on success, a negative error code otherwise.
2029  */
2030 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
2031 			       u8 *oobbuf, int start, int nbytes)
2032 {
2033 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2034 				       mtd_ooblayout_ecc);
2035 }
2036 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
2037 
2038 /**
2039  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
2040  * @mtd: mtd info structure
2041  * @databuf: destination buffer to store ECC bytes
2042  * @oobbuf: OOB buffer
2043  * @start: first ECC byte to retrieve
2044  * @nbytes: number of ECC bytes to retrieve
2045  *
2046  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
2047  *
2048  * Returns zero on success, a negative error code otherwise.
2049  */
2050 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
2051 				const u8 *oobbuf, int start, int nbytes)
2052 {
2053 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
2054 				       mtd_ooblayout_free);
2055 }
2056 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
2057 
2058 /**
2059  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
2060  * @mtd: mtd info structure
2061  * @databuf: source buffer to get data bytes from
2062  * @oobbuf: OOB buffer
2063  * @start: first ECC byte to set
2064  * @nbytes: number of ECC bytes to set
2065  *
2066  * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
2067  *
2068  * Returns zero on success, a negative error code otherwise.
2069  */
2070 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
2071 				u8 *oobbuf, int start, int nbytes)
2072 {
2073 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
2074 				       mtd_ooblayout_free);
2075 }
2076 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
2077 
2078 /**
2079  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
2080  * @mtd: mtd info structure
2081  *
2082  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
2083  *
2084  * Returns zero on success, a negative error code otherwise.
2085  */
2086 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
2087 {
2088 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
2089 }
2090 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
2091 
2092 /**
2093  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
2094  * @mtd: mtd info structure
2095  *
2096  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
2097  *
2098  * Returns zero on success, a negative error code otherwise.
2099  */
2100 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
2101 {
2102 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
2103 }
2104 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
2105 
2106 /*
2107  * Method to access the protection register area, present in some flash
2108  * devices. The user data is one time programmable but the factory data is read
2109  * only.
2110  */
2111 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2112 			   struct otp_info *buf)
2113 {
2114 	struct mtd_info *master = mtd_get_master(mtd);
2115 
2116 	if (!master->_get_fact_prot_info)
2117 		return -EOPNOTSUPP;
2118 	if (!len)
2119 		return 0;
2120 	return master->_get_fact_prot_info(master, len, retlen, buf);
2121 }
2122 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2123 
2124 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2125 			   size_t *retlen, u_char *buf)
2126 {
2127 	struct mtd_info *master = mtd_get_master(mtd);
2128 
2129 	*retlen = 0;
2130 	if (!master->_read_fact_prot_reg)
2131 		return -EOPNOTSUPP;
2132 	if (!len)
2133 		return 0;
2134 	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2135 }
2136 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2137 
2138 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2139 			   struct otp_info *buf)
2140 {
2141 	struct mtd_info *master = mtd_get_master(mtd);
2142 
2143 	if (!master->_get_user_prot_info)
2144 		return -EOPNOTSUPP;
2145 	if (!len)
2146 		return 0;
2147 	return master->_get_user_prot_info(master, len, retlen, buf);
2148 }
2149 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2150 
2151 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2152 			   size_t *retlen, u_char *buf)
2153 {
2154 	struct mtd_info *master = mtd_get_master(mtd);
2155 
2156 	*retlen = 0;
2157 	if (!master->_read_user_prot_reg)
2158 		return -EOPNOTSUPP;
2159 	if (!len)
2160 		return 0;
2161 	return master->_read_user_prot_reg(master, from, len, retlen, buf);
2162 }
2163 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2164 
2165 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2166 			    size_t *retlen, const u_char *buf)
2167 {
2168 	struct mtd_info *master = mtd_get_master(mtd);
2169 	int ret;
2170 
2171 	*retlen = 0;
2172 	if (!master->_write_user_prot_reg)
2173 		return -EOPNOTSUPP;
2174 	if (!len)
2175 		return 0;
2176 	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2177 	if (ret)
2178 		return ret;
2179 
2180 	/*
2181 	 * If no data could be written at all, we are out of memory and
2182 	 * must return -ENOSPC.
2183 	 */
2184 	return (*retlen) ? 0 : -ENOSPC;
2185 }
2186 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2187 
2188 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2189 {
2190 	struct mtd_info *master = mtd_get_master(mtd);
2191 
2192 	if (!master->_lock_user_prot_reg)
2193 		return -EOPNOTSUPP;
2194 	if (!len)
2195 		return 0;
2196 	return master->_lock_user_prot_reg(master, from, len);
2197 }
2198 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2199 
2200 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2201 {
2202 	struct mtd_info *master = mtd_get_master(mtd);
2203 
2204 	if (!master->_erase_user_prot_reg)
2205 		return -EOPNOTSUPP;
2206 	if (!len)
2207 		return 0;
2208 	return master->_erase_user_prot_reg(master, from, len);
2209 }
2210 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2211 
2212 /* Chip-supported device locking */
2213 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2214 {
2215 	struct mtd_info *master = mtd_get_master(mtd);
2216 
2217 	if (!master->_lock)
2218 		return -EOPNOTSUPP;
2219 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2220 		return -EINVAL;
2221 	if (!len)
2222 		return 0;
2223 
2224 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2225 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2226 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2227 	}
2228 
2229 	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2230 }
2231 EXPORT_SYMBOL_GPL(mtd_lock);
2232 
2233 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2234 {
2235 	struct mtd_info *master = mtd_get_master(mtd);
2236 
2237 	if (!master->_unlock)
2238 		return -EOPNOTSUPP;
2239 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2240 		return -EINVAL;
2241 	if (!len)
2242 		return 0;
2243 
2244 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2245 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2246 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2247 	}
2248 
2249 	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2250 }
2251 EXPORT_SYMBOL_GPL(mtd_unlock);
2252 
2253 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2254 {
2255 	struct mtd_info *master = mtd_get_master(mtd);
2256 
2257 	if (!master->_is_locked)
2258 		return -EOPNOTSUPP;
2259 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2260 		return -EINVAL;
2261 	if (!len)
2262 		return 0;
2263 
2264 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2265 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2266 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2267 	}
2268 
2269 	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2270 }
2271 EXPORT_SYMBOL_GPL(mtd_is_locked);
2272 
2273 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2274 {
2275 	struct mtd_info *master = mtd_get_master(mtd);
2276 
2277 	if (ofs < 0 || ofs >= mtd->size)
2278 		return -EINVAL;
2279 	if (!master->_block_isreserved)
2280 		return 0;
2281 
2282 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2283 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2284 
2285 	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2286 }
2287 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2288 
2289 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2290 {
2291 	struct mtd_info *master = mtd_get_master(mtd);
2292 
2293 	if (ofs < 0 || ofs >= mtd->size)
2294 		return -EINVAL;
2295 	if (!master->_block_isbad)
2296 		return 0;
2297 
2298 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2299 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2300 
2301 	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2302 }
2303 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2304 
2305 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2306 {
2307 	struct mtd_info *master = mtd_get_master(mtd);
2308 	int ret;
2309 
2310 	if (!master->_block_markbad)
2311 		return -EOPNOTSUPP;
2312 	if (ofs < 0 || ofs >= mtd->size)
2313 		return -EINVAL;
2314 	if (!(mtd->flags & MTD_WRITEABLE))
2315 		return -EROFS;
2316 
2317 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2318 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2319 
2320 	ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2321 	if (ret)
2322 		return ret;
2323 
2324 	while (mtd->parent) {
2325 		mtd->ecc_stats.badblocks++;
2326 		mtd = mtd->parent;
2327 	}
2328 
2329 	return 0;
2330 }
2331 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2332 
2333 /*
2334  * default_mtd_writev - the default writev method
2335  * @mtd: mtd device description object pointer
2336  * @vecs: the vectors to write
2337  * @count: count of vectors in @vecs
2338  * @to: the MTD device offset to write to
2339  * @retlen: on exit contains the count of bytes written to the MTD device.
2340  *
2341  * This function returns zero in case of success and a negative error code in
2342  * case of failure.
2343  */
2344 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2345 			      unsigned long count, loff_t to, size_t *retlen)
2346 {
2347 	unsigned long i;
2348 	size_t totlen = 0, thislen;
2349 	int ret = 0;
2350 
2351 	for (i = 0; i < count; i++) {
2352 		if (!vecs[i].iov_len)
2353 			continue;
2354 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2355 				vecs[i].iov_base);
2356 		totlen += thislen;
2357 		if (ret || thislen != vecs[i].iov_len)
2358 			break;
2359 		to += vecs[i].iov_len;
2360 	}
2361 	*retlen = totlen;
2362 	return ret;
2363 }
2364 
2365 /*
2366  * mtd_writev - the vector-based MTD write method
2367  * @mtd: mtd device description object pointer
2368  * @vecs: the vectors to write
2369  * @count: count of vectors in @vecs
2370  * @to: the MTD device offset to write to
2371  * @retlen: on exit contains the count of bytes written to the MTD device.
2372  *
2373  * This function returns zero in case of success and a negative error code in
2374  * case of failure.
2375  */
2376 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2377 	       unsigned long count, loff_t to, size_t *retlen)
2378 {
2379 	struct mtd_info *master = mtd_get_master(mtd);
2380 
2381 	*retlen = 0;
2382 	if (!(mtd->flags & MTD_WRITEABLE))
2383 		return -EROFS;
2384 
2385 	if (!master->_writev)
2386 		return default_mtd_writev(mtd, vecs, count, to, retlen);
2387 
2388 	return master->_writev(master, vecs, count,
2389 			       mtd_get_master_ofs(mtd, to), retlen);
2390 }
2391 EXPORT_SYMBOL_GPL(mtd_writev);
2392 
2393 /**
2394  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2395  * @mtd: mtd device description object pointer
2396  * @size: a pointer to the ideal or maximum size of the allocation, points
2397  *        to the actual allocation size on success.
2398  *
2399  * This routine attempts to allocate a contiguous kernel buffer up to
2400  * the specified size, backing off the size of the request exponentially
2401  * until the request succeeds or until the allocation size falls below
2402  * the system page size. This attempts to make sure it does not adversely
2403  * impact system performance, so when allocating more than one page, we
2404  * ask the memory allocator to avoid re-trying, swapping, writing back
2405  * or performing I/O.
2406  *
2407  * Note, this function also makes sure that the allocated buffer is aligned to
2408  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2409  *
2410  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2411  * to handle smaller (i.e. degraded) buffer allocations under low- or
2412  * fragmented-memory situations where such reduced allocations, from a
2413  * requested ideal, are allowed.
2414  *
2415  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2416  */
2417 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2418 {
2419 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2420 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2421 	void *kbuf;
2422 
2423 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2424 
2425 	while (*size > min_alloc) {
2426 		kbuf = kmalloc(*size, flags);
2427 		if (kbuf)
2428 			return kbuf;
2429 
2430 		*size >>= 1;
2431 		*size = ALIGN(*size, mtd->writesize);
2432 	}
2433 
2434 	/*
2435 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2436 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2437 	 */
2438 	return kmalloc(*size, GFP_KERNEL);
2439 }
2440 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2441 
2442 #ifdef CONFIG_PROC_FS
2443 
2444 /*====================================================================*/
2445 /* Support for /proc/mtd */
2446 
2447 static int mtd_proc_show(struct seq_file *m, void *v)
2448 {
2449 	struct mtd_info *mtd;
2450 
2451 	seq_puts(m, "dev:    size   erasesize  name\n");
2452 	mutex_lock(&mtd_table_mutex);
2453 	mtd_for_each_device(mtd) {
2454 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2455 			   mtd->index, (unsigned long long)mtd->size,
2456 			   mtd->erasesize, mtd->name);
2457 	}
2458 	mutex_unlock(&mtd_table_mutex);
2459 	return 0;
2460 }
2461 #endif /* CONFIG_PROC_FS */
2462 
2463 /*====================================================================*/
2464 /* Init code */
2465 
2466 static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2467 {
2468 	struct backing_dev_info *bdi;
2469 	int ret;
2470 
2471 	bdi = bdi_alloc(NUMA_NO_NODE);
2472 	if (!bdi)
2473 		return ERR_PTR(-ENOMEM);
2474 	bdi->ra_pages = 0;
2475 	bdi->io_pages = 0;
2476 
2477 	/*
2478 	 * We put '-0' suffix to the name to get the same name format as we
2479 	 * used to get. Since this is called only once, we get a unique name.
2480 	 */
2481 	ret = bdi_register(bdi, "%.28s-0", name);
2482 	if (ret)
2483 		bdi_put(bdi);
2484 
2485 	return ret ? ERR_PTR(ret) : bdi;
2486 }
2487 
2488 static struct proc_dir_entry *proc_mtd;
2489 
2490 static int __init init_mtd(void)
2491 {
2492 	int ret;
2493 
2494 	ret = class_register(&mtd_class);
2495 	if (ret)
2496 		goto err_reg;
2497 
2498 	mtd_bdi = mtd_bdi_init("mtd");
2499 	if (IS_ERR(mtd_bdi)) {
2500 		ret = PTR_ERR(mtd_bdi);
2501 		goto err_bdi;
2502 	}
2503 
2504 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2505 
2506 	ret = init_mtdchar();
2507 	if (ret)
2508 		goto out_procfs;
2509 
2510 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2511 	debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2512 			    &mtd_expert_analysis_mode);
2513 
2514 	return 0;
2515 
2516 out_procfs:
2517 	if (proc_mtd)
2518 		remove_proc_entry("mtd", NULL);
2519 	bdi_unregister(mtd_bdi);
2520 	bdi_put(mtd_bdi);
2521 err_bdi:
2522 	class_unregister(&mtd_class);
2523 err_reg:
2524 	pr_err("Error registering mtd class or bdi: %d\n", ret);
2525 	return ret;
2526 }
2527 
2528 static void __exit cleanup_mtd(void)
2529 {
2530 	debugfs_remove_recursive(dfs_dir_mtd);
2531 	cleanup_mtdchar();
2532 	if (proc_mtd)
2533 		remove_proc_entry("mtd", NULL);
2534 	class_unregister(&mtd_class);
2535 	bdi_unregister(mtd_bdi);
2536 	bdi_put(mtd_bdi);
2537 	idr_destroy(&mtd_idr);
2538 }
2539 
2540 module_init(init_mtd);
2541 module_exit(cleanup_mtd);
2542 
2543 MODULE_LICENSE("GPL");
2544 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2545 MODULE_DESCRIPTION("Core MTD registration and access routines");
2546