xref: /openbmc/linux/drivers/mtd/mtdcore.c (revision 39b6f3aa)
1 /*
2  * Core registration and callback routines for MTD
3  * drivers and users.
4  *
5  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6  * Copyright © 2006      Red Hat UK Limited
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/proc_fs.h>
36 #include <linux/idr.h>
37 #include <linux/backing-dev.h>
38 #include <linux/gfp.h>
39 #include <linux/slab.h>
40 
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/partitions.h>
43 
44 #include "mtdcore.h"
45 
46 /*
47  * backing device capabilities for non-mappable devices (such as NAND flash)
48  * - permits private mappings, copies are taken of the data
49  */
50 static struct backing_dev_info mtd_bdi_unmappable = {
51 	.capabilities	= BDI_CAP_MAP_COPY,
52 };
53 
54 /*
55  * backing device capabilities for R/O mappable devices (such as ROM)
56  * - permits private mappings, copies are taken of the data
57  * - permits non-writable shared mappings
58  */
59 static struct backing_dev_info mtd_bdi_ro_mappable = {
60 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
61 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
62 };
63 
64 /*
65  * backing device capabilities for writable mappable devices (such as RAM)
66  * - permits private mappings, copies are taken of the data
67  * - permits non-writable shared mappings
68  */
69 static struct backing_dev_info mtd_bdi_rw_mappable = {
70 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
71 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
72 			   BDI_CAP_WRITE_MAP),
73 };
74 
75 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
76 static int mtd_cls_resume(struct device *dev);
77 
78 static struct class mtd_class = {
79 	.name = "mtd",
80 	.owner = THIS_MODULE,
81 	.suspend = mtd_cls_suspend,
82 	.resume = mtd_cls_resume,
83 };
84 
85 static DEFINE_IDR(mtd_idr);
86 
87 /* These are exported solely for the purpose of mtd_blkdevs.c. You
88    should not use them for _anything_ else */
89 DEFINE_MUTEX(mtd_table_mutex);
90 EXPORT_SYMBOL_GPL(mtd_table_mutex);
91 
92 struct mtd_info *__mtd_next_device(int i)
93 {
94 	return idr_get_next(&mtd_idr, &i);
95 }
96 EXPORT_SYMBOL_GPL(__mtd_next_device);
97 
98 static LIST_HEAD(mtd_notifiers);
99 
100 
101 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
102 
103 /* REVISIT once MTD uses the driver model better, whoever allocates
104  * the mtd_info will probably want to use the release() hook...
105  */
106 static void mtd_release(struct device *dev)
107 {
108 	struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
109 	dev_t index = MTD_DEVT(mtd->index);
110 
111 	/* remove /dev/mtdXro node if needed */
112 	if (index)
113 		device_destroy(&mtd_class, index + 1);
114 }
115 
116 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
117 {
118 	struct mtd_info *mtd = dev_get_drvdata(dev);
119 
120 	return mtd ? mtd_suspend(mtd) : 0;
121 }
122 
123 static int mtd_cls_resume(struct device *dev)
124 {
125 	struct mtd_info *mtd = dev_get_drvdata(dev);
126 
127 	if (mtd)
128 		mtd_resume(mtd);
129 	return 0;
130 }
131 
132 static ssize_t mtd_type_show(struct device *dev,
133 		struct device_attribute *attr, char *buf)
134 {
135 	struct mtd_info *mtd = dev_get_drvdata(dev);
136 	char *type;
137 
138 	switch (mtd->type) {
139 	case MTD_ABSENT:
140 		type = "absent";
141 		break;
142 	case MTD_RAM:
143 		type = "ram";
144 		break;
145 	case MTD_ROM:
146 		type = "rom";
147 		break;
148 	case MTD_NORFLASH:
149 		type = "nor";
150 		break;
151 	case MTD_NANDFLASH:
152 		type = "nand";
153 		break;
154 	case MTD_DATAFLASH:
155 		type = "dataflash";
156 		break;
157 	case MTD_UBIVOLUME:
158 		type = "ubi";
159 		break;
160 	default:
161 		type = "unknown";
162 	}
163 
164 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
165 }
166 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
167 
168 static ssize_t mtd_flags_show(struct device *dev,
169 		struct device_attribute *attr, char *buf)
170 {
171 	struct mtd_info *mtd = dev_get_drvdata(dev);
172 
173 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
174 
175 }
176 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
177 
178 static ssize_t mtd_size_show(struct device *dev,
179 		struct device_attribute *attr, char *buf)
180 {
181 	struct mtd_info *mtd = dev_get_drvdata(dev);
182 
183 	return snprintf(buf, PAGE_SIZE, "%llu\n",
184 		(unsigned long long)mtd->size);
185 
186 }
187 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
188 
189 static ssize_t mtd_erasesize_show(struct device *dev,
190 		struct device_attribute *attr, char *buf)
191 {
192 	struct mtd_info *mtd = dev_get_drvdata(dev);
193 
194 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
195 
196 }
197 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
198 
199 static ssize_t mtd_writesize_show(struct device *dev,
200 		struct device_attribute *attr, char *buf)
201 {
202 	struct mtd_info *mtd = dev_get_drvdata(dev);
203 
204 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
205 
206 }
207 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
208 
209 static ssize_t mtd_subpagesize_show(struct device *dev,
210 		struct device_attribute *attr, char *buf)
211 {
212 	struct mtd_info *mtd = dev_get_drvdata(dev);
213 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
214 
215 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
216 
217 }
218 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
219 
220 static ssize_t mtd_oobsize_show(struct device *dev,
221 		struct device_attribute *attr, char *buf)
222 {
223 	struct mtd_info *mtd = dev_get_drvdata(dev);
224 
225 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
226 
227 }
228 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
229 
230 static ssize_t mtd_numeraseregions_show(struct device *dev,
231 		struct device_attribute *attr, char *buf)
232 {
233 	struct mtd_info *mtd = dev_get_drvdata(dev);
234 
235 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
236 
237 }
238 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
239 	NULL);
240 
241 static ssize_t mtd_name_show(struct device *dev,
242 		struct device_attribute *attr, char *buf)
243 {
244 	struct mtd_info *mtd = dev_get_drvdata(dev);
245 
246 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
247 
248 }
249 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
250 
251 static ssize_t mtd_ecc_strength_show(struct device *dev,
252 				     struct device_attribute *attr, char *buf)
253 {
254 	struct mtd_info *mtd = dev_get_drvdata(dev);
255 
256 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
257 }
258 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
259 
260 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
261 					  struct device_attribute *attr,
262 					  char *buf)
263 {
264 	struct mtd_info *mtd = dev_get_drvdata(dev);
265 
266 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
267 }
268 
269 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
270 					   struct device_attribute *attr,
271 					   const char *buf, size_t count)
272 {
273 	struct mtd_info *mtd = dev_get_drvdata(dev);
274 	unsigned int bitflip_threshold;
275 	int retval;
276 
277 	retval = kstrtouint(buf, 0, &bitflip_threshold);
278 	if (retval)
279 		return retval;
280 
281 	mtd->bitflip_threshold = bitflip_threshold;
282 	return count;
283 }
284 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
285 		   mtd_bitflip_threshold_show,
286 		   mtd_bitflip_threshold_store);
287 
288 static struct attribute *mtd_attrs[] = {
289 	&dev_attr_type.attr,
290 	&dev_attr_flags.attr,
291 	&dev_attr_size.attr,
292 	&dev_attr_erasesize.attr,
293 	&dev_attr_writesize.attr,
294 	&dev_attr_subpagesize.attr,
295 	&dev_attr_oobsize.attr,
296 	&dev_attr_numeraseregions.attr,
297 	&dev_attr_name.attr,
298 	&dev_attr_ecc_strength.attr,
299 	&dev_attr_bitflip_threshold.attr,
300 	NULL,
301 };
302 
303 static struct attribute_group mtd_group = {
304 	.attrs		= mtd_attrs,
305 };
306 
307 static const struct attribute_group *mtd_groups[] = {
308 	&mtd_group,
309 	NULL,
310 };
311 
312 static struct device_type mtd_devtype = {
313 	.name		= "mtd",
314 	.groups		= mtd_groups,
315 	.release	= mtd_release,
316 };
317 
318 /**
319  *	add_mtd_device - register an MTD device
320  *	@mtd: pointer to new MTD device info structure
321  *
322  *	Add a device to the list of MTD devices present in the system, and
323  *	notify each currently active MTD 'user' of its arrival. Returns
324  *	zero on success or 1 on failure, which currently will only happen
325  *	if there is insufficient memory or a sysfs error.
326  */
327 
328 int add_mtd_device(struct mtd_info *mtd)
329 {
330 	struct mtd_notifier *not;
331 	int i, error;
332 
333 	if (!mtd->backing_dev_info) {
334 		switch (mtd->type) {
335 		case MTD_RAM:
336 			mtd->backing_dev_info = &mtd_bdi_rw_mappable;
337 			break;
338 		case MTD_ROM:
339 			mtd->backing_dev_info = &mtd_bdi_ro_mappable;
340 			break;
341 		default:
342 			mtd->backing_dev_info = &mtd_bdi_unmappable;
343 			break;
344 		}
345 	}
346 
347 	BUG_ON(mtd->writesize == 0);
348 	mutex_lock(&mtd_table_mutex);
349 
350 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
351 	if (i < 0)
352 		goto fail_locked;
353 
354 	mtd->index = i;
355 	mtd->usecount = 0;
356 
357 	/* default value if not set by driver */
358 	if (mtd->bitflip_threshold == 0)
359 		mtd->bitflip_threshold = mtd->ecc_strength;
360 
361 	if (is_power_of_2(mtd->erasesize))
362 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
363 	else
364 		mtd->erasesize_shift = 0;
365 
366 	if (is_power_of_2(mtd->writesize))
367 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
368 	else
369 		mtd->writesize_shift = 0;
370 
371 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
372 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
373 
374 	/* Some chips always power up locked. Unlock them now */
375 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
376 		error = mtd_unlock(mtd, 0, mtd->size);
377 		if (error && error != -EOPNOTSUPP)
378 			printk(KERN_WARNING
379 			       "%s: unlock failed, writes may not work\n",
380 			       mtd->name);
381 	}
382 
383 	/* Caller should have set dev.parent to match the
384 	 * physical device.
385 	 */
386 	mtd->dev.type = &mtd_devtype;
387 	mtd->dev.class = &mtd_class;
388 	mtd->dev.devt = MTD_DEVT(i);
389 	dev_set_name(&mtd->dev, "mtd%d", i);
390 	dev_set_drvdata(&mtd->dev, mtd);
391 	if (device_register(&mtd->dev) != 0)
392 		goto fail_added;
393 
394 	if (MTD_DEVT(i))
395 		device_create(&mtd_class, mtd->dev.parent,
396 			      MTD_DEVT(i) + 1,
397 			      NULL, "mtd%dro", i);
398 
399 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
400 	/* No need to get a refcount on the module containing
401 	   the notifier, since we hold the mtd_table_mutex */
402 	list_for_each_entry(not, &mtd_notifiers, list)
403 		not->add(mtd);
404 
405 	mutex_unlock(&mtd_table_mutex);
406 	/* We _know_ we aren't being removed, because
407 	   our caller is still holding us here. So none
408 	   of this try_ nonsense, and no bitching about it
409 	   either. :) */
410 	__module_get(THIS_MODULE);
411 	return 0;
412 
413 fail_added:
414 	idr_remove(&mtd_idr, i);
415 fail_locked:
416 	mutex_unlock(&mtd_table_mutex);
417 	return 1;
418 }
419 
420 /**
421  *	del_mtd_device - unregister an MTD device
422  *	@mtd: pointer to MTD device info structure
423  *
424  *	Remove a device from the list of MTD devices present in the system,
425  *	and notify each currently active MTD 'user' of its departure.
426  *	Returns zero on success or 1 on failure, which currently will happen
427  *	if the requested device does not appear to be present in the list.
428  */
429 
430 int del_mtd_device(struct mtd_info *mtd)
431 {
432 	int ret;
433 	struct mtd_notifier *not;
434 
435 	mutex_lock(&mtd_table_mutex);
436 
437 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
438 		ret = -ENODEV;
439 		goto out_error;
440 	}
441 
442 	/* No need to get a refcount on the module containing
443 		the notifier, since we hold the mtd_table_mutex */
444 	list_for_each_entry(not, &mtd_notifiers, list)
445 		not->remove(mtd);
446 
447 	if (mtd->usecount) {
448 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
449 		       mtd->index, mtd->name, mtd->usecount);
450 		ret = -EBUSY;
451 	} else {
452 		device_unregister(&mtd->dev);
453 
454 		idr_remove(&mtd_idr, mtd->index);
455 
456 		module_put(THIS_MODULE);
457 		ret = 0;
458 	}
459 
460 out_error:
461 	mutex_unlock(&mtd_table_mutex);
462 	return ret;
463 }
464 
465 /**
466  * mtd_device_parse_register - parse partitions and register an MTD device.
467  *
468  * @mtd: the MTD device to register
469  * @types: the list of MTD partition probes to try, see
470  *         'parse_mtd_partitions()' for more information
471  * @parser_data: MTD partition parser-specific data
472  * @parts: fallback partition information to register, if parsing fails;
473  *         only valid if %nr_parts > %0
474  * @nr_parts: the number of partitions in parts, if zero then the full
475  *            MTD device is registered if no partition info is found
476  *
477  * This function aggregates MTD partitions parsing (done by
478  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
479  * basically follows the most common pattern found in many MTD drivers:
480  *
481  * * It first tries to probe partitions on MTD device @mtd using parsers
482  *   specified in @types (if @types is %NULL, then the default list of parsers
483  *   is used, see 'parse_mtd_partitions()' for more information). If none are
484  *   found this functions tries to fallback to information specified in
485  *   @parts/@nr_parts.
486  * * If any partitioning info was found, this function registers the found
487  *   partitions.
488  * * If no partitions were found this function just registers the MTD device
489  *   @mtd and exits.
490  *
491  * Returns zero in case of success and a negative error code in case of failure.
492  */
493 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
494 			      struct mtd_part_parser_data *parser_data,
495 			      const struct mtd_partition *parts,
496 			      int nr_parts)
497 {
498 	int err;
499 	struct mtd_partition *real_parts;
500 
501 	err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
502 	if (err <= 0 && nr_parts && parts) {
503 		real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
504 				     GFP_KERNEL);
505 		if (!real_parts)
506 			err = -ENOMEM;
507 		else
508 			err = nr_parts;
509 	}
510 
511 	if (err > 0) {
512 		err = add_mtd_partitions(mtd, real_parts, err);
513 		kfree(real_parts);
514 	} else if (err == 0) {
515 		err = add_mtd_device(mtd);
516 		if (err == 1)
517 			err = -ENODEV;
518 	}
519 
520 	return err;
521 }
522 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
523 
524 /**
525  * mtd_device_unregister - unregister an existing MTD device.
526  *
527  * @master: the MTD device to unregister.  This will unregister both the master
528  *          and any partitions if registered.
529  */
530 int mtd_device_unregister(struct mtd_info *master)
531 {
532 	int err;
533 
534 	err = del_mtd_partitions(master);
535 	if (err)
536 		return err;
537 
538 	if (!device_is_registered(&master->dev))
539 		return 0;
540 
541 	return del_mtd_device(master);
542 }
543 EXPORT_SYMBOL_GPL(mtd_device_unregister);
544 
545 /**
546  *	register_mtd_user - register a 'user' of MTD devices.
547  *	@new: pointer to notifier info structure
548  *
549  *	Registers a pair of callbacks function to be called upon addition
550  *	or removal of MTD devices. Causes the 'add' callback to be immediately
551  *	invoked for each MTD device currently present in the system.
552  */
553 void register_mtd_user (struct mtd_notifier *new)
554 {
555 	struct mtd_info *mtd;
556 
557 	mutex_lock(&mtd_table_mutex);
558 
559 	list_add(&new->list, &mtd_notifiers);
560 
561 	__module_get(THIS_MODULE);
562 
563 	mtd_for_each_device(mtd)
564 		new->add(mtd);
565 
566 	mutex_unlock(&mtd_table_mutex);
567 }
568 EXPORT_SYMBOL_GPL(register_mtd_user);
569 
570 /**
571  *	unregister_mtd_user - unregister a 'user' of MTD devices.
572  *	@old: pointer to notifier info structure
573  *
574  *	Removes a callback function pair from the list of 'users' to be
575  *	notified upon addition or removal of MTD devices. Causes the
576  *	'remove' callback to be immediately invoked for each MTD device
577  *	currently present in the system.
578  */
579 int unregister_mtd_user (struct mtd_notifier *old)
580 {
581 	struct mtd_info *mtd;
582 
583 	mutex_lock(&mtd_table_mutex);
584 
585 	module_put(THIS_MODULE);
586 
587 	mtd_for_each_device(mtd)
588 		old->remove(mtd);
589 
590 	list_del(&old->list);
591 	mutex_unlock(&mtd_table_mutex);
592 	return 0;
593 }
594 EXPORT_SYMBOL_GPL(unregister_mtd_user);
595 
596 /**
597  *	get_mtd_device - obtain a validated handle for an MTD device
598  *	@mtd: last known address of the required MTD device
599  *	@num: internal device number of the required MTD device
600  *
601  *	Given a number and NULL address, return the num'th entry in the device
602  *	table, if any.	Given an address and num == -1, search the device table
603  *	for a device with that address and return if it's still present. Given
604  *	both, return the num'th driver only if its address matches. Return
605  *	error code if not.
606  */
607 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
608 {
609 	struct mtd_info *ret = NULL, *other;
610 	int err = -ENODEV;
611 
612 	mutex_lock(&mtd_table_mutex);
613 
614 	if (num == -1) {
615 		mtd_for_each_device(other) {
616 			if (other == mtd) {
617 				ret = mtd;
618 				break;
619 			}
620 		}
621 	} else if (num >= 0) {
622 		ret = idr_find(&mtd_idr, num);
623 		if (mtd && mtd != ret)
624 			ret = NULL;
625 	}
626 
627 	if (!ret) {
628 		ret = ERR_PTR(err);
629 		goto out;
630 	}
631 
632 	err = __get_mtd_device(ret);
633 	if (err)
634 		ret = ERR_PTR(err);
635 out:
636 	mutex_unlock(&mtd_table_mutex);
637 	return ret;
638 }
639 EXPORT_SYMBOL_GPL(get_mtd_device);
640 
641 
642 int __get_mtd_device(struct mtd_info *mtd)
643 {
644 	int err;
645 
646 	if (!try_module_get(mtd->owner))
647 		return -ENODEV;
648 
649 	if (mtd->_get_device) {
650 		err = mtd->_get_device(mtd);
651 
652 		if (err) {
653 			module_put(mtd->owner);
654 			return err;
655 		}
656 	}
657 	mtd->usecount++;
658 	return 0;
659 }
660 EXPORT_SYMBOL_GPL(__get_mtd_device);
661 
662 /**
663  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
664  *	device name
665  *	@name: MTD device name to open
666  *
667  * 	This function returns MTD device description structure in case of
668  * 	success and an error code in case of failure.
669  */
670 struct mtd_info *get_mtd_device_nm(const char *name)
671 {
672 	int err = -ENODEV;
673 	struct mtd_info *mtd = NULL, *other;
674 
675 	mutex_lock(&mtd_table_mutex);
676 
677 	mtd_for_each_device(other) {
678 		if (!strcmp(name, other->name)) {
679 			mtd = other;
680 			break;
681 		}
682 	}
683 
684 	if (!mtd)
685 		goto out_unlock;
686 
687 	err = __get_mtd_device(mtd);
688 	if (err)
689 		goto out_unlock;
690 
691 	mutex_unlock(&mtd_table_mutex);
692 	return mtd;
693 
694 out_unlock:
695 	mutex_unlock(&mtd_table_mutex);
696 	return ERR_PTR(err);
697 }
698 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
699 
700 void put_mtd_device(struct mtd_info *mtd)
701 {
702 	mutex_lock(&mtd_table_mutex);
703 	__put_mtd_device(mtd);
704 	mutex_unlock(&mtd_table_mutex);
705 
706 }
707 EXPORT_SYMBOL_GPL(put_mtd_device);
708 
709 void __put_mtd_device(struct mtd_info *mtd)
710 {
711 	--mtd->usecount;
712 	BUG_ON(mtd->usecount < 0);
713 
714 	if (mtd->_put_device)
715 		mtd->_put_device(mtd);
716 
717 	module_put(mtd->owner);
718 }
719 EXPORT_SYMBOL_GPL(__put_mtd_device);
720 
721 /*
722  * Erase is an asynchronous operation.  Device drivers are supposed
723  * to call instr->callback() whenever the operation completes, even
724  * if it completes with a failure.
725  * Callers are supposed to pass a callback function and wait for it
726  * to be called before writing to the block.
727  */
728 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
729 {
730 	if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
731 		return -EINVAL;
732 	if (!(mtd->flags & MTD_WRITEABLE))
733 		return -EROFS;
734 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
735 	if (!instr->len) {
736 		instr->state = MTD_ERASE_DONE;
737 		mtd_erase_callback(instr);
738 		return 0;
739 	}
740 	return mtd->_erase(mtd, instr);
741 }
742 EXPORT_SYMBOL_GPL(mtd_erase);
743 
744 /*
745  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
746  */
747 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
748 	      void **virt, resource_size_t *phys)
749 {
750 	*retlen = 0;
751 	*virt = NULL;
752 	if (phys)
753 		*phys = 0;
754 	if (!mtd->_point)
755 		return -EOPNOTSUPP;
756 	if (from < 0 || from > mtd->size || len > mtd->size - from)
757 		return -EINVAL;
758 	if (!len)
759 		return 0;
760 	return mtd->_point(mtd, from, len, retlen, virt, phys);
761 }
762 EXPORT_SYMBOL_GPL(mtd_point);
763 
764 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
765 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
766 {
767 	if (!mtd->_point)
768 		return -EOPNOTSUPP;
769 	if (from < 0 || from > mtd->size || len > mtd->size - from)
770 		return -EINVAL;
771 	if (!len)
772 		return 0;
773 	return mtd->_unpoint(mtd, from, len);
774 }
775 EXPORT_SYMBOL_GPL(mtd_unpoint);
776 
777 /*
778  * Allow NOMMU mmap() to directly map the device (if not NULL)
779  * - return the address to which the offset maps
780  * - return -ENOSYS to indicate refusal to do the mapping
781  */
782 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
783 				    unsigned long offset, unsigned long flags)
784 {
785 	if (!mtd->_get_unmapped_area)
786 		return -EOPNOTSUPP;
787 	if (offset > mtd->size || len > mtd->size - offset)
788 		return -EINVAL;
789 	return mtd->_get_unmapped_area(mtd, len, offset, flags);
790 }
791 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
792 
793 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
794 	     u_char *buf)
795 {
796 	int ret_code;
797 	*retlen = 0;
798 	if (from < 0 || from > mtd->size || len > mtd->size - from)
799 		return -EINVAL;
800 	if (!len)
801 		return 0;
802 
803 	/*
804 	 * In the absence of an error, drivers return a non-negative integer
805 	 * representing the maximum number of bitflips that were corrected on
806 	 * any one ecc region (if applicable; zero otherwise).
807 	 */
808 	ret_code = mtd->_read(mtd, from, len, retlen, buf);
809 	if (unlikely(ret_code < 0))
810 		return ret_code;
811 	if (mtd->ecc_strength == 0)
812 		return 0;	/* device lacks ecc */
813 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
814 }
815 EXPORT_SYMBOL_GPL(mtd_read);
816 
817 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
818 	      const u_char *buf)
819 {
820 	*retlen = 0;
821 	if (to < 0 || to > mtd->size || len > mtd->size - to)
822 		return -EINVAL;
823 	if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
824 		return -EROFS;
825 	if (!len)
826 		return 0;
827 	return mtd->_write(mtd, to, len, retlen, buf);
828 }
829 EXPORT_SYMBOL_GPL(mtd_write);
830 
831 /*
832  * In blackbox flight recorder like scenarios we want to make successful writes
833  * in interrupt context. panic_write() is only intended to be called when its
834  * known the kernel is about to panic and we need the write to succeed. Since
835  * the kernel is not going to be running for much longer, this function can
836  * break locks and delay to ensure the write succeeds (but not sleep).
837  */
838 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
839 		    const u_char *buf)
840 {
841 	*retlen = 0;
842 	if (!mtd->_panic_write)
843 		return -EOPNOTSUPP;
844 	if (to < 0 || to > mtd->size || len > mtd->size - to)
845 		return -EINVAL;
846 	if (!(mtd->flags & MTD_WRITEABLE))
847 		return -EROFS;
848 	if (!len)
849 		return 0;
850 	return mtd->_panic_write(mtd, to, len, retlen, buf);
851 }
852 EXPORT_SYMBOL_GPL(mtd_panic_write);
853 
854 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
855 {
856 	int ret_code;
857 	ops->retlen = ops->oobretlen = 0;
858 	if (!mtd->_read_oob)
859 		return -EOPNOTSUPP;
860 	/*
861 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
862 	 * similar to mtd->_read(), returning a non-negative integer
863 	 * representing max bitflips. In other cases, mtd->_read_oob() may
864 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
865 	 */
866 	ret_code = mtd->_read_oob(mtd, from, ops);
867 	if (unlikely(ret_code < 0))
868 		return ret_code;
869 	if (mtd->ecc_strength == 0)
870 		return 0;	/* device lacks ecc */
871 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
872 }
873 EXPORT_SYMBOL_GPL(mtd_read_oob);
874 
875 /*
876  * Method to access the protection register area, present in some flash
877  * devices. The user data is one time programmable but the factory data is read
878  * only.
879  */
880 int mtd_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
881 			   size_t len)
882 {
883 	if (!mtd->_get_fact_prot_info)
884 		return -EOPNOTSUPP;
885 	if (!len)
886 		return 0;
887 	return mtd->_get_fact_prot_info(mtd, buf, len);
888 }
889 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
890 
891 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
892 			   size_t *retlen, u_char *buf)
893 {
894 	*retlen = 0;
895 	if (!mtd->_read_fact_prot_reg)
896 		return -EOPNOTSUPP;
897 	if (!len)
898 		return 0;
899 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
900 }
901 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
902 
903 int mtd_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf,
904 			   size_t len)
905 {
906 	if (!mtd->_get_user_prot_info)
907 		return -EOPNOTSUPP;
908 	if (!len)
909 		return 0;
910 	return mtd->_get_user_prot_info(mtd, buf, len);
911 }
912 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
913 
914 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
915 			   size_t *retlen, u_char *buf)
916 {
917 	*retlen = 0;
918 	if (!mtd->_read_user_prot_reg)
919 		return -EOPNOTSUPP;
920 	if (!len)
921 		return 0;
922 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
923 }
924 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
925 
926 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
927 			    size_t *retlen, u_char *buf)
928 {
929 	*retlen = 0;
930 	if (!mtd->_write_user_prot_reg)
931 		return -EOPNOTSUPP;
932 	if (!len)
933 		return 0;
934 	return mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
935 }
936 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
937 
938 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
939 {
940 	if (!mtd->_lock_user_prot_reg)
941 		return -EOPNOTSUPP;
942 	if (!len)
943 		return 0;
944 	return mtd->_lock_user_prot_reg(mtd, from, len);
945 }
946 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
947 
948 /* Chip-supported device locking */
949 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
950 {
951 	if (!mtd->_lock)
952 		return -EOPNOTSUPP;
953 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
954 		return -EINVAL;
955 	if (!len)
956 		return 0;
957 	return mtd->_lock(mtd, ofs, len);
958 }
959 EXPORT_SYMBOL_GPL(mtd_lock);
960 
961 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
962 {
963 	if (!mtd->_unlock)
964 		return -EOPNOTSUPP;
965 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
966 		return -EINVAL;
967 	if (!len)
968 		return 0;
969 	return mtd->_unlock(mtd, ofs, len);
970 }
971 EXPORT_SYMBOL_GPL(mtd_unlock);
972 
973 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
974 {
975 	if (!mtd->_is_locked)
976 		return -EOPNOTSUPP;
977 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
978 		return -EINVAL;
979 	if (!len)
980 		return 0;
981 	return mtd->_is_locked(mtd, ofs, len);
982 }
983 EXPORT_SYMBOL_GPL(mtd_is_locked);
984 
985 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
986 {
987 	if (!mtd->_block_isbad)
988 		return 0;
989 	if (ofs < 0 || ofs > mtd->size)
990 		return -EINVAL;
991 	return mtd->_block_isbad(mtd, ofs);
992 }
993 EXPORT_SYMBOL_GPL(mtd_block_isbad);
994 
995 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
996 {
997 	if (!mtd->_block_markbad)
998 		return -EOPNOTSUPP;
999 	if (ofs < 0 || ofs > mtd->size)
1000 		return -EINVAL;
1001 	if (!(mtd->flags & MTD_WRITEABLE))
1002 		return -EROFS;
1003 	return mtd->_block_markbad(mtd, ofs);
1004 }
1005 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1006 
1007 /*
1008  * default_mtd_writev - the default writev method
1009  * @mtd: mtd device description object pointer
1010  * @vecs: the vectors to write
1011  * @count: count of vectors in @vecs
1012  * @to: the MTD device offset to write to
1013  * @retlen: on exit contains the count of bytes written to the MTD device.
1014  *
1015  * This function returns zero in case of success and a negative error code in
1016  * case of failure.
1017  */
1018 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1019 			      unsigned long count, loff_t to, size_t *retlen)
1020 {
1021 	unsigned long i;
1022 	size_t totlen = 0, thislen;
1023 	int ret = 0;
1024 
1025 	for (i = 0; i < count; i++) {
1026 		if (!vecs[i].iov_len)
1027 			continue;
1028 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1029 				vecs[i].iov_base);
1030 		totlen += thislen;
1031 		if (ret || thislen != vecs[i].iov_len)
1032 			break;
1033 		to += vecs[i].iov_len;
1034 	}
1035 	*retlen = totlen;
1036 	return ret;
1037 }
1038 
1039 /*
1040  * mtd_writev - the vector-based MTD write method
1041  * @mtd: mtd device description object pointer
1042  * @vecs: the vectors to write
1043  * @count: count of vectors in @vecs
1044  * @to: the MTD device offset to write to
1045  * @retlen: on exit contains the count of bytes written to the MTD device.
1046  *
1047  * This function returns zero in case of success and a negative error code in
1048  * case of failure.
1049  */
1050 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1051 	       unsigned long count, loff_t to, size_t *retlen)
1052 {
1053 	*retlen = 0;
1054 	if (!(mtd->flags & MTD_WRITEABLE))
1055 		return -EROFS;
1056 	if (!mtd->_writev)
1057 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1058 	return mtd->_writev(mtd, vecs, count, to, retlen);
1059 }
1060 EXPORT_SYMBOL_GPL(mtd_writev);
1061 
1062 /**
1063  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1064  * @mtd: mtd device description object pointer
1065  * @size: a pointer to the ideal or maximum size of the allocation, points
1066  *        to the actual allocation size on success.
1067  *
1068  * This routine attempts to allocate a contiguous kernel buffer up to
1069  * the specified size, backing off the size of the request exponentially
1070  * until the request succeeds or until the allocation size falls below
1071  * the system page size. This attempts to make sure it does not adversely
1072  * impact system performance, so when allocating more than one page, we
1073  * ask the memory allocator to avoid re-trying, swapping, writing back
1074  * or performing I/O.
1075  *
1076  * Note, this function also makes sure that the allocated buffer is aligned to
1077  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1078  *
1079  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1080  * to handle smaller (i.e. degraded) buffer allocations under low- or
1081  * fragmented-memory situations where such reduced allocations, from a
1082  * requested ideal, are allowed.
1083  *
1084  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1085  */
1086 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1087 {
1088 	gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1089 		       __GFP_NORETRY | __GFP_NO_KSWAPD;
1090 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1091 	void *kbuf;
1092 
1093 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1094 
1095 	while (*size > min_alloc) {
1096 		kbuf = kmalloc(*size, flags);
1097 		if (kbuf)
1098 			return kbuf;
1099 
1100 		*size >>= 1;
1101 		*size = ALIGN(*size, mtd->writesize);
1102 	}
1103 
1104 	/*
1105 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1106 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1107 	 */
1108 	return kmalloc(*size, GFP_KERNEL);
1109 }
1110 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1111 
1112 #ifdef CONFIG_PROC_FS
1113 
1114 /*====================================================================*/
1115 /* Support for /proc/mtd */
1116 
1117 static int mtd_proc_show(struct seq_file *m, void *v)
1118 {
1119 	struct mtd_info *mtd;
1120 
1121 	seq_puts(m, "dev:    size   erasesize  name\n");
1122 	mutex_lock(&mtd_table_mutex);
1123 	mtd_for_each_device(mtd) {
1124 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1125 			   mtd->index, (unsigned long long)mtd->size,
1126 			   mtd->erasesize, mtd->name);
1127 	}
1128 	mutex_unlock(&mtd_table_mutex);
1129 	return 0;
1130 }
1131 
1132 static int mtd_proc_open(struct inode *inode, struct file *file)
1133 {
1134 	return single_open(file, mtd_proc_show, NULL);
1135 }
1136 
1137 static const struct file_operations mtd_proc_ops = {
1138 	.open		= mtd_proc_open,
1139 	.read		= seq_read,
1140 	.llseek		= seq_lseek,
1141 	.release	= single_release,
1142 };
1143 #endif /* CONFIG_PROC_FS */
1144 
1145 /*====================================================================*/
1146 /* Init code */
1147 
1148 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1149 {
1150 	int ret;
1151 
1152 	ret = bdi_init(bdi);
1153 	if (!ret)
1154 		ret = bdi_register(bdi, NULL, name);
1155 
1156 	if (ret)
1157 		bdi_destroy(bdi);
1158 
1159 	return ret;
1160 }
1161 
1162 static struct proc_dir_entry *proc_mtd;
1163 
1164 static int __init init_mtd(void)
1165 {
1166 	int ret;
1167 
1168 	ret = class_register(&mtd_class);
1169 	if (ret)
1170 		goto err_reg;
1171 
1172 	ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1173 	if (ret)
1174 		goto err_bdi1;
1175 
1176 	ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1177 	if (ret)
1178 		goto err_bdi2;
1179 
1180 	ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1181 	if (ret)
1182 		goto err_bdi3;
1183 
1184 	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1185 
1186 	ret = init_mtdchar();
1187 	if (ret)
1188 		goto out_procfs;
1189 
1190 	return 0;
1191 
1192 out_procfs:
1193 	if (proc_mtd)
1194 		remove_proc_entry("mtd", NULL);
1195 err_bdi3:
1196 	bdi_destroy(&mtd_bdi_ro_mappable);
1197 err_bdi2:
1198 	bdi_destroy(&mtd_bdi_unmappable);
1199 err_bdi1:
1200 	class_unregister(&mtd_class);
1201 err_reg:
1202 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1203 	return ret;
1204 }
1205 
1206 static void __exit cleanup_mtd(void)
1207 {
1208 	cleanup_mtdchar();
1209 	if (proc_mtd)
1210 		remove_proc_entry("mtd", NULL);
1211 	class_unregister(&mtd_class);
1212 	bdi_destroy(&mtd_bdi_unmappable);
1213 	bdi_destroy(&mtd_bdi_ro_mappable);
1214 	bdi_destroy(&mtd_bdi_rw_mappable);
1215 }
1216 
1217 module_init(init_mtd);
1218 module_exit(cleanup_mtd);
1219 
1220 MODULE_LICENSE("GPL");
1221 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1222 MODULE_DESCRIPTION("Core MTD registration and access routines");
1223