1 /* 2 * Core registration and callback routines for MTD 3 * drivers and users. 4 * 5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 6 * Copyright © 2006 Red Hat UK Limited 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/kernel.h> 26 #include <linux/ptrace.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/major.h> 31 #include <linux/fs.h> 32 #include <linux/err.h> 33 #include <linux/ioctl.h> 34 #include <linux/init.h> 35 #include <linux/proc_fs.h> 36 #include <linux/idr.h> 37 #include <linux/backing-dev.h> 38 #include <linux/gfp.h> 39 #include <linux/slab.h> 40 41 #include <linux/mtd/mtd.h> 42 #include <linux/mtd/partitions.h> 43 44 #include "mtdcore.h" 45 46 /* 47 * backing device capabilities for non-mappable devices (such as NAND flash) 48 * - permits private mappings, copies are taken of the data 49 */ 50 static struct backing_dev_info mtd_bdi_unmappable = { 51 .capabilities = BDI_CAP_MAP_COPY, 52 }; 53 54 /* 55 * backing device capabilities for R/O mappable devices (such as ROM) 56 * - permits private mappings, copies are taken of the data 57 * - permits non-writable shared mappings 58 */ 59 static struct backing_dev_info mtd_bdi_ro_mappable = { 60 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT | 61 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP), 62 }; 63 64 /* 65 * backing device capabilities for writable mappable devices (such as RAM) 66 * - permits private mappings, copies are taken of the data 67 * - permits non-writable shared mappings 68 */ 69 static struct backing_dev_info mtd_bdi_rw_mappable = { 70 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT | 71 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP | 72 BDI_CAP_WRITE_MAP), 73 }; 74 75 static int mtd_cls_suspend(struct device *dev, pm_message_t state); 76 static int mtd_cls_resume(struct device *dev); 77 78 static struct class mtd_class = { 79 .name = "mtd", 80 .owner = THIS_MODULE, 81 .suspend = mtd_cls_suspend, 82 .resume = mtd_cls_resume, 83 }; 84 85 static DEFINE_IDR(mtd_idr); 86 87 /* These are exported solely for the purpose of mtd_blkdevs.c. You 88 should not use them for _anything_ else */ 89 DEFINE_MUTEX(mtd_table_mutex); 90 EXPORT_SYMBOL_GPL(mtd_table_mutex); 91 92 struct mtd_info *__mtd_next_device(int i) 93 { 94 return idr_get_next(&mtd_idr, &i); 95 } 96 EXPORT_SYMBOL_GPL(__mtd_next_device); 97 98 static LIST_HEAD(mtd_notifiers); 99 100 101 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 102 103 /* REVISIT once MTD uses the driver model better, whoever allocates 104 * the mtd_info will probably want to use the release() hook... 105 */ 106 static void mtd_release(struct device *dev) 107 { 108 struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev); 109 dev_t index = MTD_DEVT(mtd->index); 110 111 /* remove /dev/mtdXro node if needed */ 112 if (index) 113 device_destroy(&mtd_class, index + 1); 114 } 115 116 static int mtd_cls_suspend(struct device *dev, pm_message_t state) 117 { 118 struct mtd_info *mtd = dev_get_drvdata(dev); 119 120 return mtd ? mtd_suspend(mtd) : 0; 121 } 122 123 static int mtd_cls_resume(struct device *dev) 124 { 125 struct mtd_info *mtd = dev_get_drvdata(dev); 126 127 if (mtd) 128 mtd_resume(mtd); 129 return 0; 130 } 131 132 static ssize_t mtd_type_show(struct device *dev, 133 struct device_attribute *attr, char *buf) 134 { 135 struct mtd_info *mtd = dev_get_drvdata(dev); 136 char *type; 137 138 switch (mtd->type) { 139 case MTD_ABSENT: 140 type = "absent"; 141 break; 142 case MTD_RAM: 143 type = "ram"; 144 break; 145 case MTD_ROM: 146 type = "rom"; 147 break; 148 case MTD_NORFLASH: 149 type = "nor"; 150 break; 151 case MTD_NANDFLASH: 152 type = "nand"; 153 break; 154 case MTD_DATAFLASH: 155 type = "dataflash"; 156 break; 157 case MTD_UBIVOLUME: 158 type = "ubi"; 159 break; 160 default: 161 type = "unknown"; 162 } 163 164 return snprintf(buf, PAGE_SIZE, "%s\n", type); 165 } 166 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 167 168 static ssize_t mtd_flags_show(struct device *dev, 169 struct device_attribute *attr, char *buf) 170 { 171 struct mtd_info *mtd = dev_get_drvdata(dev); 172 173 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 174 175 } 176 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 177 178 static ssize_t mtd_size_show(struct device *dev, 179 struct device_attribute *attr, char *buf) 180 { 181 struct mtd_info *mtd = dev_get_drvdata(dev); 182 183 return snprintf(buf, PAGE_SIZE, "%llu\n", 184 (unsigned long long)mtd->size); 185 186 } 187 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 188 189 static ssize_t mtd_erasesize_show(struct device *dev, 190 struct device_attribute *attr, char *buf) 191 { 192 struct mtd_info *mtd = dev_get_drvdata(dev); 193 194 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 195 196 } 197 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 198 199 static ssize_t mtd_writesize_show(struct device *dev, 200 struct device_attribute *attr, char *buf) 201 { 202 struct mtd_info *mtd = dev_get_drvdata(dev); 203 204 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 205 206 } 207 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 208 209 static ssize_t mtd_subpagesize_show(struct device *dev, 210 struct device_attribute *attr, char *buf) 211 { 212 struct mtd_info *mtd = dev_get_drvdata(dev); 213 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 214 215 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 216 217 } 218 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 219 220 static ssize_t mtd_oobsize_show(struct device *dev, 221 struct device_attribute *attr, char *buf) 222 { 223 struct mtd_info *mtd = dev_get_drvdata(dev); 224 225 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 226 227 } 228 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 229 230 static ssize_t mtd_numeraseregions_show(struct device *dev, 231 struct device_attribute *attr, char *buf) 232 { 233 struct mtd_info *mtd = dev_get_drvdata(dev); 234 235 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 236 237 } 238 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 239 NULL); 240 241 static ssize_t mtd_name_show(struct device *dev, 242 struct device_attribute *attr, char *buf) 243 { 244 struct mtd_info *mtd = dev_get_drvdata(dev); 245 246 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 247 248 } 249 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 250 251 static ssize_t mtd_ecc_strength_show(struct device *dev, 252 struct device_attribute *attr, char *buf) 253 { 254 struct mtd_info *mtd = dev_get_drvdata(dev); 255 256 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 257 } 258 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 259 260 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 261 struct device_attribute *attr, 262 char *buf) 263 { 264 struct mtd_info *mtd = dev_get_drvdata(dev); 265 266 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 267 } 268 269 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 270 struct device_attribute *attr, 271 const char *buf, size_t count) 272 { 273 struct mtd_info *mtd = dev_get_drvdata(dev); 274 unsigned int bitflip_threshold; 275 int retval; 276 277 retval = kstrtouint(buf, 0, &bitflip_threshold); 278 if (retval) 279 return retval; 280 281 mtd->bitflip_threshold = bitflip_threshold; 282 return count; 283 } 284 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 285 mtd_bitflip_threshold_show, 286 mtd_bitflip_threshold_store); 287 288 static struct attribute *mtd_attrs[] = { 289 &dev_attr_type.attr, 290 &dev_attr_flags.attr, 291 &dev_attr_size.attr, 292 &dev_attr_erasesize.attr, 293 &dev_attr_writesize.attr, 294 &dev_attr_subpagesize.attr, 295 &dev_attr_oobsize.attr, 296 &dev_attr_numeraseregions.attr, 297 &dev_attr_name.attr, 298 &dev_attr_ecc_strength.attr, 299 &dev_attr_bitflip_threshold.attr, 300 NULL, 301 }; 302 303 static struct attribute_group mtd_group = { 304 .attrs = mtd_attrs, 305 }; 306 307 static const struct attribute_group *mtd_groups[] = { 308 &mtd_group, 309 NULL, 310 }; 311 312 static struct device_type mtd_devtype = { 313 .name = "mtd", 314 .groups = mtd_groups, 315 .release = mtd_release, 316 }; 317 318 /** 319 * add_mtd_device - register an MTD device 320 * @mtd: pointer to new MTD device info structure 321 * 322 * Add a device to the list of MTD devices present in the system, and 323 * notify each currently active MTD 'user' of its arrival. Returns 324 * zero on success or 1 on failure, which currently will only happen 325 * if there is insufficient memory or a sysfs error. 326 */ 327 328 int add_mtd_device(struct mtd_info *mtd) 329 { 330 struct mtd_notifier *not; 331 int i, error; 332 333 if (!mtd->backing_dev_info) { 334 switch (mtd->type) { 335 case MTD_RAM: 336 mtd->backing_dev_info = &mtd_bdi_rw_mappable; 337 break; 338 case MTD_ROM: 339 mtd->backing_dev_info = &mtd_bdi_ro_mappable; 340 break; 341 default: 342 mtd->backing_dev_info = &mtd_bdi_unmappable; 343 break; 344 } 345 } 346 347 BUG_ON(mtd->writesize == 0); 348 mutex_lock(&mtd_table_mutex); 349 350 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 351 if (i < 0) 352 goto fail_locked; 353 354 mtd->index = i; 355 mtd->usecount = 0; 356 357 /* default value if not set by driver */ 358 if (mtd->bitflip_threshold == 0) 359 mtd->bitflip_threshold = mtd->ecc_strength; 360 361 if (is_power_of_2(mtd->erasesize)) 362 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 363 else 364 mtd->erasesize_shift = 0; 365 366 if (is_power_of_2(mtd->writesize)) 367 mtd->writesize_shift = ffs(mtd->writesize) - 1; 368 else 369 mtd->writesize_shift = 0; 370 371 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 372 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 373 374 /* Some chips always power up locked. Unlock them now */ 375 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 376 error = mtd_unlock(mtd, 0, mtd->size); 377 if (error && error != -EOPNOTSUPP) 378 printk(KERN_WARNING 379 "%s: unlock failed, writes may not work\n", 380 mtd->name); 381 } 382 383 /* Caller should have set dev.parent to match the 384 * physical device. 385 */ 386 mtd->dev.type = &mtd_devtype; 387 mtd->dev.class = &mtd_class; 388 mtd->dev.devt = MTD_DEVT(i); 389 dev_set_name(&mtd->dev, "mtd%d", i); 390 dev_set_drvdata(&mtd->dev, mtd); 391 if (device_register(&mtd->dev) != 0) 392 goto fail_added; 393 394 if (MTD_DEVT(i)) 395 device_create(&mtd_class, mtd->dev.parent, 396 MTD_DEVT(i) + 1, 397 NULL, "mtd%dro", i); 398 399 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 400 /* No need to get a refcount on the module containing 401 the notifier, since we hold the mtd_table_mutex */ 402 list_for_each_entry(not, &mtd_notifiers, list) 403 not->add(mtd); 404 405 mutex_unlock(&mtd_table_mutex); 406 /* We _know_ we aren't being removed, because 407 our caller is still holding us here. So none 408 of this try_ nonsense, and no bitching about it 409 either. :) */ 410 __module_get(THIS_MODULE); 411 return 0; 412 413 fail_added: 414 idr_remove(&mtd_idr, i); 415 fail_locked: 416 mutex_unlock(&mtd_table_mutex); 417 return 1; 418 } 419 420 /** 421 * del_mtd_device - unregister an MTD device 422 * @mtd: pointer to MTD device info structure 423 * 424 * Remove a device from the list of MTD devices present in the system, 425 * and notify each currently active MTD 'user' of its departure. 426 * Returns zero on success or 1 on failure, which currently will happen 427 * if the requested device does not appear to be present in the list. 428 */ 429 430 int del_mtd_device(struct mtd_info *mtd) 431 { 432 int ret; 433 struct mtd_notifier *not; 434 435 mutex_lock(&mtd_table_mutex); 436 437 if (idr_find(&mtd_idr, mtd->index) != mtd) { 438 ret = -ENODEV; 439 goto out_error; 440 } 441 442 /* No need to get a refcount on the module containing 443 the notifier, since we hold the mtd_table_mutex */ 444 list_for_each_entry(not, &mtd_notifiers, list) 445 not->remove(mtd); 446 447 if (mtd->usecount) { 448 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 449 mtd->index, mtd->name, mtd->usecount); 450 ret = -EBUSY; 451 } else { 452 device_unregister(&mtd->dev); 453 454 idr_remove(&mtd_idr, mtd->index); 455 456 module_put(THIS_MODULE); 457 ret = 0; 458 } 459 460 out_error: 461 mutex_unlock(&mtd_table_mutex); 462 return ret; 463 } 464 465 /** 466 * mtd_device_parse_register - parse partitions and register an MTD device. 467 * 468 * @mtd: the MTD device to register 469 * @types: the list of MTD partition probes to try, see 470 * 'parse_mtd_partitions()' for more information 471 * @parser_data: MTD partition parser-specific data 472 * @parts: fallback partition information to register, if parsing fails; 473 * only valid if %nr_parts > %0 474 * @nr_parts: the number of partitions in parts, if zero then the full 475 * MTD device is registered if no partition info is found 476 * 477 * This function aggregates MTD partitions parsing (done by 478 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 479 * basically follows the most common pattern found in many MTD drivers: 480 * 481 * * It first tries to probe partitions on MTD device @mtd using parsers 482 * specified in @types (if @types is %NULL, then the default list of parsers 483 * is used, see 'parse_mtd_partitions()' for more information). If none are 484 * found this functions tries to fallback to information specified in 485 * @parts/@nr_parts. 486 * * If any partitioning info was found, this function registers the found 487 * partitions. 488 * * If no partitions were found this function just registers the MTD device 489 * @mtd and exits. 490 * 491 * Returns zero in case of success and a negative error code in case of failure. 492 */ 493 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 494 struct mtd_part_parser_data *parser_data, 495 const struct mtd_partition *parts, 496 int nr_parts) 497 { 498 int err; 499 struct mtd_partition *real_parts; 500 501 err = parse_mtd_partitions(mtd, types, &real_parts, parser_data); 502 if (err <= 0 && nr_parts && parts) { 503 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts, 504 GFP_KERNEL); 505 if (!real_parts) 506 err = -ENOMEM; 507 else 508 err = nr_parts; 509 } 510 511 if (err > 0) { 512 err = add_mtd_partitions(mtd, real_parts, err); 513 kfree(real_parts); 514 } else if (err == 0) { 515 err = add_mtd_device(mtd); 516 if (err == 1) 517 err = -ENODEV; 518 } 519 520 return err; 521 } 522 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 523 524 /** 525 * mtd_device_unregister - unregister an existing MTD device. 526 * 527 * @master: the MTD device to unregister. This will unregister both the master 528 * and any partitions if registered. 529 */ 530 int mtd_device_unregister(struct mtd_info *master) 531 { 532 int err; 533 534 err = del_mtd_partitions(master); 535 if (err) 536 return err; 537 538 if (!device_is_registered(&master->dev)) 539 return 0; 540 541 return del_mtd_device(master); 542 } 543 EXPORT_SYMBOL_GPL(mtd_device_unregister); 544 545 /** 546 * register_mtd_user - register a 'user' of MTD devices. 547 * @new: pointer to notifier info structure 548 * 549 * Registers a pair of callbacks function to be called upon addition 550 * or removal of MTD devices. Causes the 'add' callback to be immediately 551 * invoked for each MTD device currently present in the system. 552 */ 553 void register_mtd_user (struct mtd_notifier *new) 554 { 555 struct mtd_info *mtd; 556 557 mutex_lock(&mtd_table_mutex); 558 559 list_add(&new->list, &mtd_notifiers); 560 561 __module_get(THIS_MODULE); 562 563 mtd_for_each_device(mtd) 564 new->add(mtd); 565 566 mutex_unlock(&mtd_table_mutex); 567 } 568 EXPORT_SYMBOL_GPL(register_mtd_user); 569 570 /** 571 * unregister_mtd_user - unregister a 'user' of MTD devices. 572 * @old: pointer to notifier info structure 573 * 574 * Removes a callback function pair from the list of 'users' to be 575 * notified upon addition or removal of MTD devices. Causes the 576 * 'remove' callback to be immediately invoked for each MTD device 577 * currently present in the system. 578 */ 579 int unregister_mtd_user (struct mtd_notifier *old) 580 { 581 struct mtd_info *mtd; 582 583 mutex_lock(&mtd_table_mutex); 584 585 module_put(THIS_MODULE); 586 587 mtd_for_each_device(mtd) 588 old->remove(mtd); 589 590 list_del(&old->list); 591 mutex_unlock(&mtd_table_mutex); 592 return 0; 593 } 594 EXPORT_SYMBOL_GPL(unregister_mtd_user); 595 596 /** 597 * get_mtd_device - obtain a validated handle for an MTD device 598 * @mtd: last known address of the required MTD device 599 * @num: internal device number of the required MTD device 600 * 601 * Given a number and NULL address, return the num'th entry in the device 602 * table, if any. Given an address and num == -1, search the device table 603 * for a device with that address and return if it's still present. Given 604 * both, return the num'th driver only if its address matches. Return 605 * error code if not. 606 */ 607 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 608 { 609 struct mtd_info *ret = NULL, *other; 610 int err = -ENODEV; 611 612 mutex_lock(&mtd_table_mutex); 613 614 if (num == -1) { 615 mtd_for_each_device(other) { 616 if (other == mtd) { 617 ret = mtd; 618 break; 619 } 620 } 621 } else if (num >= 0) { 622 ret = idr_find(&mtd_idr, num); 623 if (mtd && mtd != ret) 624 ret = NULL; 625 } 626 627 if (!ret) { 628 ret = ERR_PTR(err); 629 goto out; 630 } 631 632 err = __get_mtd_device(ret); 633 if (err) 634 ret = ERR_PTR(err); 635 out: 636 mutex_unlock(&mtd_table_mutex); 637 return ret; 638 } 639 EXPORT_SYMBOL_GPL(get_mtd_device); 640 641 642 int __get_mtd_device(struct mtd_info *mtd) 643 { 644 int err; 645 646 if (!try_module_get(mtd->owner)) 647 return -ENODEV; 648 649 if (mtd->_get_device) { 650 err = mtd->_get_device(mtd); 651 652 if (err) { 653 module_put(mtd->owner); 654 return err; 655 } 656 } 657 mtd->usecount++; 658 return 0; 659 } 660 EXPORT_SYMBOL_GPL(__get_mtd_device); 661 662 /** 663 * get_mtd_device_nm - obtain a validated handle for an MTD device by 664 * device name 665 * @name: MTD device name to open 666 * 667 * This function returns MTD device description structure in case of 668 * success and an error code in case of failure. 669 */ 670 struct mtd_info *get_mtd_device_nm(const char *name) 671 { 672 int err = -ENODEV; 673 struct mtd_info *mtd = NULL, *other; 674 675 mutex_lock(&mtd_table_mutex); 676 677 mtd_for_each_device(other) { 678 if (!strcmp(name, other->name)) { 679 mtd = other; 680 break; 681 } 682 } 683 684 if (!mtd) 685 goto out_unlock; 686 687 err = __get_mtd_device(mtd); 688 if (err) 689 goto out_unlock; 690 691 mutex_unlock(&mtd_table_mutex); 692 return mtd; 693 694 out_unlock: 695 mutex_unlock(&mtd_table_mutex); 696 return ERR_PTR(err); 697 } 698 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 699 700 void put_mtd_device(struct mtd_info *mtd) 701 { 702 mutex_lock(&mtd_table_mutex); 703 __put_mtd_device(mtd); 704 mutex_unlock(&mtd_table_mutex); 705 706 } 707 EXPORT_SYMBOL_GPL(put_mtd_device); 708 709 void __put_mtd_device(struct mtd_info *mtd) 710 { 711 --mtd->usecount; 712 BUG_ON(mtd->usecount < 0); 713 714 if (mtd->_put_device) 715 mtd->_put_device(mtd); 716 717 module_put(mtd->owner); 718 } 719 EXPORT_SYMBOL_GPL(__put_mtd_device); 720 721 /* 722 * Erase is an asynchronous operation. Device drivers are supposed 723 * to call instr->callback() whenever the operation completes, even 724 * if it completes with a failure. 725 * Callers are supposed to pass a callback function and wait for it 726 * to be called before writing to the block. 727 */ 728 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 729 { 730 if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr) 731 return -EINVAL; 732 if (!(mtd->flags & MTD_WRITEABLE)) 733 return -EROFS; 734 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 735 if (!instr->len) { 736 instr->state = MTD_ERASE_DONE; 737 mtd_erase_callback(instr); 738 return 0; 739 } 740 return mtd->_erase(mtd, instr); 741 } 742 EXPORT_SYMBOL_GPL(mtd_erase); 743 744 /* 745 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 746 */ 747 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 748 void **virt, resource_size_t *phys) 749 { 750 *retlen = 0; 751 *virt = NULL; 752 if (phys) 753 *phys = 0; 754 if (!mtd->_point) 755 return -EOPNOTSUPP; 756 if (from < 0 || from > mtd->size || len > mtd->size - from) 757 return -EINVAL; 758 if (!len) 759 return 0; 760 return mtd->_point(mtd, from, len, retlen, virt, phys); 761 } 762 EXPORT_SYMBOL_GPL(mtd_point); 763 764 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 765 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 766 { 767 if (!mtd->_point) 768 return -EOPNOTSUPP; 769 if (from < 0 || from > mtd->size || len > mtd->size - from) 770 return -EINVAL; 771 if (!len) 772 return 0; 773 return mtd->_unpoint(mtd, from, len); 774 } 775 EXPORT_SYMBOL_GPL(mtd_unpoint); 776 777 /* 778 * Allow NOMMU mmap() to directly map the device (if not NULL) 779 * - return the address to which the offset maps 780 * - return -ENOSYS to indicate refusal to do the mapping 781 */ 782 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 783 unsigned long offset, unsigned long flags) 784 { 785 if (!mtd->_get_unmapped_area) 786 return -EOPNOTSUPP; 787 if (offset > mtd->size || len > mtd->size - offset) 788 return -EINVAL; 789 return mtd->_get_unmapped_area(mtd, len, offset, flags); 790 } 791 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 792 793 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 794 u_char *buf) 795 { 796 int ret_code; 797 *retlen = 0; 798 if (from < 0 || from > mtd->size || len > mtd->size - from) 799 return -EINVAL; 800 if (!len) 801 return 0; 802 803 /* 804 * In the absence of an error, drivers return a non-negative integer 805 * representing the maximum number of bitflips that were corrected on 806 * any one ecc region (if applicable; zero otherwise). 807 */ 808 ret_code = mtd->_read(mtd, from, len, retlen, buf); 809 if (unlikely(ret_code < 0)) 810 return ret_code; 811 if (mtd->ecc_strength == 0) 812 return 0; /* device lacks ecc */ 813 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 814 } 815 EXPORT_SYMBOL_GPL(mtd_read); 816 817 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 818 const u_char *buf) 819 { 820 *retlen = 0; 821 if (to < 0 || to > mtd->size || len > mtd->size - to) 822 return -EINVAL; 823 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE)) 824 return -EROFS; 825 if (!len) 826 return 0; 827 return mtd->_write(mtd, to, len, retlen, buf); 828 } 829 EXPORT_SYMBOL_GPL(mtd_write); 830 831 /* 832 * In blackbox flight recorder like scenarios we want to make successful writes 833 * in interrupt context. panic_write() is only intended to be called when its 834 * known the kernel is about to panic and we need the write to succeed. Since 835 * the kernel is not going to be running for much longer, this function can 836 * break locks and delay to ensure the write succeeds (but not sleep). 837 */ 838 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 839 const u_char *buf) 840 { 841 *retlen = 0; 842 if (!mtd->_panic_write) 843 return -EOPNOTSUPP; 844 if (to < 0 || to > mtd->size || len > mtd->size - to) 845 return -EINVAL; 846 if (!(mtd->flags & MTD_WRITEABLE)) 847 return -EROFS; 848 if (!len) 849 return 0; 850 return mtd->_panic_write(mtd, to, len, retlen, buf); 851 } 852 EXPORT_SYMBOL_GPL(mtd_panic_write); 853 854 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 855 { 856 int ret_code; 857 ops->retlen = ops->oobretlen = 0; 858 if (!mtd->_read_oob) 859 return -EOPNOTSUPP; 860 /* 861 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 862 * similar to mtd->_read(), returning a non-negative integer 863 * representing max bitflips. In other cases, mtd->_read_oob() may 864 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 865 */ 866 ret_code = mtd->_read_oob(mtd, from, ops); 867 if (unlikely(ret_code < 0)) 868 return ret_code; 869 if (mtd->ecc_strength == 0) 870 return 0; /* device lacks ecc */ 871 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 872 } 873 EXPORT_SYMBOL_GPL(mtd_read_oob); 874 875 /* 876 * Method to access the protection register area, present in some flash 877 * devices. The user data is one time programmable but the factory data is read 878 * only. 879 */ 880 int mtd_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf, 881 size_t len) 882 { 883 if (!mtd->_get_fact_prot_info) 884 return -EOPNOTSUPP; 885 if (!len) 886 return 0; 887 return mtd->_get_fact_prot_info(mtd, buf, len); 888 } 889 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 890 891 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 892 size_t *retlen, u_char *buf) 893 { 894 *retlen = 0; 895 if (!mtd->_read_fact_prot_reg) 896 return -EOPNOTSUPP; 897 if (!len) 898 return 0; 899 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); 900 } 901 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 902 903 int mtd_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf, 904 size_t len) 905 { 906 if (!mtd->_get_user_prot_info) 907 return -EOPNOTSUPP; 908 if (!len) 909 return 0; 910 return mtd->_get_user_prot_info(mtd, buf, len); 911 } 912 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 913 914 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 915 size_t *retlen, u_char *buf) 916 { 917 *retlen = 0; 918 if (!mtd->_read_user_prot_reg) 919 return -EOPNOTSUPP; 920 if (!len) 921 return 0; 922 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); 923 } 924 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 925 926 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 927 size_t *retlen, u_char *buf) 928 { 929 *retlen = 0; 930 if (!mtd->_write_user_prot_reg) 931 return -EOPNOTSUPP; 932 if (!len) 933 return 0; 934 return mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); 935 } 936 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 937 938 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 939 { 940 if (!mtd->_lock_user_prot_reg) 941 return -EOPNOTSUPP; 942 if (!len) 943 return 0; 944 return mtd->_lock_user_prot_reg(mtd, from, len); 945 } 946 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 947 948 /* Chip-supported device locking */ 949 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 950 { 951 if (!mtd->_lock) 952 return -EOPNOTSUPP; 953 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) 954 return -EINVAL; 955 if (!len) 956 return 0; 957 return mtd->_lock(mtd, ofs, len); 958 } 959 EXPORT_SYMBOL_GPL(mtd_lock); 960 961 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 962 { 963 if (!mtd->_unlock) 964 return -EOPNOTSUPP; 965 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) 966 return -EINVAL; 967 if (!len) 968 return 0; 969 return mtd->_unlock(mtd, ofs, len); 970 } 971 EXPORT_SYMBOL_GPL(mtd_unlock); 972 973 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 974 { 975 if (!mtd->_is_locked) 976 return -EOPNOTSUPP; 977 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs) 978 return -EINVAL; 979 if (!len) 980 return 0; 981 return mtd->_is_locked(mtd, ofs, len); 982 } 983 EXPORT_SYMBOL_GPL(mtd_is_locked); 984 985 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 986 { 987 if (!mtd->_block_isbad) 988 return 0; 989 if (ofs < 0 || ofs > mtd->size) 990 return -EINVAL; 991 return mtd->_block_isbad(mtd, ofs); 992 } 993 EXPORT_SYMBOL_GPL(mtd_block_isbad); 994 995 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 996 { 997 if (!mtd->_block_markbad) 998 return -EOPNOTSUPP; 999 if (ofs < 0 || ofs > mtd->size) 1000 return -EINVAL; 1001 if (!(mtd->flags & MTD_WRITEABLE)) 1002 return -EROFS; 1003 return mtd->_block_markbad(mtd, ofs); 1004 } 1005 EXPORT_SYMBOL_GPL(mtd_block_markbad); 1006 1007 /* 1008 * default_mtd_writev - the default writev method 1009 * @mtd: mtd device description object pointer 1010 * @vecs: the vectors to write 1011 * @count: count of vectors in @vecs 1012 * @to: the MTD device offset to write to 1013 * @retlen: on exit contains the count of bytes written to the MTD device. 1014 * 1015 * This function returns zero in case of success and a negative error code in 1016 * case of failure. 1017 */ 1018 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1019 unsigned long count, loff_t to, size_t *retlen) 1020 { 1021 unsigned long i; 1022 size_t totlen = 0, thislen; 1023 int ret = 0; 1024 1025 for (i = 0; i < count; i++) { 1026 if (!vecs[i].iov_len) 1027 continue; 1028 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1029 vecs[i].iov_base); 1030 totlen += thislen; 1031 if (ret || thislen != vecs[i].iov_len) 1032 break; 1033 to += vecs[i].iov_len; 1034 } 1035 *retlen = totlen; 1036 return ret; 1037 } 1038 1039 /* 1040 * mtd_writev - the vector-based MTD write method 1041 * @mtd: mtd device description object pointer 1042 * @vecs: the vectors to write 1043 * @count: count of vectors in @vecs 1044 * @to: the MTD device offset to write to 1045 * @retlen: on exit contains the count of bytes written to the MTD device. 1046 * 1047 * This function returns zero in case of success and a negative error code in 1048 * case of failure. 1049 */ 1050 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1051 unsigned long count, loff_t to, size_t *retlen) 1052 { 1053 *retlen = 0; 1054 if (!(mtd->flags & MTD_WRITEABLE)) 1055 return -EROFS; 1056 if (!mtd->_writev) 1057 return default_mtd_writev(mtd, vecs, count, to, retlen); 1058 return mtd->_writev(mtd, vecs, count, to, retlen); 1059 } 1060 EXPORT_SYMBOL_GPL(mtd_writev); 1061 1062 /** 1063 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1064 * @mtd: mtd device description object pointer 1065 * @size: a pointer to the ideal or maximum size of the allocation, points 1066 * to the actual allocation size on success. 1067 * 1068 * This routine attempts to allocate a contiguous kernel buffer up to 1069 * the specified size, backing off the size of the request exponentially 1070 * until the request succeeds or until the allocation size falls below 1071 * the system page size. This attempts to make sure it does not adversely 1072 * impact system performance, so when allocating more than one page, we 1073 * ask the memory allocator to avoid re-trying, swapping, writing back 1074 * or performing I/O. 1075 * 1076 * Note, this function also makes sure that the allocated buffer is aligned to 1077 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1078 * 1079 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1080 * to handle smaller (i.e. degraded) buffer allocations under low- or 1081 * fragmented-memory situations where such reduced allocations, from a 1082 * requested ideal, are allowed. 1083 * 1084 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1085 */ 1086 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1087 { 1088 gfp_t flags = __GFP_NOWARN | __GFP_WAIT | 1089 __GFP_NORETRY | __GFP_NO_KSWAPD; 1090 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1091 void *kbuf; 1092 1093 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1094 1095 while (*size > min_alloc) { 1096 kbuf = kmalloc(*size, flags); 1097 if (kbuf) 1098 return kbuf; 1099 1100 *size >>= 1; 1101 *size = ALIGN(*size, mtd->writesize); 1102 } 1103 1104 /* 1105 * For the last resort allocation allow 'kmalloc()' to do all sorts of 1106 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 1107 */ 1108 return kmalloc(*size, GFP_KERNEL); 1109 } 1110 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 1111 1112 #ifdef CONFIG_PROC_FS 1113 1114 /*====================================================================*/ 1115 /* Support for /proc/mtd */ 1116 1117 static int mtd_proc_show(struct seq_file *m, void *v) 1118 { 1119 struct mtd_info *mtd; 1120 1121 seq_puts(m, "dev: size erasesize name\n"); 1122 mutex_lock(&mtd_table_mutex); 1123 mtd_for_each_device(mtd) { 1124 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 1125 mtd->index, (unsigned long long)mtd->size, 1126 mtd->erasesize, mtd->name); 1127 } 1128 mutex_unlock(&mtd_table_mutex); 1129 return 0; 1130 } 1131 1132 static int mtd_proc_open(struct inode *inode, struct file *file) 1133 { 1134 return single_open(file, mtd_proc_show, NULL); 1135 } 1136 1137 static const struct file_operations mtd_proc_ops = { 1138 .open = mtd_proc_open, 1139 .read = seq_read, 1140 .llseek = seq_lseek, 1141 .release = single_release, 1142 }; 1143 #endif /* CONFIG_PROC_FS */ 1144 1145 /*====================================================================*/ 1146 /* Init code */ 1147 1148 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name) 1149 { 1150 int ret; 1151 1152 ret = bdi_init(bdi); 1153 if (!ret) 1154 ret = bdi_register(bdi, NULL, name); 1155 1156 if (ret) 1157 bdi_destroy(bdi); 1158 1159 return ret; 1160 } 1161 1162 static struct proc_dir_entry *proc_mtd; 1163 1164 static int __init init_mtd(void) 1165 { 1166 int ret; 1167 1168 ret = class_register(&mtd_class); 1169 if (ret) 1170 goto err_reg; 1171 1172 ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap"); 1173 if (ret) 1174 goto err_bdi1; 1175 1176 ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap"); 1177 if (ret) 1178 goto err_bdi2; 1179 1180 ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap"); 1181 if (ret) 1182 goto err_bdi3; 1183 1184 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops); 1185 1186 ret = init_mtdchar(); 1187 if (ret) 1188 goto out_procfs; 1189 1190 return 0; 1191 1192 out_procfs: 1193 if (proc_mtd) 1194 remove_proc_entry("mtd", NULL); 1195 err_bdi3: 1196 bdi_destroy(&mtd_bdi_ro_mappable); 1197 err_bdi2: 1198 bdi_destroy(&mtd_bdi_unmappable); 1199 err_bdi1: 1200 class_unregister(&mtd_class); 1201 err_reg: 1202 pr_err("Error registering mtd class or bdi: %d\n", ret); 1203 return ret; 1204 } 1205 1206 static void __exit cleanup_mtd(void) 1207 { 1208 cleanup_mtdchar(); 1209 if (proc_mtd) 1210 remove_proc_entry("mtd", NULL); 1211 class_unregister(&mtd_class); 1212 bdi_destroy(&mtd_bdi_unmappable); 1213 bdi_destroy(&mtd_bdi_ro_mappable); 1214 bdi_destroy(&mtd_bdi_rw_mappable); 1215 } 1216 1217 module_init(init_mtd); 1218 module_exit(cleanup_mtd); 1219 1220 MODULE_LICENSE("GPL"); 1221 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1222 MODULE_DESCRIPTION("Core MTD registration and access routines"); 1223