1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Core registration and callback routines for MTD 4 * drivers and users. 5 * 6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 7 * Copyright © 2006 Red Hat UK Limited 8 */ 9 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/ptrace.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/timer.h> 16 #include <linux/major.h> 17 #include <linux/fs.h> 18 #include <linux/err.h> 19 #include <linux/ioctl.h> 20 #include <linux/init.h> 21 #include <linux/of.h> 22 #include <linux/proc_fs.h> 23 #include <linux/idr.h> 24 #include <linux/backing-dev.h> 25 #include <linux/gfp.h> 26 #include <linux/slab.h> 27 #include <linux/reboot.h> 28 #include <linux/leds.h> 29 #include <linux/debugfs.h> 30 #include <linux/nvmem-provider.h> 31 #include <linux/root_dev.h> 32 33 #include <linux/mtd/mtd.h> 34 #include <linux/mtd/partitions.h> 35 36 #include "mtdcore.h" 37 38 struct backing_dev_info *mtd_bdi; 39 40 #ifdef CONFIG_PM_SLEEP 41 42 static int mtd_cls_suspend(struct device *dev) 43 { 44 struct mtd_info *mtd = dev_get_drvdata(dev); 45 46 return mtd ? mtd_suspend(mtd) : 0; 47 } 48 49 static int mtd_cls_resume(struct device *dev) 50 { 51 struct mtd_info *mtd = dev_get_drvdata(dev); 52 53 if (mtd) 54 mtd_resume(mtd); 55 return 0; 56 } 57 58 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 59 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 60 #else 61 #define MTD_CLS_PM_OPS NULL 62 #endif 63 64 static struct class mtd_class = { 65 .name = "mtd", 66 .owner = THIS_MODULE, 67 .pm = MTD_CLS_PM_OPS, 68 }; 69 70 static DEFINE_IDR(mtd_idr); 71 72 /* These are exported solely for the purpose of mtd_blkdevs.c. You 73 should not use them for _anything_ else */ 74 DEFINE_MUTEX(mtd_table_mutex); 75 EXPORT_SYMBOL_GPL(mtd_table_mutex); 76 77 struct mtd_info *__mtd_next_device(int i) 78 { 79 return idr_get_next(&mtd_idr, &i); 80 } 81 EXPORT_SYMBOL_GPL(__mtd_next_device); 82 83 static LIST_HEAD(mtd_notifiers); 84 85 86 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 87 88 /* REVISIT once MTD uses the driver model better, whoever allocates 89 * the mtd_info will probably want to use the release() hook... 90 */ 91 static void mtd_release(struct device *dev) 92 { 93 struct mtd_info *mtd = dev_get_drvdata(dev); 94 dev_t index = MTD_DEVT(mtd->index); 95 96 /* remove /dev/mtdXro node */ 97 device_destroy(&mtd_class, index + 1); 98 } 99 100 #define MTD_DEVICE_ATTR_RO(name) \ 101 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL) 102 103 #define MTD_DEVICE_ATTR_RW(name) \ 104 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store) 105 106 static ssize_t mtd_type_show(struct device *dev, 107 struct device_attribute *attr, char *buf) 108 { 109 struct mtd_info *mtd = dev_get_drvdata(dev); 110 char *type; 111 112 switch (mtd->type) { 113 case MTD_ABSENT: 114 type = "absent"; 115 break; 116 case MTD_RAM: 117 type = "ram"; 118 break; 119 case MTD_ROM: 120 type = "rom"; 121 break; 122 case MTD_NORFLASH: 123 type = "nor"; 124 break; 125 case MTD_NANDFLASH: 126 type = "nand"; 127 break; 128 case MTD_DATAFLASH: 129 type = "dataflash"; 130 break; 131 case MTD_UBIVOLUME: 132 type = "ubi"; 133 break; 134 case MTD_MLCNANDFLASH: 135 type = "mlc-nand"; 136 break; 137 default: 138 type = "unknown"; 139 } 140 141 return sysfs_emit(buf, "%s\n", type); 142 } 143 MTD_DEVICE_ATTR_RO(type); 144 145 static ssize_t mtd_flags_show(struct device *dev, 146 struct device_attribute *attr, char *buf) 147 { 148 struct mtd_info *mtd = dev_get_drvdata(dev); 149 150 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags); 151 } 152 MTD_DEVICE_ATTR_RO(flags); 153 154 static ssize_t mtd_size_show(struct device *dev, 155 struct device_attribute *attr, char *buf) 156 { 157 struct mtd_info *mtd = dev_get_drvdata(dev); 158 159 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size); 160 } 161 MTD_DEVICE_ATTR_RO(size); 162 163 static ssize_t mtd_erasesize_show(struct device *dev, 164 struct device_attribute *attr, char *buf) 165 { 166 struct mtd_info *mtd = dev_get_drvdata(dev); 167 168 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize); 169 } 170 MTD_DEVICE_ATTR_RO(erasesize); 171 172 static ssize_t mtd_writesize_show(struct device *dev, 173 struct device_attribute *attr, char *buf) 174 { 175 struct mtd_info *mtd = dev_get_drvdata(dev); 176 177 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize); 178 } 179 MTD_DEVICE_ATTR_RO(writesize); 180 181 static ssize_t mtd_subpagesize_show(struct device *dev, 182 struct device_attribute *attr, char *buf) 183 { 184 struct mtd_info *mtd = dev_get_drvdata(dev); 185 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 186 187 return sysfs_emit(buf, "%u\n", subpagesize); 188 } 189 MTD_DEVICE_ATTR_RO(subpagesize); 190 191 static ssize_t mtd_oobsize_show(struct device *dev, 192 struct device_attribute *attr, char *buf) 193 { 194 struct mtd_info *mtd = dev_get_drvdata(dev); 195 196 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize); 197 } 198 MTD_DEVICE_ATTR_RO(oobsize); 199 200 static ssize_t mtd_oobavail_show(struct device *dev, 201 struct device_attribute *attr, char *buf) 202 { 203 struct mtd_info *mtd = dev_get_drvdata(dev); 204 205 return sysfs_emit(buf, "%u\n", mtd->oobavail); 206 } 207 MTD_DEVICE_ATTR_RO(oobavail); 208 209 static ssize_t mtd_numeraseregions_show(struct device *dev, 210 struct device_attribute *attr, char *buf) 211 { 212 struct mtd_info *mtd = dev_get_drvdata(dev); 213 214 return sysfs_emit(buf, "%u\n", mtd->numeraseregions); 215 } 216 MTD_DEVICE_ATTR_RO(numeraseregions); 217 218 static ssize_t mtd_name_show(struct device *dev, 219 struct device_attribute *attr, char *buf) 220 { 221 struct mtd_info *mtd = dev_get_drvdata(dev); 222 223 return sysfs_emit(buf, "%s\n", mtd->name); 224 } 225 MTD_DEVICE_ATTR_RO(name); 226 227 static ssize_t mtd_ecc_strength_show(struct device *dev, 228 struct device_attribute *attr, char *buf) 229 { 230 struct mtd_info *mtd = dev_get_drvdata(dev); 231 232 return sysfs_emit(buf, "%u\n", mtd->ecc_strength); 233 } 234 MTD_DEVICE_ATTR_RO(ecc_strength); 235 236 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 237 struct device_attribute *attr, 238 char *buf) 239 { 240 struct mtd_info *mtd = dev_get_drvdata(dev); 241 242 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold); 243 } 244 245 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 246 struct device_attribute *attr, 247 const char *buf, size_t count) 248 { 249 struct mtd_info *mtd = dev_get_drvdata(dev); 250 unsigned int bitflip_threshold; 251 int retval; 252 253 retval = kstrtouint(buf, 0, &bitflip_threshold); 254 if (retval) 255 return retval; 256 257 mtd->bitflip_threshold = bitflip_threshold; 258 return count; 259 } 260 MTD_DEVICE_ATTR_RW(bitflip_threshold); 261 262 static ssize_t mtd_ecc_step_size_show(struct device *dev, 263 struct device_attribute *attr, char *buf) 264 { 265 struct mtd_info *mtd = dev_get_drvdata(dev); 266 267 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size); 268 269 } 270 MTD_DEVICE_ATTR_RO(ecc_step_size); 271 272 static ssize_t mtd_corrected_bits_show(struct device *dev, 273 struct device_attribute *attr, char *buf) 274 { 275 struct mtd_info *mtd = dev_get_drvdata(dev); 276 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 277 278 return sysfs_emit(buf, "%u\n", ecc_stats->corrected); 279 } 280 MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */ 281 282 static ssize_t mtd_ecc_failures_show(struct device *dev, 283 struct device_attribute *attr, char *buf) 284 { 285 struct mtd_info *mtd = dev_get_drvdata(dev); 286 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 287 288 return sysfs_emit(buf, "%u\n", ecc_stats->failed); 289 } 290 MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */ 291 292 static ssize_t mtd_bad_blocks_show(struct device *dev, 293 struct device_attribute *attr, char *buf) 294 { 295 struct mtd_info *mtd = dev_get_drvdata(dev); 296 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 297 298 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks); 299 } 300 MTD_DEVICE_ATTR_RO(bad_blocks); 301 302 static ssize_t mtd_bbt_blocks_show(struct device *dev, 303 struct device_attribute *attr, char *buf) 304 { 305 struct mtd_info *mtd = dev_get_drvdata(dev); 306 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 307 308 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks); 309 } 310 MTD_DEVICE_ATTR_RO(bbt_blocks); 311 312 static struct attribute *mtd_attrs[] = { 313 &dev_attr_type.attr, 314 &dev_attr_flags.attr, 315 &dev_attr_size.attr, 316 &dev_attr_erasesize.attr, 317 &dev_attr_writesize.attr, 318 &dev_attr_subpagesize.attr, 319 &dev_attr_oobsize.attr, 320 &dev_attr_oobavail.attr, 321 &dev_attr_numeraseregions.attr, 322 &dev_attr_name.attr, 323 &dev_attr_ecc_strength.attr, 324 &dev_attr_ecc_step_size.attr, 325 &dev_attr_corrected_bits.attr, 326 &dev_attr_ecc_failures.attr, 327 &dev_attr_bad_blocks.attr, 328 &dev_attr_bbt_blocks.attr, 329 &dev_attr_bitflip_threshold.attr, 330 NULL, 331 }; 332 ATTRIBUTE_GROUPS(mtd); 333 334 static const struct device_type mtd_devtype = { 335 .name = "mtd", 336 .groups = mtd_groups, 337 .release = mtd_release, 338 }; 339 340 static bool mtd_expert_analysis_mode; 341 342 #ifdef CONFIG_DEBUG_FS 343 bool mtd_check_expert_analysis_mode(void) 344 { 345 const char *mtd_expert_analysis_warning = 346 "Bad block checks have been entirely disabled.\n" 347 "This is only reserved for post-mortem forensics and debug purposes.\n" 348 "Never enable this mode if you do not know what you are doing!\n"; 349 350 return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning); 351 } 352 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode); 353 #endif 354 355 static struct dentry *dfs_dir_mtd; 356 357 static void mtd_debugfs_populate(struct mtd_info *mtd) 358 { 359 struct device *dev = &mtd->dev; 360 361 if (IS_ERR_OR_NULL(dfs_dir_mtd)) 362 return; 363 364 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd); 365 } 366 367 #ifndef CONFIG_MMU 368 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 369 { 370 switch (mtd->type) { 371 case MTD_RAM: 372 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 373 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 374 case MTD_ROM: 375 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 376 NOMMU_MAP_READ; 377 default: 378 return NOMMU_MAP_COPY; 379 } 380 } 381 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 382 #endif 383 384 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 385 void *cmd) 386 { 387 struct mtd_info *mtd; 388 389 mtd = container_of(n, struct mtd_info, reboot_notifier); 390 mtd->_reboot(mtd); 391 392 return NOTIFY_DONE; 393 } 394 395 /** 396 * mtd_wunit_to_pairing_info - get pairing information of a wunit 397 * @mtd: pointer to new MTD device info structure 398 * @wunit: write unit we are interested in 399 * @info: returned pairing information 400 * 401 * Retrieve pairing information associated to the wunit. 402 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 403 * paired together, and where programming a page may influence the page it is 404 * paired with. 405 * The notion of page is replaced by the term wunit (write-unit) to stay 406 * consistent with the ->writesize field. 407 * 408 * The @wunit argument can be extracted from an absolute offset using 409 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 410 * to @wunit. 411 * 412 * From the pairing info the MTD user can find all the wunits paired with 413 * @wunit using the following loop: 414 * 415 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 416 * info.pair = i; 417 * mtd_pairing_info_to_wunit(mtd, &info); 418 * ... 419 * } 420 */ 421 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 422 struct mtd_pairing_info *info) 423 { 424 struct mtd_info *master = mtd_get_master(mtd); 425 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master); 426 427 if (wunit < 0 || wunit >= npairs) 428 return -EINVAL; 429 430 if (master->pairing && master->pairing->get_info) 431 return master->pairing->get_info(master, wunit, info); 432 433 info->group = 0; 434 info->pair = wunit; 435 436 return 0; 437 } 438 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 439 440 /** 441 * mtd_pairing_info_to_wunit - get wunit from pairing information 442 * @mtd: pointer to new MTD device info structure 443 * @info: pairing information struct 444 * 445 * Returns a positive number representing the wunit associated to the info 446 * struct, or a negative error code. 447 * 448 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 449 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 450 * doc). 451 * 452 * It can also be used to only program the first page of each pair (i.e. 453 * page attached to group 0), which allows one to use an MLC NAND in 454 * software-emulated SLC mode: 455 * 456 * info.group = 0; 457 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 458 * for (info.pair = 0; info.pair < npairs; info.pair++) { 459 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 460 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 461 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 462 * } 463 */ 464 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 465 const struct mtd_pairing_info *info) 466 { 467 struct mtd_info *master = mtd_get_master(mtd); 468 int ngroups = mtd_pairing_groups(master); 469 int npairs = mtd_wunit_per_eb(master) / ngroups; 470 471 if (!info || info->pair < 0 || info->pair >= npairs || 472 info->group < 0 || info->group >= ngroups) 473 return -EINVAL; 474 475 if (master->pairing && master->pairing->get_wunit) 476 return mtd->pairing->get_wunit(master, info); 477 478 return info->pair; 479 } 480 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 481 482 /** 483 * mtd_pairing_groups - get the number of pairing groups 484 * @mtd: pointer to new MTD device info structure 485 * 486 * Returns the number of pairing groups. 487 * 488 * This number is usually equal to the number of bits exposed by a single 489 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 490 * to iterate over all pages of a given pair. 491 */ 492 int mtd_pairing_groups(struct mtd_info *mtd) 493 { 494 struct mtd_info *master = mtd_get_master(mtd); 495 496 if (!master->pairing || !master->pairing->ngroups) 497 return 1; 498 499 return master->pairing->ngroups; 500 } 501 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 502 503 static int mtd_nvmem_reg_read(void *priv, unsigned int offset, 504 void *val, size_t bytes) 505 { 506 struct mtd_info *mtd = priv; 507 size_t retlen; 508 int err; 509 510 err = mtd_read(mtd, offset, bytes, &retlen, val); 511 if (err && err != -EUCLEAN) 512 return err; 513 514 return retlen == bytes ? 0 : -EIO; 515 } 516 517 static int mtd_nvmem_add(struct mtd_info *mtd) 518 { 519 struct device_node *node = mtd_get_of_node(mtd); 520 struct nvmem_config config = {}; 521 522 config.id = -1; 523 config.dev = &mtd->dev; 524 config.name = dev_name(&mtd->dev); 525 config.owner = THIS_MODULE; 526 config.reg_read = mtd_nvmem_reg_read; 527 config.size = mtd->size; 528 config.word_size = 1; 529 config.stride = 1; 530 config.read_only = true; 531 config.root_only = true; 532 config.ignore_wp = true; 533 config.no_of_node = !of_device_is_compatible(node, "nvmem-cells"); 534 config.priv = mtd; 535 536 mtd->nvmem = nvmem_register(&config); 537 if (IS_ERR(mtd->nvmem)) { 538 /* Just ignore if there is no NVMEM support in the kernel */ 539 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) { 540 mtd->nvmem = NULL; 541 } else { 542 dev_err(&mtd->dev, "Failed to register NVMEM device\n"); 543 return PTR_ERR(mtd->nvmem); 544 } 545 } 546 547 return 0; 548 } 549 550 static void mtd_check_of_node(struct mtd_info *mtd) 551 { 552 struct device_node *partitions, *parent_dn, *mtd_dn = NULL; 553 const char *pname, *prefix = "partition-"; 554 int plen, mtd_name_len, offset, prefix_len; 555 556 /* Check if MTD already has a device node */ 557 if (mtd_get_of_node(mtd)) 558 return; 559 560 if (!mtd_is_partition(mtd)) 561 return; 562 563 parent_dn = of_node_get(mtd_get_of_node(mtd->parent)); 564 if (!parent_dn) 565 return; 566 567 if (mtd_is_partition(mtd->parent)) 568 partitions = of_node_get(parent_dn); 569 else 570 partitions = of_get_child_by_name(parent_dn, "partitions"); 571 if (!partitions) 572 goto exit_parent; 573 574 prefix_len = strlen(prefix); 575 mtd_name_len = strlen(mtd->name); 576 577 /* Search if a partition is defined with the same name */ 578 for_each_child_of_node(partitions, mtd_dn) { 579 /* Skip partition with no/wrong prefix */ 580 if (!of_node_name_prefix(mtd_dn, prefix)) 581 continue; 582 583 /* Label have priority. Check that first */ 584 if (!of_property_read_string(mtd_dn, "label", &pname)) { 585 offset = 0; 586 } else { 587 pname = mtd_dn->name; 588 offset = prefix_len; 589 } 590 591 plen = strlen(pname) - offset; 592 if (plen == mtd_name_len && 593 !strncmp(mtd->name, pname + offset, plen)) { 594 mtd_set_of_node(mtd, mtd_dn); 595 break; 596 } 597 } 598 599 of_node_put(partitions); 600 exit_parent: 601 of_node_put(parent_dn); 602 } 603 604 /** 605 * add_mtd_device - register an MTD device 606 * @mtd: pointer to new MTD device info structure 607 * 608 * Add a device to the list of MTD devices present in the system, and 609 * notify each currently active MTD 'user' of its arrival. Returns 610 * zero on success or non-zero on failure. 611 */ 612 613 int add_mtd_device(struct mtd_info *mtd) 614 { 615 struct device_node *np = mtd_get_of_node(mtd); 616 struct mtd_info *master = mtd_get_master(mtd); 617 struct mtd_notifier *not; 618 int i, error, ofidx; 619 620 /* 621 * May occur, for instance, on buggy drivers which call 622 * mtd_device_parse_register() multiple times on the same master MTD, 623 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 624 */ 625 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 626 return -EEXIST; 627 628 BUG_ON(mtd->writesize == 0); 629 630 /* 631 * MTD drivers should implement ->_{write,read}() or 632 * ->_{write,read}_oob(), but not both. 633 */ 634 if (WARN_ON((mtd->_write && mtd->_write_oob) || 635 (mtd->_read && mtd->_read_oob))) 636 return -EINVAL; 637 638 if (WARN_ON((!mtd->erasesize || !master->_erase) && 639 !(mtd->flags & MTD_NO_ERASE))) 640 return -EINVAL; 641 642 /* 643 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the 644 * master is an MLC NAND and has a proper pairing scheme defined. 645 * We also reject masters that implement ->_writev() for now, because 646 * NAND controller drivers don't implement this hook, and adding the 647 * SLC -> MLC address/length conversion to this path is useless if we 648 * don't have a user. 649 */ 650 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION && 651 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH || 652 !master->pairing || master->_writev)) 653 return -EINVAL; 654 655 mutex_lock(&mtd_table_mutex); 656 657 ofidx = -1; 658 if (np) 659 ofidx = of_alias_get_id(np, "mtd"); 660 if (ofidx >= 0) 661 i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL); 662 else 663 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 664 if (i < 0) { 665 error = i; 666 goto fail_locked; 667 } 668 669 mtd->index = i; 670 mtd->usecount = 0; 671 672 /* default value if not set by driver */ 673 if (mtd->bitflip_threshold == 0) 674 mtd->bitflip_threshold = mtd->ecc_strength; 675 676 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 677 int ngroups = mtd_pairing_groups(master); 678 679 mtd->erasesize /= ngroups; 680 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) * 681 mtd->erasesize; 682 } 683 684 if (is_power_of_2(mtd->erasesize)) 685 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 686 else 687 mtd->erasesize_shift = 0; 688 689 if (is_power_of_2(mtd->writesize)) 690 mtd->writesize_shift = ffs(mtd->writesize) - 1; 691 else 692 mtd->writesize_shift = 0; 693 694 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 695 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 696 697 /* Some chips always power up locked. Unlock them now */ 698 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 699 error = mtd_unlock(mtd, 0, mtd->size); 700 if (error && error != -EOPNOTSUPP) 701 printk(KERN_WARNING 702 "%s: unlock failed, writes may not work\n", 703 mtd->name); 704 /* Ignore unlock failures? */ 705 error = 0; 706 } 707 708 /* Caller should have set dev.parent to match the 709 * physical device, if appropriate. 710 */ 711 mtd->dev.type = &mtd_devtype; 712 mtd->dev.class = &mtd_class; 713 mtd->dev.devt = MTD_DEVT(i); 714 dev_set_name(&mtd->dev, "mtd%d", i); 715 dev_set_drvdata(&mtd->dev, mtd); 716 mtd_check_of_node(mtd); 717 of_node_get(mtd_get_of_node(mtd)); 718 error = device_register(&mtd->dev); 719 if (error) { 720 put_device(&mtd->dev); 721 goto fail_added; 722 } 723 724 /* Add the nvmem provider */ 725 error = mtd_nvmem_add(mtd); 726 if (error) 727 goto fail_nvmem_add; 728 729 mtd_debugfs_populate(mtd); 730 731 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 732 "mtd%dro", i); 733 734 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 735 /* No need to get a refcount on the module containing 736 the notifier, since we hold the mtd_table_mutex */ 737 list_for_each_entry(not, &mtd_notifiers, list) 738 not->add(mtd); 739 740 mutex_unlock(&mtd_table_mutex); 741 742 if (of_find_property(mtd_get_of_node(mtd), "linux,rootfs", NULL)) { 743 if (IS_BUILTIN(CONFIG_MTD)) { 744 pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name); 745 ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index); 746 } else { 747 pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n", 748 mtd->index, mtd->name); 749 } 750 } 751 752 /* We _know_ we aren't being removed, because 753 our caller is still holding us here. So none 754 of this try_ nonsense, and no bitching about it 755 either. :) */ 756 __module_get(THIS_MODULE); 757 return 0; 758 759 fail_nvmem_add: 760 device_unregister(&mtd->dev); 761 fail_added: 762 of_node_put(mtd_get_of_node(mtd)); 763 idr_remove(&mtd_idr, i); 764 fail_locked: 765 mutex_unlock(&mtd_table_mutex); 766 return error; 767 } 768 769 /** 770 * del_mtd_device - unregister an MTD device 771 * @mtd: pointer to MTD device info structure 772 * 773 * Remove a device from the list of MTD devices present in the system, 774 * and notify each currently active MTD 'user' of its departure. 775 * Returns zero on success or 1 on failure, which currently will happen 776 * if the requested device does not appear to be present in the list. 777 */ 778 779 int del_mtd_device(struct mtd_info *mtd) 780 { 781 int ret; 782 struct mtd_notifier *not; 783 struct device_node *mtd_of_node; 784 785 mutex_lock(&mtd_table_mutex); 786 787 if (idr_find(&mtd_idr, mtd->index) != mtd) { 788 ret = -ENODEV; 789 goto out_error; 790 } 791 792 /* No need to get a refcount on the module containing 793 the notifier, since we hold the mtd_table_mutex */ 794 list_for_each_entry(not, &mtd_notifiers, list) 795 not->remove(mtd); 796 797 if (mtd->usecount) { 798 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 799 mtd->index, mtd->name, mtd->usecount); 800 ret = -EBUSY; 801 } else { 802 mtd_of_node = mtd_get_of_node(mtd); 803 debugfs_remove_recursive(mtd->dbg.dfs_dir); 804 805 /* Try to remove the NVMEM provider */ 806 nvmem_unregister(mtd->nvmem); 807 808 device_unregister(&mtd->dev); 809 810 /* Clear dev so mtd can be safely re-registered later if desired */ 811 memset(&mtd->dev, 0, sizeof(mtd->dev)); 812 813 idr_remove(&mtd_idr, mtd->index); 814 of_node_put(mtd_of_node); 815 816 module_put(THIS_MODULE); 817 ret = 0; 818 } 819 820 out_error: 821 mutex_unlock(&mtd_table_mutex); 822 return ret; 823 } 824 825 /* 826 * Set a few defaults based on the parent devices, if not provided by the 827 * driver 828 */ 829 static void mtd_set_dev_defaults(struct mtd_info *mtd) 830 { 831 if (mtd->dev.parent) { 832 if (!mtd->owner && mtd->dev.parent->driver) 833 mtd->owner = mtd->dev.parent->driver->owner; 834 if (!mtd->name) 835 mtd->name = dev_name(mtd->dev.parent); 836 } else { 837 pr_debug("mtd device won't show a device symlink in sysfs\n"); 838 } 839 840 INIT_LIST_HEAD(&mtd->partitions); 841 mutex_init(&mtd->master.partitions_lock); 842 mutex_init(&mtd->master.chrdev_lock); 843 } 844 845 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user) 846 { 847 struct otp_info *info; 848 ssize_t size = 0; 849 unsigned int i; 850 size_t retlen; 851 int ret; 852 853 info = kmalloc(PAGE_SIZE, GFP_KERNEL); 854 if (!info) 855 return -ENOMEM; 856 857 if (is_user) 858 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info); 859 else 860 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info); 861 if (ret) 862 goto err; 863 864 for (i = 0; i < retlen / sizeof(*info); i++) 865 size += info[i].length; 866 867 kfree(info); 868 return size; 869 870 err: 871 kfree(info); 872 873 /* ENODATA means there is no OTP region. */ 874 return ret == -ENODATA ? 0 : ret; 875 } 876 877 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd, 878 const char *compatible, 879 int size, 880 nvmem_reg_read_t reg_read) 881 { 882 struct nvmem_device *nvmem = NULL; 883 struct nvmem_config config = {}; 884 struct device_node *np; 885 886 /* DT binding is optional */ 887 np = of_get_compatible_child(mtd->dev.of_node, compatible); 888 889 /* OTP nvmem will be registered on the physical device */ 890 config.dev = mtd->dev.parent; 891 config.name = kasprintf(GFP_KERNEL, "%s-%s", dev_name(&mtd->dev), compatible); 892 config.id = NVMEM_DEVID_NONE; 893 config.owner = THIS_MODULE; 894 config.type = NVMEM_TYPE_OTP; 895 config.root_only = true; 896 config.ignore_wp = true; 897 config.reg_read = reg_read; 898 config.size = size; 899 config.of_node = np; 900 config.priv = mtd; 901 902 nvmem = nvmem_register(&config); 903 /* Just ignore if there is no NVMEM support in the kernel */ 904 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP) 905 nvmem = NULL; 906 907 of_node_put(np); 908 kfree(config.name); 909 910 return nvmem; 911 } 912 913 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset, 914 void *val, size_t bytes) 915 { 916 struct mtd_info *mtd = priv; 917 size_t retlen; 918 int ret; 919 920 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val); 921 if (ret) 922 return ret; 923 924 return retlen == bytes ? 0 : -EIO; 925 } 926 927 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset, 928 void *val, size_t bytes) 929 { 930 struct mtd_info *mtd = priv; 931 size_t retlen; 932 int ret; 933 934 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val); 935 if (ret) 936 return ret; 937 938 return retlen == bytes ? 0 : -EIO; 939 } 940 941 static int mtd_otp_nvmem_add(struct mtd_info *mtd) 942 { 943 struct nvmem_device *nvmem; 944 ssize_t size; 945 int err; 946 947 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) { 948 size = mtd_otp_size(mtd, true); 949 if (size < 0) 950 return size; 951 952 if (size > 0) { 953 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size, 954 mtd_nvmem_user_otp_reg_read); 955 if (IS_ERR(nvmem)) { 956 dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n"); 957 return PTR_ERR(nvmem); 958 } 959 mtd->otp_user_nvmem = nvmem; 960 } 961 } 962 963 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) { 964 size = mtd_otp_size(mtd, false); 965 if (size < 0) { 966 err = size; 967 goto err; 968 } 969 970 if (size > 0) { 971 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size, 972 mtd_nvmem_fact_otp_reg_read); 973 if (IS_ERR(nvmem)) { 974 dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n"); 975 err = PTR_ERR(nvmem); 976 goto err; 977 } 978 mtd->otp_factory_nvmem = nvmem; 979 } 980 } 981 982 return 0; 983 984 err: 985 nvmem_unregister(mtd->otp_user_nvmem); 986 return err; 987 } 988 989 /** 990 * mtd_device_parse_register - parse partitions and register an MTD device. 991 * 992 * @mtd: the MTD device to register 993 * @types: the list of MTD partition probes to try, see 994 * 'parse_mtd_partitions()' for more information 995 * @parser_data: MTD partition parser-specific data 996 * @parts: fallback partition information to register, if parsing fails; 997 * only valid if %nr_parts > %0 998 * @nr_parts: the number of partitions in parts, if zero then the full 999 * MTD device is registered if no partition info is found 1000 * 1001 * This function aggregates MTD partitions parsing (done by 1002 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 1003 * basically follows the most common pattern found in many MTD drivers: 1004 * 1005 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is 1006 * registered first. 1007 * * Then It tries to probe partitions on MTD device @mtd using parsers 1008 * specified in @types (if @types is %NULL, then the default list of parsers 1009 * is used, see 'parse_mtd_partitions()' for more information). If none are 1010 * found this functions tries to fallback to information specified in 1011 * @parts/@nr_parts. 1012 * * If no partitions were found this function just registers the MTD device 1013 * @mtd and exits. 1014 * 1015 * Returns zero in case of success and a negative error code in case of failure. 1016 */ 1017 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 1018 struct mtd_part_parser_data *parser_data, 1019 const struct mtd_partition *parts, 1020 int nr_parts) 1021 { 1022 int ret; 1023 1024 mtd_set_dev_defaults(mtd); 1025 1026 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 1027 ret = add_mtd_device(mtd); 1028 if (ret) 1029 return ret; 1030 } 1031 1032 /* Prefer parsed partitions over driver-provided fallback */ 1033 ret = parse_mtd_partitions(mtd, types, parser_data); 1034 if (ret == -EPROBE_DEFER) 1035 goto out; 1036 1037 if (ret > 0) 1038 ret = 0; 1039 else if (nr_parts) 1040 ret = add_mtd_partitions(mtd, parts, nr_parts); 1041 else if (!device_is_registered(&mtd->dev)) 1042 ret = add_mtd_device(mtd); 1043 else 1044 ret = 0; 1045 1046 if (ret) 1047 goto out; 1048 1049 /* 1050 * FIXME: some drivers unfortunately call this function more than once. 1051 * So we have to check if we've already assigned the reboot notifier. 1052 * 1053 * Generally, we can make multiple calls work for most cases, but it 1054 * does cause problems with parse_mtd_partitions() above (e.g., 1055 * cmdlineparts will register partitions more than once). 1056 */ 1057 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 1058 "MTD already registered\n"); 1059 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 1060 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 1061 register_reboot_notifier(&mtd->reboot_notifier); 1062 } 1063 1064 ret = mtd_otp_nvmem_add(mtd); 1065 1066 out: 1067 if (ret && device_is_registered(&mtd->dev)) 1068 del_mtd_device(mtd); 1069 1070 return ret; 1071 } 1072 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 1073 1074 /** 1075 * mtd_device_unregister - unregister an existing MTD device. 1076 * 1077 * @master: the MTD device to unregister. This will unregister both the master 1078 * and any partitions if registered. 1079 */ 1080 int mtd_device_unregister(struct mtd_info *master) 1081 { 1082 int err; 1083 1084 if (master->_reboot) { 1085 unregister_reboot_notifier(&master->reboot_notifier); 1086 memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier)); 1087 } 1088 1089 nvmem_unregister(master->otp_user_nvmem); 1090 nvmem_unregister(master->otp_factory_nvmem); 1091 1092 err = del_mtd_partitions(master); 1093 if (err) 1094 return err; 1095 1096 if (!device_is_registered(&master->dev)) 1097 return 0; 1098 1099 return del_mtd_device(master); 1100 } 1101 EXPORT_SYMBOL_GPL(mtd_device_unregister); 1102 1103 /** 1104 * register_mtd_user - register a 'user' of MTD devices. 1105 * @new: pointer to notifier info structure 1106 * 1107 * Registers a pair of callbacks function to be called upon addition 1108 * or removal of MTD devices. Causes the 'add' callback to be immediately 1109 * invoked for each MTD device currently present in the system. 1110 */ 1111 void register_mtd_user (struct mtd_notifier *new) 1112 { 1113 struct mtd_info *mtd; 1114 1115 mutex_lock(&mtd_table_mutex); 1116 1117 list_add(&new->list, &mtd_notifiers); 1118 1119 __module_get(THIS_MODULE); 1120 1121 mtd_for_each_device(mtd) 1122 new->add(mtd); 1123 1124 mutex_unlock(&mtd_table_mutex); 1125 } 1126 EXPORT_SYMBOL_GPL(register_mtd_user); 1127 1128 /** 1129 * unregister_mtd_user - unregister a 'user' of MTD devices. 1130 * @old: pointer to notifier info structure 1131 * 1132 * Removes a callback function pair from the list of 'users' to be 1133 * notified upon addition or removal of MTD devices. Causes the 1134 * 'remove' callback to be immediately invoked for each MTD device 1135 * currently present in the system. 1136 */ 1137 int unregister_mtd_user (struct mtd_notifier *old) 1138 { 1139 struct mtd_info *mtd; 1140 1141 mutex_lock(&mtd_table_mutex); 1142 1143 module_put(THIS_MODULE); 1144 1145 mtd_for_each_device(mtd) 1146 old->remove(mtd); 1147 1148 list_del(&old->list); 1149 mutex_unlock(&mtd_table_mutex); 1150 return 0; 1151 } 1152 EXPORT_SYMBOL_GPL(unregister_mtd_user); 1153 1154 /** 1155 * get_mtd_device - obtain a validated handle for an MTD device 1156 * @mtd: last known address of the required MTD device 1157 * @num: internal device number of the required MTD device 1158 * 1159 * Given a number and NULL address, return the num'th entry in the device 1160 * table, if any. Given an address and num == -1, search the device table 1161 * for a device with that address and return if it's still present. Given 1162 * both, return the num'th driver only if its address matches. Return 1163 * error code if not. 1164 */ 1165 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 1166 { 1167 struct mtd_info *ret = NULL, *other; 1168 int err = -ENODEV; 1169 1170 mutex_lock(&mtd_table_mutex); 1171 1172 if (num == -1) { 1173 mtd_for_each_device(other) { 1174 if (other == mtd) { 1175 ret = mtd; 1176 break; 1177 } 1178 } 1179 } else if (num >= 0) { 1180 ret = idr_find(&mtd_idr, num); 1181 if (mtd && mtd != ret) 1182 ret = NULL; 1183 } 1184 1185 if (!ret) { 1186 ret = ERR_PTR(err); 1187 goto out; 1188 } 1189 1190 err = __get_mtd_device(ret); 1191 if (err) 1192 ret = ERR_PTR(err); 1193 out: 1194 mutex_unlock(&mtd_table_mutex); 1195 return ret; 1196 } 1197 EXPORT_SYMBOL_GPL(get_mtd_device); 1198 1199 1200 int __get_mtd_device(struct mtd_info *mtd) 1201 { 1202 struct mtd_info *master = mtd_get_master(mtd); 1203 int err; 1204 1205 if (!try_module_get(master->owner)) 1206 return -ENODEV; 1207 1208 if (master->_get_device) { 1209 err = master->_get_device(mtd); 1210 1211 if (err) { 1212 module_put(master->owner); 1213 return err; 1214 } 1215 } 1216 1217 master->usecount++; 1218 1219 while (mtd->parent) { 1220 mtd->usecount++; 1221 mtd = mtd->parent; 1222 } 1223 1224 return 0; 1225 } 1226 EXPORT_SYMBOL_GPL(__get_mtd_device); 1227 1228 /** 1229 * of_get_mtd_device_by_node - obtain an MTD device associated with a given node 1230 * 1231 * @np: device tree node 1232 */ 1233 struct mtd_info *of_get_mtd_device_by_node(struct device_node *np) 1234 { 1235 struct mtd_info *mtd = NULL; 1236 struct mtd_info *tmp; 1237 int err; 1238 1239 mutex_lock(&mtd_table_mutex); 1240 1241 err = -EPROBE_DEFER; 1242 mtd_for_each_device(tmp) { 1243 if (mtd_get_of_node(tmp) == np) { 1244 mtd = tmp; 1245 err = __get_mtd_device(mtd); 1246 break; 1247 } 1248 } 1249 1250 mutex_unlock(&mtd_table_mutex); 1251 1252 return err ? ERR_PTR(err) : mtd; 1253 } 1254 EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node); 1255 1256 /** 1257 * get_mtd_device_nm - obtain a validated handle for an MTD device by 1258 * device name 1259 * @name: MTD device name to open 1260 * 1261 * This function returns MTD device description structure in case of 1262 * success and an error code in case of failure. 1263 */ 1264 struct mtd_info *get_mtd_device_nm(const char *name) 1265 { 1266 int err = -ENODEV; 1267 struct mtd_info *mtd = NULL, *other; 1268 1269 mutex_lock(&mtd_table_mutex); 1270 1271 mtd_for_each_device(other) { 1272 if (!strcmp(name, other->name)) { 1273 mtd = other; 1274 break; 1275 } 1276 } 1277 1278 if (!mtd) 1279 goto out_unlock; 1280 1281 err = __get_mtd_device(mtd); 1282 if (err) 1283 goto out_unlock; 1284 1285 mutex_unlock(&mtd_table_mutex); 1286 return mtd; 1287 1288 out_unlock: 1289 mutex_unlock(&mtd_table_mutex); 1290 return ERR_PTR(err); 1291 } 1292 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 1293 1294 void put_mtd_device(struct mtd_info *mtd) 1295 { 1296 mutex_lock(&mtd_table_mutex); 1297 __put_mtd_device(mtd); 1298 mutex_unlock(&mtd_table_mutex); 1299 1300 } 1301 EXPORT_SYMBOL_GPL(put_mtd_device); 1302 1303 void __put_mtd_device(struct mtd_info *mtd) 1304 { 1305 struct mtd_info *master = mtd_get_master(mtd); 1306 1307 while (mtd->parent) { 1308 --mtd->usecount; 1309 BUG_ON(mtd->usecount < 0); 1310 mtd = mtd->parent; 1311 } 1312 1313 master->usecount--; 1314 1315 if (master->_put_device) 1316 master->_put_device(master); 1317 1318 module_put(master->owner); 1319 } 1320 EXPORT_SYMBOL_GPL(__put_mtd_device); 1321 1322 /* 1323 * Erase is an synchronous operation. Device drivers are epected to return a 1324 * negative error code if the operation failed and update instr->fail_addr 1325 * to point the portion that was not properly erased. 1326 */ 1327 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 1328 { 1329 struct mtd_info *master = mtd_get_master(mtd); 1330 u64 mst_ofs = mtd_get_master_ofs(mtd, 0); 1331 struct erase_info adjinstr; 1332 int ret; 1333 1334 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 1335 adjinstr = *instr; 1336 1337 if (!mtd->erasesize || !master->_erase) 1338 return -ENOTSUPP; 1339 1340 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 1341 return -EINVAL; 1342 if (!(mtd->flags & MTD_WRITEABLE)) 1343 return -EROFS; 1344 1345 if (!instr->len) 1346 return 0; 1347 1348 ledtrig_mtd_activity(); 1349 1350 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1351 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) * 1352 master->erasesize; 1353 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) * 1354 master->erasesize) - 1355 adjinstr.addr; 1356 } 1357 1358 adjinstr.addr += mst_ofs; 1359 1360 ret = master->_erase(master, &adjinstr); 1361 1362 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) { 1363 instr->fail_addr = adjinstr.fail_addr - mst_ofs; 1364 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1365 instr->fail_addr = mtd_div_by_eb(instr->fail_addr, 1366 master); 1367 instr->fail_addr *= mtd->erasesize; 1368 } 1369 } 1370 1371 return ret; 1372 } 1373 EXPORT_SYMBOL_GPL(mtd_erase); 1374 1375 /* 1376 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 1377 */ 1378 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1379 void **virt, resource_size_t *phys) 1380 { 1381 struct mtd_info *master = mtd_get_master(mtd); 1382 1383 *retlen = 0; 1384 *virt = NULL; 1385 if (phys) 1386 *phys = 0; 1387 if (!master->_point) 1388 return -EOPNOTSUPP; 1389 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1390 return -EINVAL; 1391 if (!len) 1392 return 0; 1393 1394 from = mtd_get_master_ofs(mtd, from); 1395 return master->_point(master, from, len, retlen, virt, phys); 1396 } 1397 EXPORT_SYMBOL_GPL(mtd_point); 1398 1399 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 1400 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1401 { 1402 struct mtd_info *master = mtd_get_master(mtd); 1403 1404 if (!master->_unpoint) 1405 return -EOPNOTSUPP; 1406 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1407 return -EINVAL; 1408 if (!len) 1409 return 0; 1410 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len); 1411 } 1412 EXPORT_SYMBOL_GPL(mtd_unpoint); 1413 1414 /* 1415 * Allow NOMMU mmap() to directly map the device (if not NULL) 1416 * - return the address to which the offset maps 1417 * - return -ENOSYS to indicate refusal to do the mapping 1418 */ 1419 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1420 unsigned long offset, unsigned long flags) 1421 { 1422 size_t retlen; 1423 void *virt; 1424 int ret; 1425 1426 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); 1427 if (ret) 1428 return ret; 1429 if (retlen != len) { 1430 mtd_unpoint(mtd, offset, retlen); 1431 return -ENOSYS; 1432 } 1433 return (unsigned long)virt; 1434 } 1435 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1436 1437 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master, 1438 const struct mtd_ecc_stats *old_stats) 1439 { 1440 struct mtd_ecc_stats diff; 1441 1442 if (master == mtd) 1443 return; 1444 1445 diff = master->ecc_stats; 1446 diff.failed -= old_stats->failed; 1447 diff.corrected -= old_stats->corrected; 1448 1449 while (mtd->parent) { 1450 mtd->ecc_stats.failed += diff.failed; 1451 mtd->ecc_stats.corrected += diff.corrected; 1452 mtd = mtd->parent; 1453 } 1454 } 1455 1456 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1457 u_char *buf) 1458 { 1459 struct mtd_oob_ops ops = { 1460 .len = len, 1461 .datbuf = buf, 1462 }; 1463 int ret; 1464 1465 ret = mtd_read_oob(mtd, from, &ops); 1466 *retlen = ops.retlen; 1467 1468 return ret; 1469 } 1470 EXPORT_SYMBOL_GPL(mtd_read); 1471 1472 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1473 const u_char *buf) 1474 { 1475 struct mtd_oob_ops ops = { 1476 .len = len, 1477 .datbuf = (u8 *)buf, 1478 }; 1479 int ret; 1480 1481 ret = mtd_write_oob(mtd, to, &ops); 1482 *retlen = ops.retlen; 1483 1484 return ret; 1485 } 1486 EXPORT_SYMBOL_GPL(mtd_write); 1487 1488 /* 1489 * In blackbox flight recorder like scenarios we want to make successful writes 1490 * in interrupt context. panic_write() is only intended to be called when its 1491 * known the kernel is about to panic and we need the write to succeed. Since 1492 * the kernel is not going to be running for much longer, this function can 1493 * break locks and delay to ensure the write succeeds (but not sleep). 1494 */ 1495 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1496 const u_char *buf) 1497 { 1498 struct mtd_info *master = mtd_get_master(mtd); 1499 1500 *retlen = 0; 1501 if (!master->_panic_write) 1502 return -EOPNOTSUPP; 1503 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1504 return -EINVAL; 1505 if (!(mtd->flags & MTD_WRITEABLE)) 1506 return -EROFS; 1507 if (!len) 1508 return 0; 1509 if (!master->oops_panic_write) 1510 master->oops_panic_write = true; 1511 1512 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len, 1513 retlen, buf); 1514 } 1515 EXPORT_SYMBOL_GPL(mtd_panic_write); 1516 1517 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1518 struct mtd_oob_ops *ops) 1519 { 1520 /* 1521 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1522 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1523 * this case. 1524 */ 1525 if (!ops->datbuf) 1526 ops->len = 0; 1527 1528 if (!ops->oobbuf) 1529 ops->ooblen = 0; 1530 1531 if (offs < 0 || offs + ops->len > mtd->size) 1532 return -EINVAL; 1533 1534 if (ops->ooblen) { 1535 size_t maxooblen; 1536 1537 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1538 return -EINVAL; 1539 1540 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) - 1541 mtd_div_by_ws(offs, mtd)) * 1542 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1543 if (ops->ooblen > maxooblen) 1544 return -EINVAL; 1545 } 1546 1547 return 0; 1548 } 1549 1550 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from, 1551 struct mtd_oob_ops *ops) 1552 { 1553 struct mtd_info *master = mtd_get_master(mtd); 1554 int ret; 1555 1556 from = mtd_get_master_ofs(mtd, from); 1557 if (master->_read_oob) 1558 ret = master->_read_oob(master, from, ops); 1559 else 1560 ret = master->_read(master, from, ops->len, &ops->retlen, 1561 ops->datbuf); 1562 1563 return ret; 1564 } 1565 1566 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to, 1567 struct mtd_oob_ops *ops) 1568 { 1569 struct mtd_info *master = mtd_get_master(mtd); 1570 int ret; 1571 1572 to = mtd_get_master_ofs(mtd, to); 1573 if (master->_write_oob) 1574 ret = master->_write_oob(master, to, ops); 1575 else 1576 ret = master->_write(master, to, ops->len, &ops->retlen, 1577 ops->datbuf); 1578 1579 return ret; 1580 } 1581 1582 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read, 1583 struct mtd_oob_ops *ops) 1584 { 1585 struct mtd_info *master = mtd_get_master(mtd); 1586 int ngroups = mtd_pairing_groups(master); 1587 int npairs = mtd_wunit_per_eb(master) / ngroups; 1588 struct mtd_oob_ops adjops = *ops; 1589 unsigned int wunit, oobavail; 1590 struct mtd_pairing_info info; 1591 int max_bitflips = 0; 1592 u32 ebofs, pageofs; 1593 loff_t base, pos; 1594 1595 ebofs = mtd_mod_by_eb(start, mtd); 1596 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize; 1597 info.group = 0; 1598 info.pair = mtd_div_by_ws(ebofs, mtd); 1599 pageofs = mtd_mod_by_ws(ebofs, mtd); 1600 oobavail = mtd_oobavail(mtd, ops); 1601 1602 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) { 1603 int ret; 1604 1605 if (info.pair >= npairs) { 1606 info.pair = 0; 1607 base += master->erasesize; 1608 } 1609 1610 wunit = mtd_pairing_info_to_wunit(master, &info); 1611 pos = mtd_wunit_to_offset(mtd, base, wunit); 1612 1613 adjops.len = ops->len - ops->retlen; 1614 if (adjops.len > mtd->writesize - pageofs) 1615 adjops.len = mtd->writesize - pageofs; 1616 1617 adjops.ooblen = ops->ooblen - ops->oobretlen; 1618 if (adjops.ooblen > oobavail - adjops.ooboffs) 1619 adjops.ooblen = oobavail - adjops.ooboffs; 1620 1621 if (read) { 1622 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops); 1623 if (ret > 0) 1624 max_bitflips = max(max_bitflips, ret); 1625 } else { 1626 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops); 1627 } 1628 1629 if (ret < 0) 1630 return ret; 1631 1632 max_bitflips = max(max_bitflips, ret); 1633 ops->retlen += adjops.retlen; 1634 ops->oobretlen += adjops.oobretlen; 1635 adjops.datbuf += adjops.retlen; 1636 adjops.oobbuf += adjops.oobretlen; 1637 adjops.ooboffs = 0; 1638 pageofs = 0; 1639 info.pair++; 1640 } 1641 1642 return max_bitflips; 1643 } 1644 1645 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1646 { 1647 struct mtd_info *master = mtd_get_master(mtd); 1648 struct mtd_ecc_stats old_stats = master->ecc_stats; 1649 int ret_code; 1650 1651 ops->retlen = ops->oobretlen = 0; 1652 1653 ret_code = mtd_check_oob_ops(mtd, from, ops); 1654 if (ret_code) 1655 return ret_code; 1656 1657 ledtrig_mtd_activity(); 1658 1659 /* Check the validity of a potential fallback on mtd->_read */ 1660 if (!master->_read_oob && (!master->_read || ops->oobbuf)) 1661 return -EOPNOTSUPP; 1662 1663 if (ops->stats) 1664 memset(ops->stats, 0, sizeof(*ops->stats)); 1665 1666 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1667 ret_code = mtd_io_emulated_slc(mtd, from, true, ops); 1668 else 1669 ret_code = mtd_read_oob_std(mtd, from, ops); 1670 1671 mtd_update_ecc_stats(mtd, master, &old_stats); 1672 1673 /* 1674 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1675 * similar to mtd->_read(), returning a non-negative integer 1676 * representing max bitflips. In other cases, mtd->_read_oob() may 1677 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1678 */ 1679 if (unlikely(ret_code < 0)) 1680 return ret_code; 1681 if (mtd->ecc_strength == 0) 1682 return 0; /* device lacks ecc */ 1683 if (ops->stats) 1684 ops->stats->max_bitflips = ret_code; 1685 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1686 } 1687 EXPORT_SYMBOL_GPL(mtd_read_oob); 1688 1689 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1690 struct mtd_oob_ops *ops) 1691 { 1692 struct mtd_info *master = mtd_get_master(mtd); 1693 int ret; 1694 1695 ops->retlen = ops->oobretlen = 0; 1696 1697 if (!(mtd->flags & MTD_WRITEABLE)) 1698 return -EROFS; 1699 1700 ret = mtd_check_oob_ops(mtd, to, ops); 1701 if (ret) 1702 return ret; 1703 1704 ledtrig_mtd_activity(); 1705 1706 /* Check the validity of a potential fallback on mtd->_write */ 1707 if (!master->_write_oob && (!master->_write || ops->oobbuf)) 1708 return -EOPNOTSUPP; 1709 1710 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1711 return mtd_io_emulated_slc(mtd, to, false, ops); 1712 1713 return mtd_write_oob_std(mtd, to, ops); 1714 } 1715 EXPORT_SYMBOL_GPL(mtd_write_oob); 1716 1717 /** 1718 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1719 * @mtd: MTD device structure 1720 * @section: ECC section. Depending on the layout you may have all the ECC 1721 * bytes stored in a single contiguous section, or one section 1722 * per ECC chunk (and sometime several sections for a single ECC 1723 * ECC chunk) 1724 * @oobecc: OOB region struct filled with the appropriate ECC position 1725 * information 1726 * 1727 * This function returns ECC section information in the OOB area. If you want 1728 * to get all the ECC bytes information, then you should call 1729 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1730 * 1731 * Returns zero on success, a negative error code otherwise. 1732 */ 1733 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1734 struct mtd_oob_region *oobecc) 1735 { 1736 struct mtd_info *master = mtd_get_master(mtd); 1737 1738 memset(oobecc, 0, sizeof(*oobecc)); 1739 1740 if (!master || section < 0) 1741 return -EINVAL; 1742 1743 if (!master->ooblayout || !master->ooblayout->ecc) 1744 return -ENOTSUPP; 1745 1746 return master->ooblayout->ecc(master, section, oobecc); 1747 } 1748 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1749 1750 /** 1751 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1752 * section 1753 * @mtd: MTD device structure 1754 * @section: Free section you are interested in. Depending on the layout 1755 * you may have all the free bytes stored in a single contiguous 1756 * section, or one section per ECC chunk plus an extra section 1757 * for the remaining bytes (or other funky layout). 1758 * @oobfree: OOB region struct filled with the appropriate free position 1759 * information 1760 * 1761 * This function returns free bytes position in the OOB area. If you want 1762 * to get all the free bytes information, then you should call 1763 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1764 * 1765 * Returns zero on success, a negative error code otherwise. 1766 */ 1767 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1768 struct mtd_oob_region *oobfree) 1769 { 1770 struct mtd_info *master = mtd_get_master(mtd); 1771 1772 memset(oobfree, 0, sizeof(*oobfree)); 1773 1774 if (!master || section < 0) 1775 return -EINVAL; 1776 1777 if (!master->ooblayout || !master->ooblayout->free) 1778 return -ENOTSUPP; 1779 1780 return master->ooblayout->free(master, section, oobfree); 1781 } 1782 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1783 1784 /** 1785 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1786 * @mtd: mtd info structure 1787 * @byte: the byte we are searching for 1788 * @sectionp: pointer where the section id will be stored 1789 * @oobregion: used to retrieve the ECC position 1790 * @iter: iterator function. Should be either mtd_ooblayout_free or 1791 * mtd_ooblayout_ecc depending on the region type you're searching for 1792 * 1793 * This function returns the section id and oobregion information of a 1794 * specific byte. For example, say you want to know where the 4th ECC byte is 1795 * stored, you'll use: 1796 * 1797 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1798 * 1799 * Returns zero on success, a negative error code otherwise. 1800 */ 1801 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1802 int *sectionp, struct mtd_oob_region *oobregion, 1803 int (*iter)(struct mtd_info *, 1804 int section, 1805 struct mtd_oob_region *oobregion)) 1806 { 1807 int pos = 0, ret, section = 0; 1808 1809 memset(oobregion, 0, sizeof(*oobregion)); 1810 1811 while (1) { 1812 ret = iter(mtd, section, oobregion); 1813 if (ret) 1814 return ret; 1815 1816 if (pos + oobregion->length > byte) 1817 break; 1818 1819 pos += oobregion->length; 1820 section++; 1821 } 1822 1823 /* 1824 * Adjust region info to make it start at the beginning at the 1825 * 'start' ECC byte. 1826 */ 1827 oobregion->offset += byte - pos; 1828 oobregion->length -= byte - pos; 1829 *sectionp = section; 1830 1831 return 0; 1832 } 1833 1834 /** 1835 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1836 * ECC byte 1837 * @mtd: mtd info structure 1838 * @eccbyte: the byte we are searching for 1839 * @section: pointer where the section id will be stored 1840 * @oobregion: OOB region information 1841 * 1842 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1843 * byte. 1844 * 1845 * Returns zero on success, a negative error code otherwise. 1846 */ 1847 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1848 int *section, 1849 struct mtd_oob_region *oobregion) 1850 { 1851 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1852 mtd_ooblayout_ecc); 1853 } 1854 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1855 1856 /** 1857 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1858 * @mtd: mtd info structure 1859 * @buf: destination buffer to store OOB bytes 1860 * @oobbuf: OOB buffer 1861 * @start: first byte to retrieve 1862 * @nbytes: number of bytes to retrieve 1863 * @iter: section iterator 1864 * 1865 * Extract bytes attached to a specific category (ECC or free) 1866 * from the OOB buffer and copy them into buf. 1867 * 1868 * Returns zero on success, a negative error code otherwise. 1869 */ 1870 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1871 const u8 *oobbuf, int start, int nbytes, 1872 int (*iter)(struct mtd_info *, 1873 int section, 1874 struct mtd_oob_region *oobregion)) 1875 { 1876 struct mtd_oob_region oobregion; 1877 int section, ret; 1878 1879 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1880 &oobregion, iter); 1881 1882 while (!ret) { 1883 int cnt; 1884 1885 cnt = min_t(int, nbytes, oobregion.length); 1886 memcpy(buf, oobbuf + oobregion.offset, cnt); 1887 buf += cnt; 1888 nbytes -= cnt; 1889 1890 if (!nbytes) 1891 break; 1892 1893 ret = iter(mtd, ++section, &oobregion); 1894 } 1895 1896 return ret; 1897 } 1898 1899 /** 1900 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1901 * @mtd: mtd info structure 1902 * @buf: source buffer to get OOB bytes from 1903 * @oobbuf: OOB buffer 1904 * @start: first OOB byte to set 1905 * @nbytes: number of OOB bytes to set 1906 * @iter: section iterator 1907 * 1908 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1909 * is selected by passing the appropriate iterator. 1910 * 1911 * Returns zero on success, a negative error code otherwise. 1912 */ 1913 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1914 u8 *oobbuf, int start, int nbytes, 1915 int (*iter)(struct mtd_info *, 1916 int section, 1917 struct mtd_oob_region *oobregion)) 1918 { 1919 struct mtd_oob_region oobregion; 1920 int section, ret; 1921 1922 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1923 &oobregion, iter); 1924 1925 while (!ret) { 1926 int cnt; 1927 1928 cnt = min_t(int, nbytes, oobregion.length); 1929 memcpy(oobbuf + oobregion.offset, buf, cnt); 1930 buf += cnt; 1931 nbytes -= cnt; 1932 1933 if (!nbytes) 1934 break; 1935 1936 ret = iter(mtd, ++section, &oobregion); 1937 } 1938 1939 return ret; 1940 } 1941 1942 /** 1943 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1944 * @mtd: mtd info structure 1945 * @iter: category iterator 1946 * 1947 * Count the number of bytes in a given category. 1948 * 1949 * Returns a positive value on success, a negative error code otherwise. 1950 */ 1951 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1952 int (*iter)(struct mtd_info *, 1953 int section, 1954 struct mtd_oob_region *oobregion)) 1955 { 1956 struct mtd_oob_region oobregion; 1957 int section = 0, ret, nbytes = 0; 1958 1959 while (1) { 1960 ret = iter(mtd, section++, &oobregion); 1961 if (ret) { 1962 if (ret == -ERANGE) 1963 ret = nbytes; 1964 break; 1965 } 1966 1967 nbytes += oobregion.length; 1968 } 1969 1970 return ret; 1971 } 1972 1973 /** 1974 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1975 * @mtd: mtd info structure 1976 * @eccbuf: destination buffer to store ECC bytes 1977 * @oobbuf: OOB buffer 1978 * @start: first ECC byte to retrieve 1979 * @nbytes: number of ECC bytes to retrieve 1980 * 1981 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1982 * 1983 * Returns zero on success, a negative error code otherwise. 1984 */ 1985 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1986 const u8 *oobbuf, int start, int nbytes) 1987 { 1988 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1989 mtd_ooblayout_ecc); 1990 } 1991 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1992 1993 /** 1994 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1995 * @mtd: mtd info structure 1996 * @eccbuf: source buffer to get ECC bytes from 1997 * @oobbuf: OOB buffer 1998 * @start: first ECC byte to set 1999 * @nbytes: number of ECC bytes to set 2000 * 2001 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 2002 * 2003 * Returns zero on success, a negative error code otherwise. 2004 */ 2005 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 2006 u8 *oobbuf, int start, int nbytes) 2007 { 2008 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 2009 mtd_ooblayout_ecc); 2010 } 2011 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 2012 2013 /** 2014 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 2015 * @mtd: mtd info structure 2016 * @databuf: destination buffer to store ECC bytes 2017 * @oobbuf: OOB buffer 2018 * @start: first ECC byte to retrieve 2019 * @nbytes: number of ECC bytes to retrieve 2020 * 2021 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 2022 * 2023 * Returns zero on success, a negative error code otherwise. 2024 */ 2025 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 2026 const u8 *oobbuf, int start, int nbytes) 2027 { 2028 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 2029 mtd_ooblayout_free); 2030 } 2031 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 2032 2033 /** 2034 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer 2035 * @mtd: mtd info structure 2036 * @databuf: source buffer to get data bytes from 2037 * @oobbuf: OOB buffer 2038 * @start: first ECC byte to set 2039 * @nbytes: number of ECC bytes to set 2040 * 2041 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes. 2042 * 2043 * Returns zero on success, a negative error code otherwise. 2044 */ 2045 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 2046 u8 *oobbuf, int start, int nbytes) 2047 { 2048 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 2049 mtd_ooblayout_free); 2050 } 2051 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 2052 2053 /** 2054 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 2055 * @mtd: mtd info structure 2056 * 2057 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 2058 * 2059 * Returns zero on success, a negative error code otherwise. 2060 */ 2061 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 2062 { 2063 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 2064 } 2065 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 2066 2067 /** 2068 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB 2069 * @mtd: mtd info structure 2070 * 2071 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 2072 * 2073 * Returns zero on success, a negative error code otherwise. 2074 */ 2075 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 2076 { 2077 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 2078 } 2079 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 2080 2081 /* 2082 * Method to access the protection register area, present in some flash 2083 * devices. The user data is one time programmable but the factory data is read 2084 * only. 2085 */ 2086 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 2087 struct otp_info *buf) 2088 { 2089 struct mtd_info *master = mtd_get_master(mtd); 2090 2091 if (!master->_get_fact_prot_info) 2092 return -EOPNOTSUPP; 2093 if (!len) 2094 return 0; 2095 return master->_get_fact_prot_info(master, len, retlen, buf); 2096 } 2097 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 2098 2099 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 2100 size_t *retlen, u_char *buf) 2101 { 2102 struct mtd_info *master = mtd_get_master(mtd); 2103 2104 *retlen = 0; 2105 if (!master->_read_fact_prot_reg) 2106 return -EOPNOTSUPP; 2107 if (!len) 2108 return 0; 2109 return master->_read_fact_prot_reg(master, from, len, retlen, buf); 2110 } 2111 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 2112 2113 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 2114 struct otp_info *buf) 2115 { 2116 struct mtd_info *master = mtd_get_master(mtd); 2117 2118 if (!master->_get_user_prot_info) 2119 return -EOPNOTSUPP; 2120 if (!len) 2121 return 0; 2122 return master->_get_user_prot_info(master, len, retlen, buf); 2123 } 2124 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 2125 2126 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 2127 size_t *retlen, u_char *buf) 2128 { 2129 struct mtd_info *master = mtd_get_master(mtd); 2130 2131 *retlen = 0; 2132 if (!master->_read_user_prot_reg) 2133 return -EOPNOTSUPP; 2134 if (!len) 2135 return 0; 2136 return master->_read_user_prot_reg(master, from, len, retlen, buf); 2137 } 2138 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 2139 2140 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 2141 size_t *retlen, const u_char *buf) 2142 { 2143 struct mtd_info *master = mtd_get_master(mtd); 2144 int ret; 2145 2146 *retlen = 0; 2147 if (!master->_write_user_prot_reg) 2148 return -EOPNOTSUPP; 2149 if (!len) 2150 return 0; 2151 ret = master->_write_user_prot_reg(master, to, len, retlen, buf); 2152 if (ret) 2153 return ret; 2154 2155 /* 2156 * If no data could be written at all, we are out of memory and 2157 * must return -ENOSPC. 2158 */ 2159 return (*retlen) ? 0 : -ENOSPC; 2160 } 2161 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 2162 2163 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2164 { 2165 struct mtd_info *master = mtd_get_master(mtd); 2166 2167 if (!master->_lock_user_prot_reg) 2168 return -EOPNOTSUPP; 2169 if (!len) 2170 return 0; 2171 return master->_lock_user_prot_reg(master, from, len); 2172 } 2173 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 2174 2175 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2176 { 2177 struct mtd_info *master = mtd_get_master(mtd); 2178 2179 if (!master->_erase_user_prot_reg) 2180 return -EOPNOTSUPP; 2181 if (!len) 2182 return 0; 2183 return master->_erase_user_prot_reg(master, from, len); 2184 } 2185 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg); 2186 2187 /* Chip-supported device locking */ 2188 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2189 { 2190 struct mtd_info *master = mtd_get_master(mtd); 2191 2192 if (!master->_lock) 2193 return -EOPNOTSUPP; 2194 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2195 return -EINVAL; 2196 if (!len) 2197 return 0; 2198 2199 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2200 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2201 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2202 } 2203 2204 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len); 2205 } 2206 EXPORT_SYMBOL_GPL(mtd_lock); 2207 2208 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2209 { 2210 struct mtd_info *master = mtd_get_master(mtd); 2211 2212 if (!master->_unlock) 2213 return -EOPNOTSUPP; 2214 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2215 return -EINVAL; 2216 if (!len) 2217 return 0; 2218 2219 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2220 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2221 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2222 } 2223 2224 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len); 2225 } 2226 EXPORT_SYMBOL_GPL(mtd_unlock); 2227 2228 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2229 { 2230 struct mtd_info *master = mtd_get_master(mtd); 2231 2232 if (!master->_is_locked) 2233 return -EOPNOTSUPP; 2234 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2235 return -EINVAL; 2236 if (!len) 2237 return 0; 2238 2239 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2240 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2241 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2242 } 2243 2244 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len); 2245 } 2246 EXPORT_SYMBOL_GPL(mtd_is_locked); 2247 2248 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 2249 { 2250 struct mtd_info *master = mtd_get_master(mtd); 2251 2252 if (ofs < 0 || ofs >= mtd->size) 2253 return -EINVAL; 2254 if (!master->_block_isreserved) 2255 return 0; 2256 2257 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2258 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2259 2260 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs)); 2261 } 2262 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 2263 2264 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 2265 { 2266 struct mtd_info *master = mtd_get_master(mtd); 2267 2268 if (ofs < 0 || ofs >= mtd->size) 2269 return -EINVAL; 2270 if (!master->_block_isbad) 2271 return 0; 2272 2273 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2274 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2275 2276 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs)); 2277 } 2278 EXPORT_SYMBOL_GPL(mtd_block_isbad); 2279 2280 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 2281 { 2282 struct mtd_info *master = mtd_get_master(mtd); 2283 int ret; 2284 2285 if (!master->_block_markbad) 2286 return -EOPNOTSUPP; 2287 if (ofs < 0 || ofs >= mtd->size) 2288 return -EINVAL; 2289 if (!(mtd->flags & MTD_WRITEABLE)) 2290 return -EROFS; 2291 2292 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2293 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2294 2295 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs)); 2296 if (ret) 2297 return ret; 2298 2299 while (mtd->parent) { 2300 mtd->ecc_stats.badblocks++; 2301 mtd = mtd->parent; 2302 } 2303 2304 return 0; 2305 } 2306 EXPORT_SYMBOL_GPL(mtd_block_markbad); 2307 2308 /* 2309 * default_mtd_writev - the default writev method 2310 * @mtd: mtd device description object pointer 2311 * @vecs: the vectors to write 2312 * @count: count of vectors in @vecs 2313 * @to: the MTD device offset to write to 2314 * @retlen: on exit contains the count of bytes written to the MTD device. 2315 * 2316 * This function returns zero in case of success and a negative error code in 2317 * case of failure. 2318 */ 2319 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2320 unsigned long count, loff_t to, size_t *retlen) 2321 { 2322 unsigned long i; 2323 size_t totlen = 0, thislen; 2324 int ret = 0; 2325 2326 for (i = 0; i < count; i++) { 2327 if (!vecs[i].iov_len) 2328 continue; 2329 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 2330 vecs[i].iov_base); 2331 totlen += thislen; 2332 if (ret || thislen != vecs[i].iov_len) 2333 break; 2334 to += vecs[i].iov_len; 2335 } 2336 *retlen = totlen; 2337 return ret; 2338 } 2339 2340 /* 2341 * mtd_writev - the vector-based MTD write method 2342 * @mtd: mtd device description object pointer 2343 * @vecs: the vectors to write 2344 * @count: count of vectors in @vecs 2345 * @to: the MTD device offset to write to 2346 * @retlen: on exit contains the count of bytes written to the MTD device. 2347 * 2348 * This function returns zero in case of success and a negative error code in 2349 * case of failure. 2350 */ 2351 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2352 unsigned long count, loff_t to, size_t *retlen) 2353 { 2354 struct mtd_info *master = mtd_get_master(mtd); 2355 2356 *retlen = 0; 2357 if (!(mtd->flags & MTD_WRITEABLE)) 2358 return -EROFS; 2359 2360 if (!master->_writev) 2361 return default_mtd_writev(mtd, vecs, count, to, retlen); 2362 2363 return master->_writev(master, vecs, count, 2364 mtd_get_master_ofs(mtd, to), retlen); 2365 } 2366 EXPORT_SYMBOL_GPL(mtd_writev); 2367 2368 /** 2369 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 2370 * @mtd: mtd device description object pointer 2371 * @size: a pointer to the ideal or maximum size of the allocation, points 2372 * to the actual allocation size on success. 2373 * 2374 * This routine attempts to allocate a contiguous kernel buffer up to 2375 * the specified size, backing off the size of the request exponentially 2376 * until the request succeeds or until the allocation size falls below 2377 * the system page size. This attempts to make sure it does not adversely 2378 * impact system performance, so when allocating more than one page, we 2379 * ask the memory allocator to avoid re-trying, swapping, writing back 2380 * or performing I/O. 2381 * 2382 * Note, this function also makes sure that the allocated buffer is aligned to 2383 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 2384 * 2385 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 2386 * to handle smaller (i.e. degraded) buffer allocations under low- or 2387 * fragmented-memory situations where such reduced allocations, from a 2388 * requested ideal, are allowed. 2389 * 2390 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 2391 */ 2392 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 2393 { 2394 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 2395 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 2396 void *kbuf; 2397 2398 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 2399 2400 while (*size > min_alloc) { 2401 kbuf = kmalloc(*size, flags); 2402 if (kbuf) 2403 return kbuf; 2404 2405 *size >>= 1; 2406 *size = ALIGN(*size, mtd->writesize); 2407 } 2408 2409 /* 2410 * For the last resort allocation allow 'kmalloc()' to do all sorts of 2411 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 2412 */ 2413 return kmalloc(*size, GFP_KERNEL); 2414 } 2415 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 2416 2417 #ifdef CONFIG_PROC_FS 2418 2419 /*====================================================================*/ 2420 /* Support for /proc/mtd */ 2421 2422 static int mtd_proc_show(struct seq_file *m, void *v) 2423 { 2424 struct mtd_info *mtd; 2425 2426 seq_puts(m, "dev: size erasesize name\n"); 2427 mutex_lock(&mtd_table_mutex); 2428 mtd_for_each_device(mtd) { 2429 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 2430 mtd->index, (unsigned long long)mtd->size, 2431 mtd->erasesize, mtd->name); 2432 } 2433 mutex_unlock(&mtd_table_mutex); 2434 return 0; 2435 } 2436 #endif /* CONFIG_PROC_FS */ 2437 2438 /*====================================================================*/ 2439 /* Init code */ 2440 2441 static struct backing_dev_info * __init mtd_bdi_init(const char *name) 2442 { 2443 struct backing_dev_info *bdi; 2444 int ret; 2445 2446 bdi = bdi_alloc(NUMA_NO_NODE); 2447 if (!bdi) 2448 return ERR_PTR(-ENOMEM); 2449 bdi->ra_pages = 0; 2450 bdi->io_pages = 0; 2451 2452 /* 2453 * We put '-0' suffix to the name to get the same name format as we 2454 * used to get. Since this is called only once, we get a unique name. 2455 */ 2456 ret = bdi_register(bdi, "%.28s-0", name); 2457 if (ret) 2458 bdi_put(bdi); 2459 2460 return ret ? ERR_PTR(ret) : bdi; 2461 } 2462 2463 static struct proc_dir_entry *proc_mtd; 2464 2465 static int __init init_mtd(void) 2466 { 2467 int ret; 2468 2469 ret = class_register(&mtd_class); 2470 if (ret) 2471 goto err_reg; 2472 2473 mtd_bdi = mtd_bdi_init("mtd"); 2474 if (IS_ERR(mtd_bdi)) { 2475 ret = PTR_ERR(mtd_bdi); 2476 goto err_bdi; 2477 } 2478 2479 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show); 2480 2481 ret = init_mtdchar(); 2482 if (ret) 2483 goto out_procfs; 2484 2485 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 2486 debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd, 2487 &mtd_expert_analysis_mode); 2488 2489 return 0; 2490 2491 out_procfs: 2492 if (proc_mtd) 2493 remove_proc_entry("mtd", NULL); 2494 bdi_unregister(mtd_bdi); 2495 bdi_put(mtd_bdi); 2496 err_bdi: 2497 class_unregister(&mtd_class); 2498 err_reg: 2499 pr_err("Error registering mtd class or bdi: %d\n", ret); 2500 return ret; 2501 } 2502 2503 static void __exit cleanup_mtd(void) 2504 { 2505 debugfs_remove_recursive(dfs_dir_mtd); 2506 cleanup_mtdchar(); 2507 if (proc_mtd) 2508 remove_proc_entry("mtd", NULL); 2509 class_unregister(&mtd_class); 2510 bdi_unregister(mtd_bdi); 2511 bdi_put(mtd_bdi); 2512 idr_destroy(&mtd_idr); 2513 } 2514 2515 module_init(init_mtd); 2516 module_exit(cleanup_mtd); 2517 2518 MODULE_LICENSE("GPL"); 2519 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 2520 MODULE_DESCRIPTION("Core MTD registration and access routines"); 2521