xref: /openbmc/linux/drivers/mtd/mtdcore.c (revision 2eb0f624b709e78ec8e2f4c3412947703db99301)
1 /*
2  * Core registration and callback routines for MTD
3  * drivers and users.
4  *
5  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6  * Copyright © 2006      Red Hat UK Limited
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/of.h>
36 #include <linux/proc_fs.h>
37 #include <linux/idr.h>
38 #include <linux/backing-dev.h>
39 #include <linux/gfp.h>
40 #include <linux/slab.h>
41 #include <linux/reboot.h>
42 #include <linux/leds.h>
43 #include <linux/debugfs.h>
44 
45 #include <linux/mtd/mtd.h>
46 #include <linux/mtd/partitions.h>
47 
48 #include "mtdcore.h"
49 
50 struct backing_dev_info *mtd_bdi;
51 
52 #ifdef CONFIG_PM_SLEEP
53 
54 static int mtd_cls_suspend(struct device *dev)
55 {
56 	struct mtd_info *mtd = dev_get_drvdata(dev);
57 
58 	return mtd ? mtd_suspend(mtd) : 0;
59 }
60 
61 static int mtd_cls_resume(struct device *dev)
62 {
63 	struct mtd_info *mtd = dev_get_drvdata(dev);
64 
65 	if (mtd)
66 		mtd_resume(mtd);
67 	return 0;
68 }
69 
70 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
71 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
72 #else
73 #define MTD_CLS_PM_OPS NULL
74 #endif
75 
76 static struct class mtd_class = {
77 	.name = "mtd",
78 	.owner = THIS_MODULE,
79 	.pm = MTD_CLS_PM_OPS,
80 };
81 
82 static DEFINE_IDR(mtd_idr);
83 
84 /* These are exported solely for the purpose of mtd_blkdevs.c. You
85    should not use them for _anything_ else */
86 DEFINE_MUTEX(mtd_table_mutex);
87 EXPORT_SYMBOL_GPL(mtd_table_mutex);
88 
89 struct mtd_info *__mtd_next_device(int i)
90 {
91 	return idr_get_next(&mtd_idr, &i);
92 }
93 EXPORT_SYMBOL_GPL(__mtd_next_device);
94 
95 static LIST_HEAD(mtd_notifiers);
96 
97 
98 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
99 
100 /* REVISIT once MTD uses the driver model better, whoever allocates
101  * the mtd_info will probably want to use the release() hook...
102  */
103 static void mtd_release(struct device *dev)
104 {
105 	struct mtd_info *mtd = dev_get_drvdata(dev);
106 	dev_t index = MTD_DEVT(mtd->index);
107 
108 	/* remove /dev/mtdXro node */
109 	device_destroy(&mtd_class, index + 1);
110 }
111 
112 static ssize_t mtd_type_show(struct device *dev,
113 		struct device_attribute *attr, char *buf)
114 {
115 	struct mtd_info *mtd = dev_get_drvdata(dev);
116 	char *type;
117 
118 	switch (mtd->type) {
119 	case MTD_ABSENT:
120 		type = "absent";
121 		break;
122 	case MTD_RAM:
123 		type = "ram";
124 		break;
125 	case MTD_ROM:
126 		type = "rom";
127 		break;
128 	case MTD_NORFLASH:
129 		type = "nor";
130 		break;
131 	case MTD_NANDFLASH:
132 		type = "nand";
133 		break;
134 	case MTD_DATAFLASH:
135 		type = "dataflash";
136 		break;
137 	case MTD_UBIVOLUME:
138 		type = "ubi";
139 		break;
140 	case MTD_MLCNANDFLASH:
141 		type = "mlc-nand";
142 		break;
143 	default:
144 		type = "unknown";
145 	}
146 
147 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
148 }
149 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
150 
151 static ssize_t mtd_flags_show(struct device *dev,
152 		struct device_attribute *attr, char *buf)
153 {
154 	struct mtd_info *mtd = dev_get_drvdata(dev);
155 
156 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
157 
158 }
159 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
160 
161 static ssize_t mtd_size_show(struct device *dev,
162 		struct device_attribute *attr, char *buf)
163 {
164 	struct mtd_info *mtd = dev_get_drvdata(dev);
165 
166 	return snprintf(buf, PAGE_SIZE, "%llu\n",
167 		(unsigned long long)mtd->size);
168 
169 }
170 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
171 
172 static ssize_t mtd_erasesize_show(struct device *dev,
173 		struct device_attribute *attr, char *buf)
174 {
175 	struct mtd_info *mtd = dev_get_drvdata(dev);
176 
177 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
178 
179 }
180 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
181 
182 static ssize_t mtd_writesize_show(struct device *dev,
183 		struct device_attribute *attr, char *buf)
184 {
185 	struct mtd_info *mtd = dev_get_drvdata(dev);
186 
187 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
188 
189 }
190 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
191 
192 static ssize_t mtd_subpagesize_show(struct device *dev,
193 		struct device_attribute *attr, char *buf)
194 {
195 	struct mtd_info *mtd = dev_get_drvdata(dev);
196 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
197 
198 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
199 
200 }
201 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
202 
203 static ssize_t mtd_oobsize_show(struct device *dev,
204 		struct device_attribute *attr, char *buf)
205 {
206 	struct mtd_info *mtd = dev_get_drvdata(dev);
207 
208 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
209 
210 }
211 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
212 
213 static ssize_t mtd_numeraseregions_show(struct device *dev,
214 		struct device_attribute *attr, char *buf)
215 {
216 	struct mtd_info *mtd = dev_get_drvdata(dev);
217 
218 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
219 
220 }
221 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
222 	NULL);
223 
224 static ssize_t mtd_name_show(struct device *dev,
225 		struct device_attribute *attr, char *buf)
226 {
227 	struct mtd_info *mtd = dev_get_drvdata(dev);
228 
229 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
230 
231 }
232 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
233 
234 static ssize_t mtd_ecc_strength_show(struct device *dev,
235 				     struct device_attribute *attr, char *buf)
236 {
237 	struct mtd_info *mtd = dev_get_drvdata(dev);
238 
239 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
240 }
241 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
242 
243 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
244 					  struct device_attribute *attr,
245 					  char *buf)
246 {
247 	struct mtd_info *mtd = dev_get_drvdata(dev);
248 
249 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
250 }
251 
252 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
253 					   struct device_attribute *attr,
254 					   const char *buf, size_t count)
255 {
256 	struct mtd_info *mtd = dev_get_drvdata(dev);
257 	unsigned int bitflip_threshold;
258 	int retval;
259 
260 	retval = kstrtouint(buf, 0, &bitflip_threshold);
261 	if (retval)
262 		return retval;
263 
264 	mtd->bitflip_threshold = bitflip_threshold;
265 	return count;
266 }
267 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
268 		   mtd_bitflip_threshold_show,
269 		   mtd_bitflip_threshold_store);
270 
271 static ssize_t mtd_ecc_step_size_show(struct device *dev,
272 		struct device_attribute *attr, char *buf)
273 {
274 	struct mtd_info *mtd = dev_get_drvdata(dev);
275 
276 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
277 
278 }
279 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
280 
281 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
282 		struct device_attribute *attr, char *buf)
283 {
284 	struct mtd_info *mtd = dev_get_drvdata(dev);
285 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
286 
287 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
288 }
289 static DEVICE_ATTR(corrected_bits, S_IRUGO,
290 		   mtd_ecc_stats_corrected_show, NULL);
291 
292 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
293 		struct device_attribute *attr, char *buf)
294 {
295 	struct mtd_info *mtd = dev_get_drvdata(dev);
296 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
297 
298 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
299 }
300 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
301 
302 static ssize_t mtd_badblocks_show(struct device *dev,
303 		struct device_attribute *attr, char *buf)
304 {
305 	struct mtd_info *mtd = dev_get_drvdata(dev);
306 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
307 
308 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
309 }
310 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
311 
312 static ssize_t mtd_bbtblocks_show(struct device *dev,
313 		struct device_attribute *attr, char *buf)
314 {
315 	struct mtd_info *mtd = dev_get_drvdata(dev);
316 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
317 
318 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
319 }
320 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
321 
322 static struct attribute *mtd_attrs[] = {
323 	&dev_attr_type.attr,
324 	&dev_attr_flags.attr,
325 	&dev_attr_size.attr,
326 	&dev_attr_erasesize.attr,
327 	&dev_attr_writesize.attr,
328 	&dev_attr_subpagesize.attr,
329 	&dev_attr_oobsize.attr,
330 	&dev_attr_numeraseregions.attr,
331 	&dev_attr_name.attr,
332 	&dev_attr_ecc_strength.attr,
333 	&dev_attr_ecc_step_size.attr,
334 	&dev_attr_corrected_bits.attr,
335 	&dev_attr_ecc_failures.attr,
336 	&dev_attr_bad_blocks.attr,
337 	&dev_attr_bbt_blocks.attr,
338 	&dev_attr_bitflip_threshold.attr,
339 	NULL,
340 };
341 ATTRIBUTE_GROUPS(mtd);
342 
343 static const struct device_type mtd_devtype = {
344 	.name		= "mtd",
345 	.groups		= mtd_groups,
346 	.release	= mtd_release,
347 };
348 
349 #ifndef CONFIG_MMU
350 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
351 {
352 	switch (mtd->type) {
353 	case MTD_RAM:
354 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
355 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
356 	case MTD_ROM:
357 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
358 			NOMMU_MAP_READ;
359 	default:
360 		return NOMMU_MAP_COPY;
361 	}
362 }
363 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
364 #endif
365 
366 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
367 			       void *cmd)
368 {
369 	struct mtd_info *mtd;
370 
371 	mtd = container_of(n, struct mtd_info, reboot_notifier);
372 	mtd->_reboot(mtd);
373 
374 	return NOTIFY_DONE;
375 }
376 
377 /**
378  * mtd_wunit_to_pairing_info - get pairing information of a wunit
379  * @mtd: pointer to new MTD device info structure
380  * @wunit: write unit we are interested in
381  * @info: returned pairing information
382  *
383  * Retrieve pairing information associated to the wunit.
384  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
385  * paired together, and where programming a page may influence the page it is
386  * paired with.
387  * The notion of page is replaced by the term wunit (write-unit) to stay
388  * consistent with the ->writesize field.
389  *
390  * The @wunit argument can be extracted from an absolute offset using
391  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
392  * to @wunit.
393  *
394  * From the pairing info the MTD user can find all the wunits paired with
395  * @wunit using the following loop:
396  *
397  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
398  *	info.pair = i;
399  *	mtd_pairing_info_to_wunit(mtd, &info);
400  *	...
401  * }
402  */
403 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
404 			      struct mtd_pairing_info *info)
405 {
406 	int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
407 
408 	if (wunit < 0 || wunit >= npairs)
409 		return -EINVAL;
410 
411 	if (mtd->pairing && mtd->pairing->get_info)
412 		return mtd->pairing->get_info(mtd, wunit, info);
413 
414 	info->group = 0;
415 	info->pair = wunit;
416 
417 	return 0;
418 }
419 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
420 
421 /**
422  * mtd_pairing_info_to_wunit - get wunit from pairing information
423  * @mtd: pointer to new MTD device info structure
424  * @info: pairing information struct
425  *
426  * Returns a positive number representing the wunit associated to the info
427  * struct, or a negative error code.
428  *
429  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
430  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
431  * doc).
432  *
433  * It can also be used to only program the first page of each pair (i.e.
434  * page attached to group 0), which allows one to use an MLC NAND in
435  * software-emulated SLC mode:
436  *
437  * info.group = 0;
438  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
439  * for (info.pair = 0; info.pair < npairs; info.pair++) {
440  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
441  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
442  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
443  * }
444  */
445 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
446 			      const struct mtd_pairing_info *info)
447 {
448 	int ngroups = mtd_pairing_groups(mtd);
449 	int npairs = mtd_wunit_per_eb(mtd) / ngroups;
450 
451 	if (!info || info->pair < 0 || info->pair >= npairs ||
452 	    info->group < 0 || info->group >= ngroups)
453 		return -EINVAL;
454 
455 	if (mtd->pairing && mtd->pairing->get_wunit)
456 		return mtd->pairing->get_wunit(mtd, info);
457 
458 	return info->pair;
459 }
460 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
461 
462 /**
463  * mtd_pairing_groups - get the number of pairing groups
464  * @mtd: pointer to new MTD device info structure
465  *
466  * Returns the number of pairing groups.
467  *
468  * This number is usually equal to the number of bits exposed by a single
469  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
470  * to iterate over all pages of a given pair.
471  */
472 int mtd_pairing_groups(struct mtd_info *mtd)
473 {
474 	if (!mtd->pairing || !mtd->pairing->ngroups)
475 		return 1;
476 
477 	return mtd->pairing->ngroups;
478 }
479 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
480 
481 static struct dentry *dfs_dir_mtd;
482 
483 /**
484  *	add_mtd_device - register an MTD device
485  *	@mtd: pointer to new MTD device info structure
486  *
487  *	Add a device to the list of MTD devices present in the system, and
488  *	notify each currently active MTD 'user' of its arrival. Returns
489  *	zero on success or non-zero on failure.
490  */
491 
492 int add_mtd_device(struct mtd_info *mtd)
493 {
494 	struct mtd_notifier *not;
495 	int i, error;
496 
497 	/*
498 	 * May occur, for instance, on buggy drivers which call
499 	 * mtd_device_parse_register() multiple times on the same master MTD,
500 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
501 	 */
502 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
503 		return -EEXIST;
504 
505 	BUG_ON(mtd->writesize == 0);
506 
507 	if (WARN_ON((!mtd->erasesize || !mtd->_erase) &&
508 		    !(mtd->flags & MTD_NO_ERASE)))
509 		return -EINVAL;
510 
511 	mutex_lock(&mtd_table_mutex);
512 
513 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
514 	if (i < 0) {
515 		error = i;
516 		goto fail_locked;
517 	}
518 
519 	mtd->index = i;
520 	mtd->usecount = 0;
521 
522 	/* default value if not set by driver */
523 	if (mtd->bitflip_threshold == 0)
524 		mtd->bitflip_threshold = mtd->ecc_strength;
525 
526 	if (is_power_of_2(mtd->erasesize))
527 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
528 	else
529 		mtd->erasesize_shift = 0;
530 
531 	if (is_power_of_2(mtd->writesize))
532 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
533 	else
534 		mtd->writesize_shift = 0;
535 
536 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
537 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
538 
539 	/* Some chips always power up locked. Unlock them now */
540 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
541 		error = mtd_unlock(mtd, 0, mtd->size);
542 		if (error && error != -EOPNOTSUPP)
543 			printk(KERN_WARNING
544 			       "%s: unlock failed, writes may not work\n",
545 			       mtd->name);
546 		/* Ignore unlock failures? */
547 		error = 0;
548 	}
549 
550 	/* Caller should have set dev.parent to match the
551 	 * physical device, if appropriate.
552 	 */
553 	mtd->dev.type = &mtd_devtype;
554 	mtd->dev.class = &mtd_class;
555 	mtd->dev.devt = MTD_DEVT(i);
556 	dev_set_name(&mtd->dev, "mtd%d", i);
557 	dev_set_drvdata(&mtd->dev, mtd);
558 	of_node_get(mtd_get_of_node(mtd));
559 	error = device_register(&mtd->dev);
560 	if (error)
561 		goto fail_added;
562 
563 	if (!IS_ERR_OR_NULL(dfs_dir_mtd)) {
564 		mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd);
565 		if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) {
566 			pr_debug("mtd device %s won't show data in debugfs\n",
567 				 dev_name(&mtd->dev));
568 		}
569 	}
570 
571 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
572 		      "mtd%dro", i);
573 
574 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
575 	/* No need to get a refcount on the module containing
576 	   the notifier, since we hold the mtd_table_mutex */
577 	list_for_each_entry(not, &mtd_notifiers, list)
578 		not->add(mtd);
579 
580 	mutex_unlock(&mtd_table_mutex);
581 	/* We _know_ we aren't being removed, because
582 	   our caller is still holding us here. So none
583 	   of this try_ nonsense, and no bitching about it
584 	   either. :) */
585 	__module_get(THIS_MODULE);
586 	return 0;
587 
588 fail_added:
589 	of_node_put(mtd_get_of_node(mtd));
590 	idr_remove(&mtd_idr, i);
591 fail_locked:
592 	mutex_unlock(&mtd_table_mutex);
593 	return error;
594 }
595 
596 /**
597  *	del_mtd_device - unregister an MTD device
598  *	@mtd: pointer to MTD device info structure
599  *
600  *	Remove a device from the list of MTD devices present in the system,
601  *	and notify each currently active MTD 'user' of its departure.
602  *	Returns zero on success or 1 on failure, which currently will happen
603  *	if the requested device does not appear to be present in the list.
604  */
605 
606 int del_mtd_device(struct mtd_info *mtd)
607 {
608 	int ret;
609 	struct mtd_notifier *not;
610 
611 	mutex_lock(&mtd_table_mutex);
612 
613 	debugfs_remove_recursive(mtd->dbg.dfs_dir);
614 
615 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
616 		ret = -ENODEV;
617 		goto out_error;
618 	}
619 
620 	/* No need to get a refcount on the module containing
621 		the notifier, since we hold the mtd_table_mutex */
622 	list_for_each_entry(not, &mtd_notifiers, list)
623 		not->remove(mtd);
624 
625 	if (mtd->usecount) {
626 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
627 		       mtd->index, mtd->name, mtd->usecount);
628 		ret = -EBUSY;
629 	} else {
630 		device_unregister(&mtd->dev);
631 
632 		idr_remove(&mtd_idr, mtd->index);
633 		of_node_put(mtd_get_of_node(mtd));
634 
635 		module_put(THIS_MODULE);
636 		ret = 0;
637 	}
638 
639 out_error:
640 	mutex_unlock(&mtd_table_mutex);
641 	return ret;
642 }
643 
644 /*
645  * Set a few defaults based on the parent devices, if not provided by the
646  * driver
647  */
648 static void mtd_set_dev_defaults(struct mtd_info *mtd)
649 {
650 	if (mtd->dev.parent) {
651 		if (!mtd->owner && mtd->dev.parent->driver)
652 			mtd->owner = mtd->dev.parent->driver->owner;
653 		if (!mtd->name)
654 			mtd->name = dev_name(mtd->dev.parent);
655 	} else {
656 		pr_debug("mtd device won't show a device symlink in sysfs\n");
657 	}
658 }
659 
660 /**
661  * mtd_device_parse_register - parse partitions and register an MTD device.
662  *
663  * @mtd: the MTD device to register
664  * @types: the list of MTD partition probes to try, see
665  *         'parse_mtd_partitions()' for more information
666  * @parser_data: MTD partition parser-specific data
667  * @parts: fallback partition information to register, if parsing fails;
668  *         only valid if %nr_parts > %0
669  * @nr_parts: the number of partitions in parts, if zero then the full
670  *            MTD device is registered if no partition info is found
671  *
672  * This function aggregates MTD partitions parsing (done by
673  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
674  * basically follows the most common pattern found in many MTD drivers:
675  *
676  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
677  *   registered first.
678  * * Then It tries to probe partitions on MTD device @mtd using parsers
679  *   specified in @types (if @types is %NULL, then the default list of parsers
680  *   is used, see 'parse_mtd_partitions()' for more information). If none are
681  *   found this functions tries to fallback to information specified in
682  *   @parts/@nr_parts.
683  * * If no partitions were found this function just registers the MTD device
684  *   @mtd and exits.
685  *
686  * Returns zero in case of success and a negative error code in case of failure.
687  */
688 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
689 			      struct mtd_part_parser_data *parser_data,
690 			      const struct mtd_partition *parts,
691 			      int nr_parts)
692 {
693 	struct mtd_partitions parsed = { };
694 	int ret;
695 
696 	mtd_set_dev_defaults(mtd);
697 
698 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
699 		ret = add_mtd_device(mtd);
700 		if (ret)
701 			return ret;
702 	}
703 
704 	/* Prefer parsed partitions over driver-provided fallback */
705 	ret = parse_mtd_partitions(mtd, types, &parsed, parser_data);
706 	if (!ret && parsed.nr_parts) {
707 		parts = parsed.parts;
708 		nr_parts = parsed.nr_parts;
709 	}
710 
711 	if (nr_parts)
712 		ret = add_mtd_partitions(mtd, parts, nr_parts);
713 	else if (!device_is_registered(&mtd->dev))
714 		ret = add_mtd_device(mtd);
715 	else
716 		ret = 0;
717 
718 	if (ret)
719 		goto out;
720 
721 	/*
722 	 * FIXME: some drivers unfortunately call this function more than once.
723 	 * So we have to check if we've already assigned the reboot notifier.
724 	 *
725 	 * Generally, we can make multiple calls work for most cases, but it
726 	 * does cause problems with parse_mtd_partitions() above (e.g.,
727 	 * cmdlineparts will register partitions more than once).
728 	 */
729 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
730 		  "MTD already registered\n");
731 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
732 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
733 		register_reboot_notifier(&mtd->reboot_notifier);
734 	}
735 
736 out:
737 	/* Cleanup any parsed partitions */
738 	mtd_part_parser_cleanup(&parsed);
739 	if (ret && device_is_registered(&mtd->dev))
740 		del_mtd_device(mtd);
741 
742 	return ret;
743 }
744 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
745 
746 /**
747  * mtd_device_unregister - unregister an existing MTD device.
748  *
749  * @master: the MTD device to unregister.  This will unregister both the master
750  *          and any partitions if registered.
751  */
752 int mtd_device_unregister(struct mtd_info *master)
753 {
754 	int err;
755 
756 	if (master->_reboot)
757 		unregister_reboot_notifier(&master->reboot_notifier);
758 
759 	err = del_mtd_partitions(master);
760 	if (err)
761 		return err;
762 
763 	if (!device_is_registered(&master->dev))
764 		return 0;
765 
766 	return del_mtd_device(master);
767 }
768 EXPORT_SYMBOL_GPL(mtd_device_unregister);
769 
770 /**
771  *	register_mtd_user - register a 'user' of MTD devices.
772  *	@new: pointer to notifier info structure
773  *
774  *	Registers a pair of callbacks function to be called upon addition
775  *	or removal of MTD devices. Causes the 'add' callback to be immediately
776  *	invoked for each MTD device currently present in the system.
777  */
778 void register_mtd_user (struct mtd_notifier *new)
779 {
780 	struct mtd_info *mtd;
781 
782 	mutex_lock(&mtd_table_mutex);
783 
784 	list_add(&new->list, &mtd_notifiers);
785 
786 	__module_get(THIS_MODULE);
787 
788 	mtd_for_each_device(mtd)
789 		new->add(mtd);
790 
791 	mutex_unlock(&mtd_table_mutex);
792 }
793 EXPORT_SYMBOL_GPL(register_mtd_user);
794 
795 /**
796  *	unregister_mtd_user - unregister a 'user' of MTD devices.
797  *	@old: pointer to notifier info structure
798  *
799  *	Removes a callback function pair from the list of 'users' to be
800  *	notified upon addition or removal of MTD devices. Causes the
801  *	'remove' callback to be immediately invoked for each MTD device
802  *	currently present in the system.
803  */
804 int unregister_mtd_user (struct mtd_notifier *old)
805 {
806 	struct mtd_info *mtd;
807 
808 	mutex_lock(&mtd_table_mutex);
809 
810 	module_put(THIS_MODULE);
811 
812 	mtd_for_each_device(mtd)
813 		old->remove(mtd);
814 
815 	list_del(&old->list);
816 	mutex_unlock(&mtd_table_mutex);
817 	return 0;
818 }
819 EXPORT_SYMBOL_GPL(unregister_mtd_user);
820 
821 /**
822  *	get_mtd_device - obtain a validated handle for an MTD device
823  *	@mtd: last known address of the required MTD device
824  *	@num: internal device number of the required MTD device
825  *
826  *	Given a number and NULL address, return the num'th entry in the device
827  *	table, if any.	Given an address and num == -1, search the device table
828  *	for a device with that address and return if it's still present. Given
829  *	both, return the num'th driver only if its address matches. Return
830  *	error code if not.
831  */
832 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
833 {
834 	struct mtd_info *ret = NULL, *other;
835 	int err = -ENODEV;
836 
837 	mutex_lock(&mtd_table_mutex);
838 
839 	if (num == -1) {
840 		mtd_for_each_device(other) {
841 			if (other == mtd) {
842 				ret = mtd;
843 				break;
844 			}
845 		}
846 	} else if (num >= 0) {
847 		ret = idr_find(&mtd_idr, num);
848 		if (mtd && mtd != ret)
849 			ret = NULL;
850 	}
851 
852 	if (!ret) {
853 		ret = ERR_PTR(err);
854 		goto out;
855 	}
856 
857 	err = __get_mtd_device(ret);
858 	if (err)
859 		ret = ERR_PTR(err);
860 out:
861 	mutex_unlock(&mtd_table_mutex);
862 	return ret;
863 }
864 EXPORT_SYMBOL_GPL(get_mtd_device);
865 
866 
867 int __get_mtd_device(struct mtd_info *mtd)
868 {
869 	int err;
870 
871 	if (!try_module_get(mtd->owner))
872 		return -ENODEV;
873 
874 	if (mtd->_get_device) {
875 		err = mtd->_get_device(mtd);
876 
877 		if (err) {
878 			module_put(mtd->owner);
879 			return err;
880 		}
881 	}
882 	mtd->usecount++;
883 	return 0;
884 }
885 EXPORT_SYMBOL_GPL(__get_mtd_device);
886 
887 /**
888  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
889  *	device name
890  *	@name: MTD device name to open
891  *
892  * 	This function returns MTD device description structure in case of
893  * 	success and an error code in case of failure.
894  */
895 struct mtd_info *get_mtd_device_nm(const char *name)
896 {
897 	int err = -ENODEV;
898 	struct mtd_info *mtd = NULL, *other;
899 
900 	mutex_lock(&mtd_table_mutex);
901 
902 	mtd_for_each_device(other) {
903 		if (!strcmp(name, other->name)) {
904 			mtd = other;
905 			break;
906 		}
907 	}
908 
909 	if (!mtd)
910 		goto out_unlock;
911 
912 	err = __get_mtd_device(mtd);
913 	if (err)
914 		goto out_unlock;
915 
916 	mutex_unlock(&mtd_table_mutex);
917 	return mtd;
918 
919 out_unlock:
920 	mutex_unlock(&mtd_table_mutex);
921 	return ERR_PTR(err);
922 }
923 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
924 
925 void put_mtd_device(struct mtd_info *mtd)
926 {
927 	mutex_lock(&mtd_table_mutex);
928 	__put_mtd_device(mtd);
929 	mutex_unlock(&mtd_table_mutex);
930 
931 }
932 EXPORT_SYMBOL_GPL(put_mtd_device);
933 
934 void __put_mtd_device(struct mtd_info *mtd)
935 {
936 	--mtd->usecount;
937 	BUG_ON(mtd->usecount < 0);
938 
939 	if (mtd->_put_device)
940 		mtd->_put_device(mtd);
941 
942 	module_put(mtd->owner);
943 }
944 EXPORT_SYMBOL_GPL(__put_mtd_device);
945 
946 /*
947  * Erase is an synchronous operation. Device drivers are epected to return a
948  * negative error code if the operation failed and update instr->fail_addr
949  * to point the portion that was not properly erased.
950  */
951 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
952 {
953 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
954 
955 	if (!mtd->erasesize || !mtd->_erase)
956 		return -ENOTSUPP;
957 
958 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
959 		return -EINVAL;
960 	if (!(mtd->flags & MTD_WRITEABLE))
961 		return -EROFS;
962 
963 	if (!instr->len)
964 		return 0;
965 
966 	ledtrig_mtd_activity();
967 	return mtd->_erase(mtd, instr);
968 }
969 EXPORT_SYMBOL_GPL(mtd_erase);
970 
971 /*
972  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
973  */
974 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
975 	      void **virt, resource_size_t *phys)
976 {
977 	*retlen = 0;
978 	*virt = NULL;
979 	if (phys)
980 		*phys = 0;
981 	if (!mtd->_point)
982 		return -EOPNOTSUPP;
983 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
984 		return -EINVAL;
985 	if (!len)
986 		return 0;
987 	return mtd->_point(mtd, from, len, retlen, virt, phys);
988 }
989 EXPORT_SYMBOL_GPL(mtd_point);
990 
991 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
992 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
993 {
994 	if (!mtd->_unpoint)
995 		return -EOPNOTSUPP;
996 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
997 		return -EINVAL;
998 	if (!len)
999 		return 0;
1000 	return mtd->_unpoint(mtd, from, len);
1001 }
1002 EXPORT_SYMBOL_GPL(mtd_unpoint);
1003 
1004 /*
1005  * Allow NOMMU mmap() to directly map the device (if not NULL)
1006  * - return the address to which the offset maps
1007  * - return -ENOSYS to indicate refusal to do the mapping
1008  */
1009 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1010 				    unsigned long offset, unsigned long flags)
1011 {
1012 	size_t retlen;
1013 	void *virt;
1014 	int ret;
1015 
1016 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1017 	if (ret)
1018 		return ret;
1019 	if (retlen != len) {
1020 		mtd_unpoint(mtd, offset, retlen);
1021 		return -ENOSYS;
1022 	}
1023 	return (unsigned long)virt;
1024 }
1025 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1026 
1027 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1028 	     u_char *buf)
1029 {
1030 	int ret_code;
1031 	*retlen = 0;
1032 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1033 		return -EINVAL;
1034 	if (!len)
1035 		return 0;
1036 
1037 	ledtrig_mtd_activity();
1038 	/*
1039 	 * In the absence of an error, drivers return a non-negative integer
1040 	 * representing the maximum number of bitflips that were corrected on
1041 	 * any one ecc region (if applicable; zero otherwise).
1042 	 */
1043 	if (mtd->_read) {
1044 		ret_code = mtd->_read(mtd, from, len, retlen, buf);
1045 	} else if (mtd->_read_oob) {
1046 		struct mtd_oob_ops ops = {
1047 			.len = len,
1048 			.datbuf = buf,
1049 		};
1050 
1051 		ret_code = mtd->_read_oob(mtd, from, &ops);
1052 		*retlen = ops.retlen;
1053 	} else {
1054 		return -ENOTSUPP;
1055 	}
1056 
1057 	if (unlikely(ret_code < 0))
1058 		return ret_code;
1059 	if (mtd->ecc_strength == 0)
1060 		return 0;	/* device lacks ecc */
1061 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1062 }
1063 EXPORT_SYMBOL_GPL(mtd_read);
1064 
1065 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1066 	      const u_char *buf)
1067 {
1068 	*retlen = 0;
1069 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1070 		return -EINVAL;
1071 	if ((!mtd->_write && !mtd->_write_oob) ||
1072 	    !(mtd->flags & MTD_WRITEABLE))
1073 		return -EROFS;
1074 	if (!len)
1075 		return 0;
1076 	ledtrig_mtd_activity();
1077 
1078 	if (!mtd->_write) {
1079 		struct mtd_oob_ops ops = {
1080 			.len = len,
1081 			.datbuf = (u8 *)buf,
1082 		};
1083 		int ret;
1084 
1085 		ret = mtd->_write_oob(mtd, to, &ops);
1086 		*retlen = ops.retlen;
1087 		return ret;
1088 	}
1089 
1090 	return mtd->_write(mtd, to, len, retlen, buf);
1091 }
1092 EXPORT_SYMBOL_GPL(mtd_write);
1093 
1094 /*
1095  * In blackbox flight recorder like scenarios we want to make successful writes
1096  * in interrupt context. panic_write() is only intended to be called when its
1097  * known the kernel is about to panic and we need the write to succeed. Since
1098  * the kernel is not going to be running for much longer, this function can
1099  * break locks and delay to ensure the write succeeds (but not sleep).
1100  */
1101 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1102 		    const u_char *buf)
1103 {
1104 	*retlen = 0;
1105 	if (!mtd->_panic_write)
1106 		return -EOPNOTSUPP;
1107 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1108 		return -EINVAL;
1109 	if (!(mtd->flags & MTD_WRITEABLE))
1110 		return -EROFS;
1111 	if (!len)
1112 		return 0;
1113 	return mtd->_panic_write(mtd, to, len, retlen, buf);
1114 }
1115 EXPORT_SYMBOL_GPL(mtd_panic_write);
1116 
1117 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1118 			     struct mtd_oob_ops *ops)
1119 {
1120 	/*
1121 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1122 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1123 	 *  this case.
1124 	 */
1125 	if (!ops->datbuf)
1126 		ops->len = 0;
1127 
1128 	if (!ops->oobbuf)
1129 		ops->ooblen = 0;
1130 
1131 	if (offs < 0 || offs + ops->len > mtd->size)
1132 		return -EINVAL;
1133 
1134 	if (ops->ooblen) {
1135 		u64 maxooblen;
1136 
1137 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1138 			return -EINVAL;
1139 
1140 		maxooblen = ((mtd_div_by_ws(mtd->size, mtd) -
1141 			      mtd_div_by_ws(offs, mtd)) *
1142 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1143 		if (ops->ooblen > maxooblen)
1144 			return -EINVAL;
1145 	}
1146 
1147 	return 0;
1148 }
1149 
1150 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1151 {
1152 	int ret_code;
1153 	ops->retlen = ops->oobretlen = 0;
1154 	if (!mtd->_read_oob)
1155 		return -EOPNOTSUPP;
1156 
1157 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1158 	if (ret_code)
1159 		return ret_code;
1160 
1161 	ledtrig_mtd_activity();
1162 	/*
1163 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1164 	 * similar to mtd->_read(), returning a non-negative integer
1165 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1166 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1167 	 */
1168 	ret_code = mtd->_read_oob(mtd, from, ops);
1169 	if (unlikely(ret_code < 0))
1170 		return ret_code;
1171 	if (mtd->ecc_strength == 0)
1172 		return 0;	/* device lacks ecc */
1173 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1174 }
1175 EXPORT_SYMBOL_GPL(mtd_read_oob);
1176 
1177 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1178 				struct mtd_oob_ops *ops)
1179 {
1180 	int ret;
1181 
1182 	ops->retlen = ops->oobretlen = 0;
1183 	if (!mtd->_write_oob)
1184 		return -EOPNOTSUPP;
1185 	if (!(mtd->flags & MTD_WRITEABLE))
1186 		return -EROFS;
1187 
1188 	ret = mtd_check_oob_ops(mtd, to, ops);
1189 	if (ret)
1190 		return ret;
1191 
1192 	ledtrig_mtd_activity();
1193 	return mtd->_write_oob(mtd, to, ops);
1194 }
1195 EXPORT_SYMBOL_GPL(mtd_write_oob);
1196 
1197 /**
1198  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1199  * @mtd: MTD device structure
1200  * @section: ECC section. Depending on the layout you may have all the ECC
1201  *	     bytes stored in a single contiguous section, or one section
1202  *	     per ECC chunk (and sometime several sections for a single ECC
1203  *	     ECC chunk)
1204  * @oobecc: OOB region struct filled with the appropriate ECC position
1205  *	    information
1206  *
1207  * This function returns ECC section information in the OOB area. If you want
1208  * to get all the ECC bytes information, then you should call
1209  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1210  *
1211  * Returns zero on success, a negative error code otherwise.
1212  */
1213 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1214 		      struct mtd_oob_region *oobecc)
1215 {
1216 	memset(oobecc, 0, sizeof(*oobecc));
1217 
1218 	if (!mtd || section < 0)
1219 		return -EINVAL;
1220 
1221 	if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1222 		return -ENOTSUPP;
1223 
1224 	return mtd->ooblayout->ecc(mtd, section, oobecc);
1225 }
1226 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1227 
1228 /**
1229  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1230  *			section
1231  * @mtd: MTD device structure
1232  * @section: Free section you are interested in. Depending on the layout
1233  *	     you may have all the free bytes stored in a single contiguous
1234  *	     section, or one section per ECC chunk plus an extra section
1235  *	     for the remaining bytes (or other funky layout).
1236  * @oobfree: OOB region struct filled with the appropriate free position
1237  *	     information
1238  *
1239  * This function returns free bytes position in the OOB area. If you want
1240  * to get all the free bytes information, then you should call
1241  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1242  *
1243  * Returns zero on success, a negative error code otherwise.
1244  */
1245 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1246 		       struct mtd_oob_region *oobfree)
1247 {
1248 	memset(oobfree, 0, sizeof(*oobfree));
1249 
1250 	if (!mtd || section < 0)
1251 		return -EINVAL;
1252 
1253 	if (!mtd->ooblayout || !mtd->ooblayout->free)
1254 		return -ENOTSUPP;
1255 
1256 	return mtd->ooblayout->free(mtd, section, oobfree);
1257 }
1258 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1259 
1260 /**
1261  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1262  * @mtd: mtd info structure
1263  * @byte: the byte we are searching for
1264  * @sectionp: pointer where the section id will be stored
1265  * @oobregion: used to retrieve the ECC position
1266  * @iter: iterator function. Should be either mtd_ooblayout_free or
1267  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1268  *
1269  * This function returns the section id and oobregion information of a
1270  * specific byte. For example, say you want to know where the 4th ECC byte is
1271  * stored, you'll use:
1272  *
1273  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1274  *
1275  * Returns zero on success, a negative error code otherwise.
1276  */
1277 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1278 				int *sectionp, struct mtd_oob_region *oobregion,
1279 				int (*iter)(struct mtd_info *,
1280 					    int section,
1281 					    struct mtd_oob_region *oobregion))
1282 {
1283 	int pos = 0, ret, section = 0;
1284 
1285 	memset(oobregion, 0, sizeof(*oobregion));
1286 
1287 	while (1) {
1288 		ret = iter(mtd, section, oobregion);
1289 		if (ret)
1290 			return ret;
1291 
1292 		if (pos + oobregion->length > byte)
1293 			break;
1294 
1295 		pos += oobregion->length;
1296 		section++;
1297 	}
1298 
1299 	/*
1300 	 * Adjust region info to make it start at the beginning at the
1301 	 * 'start' ECC byte.
1302 	 */
1303 	oobregion->offset += byte - pos;
1304 	oobregion->length -= byte - pos;
1305 	*sectionp = section;
1306 
1307 	return 0;
1308 }
1309 
1310 /**
1311  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1312  *				  ECC byte
1313  * @mtd: mtd info structure
1314  * @eccbyte: the byte we are searching for
1315  * @sectionp: pointer where the section id will be stored
1316  * @oobregion: OOB region information
1317  *
1318  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1319  * byte.
1320  *
1321  * Returns zero on success, a negative error code otherwise.
1322  */
1323 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1324 				 int *section,
1325 				 struct mtd_oob_region *oobregion)
1326 {
1327 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1328 					 mtd_ooblayout_ecc);
1329 }
1330 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1331 
1332 /**
1333  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1334  * @mtd: mtd info structure
1335  * @buf: destination buffer to store OOB bytes
1336  * @oobbuf: OOB buffer
1337  * @start: first byte to retrieve
1338  * @nbytes: number of bytes to retrieve
1339  * @iter: section iterator
1340  *
1341  * Extract bytes attached to a specific category (ECC or free)
1342  * from the OOB buffer and copy them into buf.
1343  *
1344  * Returns zero on success, a negative error code otherwise.
1345  */
1346 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1347 				const u8 *oobbuf, int start, int nbytes,
1348 				int (*iter)(struct mtd_info *,
1349 					    int section,
1350 					    struct mtd_oob_region *oobregion))
1351 {
1352 	struct mtd_oob_region oobregion;
1353 	int section, ret;
1354 
1355 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1356 					&oobregion, iter);
1357 
1358 	while (!ret) {
1359 		int cnt;
1360 
1361 		cnt = min_t(int, nbytes, oobregion.length);
1362 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1363 		buf += cnt;
1364 		nbytes -= cnt;
1365 
1366 		if (!nbytes)
1367 			break;
1368 
1369 		ret = iter(mtd, ++section, &oobregion);
1370 	}
1371 
1372 	return ret;
1373 }
1374 
1375 /**
1376  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1377  * @mtd: mtd info structure
1378  * @buf: source buffer to get OOB bytes from
1379  * @oobbuf: OOB buffer
1380  * @start: first OOB byte to set
1381  * @nbytes: number of OOB bytes to set
1382  * @iter: section iterator
1383  *
1384  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1385  * is selected by passing the appropriate iterator.
1386  *
1387  * Returns zero on success, a negative error code otherwise.
1388  */
1389 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1390 				u8 *oobbuf, int start, int nbytes,
1391 				int (*iter)(struct mtd_info *,
1392 					    int section,
1393 					    struct mtd_oob_region *oobregion))
1394 {
1395 	struct mtd_oob_region oobregion;
1396 	int section, ret;
1397 
1398 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1399 					&oobregion, iter);
1400 
1401 	while (!ret) {
1402 		int cnt;
1403 
1404 		cnt = min_t(int, nbytes, oobregion.length);
1405 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1406 		buf += cnt;
1407 		nbytes -= cnt;
1408 
1409 		if (!nbytes)
1410 			break;
1411 
1412 		ret = iter(mtd, ++section, &oobregion);
1413 	}
1414 
1415 	return ret;
1416 }
1417 
1418 /**
1419  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1420  * @mtd: mtd info structure
1421  * @iter: category iterator
1422  *
1423  * Count the number of bytes in a given category.
1424  *
1425  * Returns a positive value on success, a negative error code otherwise.
1426  */
1427 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1428 				int (*iter)(struct mtd_info *,
1429 					    int section,
1430 					    struct mtd_oob_region *oobregion))
1431 {
1432 	struct mtd_oob_region oobregion;
1433 	int section = 0, ret, nbytes = 0;
1434 
1435 	while (1) {
1436 		ret = iter(mtd, section++, &oobregion);
1437 		if (ret) {
1438 			if (ret == -ERANGE)
1439 				ret = nbytes;
1440 			break;
1441 		}
1442 
1443 		nbytes += oobregion.length;
1444 	}
1445 
1446 	return ret;
1447 }
1448 
1449 /**
1450  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1451  * @mtd: mtd info structure
1452  * @eccbuf: destination buffer to store ECC bytes
1453  * @oobbuf: OOB buffer
1454  * @start: first ECC byte to retrieve
1455  * @nbytes: number of ECC bytes to retrieve
1456  *
1457  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1458  *
1459  * Returns zero on success, a negative error code otherwise.
1460  */
1461 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1462 			       const u8 *oobbuf, int start, int nbytes)
1463 {
1464 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1465 				       mtd_ooblayout_ecc);
1466 }
1467 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1468 
1469 /**
1470  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1471  * @mtd: mtd info structure
1472  * @eccbuf: source buffer to get ECC bytes from
1473  * @oobbuf: OOB buffer
1474  * @start: first ECC byte to set
1475  * @nbytes: number of ECC bytes to set
1476  *
1477  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1478  *
1479  * Returns zero on success, a negative error code otherwise.
1480  */
1481 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1482 			       u8 *oobbuf, int start, int nbytes)
1483 {
1484 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1485 				       mtd_ooblayout_ecc);
1486 }
1487 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1488 
1489 /**
1490  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1491  * @mtd: mtd info structure
1492  * @databuf: destination buffer to store ECC bytes
1493  * @oobbuf: OOB buffer
1494  * @start: first ECC byte to retrieve
1495  * @nbytes: number of ECC bytes to retrieve
1496  *
1497  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1498  *
1499  * Returns zero on success, a negative error code otherwise.
1500  */
1501 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1502 				const u8 *oobbuf, int start, int nbytes)
1503 {
1504 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1505 				       mtd_ooblayout_free);
1506 }
1507 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1508 
1509 /**
1510  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1511  * @mtd: mtd info structure
1512  * @databuf: source buffer to get data bytes from
1513  * @oobbuf: OOB buffer
1514  * @start: first ECC byte to set
1515  * @nbytes: number of ECC bytes to set
1516  *
1517  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1518  *
1519  * Returns zero on success, a negative error code otherwise.
1520  */
1521 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1522 				u8 *oobbuf, int start, int nbytes)
1523 {
1524 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1525 				       mtd_ooblayout_free);
1526 }
1527 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1528 
1529 /**
1530  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1531  * @mtd: mtd info structure
1532  *
1533  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1534  *
1535  * Returns zero on success, a negative error code otherwise.
1536  */
1537 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1538 {
1539 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1540 }
1541 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1542 
1543 /**
1544  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1545  * @mtd: mtd info structure
1546  *
1547  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1548  *
1549  * Returns zero on success, a negative error code otherwise.
1550  */
1551 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1552 {
1553 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1554 }
1555 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1556 
1557 /*
1558  * Method to access the protection register area, present in some flash
1559  * devices. The user data is one time programmable but the factory data is read
1560  * only.
1561  */
1562 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1563 			   struct otp_info *buf)
1564 {
1565 	if (!mtd->_get_fact_prot_info)
1566 		return -EOPNOTSUPP;
1567 	if (!len)
1568 		return 0;
1569 	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1570 }
1571 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1572 
1573 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1574 			   size_t *retlen, u_char *buf)
1575 {
1576 	*retlen = 0;
1577 	if (!mtd->_read_fact_prot_reg)
1578 		return -EOPNOTSUPP;
1579 	if (!len)
1580 		return 0;
1581 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1582 }
1583 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1584 
1585 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1586 			   struct otp_info *buf)
1587 {
1588 	if (!mtd->_get_user_prot_info)
1589 		return -EOPNOTSUPP;
1590 	if (!len)
1591 		return 0;
1592 	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1593 }
1594 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1595 
1596 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1597 			   size_t *retlen, u_char *buf)
1598 {
1599 	*retlen = 0;
1600 	if (!mtd->_read_user_prot_reg)
1601 		return -EOPNOTSUPP;
1602 	if (!len)
1603 		return 0;
1604 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1605 }
1606 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1607 
1608 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1609 			    size_t *retlen, u_char *buf)
1610 {
1611 	int ret;
1612 
1613 	*retlen = 0;
1614 	if (!mtd->_write_user_prot_reg)
1615 		return -EOPNOTSUPP;
1616 	if (!len)
1617 		return 0;
1618 	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1619 	if (ret)
1620 		return ret;
1621 
1622 	/*
1623 	 * If no data could be written at all, we are out of memory and
1624 	 * must return -ENOSPC.
1625 	 */
1626 	return (*retlen) ? 0 : -ENOSPC;
1627 }
1628 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1629 
1630 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1631 {
1632 	if (!mtd->_lock_user_prot_reg)
1633 		return -EOPNOTSUPP;
1634 	if (!len)
1635 		return 0;
1636 	return mtd->_lock_user_prot_reg(mtd, from, len);
1637 }
1638 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1639 
1640 /* Chip-supported device locking */
1641 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1642 {
1643 	if (!mtd->_lock)
1644 		return -EOPNOTSUPP;
1645 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1646 		return -EINVAL;
1647 	if (!len)
1648 		return 0;
1649 	return mtd->_lock(mtd, ofs, len);
1650 }
1651 EXPORT_SYMBOL_GPL(mtd_lock);
1652 
1653 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1654 {
1655 	if (!mtd->_unlock)
1656 		return -EOPNOTSUPP;
1657 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1658 		return -EINVAL;
1659 	if (!len)
1660 		return 0;
1661 	return mtd->_unlock(mtd, ofs, len);
1662 }
1663 EXPORT_SYMBOL_GPL(mtd_unlock);
1664 
1665 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1666 {
1667 	if (!mtd->_is_locked)
1668 		return -EOPNOTSUPP;
1669 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1670 		return -EINVAL;
1671 	if (!len)
1672 		return 0;
1673 	return mtd->_is_locked(mtd, ofs, len);
1674 }
1675 EXPORT_SYMBOL_GPL(mtd_is_locked);
1676 
1677 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1678 {
1679 	if (ofs < 0 || ofs >= mtd->size)
1680 		return -EINVAL;
1681 	if (!mtd->_block_isreserved)
1682 		return 0;
1683 	return mtd->_block_isreserved(mtd, ofs);
1684 }
1685 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1686 
1687 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1688 {
1689 	if (ofs < 0 || ofs >= mtd->size)
1690 		return -EINVAL;
1691 	if (!mtd->_block_isbad)
1692 		return 0;
1693 	return mtd->_block_isbad(mtd, ofs);
1694 }
1695 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1696 
1697 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1698 {
1699 	if (!mtd->_block_markbad)
1700 		return -EOPNOTSUPP;
1701 	if (ofs < 0 || ofs >= mtd->size)
1702 		return -EINVAL;
1703 	if (!(mtd->flags & MTD_WRITEABLE))
1704 		return -EROFS;
1705 	return mtd->_block_markbad(mtd, ofs);
1706 }
1707 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1708 
1709 /*
1710  * default_mtd_writev - the default writev method
1711  * @mtd: mtd device description object pointer
1712  * @vecs: the vectors to write
1713  * @count: count of vectors in @vecs
1714  * @to: the MTD device offset to write to
1715  * @retlen: on exit contains the count of bytes written to the MTD device.
1716  *
1717  * This function returns zero in case of success and a negative error code in
1718  * case of failure.
1719  */
1720 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1721 			      unsigned long count, loff_t to, size_t *retlen)
1722 {
1723 	unsigned long i;
1724 	size_t totlen = 0, thislen;
1725 	int ret = 0;
1726 
1727 	for (i = 0; i < count; i++) {
1728 		if (!vecs[i].iov_len)
1729 			continue;
1730 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1731 				vecs[i].iov_base);
1732 		totlen += thislen;
1733 		if (ret || thislen != vecs[i].iov_len)
1734 			break;
1735 		to += vecs[i].iov_len;
1736 	}
1737 	*retlen = totlen;
1738 	return ret;
1739 }
1740 
1741 /*
1742  * mtd_writev - the vector-based MTD write method
1743  * @mtd: mtd device description object pointer
1744  * @vecs: the vectors to write
1745  * @count: count of vectors in @vecs
1746  * @to: the MTD device offset to write to
1747  * @retlen: on exit contains the count of bytes written to the MTD device.
1748  *
1749  * This function returns zero in case of success and a negative error code in
1750  * case of failure.
1751  */
1752 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1753 	       unsigned long count, loff_t to, size_t *retlen)
1754 {
1755 	*retlen = 0;
1756 	if (!(mtd->flags & MTD_WRITEABLE))
1757 		return -EROFS;
1758 	if (!mtd->_writev)
1759 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1760 	return mtd->_writev(mtd, vecs, count, to, retlen);
1761 }
1762 EXPORT_SYMBOL_GPL(mtd_writev);
1763 
1764 /**
1765  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1766  * @mtd: mtd device description object pointer
1767  * @size: a pointer to the ideal or maximum size of the allocation, points
1768  *        to the actual allocation size on success.
1769  *
1770  * This routine attempts to allocate a contiguous kernel buffer up to
1771  * the specified size, backing off the size of the request exponentially
1772  * until the request succeeds or until the allocation size falls below
1773  * the system page size. This attempts to make sure it does not adversely
1774  * impact system performance, so when allocating more than one page, we
1775  * ask the memory allocator to avoid re-trying, swapping, writing back
1776  * or performing I/O.
1777  *
1778  * Note, this function also makes sure that the allocated buffer is aligned to
1779  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1780  *
1781  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1782  * to handle smaller (i.e. degraded) buffer allocations under low- or
1783  * fragmented-memory situations where such reduced allocations, from a
1784  * requested ideal, are allowed.
1785  *
1786  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1787  */
1788 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1789 {
1790 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1791 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1792 	void *kbuf;
1793 
1794 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1795 
1796 	while (*size > min_alloc) {
1797 		kbuf = kmalloc(*size, flags);
1798 		if (kbuf)
1799 			return kbuf;
1800 
1801 		*size >>= 1;
1802 		*size = ALIGN(*size, mtd->writesize);
1803 	}
1804 
1805 	/*
1806 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1807 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1808 	 */
1809 	return kmalloc(*size, GFP_KERNEL);
1810 }
1811 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1812 
1813 #ifdef CONFIG_PROC_FS
1814 
1815 /*====================================================================*/
1816 /* Support for /proc/mtd */
1817 
1818 static int mtd_proc_show(struct seq_file *m, void *v)
1819 {
1820 	struct mtd_info *mtd;
1821 
1822 	seq_puts(m, "dev:    size   erasesize  name\n");
1823 	mutex_lock(&mtd_table_mutex);
1824 	mtd_for_each_device(mtd) {
1825 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1826 			   mtd->index, (unsigned long long)mtd->size,
1827 			   mtd->erasesize, mtd->name);
1828 	}
1829 	mutex_unlock(&mtd_table_mutex);
1830 	return 0;
1831 }
1832 
1833 static int mtd_proc_open(struct inode *inode, struct file *file)
1834 {
1835 	return single_open(file, mtd_proc_show, NULL);
1836 }
1837 
1838 static const struct file_operations mtd_proc_ops = {
1839 	.open		= mtd_proc_open,
1840 	.read		= seq_read,
1841 	.llseek		= seq_lseek,
1842 	.release	= single_release,
1843 };
1844 #endif /* CONFIG_PROC_FS */
1845 
1846 /*====================================================================*/
1847 /* Init code */
1848 
1849 static struct backing_dev_info * __init mtd_bdi_init(char *name)
1850 {
1851 	struct backing_dev_info *bdi;
1852 	int ret;
1853 
1854 	bdi = bdi_alloc(GFP_KERNEL);
1855 	if (!bdi)
1856 		return ERR_PTR(-ENOMEM);
1857 
1858 	bdi->name = name;
1859 	/*
1860 	 * We put '-0' suffix to the name to get the same name format as we
1861 	 * used to get. Since this is called only once, we get a unique name.
1862 	 */
1863 	ret = bdi_register(bdi, "%.28s-0", name);
1864 	if (ret)
1865 		bdi_put(bdi);
1866 
1867 	return ret ? ERR_PTR(ret) : bdi;
1868 }
1869 
1870 static struct proc_dir_entry *proc_mtd;
1871 
1872 static int __init init_mtd(void)
1873 {
1874 	int ret;
1875 
1876 	ret = class_register(&mtd_class);
1877 	if (ret)
1878 		goto err_reg;
1879 
1880 	mtd_bdi = mtd_bdi_init("mtd");
1881 	if (IS_ERR(mtd_bdi)) {
1882 		ret = PTR_ERR(mtd_bdi);
1883 		goto err_bdi;
1884 	}
1885 
1886 	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1887 
1888 	ret = init_mtdchar();
1889 	if (ret)
1890 		goto out_procfs;
1891 
1892 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
1893 
1894 	return 0;
1895 
1896 out_procfs:
1897 	if (proc_mtd)
1898 		remove_proc_entry("mtd", NULL);
1899 	bdi_put(mtd_bdi);
1900 err_bdi:
1901 	class_unregister(&mtd_class);
1902 err_reg:
1903 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1904 	return ret;
1905 }
1906 
1907 static void __exit cleanup_mtd(void)
1908 {
1909 	debugfs_remove_recursive(dfs_dir_mtd);
1910 	cleanup_mtdchar();
1911 	if (proc_mtd)
1912 		remove_proc_entry("mtd", NULL);
1913 	class_unregister(&mtd_class);
1914 	bdi_put(mtd_bdi);
1915 	idr_destroy(&mtd_idr);
1916 }
1917 
1918 module_init(init_mtd);
1919 module_exit(cleanup_mtd);
1920 
1921 MODULE_LICENSE("GPL");
1922 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1923 MODULE_DESCRIPTION("Core MTD registration and access routines");
1924