1 /* 2 * Core registration and callback routines for MTD 3 * drivers and users. 4 * 5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 6 * Copyright © 2006 Red Hat UK Limited 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/kernel.h> 26 #include <linux/ptrace.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/major.h> 31 #include <linux/fs.h> 32 #include <linux/err.h> 33 #include <linux/ioctl.h> 34 #include <linux/init.h> 35 #include <linux/of.h> 36 #include <linux/proc_fs.h> 37 #include <linux/idr.h> 38 #include <linux/backing-dev.h> 39 #include <linux/gfp.h> 40 #include <linux/slab.h> 41 #include <linux/reboot.h> 42 #include <linux/leds.h> 43 #include <linux/debugfs.h> 44 45 #include <linux/mtd/mtd.h> 46 #include <linux/mtd/partitions.h> 47 48 #include "mtdcore.h" 49 50 struct backing_dev_info *mtd_bdi; 51 52 #ifdef CONFIG_PM_SLEEP 53 54 static int mtd_cls_suspend(struct device *dev) 55 { 56 struct mtd_info *mtd = dev_get_drvdata(dev); 57 58 return mtd ? mtd_suspend(mtd) : 0; 59 } 60 61 static int mtd_cls_resume(struct device *dev) 62 { 63 struct mtd_info *mtd = dev_get_drvdata(dev); 64 65 if (mtd) 66 mtd_resume(mtd); 67 return 0; 68 } 69 70 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 71 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 72 #else 73 #define MTD_CLS_PM_OPS NULL 74 #endif 75 76 static struct class mtd_class = { 77 .name = "mtd", 78 .owner = THIS_MODULE, 79 .pm = MTD_CLS_PM_OPS, 80 }; 81 82 static DEFINE_IDR(mtd_idr); 83 84 /* These are exported solely for the purpose of mtd_blkdevs.c. You 85 should not use them for _anything_ else */ 86 DEFINE_MUTEX(mtd_table_mutex); 87 EXPORT_SYMBOL_GPL(mtd_table_mutex); 88 89 struct mtd_info *__mtd_next_device(int i) 90 { 91 return idr_get_next(&mtd_idr, &i); 92 } 93 EXPORT_SYMBOL_GPL(__mtd_next_device); 94 95 static LIST_HEAD(mtd_notifiers); 96 97 98 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 99 100 /* REVISIT once MTD uses the driver model better, whoever allocates 101 * the mtd_info will probably want to use the release() hook... 102 */ 103 static void mtd_release(struct device *dev) 104 { 105 struct mtd_info *mtd = dev_get_drvdata(dev); 106 dev_t index = MTD_DEVT(mtd->index); 107 108 /* remove /dev/mtdXro node */ 109 device_destroy(&mtd_class, index + 1); 110 } 111 112 static ssize_t mtd_type_show(struct device *dev, 113 struct device_attribute *attr, char *buf) 114 { 115 struct mtd_info *mtd = dev_get_drvdata(dev); 116 char *type; 117 118 switch (mtd->type) { 119 case MTD_ABSENT: 120 type = "absent"; 121 break; 122 case MTD_RAM: 123 type = "ram"; 124 break; 125 case MTD_ROM: 126 type = "rom"; 127 break; 128 case MTD_NORFLASH: 129 type = "nor"; 130 break; 131 case MTD_NANDFLASH: 132 type = "nand"; 133 break; 134 case MTD_DATAFLASH: 135 type = "dataflash"; 136 break; 137 case MTD_UBIVOLUME: 138 type = "ubi"; 139 break; 140 case MTD_MLCNANDFLASH: 141 type = "mlc-nand"; 142 break; 143 default: 144 type = "unknown"; 145 } 146 147 return snprintf(buf, PAGE_SIZE, "%s\n", type); 148 } 149 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 150 151 static ssize_t mtd_flags_show(struct device *dev, 152 struct device_attribute *attr, char *buf) 153 { 154 struct mtd_info *mtd = dev_get_drvdata(dev); 155 156 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 157 158 } 159 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 160 161 static ssize_t mtd_size_show(struct device *dev, 162 struct device_attribute *attr, char *buf) 163 { 164 struct mtd_info *mtd = dev_get_drvdata(dev); 165 166 return snprintf(buf, PAGE_SIZE, "%llu\n", 167 (unsigned long long)mtd->size); 168 169 } 170 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 171 172 static ssize_t mtd_erasesize_show(struct device *dev, 173 struct device_attribute *attr, char *buf) 174 { 175 struct mtd_info *mtd = dev_get_drvdata(dev); 176 177 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 178 179 } 180 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 181 182 static ssize_t mtd_writesize_show(struct device *dev, 183 struct device_attribute *attr, char *buf) 184 { 185 struct mtd_info *mtd = dev_get_drvdata(dev); 186 187 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 188 189 } 190 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 191 192 static ssize_t mtd_subpagesize_show(struct device *dev, 193 struct device_attribute *attr, char *buf) 194 { 195 struct mtd_info *mtd = dev_get_drvdata(dev); 196 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 197 198 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 199 200 } 201 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 202 203 static ssize_t mtd_oobsize_show(struct device *dev, 204 struct device_attribute *attr, char *buf) 205 { 206 struct mtd_info *mtd = dev_get_drvdata(dev); 207 208 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 209 210 } 211 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 212 213 static ssize_t mtd_numeraseregions_show(struct device *dev, 214 struct device_attribute *attr, char *buf) 215 { 216 struct mtd_info *mtd = dev_get_drvdata(dev); 217 218 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 219 220 } 221 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 222 NULL); 223 224 static ssize_t mtd_name_show(struct device *dev, 225 struct device_attribute *attr, char *buf) 226 { 227 struct mtd_info *mtd = dev_get_drvdata(dev); 228 229 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 230 231 } 232 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 233 234 static ssize_t mtd_ecc_strength_show(struct device *dev, 235 struct device_attribute *attr, char *buf) 236 { 237 struct mtd_info *mtd = dev_get_drvdata(dev); 238 239 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 240 } 241 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 242 243 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 244 struct device_attribute *attr, 245 char *buf) 246 { 247 struct mtd_info *mtd = dev_get_drvdata(dev); 248 249 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 250 } 251 252 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 253 struct device_attribute *attr, 254 const char *buf, size_t count) 255 { 256 struct mtd_info *mtd = dev_get_drvdata(dev); 257 unsigned int bitflip_threshold; 258 int retval; 259 260 retval = kstrtouint(buf, 0, &bitflip_threshold); 261 if (retval) 262 return retval; 263 264 mtd->bitflip_threshold = bitflip_threshold; 265 return count; 266 } 267 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 268 mtd_bitflip_threshold_show, 269 mtd_bitflip_threshold_store); 270 271 static ssize_t mtd_ecc_step_size_show(struct device *dev, 272 struct device_attribute *attr, char *buf) 273 { 274 struct mtd_info *mtd = dev_get_drvdata(dev); 275 276 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 277 278 } 279 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 280 281 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev, 282 struct device_attribute *attr, char *buf) 283 { 284 struct mtd_info *mtd = dev_get_drvdata(dev); 285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 286 287 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected); 288 } 289 static DEVICE_ATTR(corrected_bits, S_IRUGO, 290 mtd_ecc_stats_corrected_show, NULL); 291 292 static ssize_t mtd_ecc_stats_errors_show(struct device *dev, 293 struct device_attribute *attr, char *buf) 294 { 295 struct mtd_info *mtd = dev_get_drvdata(dev); 296 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 297 298 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed); 299 } 300 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL); 301 302 static ssize_t mtd_badblocks_show(struct device *dev, 303 struct device_attribute *attr, char *buf) 304 { 305 struct mtd_info *mtd = dev_get_drvdata(dev); 306 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 307 308 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks); 309 } 310 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL); 311 312 static ssize_t mtd_bbtblocks_show(struct device *dev, 313 struct device_attribute *attr, char *buf) 314 { 315 struct mtd_info *mtd = dev_get_drvdata(dev); 316 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 317 318 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks); 319 } 320 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL); 321 322 static struct attribute *mtd_attrs[] = { 323 &dev_attr_type.attr, 324 &dev_attr_flags.attr, 325 &dev_attr_size.attr, 326 &dev_attr_erasesize.attr, 327 &dev_attr_writesize.attr, 328 &dev_attr_subpagesize.attr, 329 &dev_attr_oobsize.attr, 330 &dev_attr_numeraseregions.attr, 331 &dev_attr_name.attr, 332 &dev_attr_ecc_strength.attr, 333 &dev_attr_ecc_step_size.attr, 334 &dev_attr_corrected_bits.attr, 335 &dev_attr_ecc_failures.attr, 336 &dev_attr_bad_blocks.attr, 337 &dev_attr_bbt_blocks.attr, 338 &dev_attr_bitflip_threshold.attr, 339 NULL, 340 }; 341 ATTRIBUTE_GROUPS(mtd); 342 343 static const struct device_type mtd_devtype = { 344 .name = "mtd", 345 .groups = mtd_groups, 346 .release = mtd_release, 347 }; 348 349 #ifndef CONFIG_MMU 350 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 351 { 352 switch (mtd->type) { 353 case MTD_RAM: 354 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 355 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 356 case MTD_ROM: 357 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 358 NOMMU_MAP_READ; 359 default: 360 return NOMMU_MAP_COPY; 361 } 362 } 363 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 364 #endif 365 366 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 367 void *cmd) 368 { 369 struct mtd_info *mtd; 370 371 mtd = container_of(n, struct mtd_info, reboot_notifier); 372 mtd->_reboot(mtd); 373 374 return NOTIFY_DONE; 375 } 376 377 /** 378 * mtd_wunit_to_pairing_info - get pairing information of a wunit 379 * @mtd: pointer to new MTD device info structure 380 * @wunit: write unit we are interested in 381 * @info: returned pairing information 382 * 383 * Retrieve pairing information associated to the wunit. 384 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 385 * paired together, and where programming a page may influence the page it is 386 * paired with. 387 * The notion of page is replaced by the term wunit (write-unit) to stay 388 * consistent with the ->writesize field. 389 * 390 * The @wunit argument can be extracted from an absolute offset using 391 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 392 * to @wunit. 393 * 394 * From the pairing info the MTD user can find all the wunits paired with 395 * @wunit using the following loop: 396 * 397 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 398 * info.pair = i; 399 * mtd_pairing_info_to_wunit(mtd, &info); 400 * ... 401 * } 402 */ 403 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 404 struct mtd_pairing_info *info) 405 { 406 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 407 408 if (wunit < 0 || wunit >= npairs) 409 return -EINVAL; 410 411 if (mtd->pairing && mtd->pairing->get_info) 412 return mtd->pairing->get_info(mtd, wunit, info); 413 414 info->group = 0; 415 info->pair = wunit; 416 417 return 0; 418 } 419 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 420 421 /** 422 * mtd_pairing_info_to_wunit - get wunit from pairing information 423 * @mtd: pointer to new MTD device info structure 424 * @info: pairing information struct 425 * 426 * Returns a positive number representing the wunit associated to the info 427 * struct, or a negative error code. 428 * 429 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 430 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 431 * doc). 432 * 433 * It can also be used to only program the first page of each pair (i.e. 434 * page attached to group 0), which allows one to use an MLC NAND in 435 * software-emulated SLC mode: 436 * 437 * info.group = 0; 438 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 439 * for (info.pair = 0; info.pair < npairs; info.pair++) { 440 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 441 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 442 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 443 * } 444 */ 445 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 446 const struct mtd_pairing_info *info) 447 { 448 int ngroups = mtd_pairing_groups(mtd); 449 int npairs = mtd_wunit_per_eb(mtd) / ngroups; 450 451 if (!info || info->pair < 0 || info->pair >= npairs || 452 info->group < 0 || info->group >= ngroups) 453 return -EINVAL; 454 455 if (mtd->pairing && mtd->pairing->get_wunit) 456 return mtd->pairing->get_wunit(mtd, info); 457 458 return info->pair; 459 } 460 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 461 462 /** 463 * mtd_pairing_groups - get the number of pairing groups 464 * @mtd: pointer to new MTD device info structure 465 * 466 * Returns the number of pairing groups. 467 * 468 * This number is usually equal to the number of bits exposed by a single 469 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 470 * to iterate over all pages of a given pair. 471 */ 472 int mtd_pairing_groups(struct mtd_info *mtd) 473 { 474 if (!mtd->pairing || !mtd->pairing->ngroups) 475 return 1; 476 477 return mtd->pairing->ngroups; 478 } 479 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 480 481 static struct dentry *dfs_dir_mtd; 482 483 /** 484 * add_mtd_device - register an MTD device 485 * @mtd: pointer to new MTD device info structure 486 * 487 * Add a device to the list of MTD devices present in the system, and 488 * notify each currently active MTD 'user' of its arrival. Returns 489 * zero on success or non-zero on failure. 490 */ 491 492 int add_mtd_device(struct mtd_info *mtd) 493 { 494 struct mtd_notifier *not; 495 int i, error; 496 497 /* 498 * May occur, for instance, on buggy drivers which call 499 * mtd_device_parse_register() multiple times on the same master MTD, 500 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 501 */ 502 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 503 return -EEXIST; 504 505 BUG_ON(mtd->writesize == 0); 506 507 if (WARN_ON((!mtd->erasesize || !mtd->_erase) && 508 !(mtd->flags & MTD_NO_ERASE))) 509 return -EINVAL; 510 511 mutex_lock(&mtd_table_mutex); 512 513 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 514 if (i < 0) { 515 error = i; 516 goto fail_locked; 517 } 518 519 mtd->index = i; 520 mtd->usecount = 0; 521 522 /* default value if not set by driver */ 523 if (mtd->bitflip_threshold == 0) 524 mtd->bitflip_threshold = mtd->ecc_strength; 525 526 if (is_power_of_2(mtd->erasesize)) 527 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 528 else 529 mtd->erasesize_shift = 0; 530 531 if (is_power_of_2(mtd->writesize)) 532 mtd->writesize_shift = ffs(mtd->writesize) - 1; 533 else 534 mtd->writesize_shift = 0; 535 536 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 537 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 538 539 /* Some chips always power up locked. Unlock them now */ 540 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 541 error = mtd_unlock(mtd, 0, mtd->size); 542 if (error && error != -EOPNOTSUPP) 543 printk(KERN_WARNING 544 "%s: unlock failed, writes may not work\n", 545 mtd->name); 546 /* Ignore unlock failures? */ 547 error = 0; 548 } 549 550 /* Caller should have set dev.parent to match the 551 * physical device, if appropriate. 552 */ 553 mtd->dev.type = &mtd_devtype; 554 mtd->dev.class = &mtd_class; 555 mtd->dev.devt = MTD_DEVT(i); 556 dev_set_name(&mtd->dev, "mtd%d", i); 557 dev_set_drvdata(&mtd->dev, mtd); 558 of_node_get(mtd_get_of_node(mtd)); 559 error = device_register(&mtd->dev); 560 if (error) 561 goto fail_added; 562 563 if (!IS_ERR_OR_NULL(dfs_dir_mtd)) { 564 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd); 565 if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) { 566 pr_debug("mtd device %s won't show data in debugfs\n", 567 dev_name(&mtd->dev)); 568 } 569 } 570 571 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 572 "mtd%dro", i); 573 574 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 575 /* No need to get a refcount on the module containing 576 the notifier, since we hold the mtd_table_mutex */ 577 list_for_each_entry(not, &mtd_notifiers, list) 578 not->add(mtd); 579 580 mutex_unlock(&mtd_table_mutex); 581 /* We _know_ we aren't being removed, because 582 our caller is still holding us here. So none 583 of this try_ nonsense, and no bitching about it 584 either. :) */ 585 __module_get(THIS_MODULE); 586 return 0; 587 588 fail_added: 589 of_node_put(mtd_get_of_node(mtd)); 590 idr_remove(&mtd_idr, i); 591 fail_locked: 592 mutex_unlock(&mtd_table_mutex); 593 return error; 594 } 595 596 /** 597 * del_mtd_device - unregister an MTD device 598 * @mtd: pointer to MTD device info structure 599 * 600 * Remove a device from the list of MTD devices present in the system, 601 * and notify each currently active MTD 'user' of its departure. 602 * Returns zero on success or 1 on failure, which currently will happen 603 * if the requested device does not appear to be present in the list. 604 */ 605 606 int del_mtd_device(struct mtd_info *mtd) 607 { 608 int ret; 609 struct mtd_notifier *not; 610 611 mutex_lock(&mtd_table_mutex); 612 613 debugfs_remove_recursive(mtd->dbg.dfs_dir); 614 615 if (idr_find(&mtd_idr, mtd->index) != mtd) { 616 ret = -ENODEV; 617 goto out_error; 618 } 619 620 /* No need to get a refcount on the module containing 621 the notifier, since we hold the mtd_table_mutex */ 622 list_for_each_entry(not, &mtd_notifiers, list) 623 not->remove(mtd); 624 625 if (mtd->usecount) { 626 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 627 mtd->index, mtd->name, mtd->usecount); 628 ret = -EBUSY; 629 } else { 630 device_unregister(&mtd->dev); 631 632 idr_remove(&mtd_idr, mtd->index); 633 of_node_put(mtd_get_of_node(mtd)); 634 635 module_put(THIS_MODULE); 636 ret = 0; 637 } 638 639 out_error: 640 mutex_unlock(&mtd_table_mutex); 641 return ret; 642 } 643 644 /* 645 * Set a few defaults based on the parent devices, if not provided by the 646 * driver 647 */ 648 static void mtd_set_dev_defaults(struct mtd_info *mtd) 649 { 650 if (mtd->dev.parent) { 651 if (!mtd->owner && mtd->dev.parent->driver) 652 mtd->owner = mtd->dev.parent->driver->owner; 653 if (!mtd->name) 654 mtd->name = dev_name(mtd->dev.parent); 655 } else { 656 pr_debug("mtd device won't show a device symlink in sysfs\n"); 657 } 658 } 659 660 /** 661 * mtd_device_parse_register - parse partitions and register an MTD device. 662 * 663 * @mtd: the MTD device to register 664 * @types: the list of MTD partition probes to try, see 665 * 'parse_mtd_partitions()' for more information 666 * @parser_data: MTD partition parser-specific data 667 * @parts: fallback partition information to register, if parsing fails; 668 * only valid if %nr_parts > %0 669 * @nr_parts: the number of partitions in parts, if zero then the full 670 * MTD device is registered if no partition info is found 671 * 672 * This function aggregates MTD partitions parsing (done by 673 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 674 * basically follows the most common pattern found in many MTD drivers: 675 * 676 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is 677 * registered first. 678 * * Then It tries to probe partitions on MTD device @mtd using parsers 679 * specified in @types (if @types is %NULL, then the default list of parsers 680 * is used, see 'parse_mtd_partitions()' for more information). If none are 681 * found this functions tries to fallback to information specified in 682 * @parts/@nr_parts. 683 * * If no partitions were found this function just registers the MTD device 684 * @mtd and exits. 685 * 686 * Returns zero in case of success and a negative error code in case of failure. 687 */ 688 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 689 struct mtd_part_parser_data *parser_data, 690 const struct mtd_partition *parts, 691 int nr_parts) 692 { 693 struct mtd_partitions parsed = { }; 694 int ret; 695 696 mtd_set_dev_defaults(mtd); 697 698 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 699 ret = add_mtd_device(mtd); 700 if (ret) 701 return ret; 702 } 703 704 /* Prefer parsed partitions over driver-provided fallback */ 705 ret = parse_mtd_partitions(mtd, types, &parsed, parser_data); 706 if (!ret && parsed.nr_parts) { 707 parts = parsed.parts; 708 nr_parts = parsed.nr_parts; 709 } 710 711 if (nr_parts) 712 ret = add_mtd_partitions(mtd, parts, nr_parts); 713 else if (!device_is_registered(&mtd->dev)) 714 ret = add_mtd_device(mtd); 715 else 716 ret = 0; 717 718 if (ret) 719 goto out; 720 721 /* 722 * FIXME: some drivers unfortunately call this function more than once. 723 * So we have to check if we've already assigned the reboot notifier. 724 * 725 * Generally, we can make multiple calls work for most cases, but it 726 * does cause problems with parse_mtd_partitions() above (e.g., 727 * cmdlineparts will register partitions more than once). 728 */ 729 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 730 "MTD already registered\n"); 731 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 732 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 733 register_reboot_notifier(&mtd->reboot_notifier); 734 } 735 736 out: 737 /* Cleanup any parsed partitions */ 738 mtd_part_parser_cleanup(&parsed); 739 if (ret && device_is_registered(&mtd->dev)) 740 del_mtd_device(mtd); 741 742 return ret; 743 } 744 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 745 746 /** 747 * mtd_device_unregister - unregister an existing MTD device. 748 * 749 * @master: the MTD device to unregister. This will unregister both the master 750 * and any partitions if registered. 751 */ 752 int mtd_device_unregister(struct mtd_info *master) 753 { 754 int err; 755 756 if (master->_reboot) 757 unregister_reboot_notifier(&master->reboot_notifier); 758 759 err = del_mtd_partitions(master); 760 if (err) 761 return err; 762 763 if (!device_is_registered(&master->dev)) 764 return 0; 765 766 return del_mtd_device(master); 767 } 768 EXPORT_SYMBOL_GPL(mtd_device_unregister); 769 770 /** 771 * register_mtd_user - register a 'user' of MTD devices. 772 * @new: pointer to notifier info structure 773 * 774 * Registers a pair of callbacks function to be called upon addition 775 * or removal of MTD devices. Causes the 'add' callback to be immediately 776 * invoked for each MTD device currently present in the system. 777 */ 778 void register_mtd_user (struct mtd_notifier *new) 779 { 780 struct mtd_info *mtd; 781 782 mutex_lock(&mtd_table_mutex); 783 784 list_add(&new->list, &mtd_notifiers); 785 786 __module_get(THIS_MODULE); 787 788 mtd_for_each_device(mtd) 789 new->add(mtd); 790 791 mutex_unlock(&mtd_table_mutex); 792 } 793 EXPORT_SYMBOL_GPL(register_mtd_user); 794 795 /** 796 * unregister_mtd_user - unregister a 'user' of MTD devices. 797 * @old: pointer to notifier info structure 798 * 799 * Removes a callback function pair from the list of 'users' to be 800 * notified upon addition or removal of MTD devices. Causes the 801 * 'remove' callback to be immediately invoked for each MTD device 802 * currently present in the system. 803 */ 804 int unregister_mtd_user (struct mtd_notifier *old) 805 { 806 struct mtd_info *mtd; 807 808 mutex_lock(&mtd_table_mutex); 809 810 module_put(THIS_MODULE); 811 812 mtd_for_each_device(mtd) 813 old->remove(mtd); 814 815 list_del(&old->list); 816 mutex_unlock(&mtd_table_mutex); 817 return 0; 818 } 819 EXPORT_SYMBOL_GPL(unregister_mtd_user); 820 821 /** 822 * get_mtd_device - obtain a validated handle for an MTD device 823 * @mtd: last known address of the required MTD device 824 * @num: internal device number of the required MTD device 825 * 826 * Given a number and NULL address, return the num'th entry in the device 827 * table, if any. Given an address and num == -1, search the device table 828 * for a device with that address and return if it's still present. Given 829 * both, return the num'th driver only if its address matches. Return 830 * error code if not. 831 */ 832 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 833 { 834 struct mtd_info *ret = NULL, *other; 835 int err = -ENODEV; 836 837 mutex_lock(&mtd_table_mutex); 838 839 if (num == -1) { 840 mtd_for_each_device(other) { 841 if (other == mtd) { 842 ret = mtd; 843 break; 844 } 845 } 846 } else if (num >= 0) { 847 ret = idr_find(&mtd_idr, num); 848 if (mtd && mtd != ret) 849 ret = NULL; 850 } 851 852 if (!ret) { 853 ret = ERR_PTR(err); 854 goto out; 855 } 856 857 err = __get_mtd_device(ret); 858 if (err) 859 ret = ERR_PTR(err); 860 out: 861 mutex_unlock(&mtd_table_mutex); 862 return ret; 863 } 864 EXPORT_SYMBOL_GPL(get_mtd_device); 865 866 867 int __get_mtd_device(struct mtd_info *mtd) 868 { 869 int err; 870 871 if (!try_module_get(mtd->owner)) 872 return -ENODEV; 873 874 if (mtd->_get_device) { 875 err = mtd->_get_device(mtd); 876 877 if (err) { 878 module_put(mtd->owner); 879 return err; 880 } 881 } 882 mtd->usecount++; 883 return 0; 884 } 885 EXPORT_SYMBOL_GPL(__get_mtd_device); 886 887 /** 888 * get_mtd_device_nm - obtain a validated handle for an MTD device by 889 * device name 890 * @name: MTD device name to open 891 * 892 * This function returns MTD device description structure in case of 893 * success and an error code in case of failure. 894 */ 895 struct mtd_info *get_mtd_device_nm(const char *name) 896 { 897 int err = -ENODEV; 898 struct mtd_info *mtd = NULL, *other; 899 900 mutex_lock(&mtd_table_mutex); 901 902 mtd_for_each_device(other) { 903 if (!strcmp(name, other->name)) { 904 mtd = other; 905 break; 906 } 907 } 908 909 if (!mtd) 910 goto out_unlock; 911 912 err = __get_mtd_device(mtd); 913 if (err) 914 goto out_unlock; 915 916 mutex_unlock(&mtd_table_mutex); 917 return mtd; 918 919 out_unlock: 920 mutex_unlock(&mtd_table_mutex); 921 return ERR_PTR(err); 922 } 923 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 924 925 void put_mtd_device(struct mtd_info *mtd) 926 { 927 mutex_lock(&mtd_table_mutex); 928 __put_mtd_device(mtd); 929 mutex_unlock(&mtd_table_mutex); 930 931 } 932 EXPORT_SYMBOL_GPL(put_mtd_device); 933 934 void __put_mtd_device(struct mtd_info *mtd) 935 { 936 --mtd->usecount; 937 BUG_ON(mtd->usecount < 0); 938 939 if (mtd->_put_device) 940 mtd->_put_device(mtd); 941 942 module_put(mtd->owner); 943 } 944 EXPORT_SYMBOL_GPL(__put_mtd_device); 945 946 /* 947 * Erase is an synchronous operation. Device drivers are epected to return a 948 * negative error code if the operation failed and update instr->fail_addr 949 * to point the portion that was not properly erased. 950 */ 951 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 952 { 953 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 954 955 if (!mtd->erasesize || !mtd->_erase) 956 return -ENOTSUPP; 957 958 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 959 return -EINVAL; 960 if (!(mtd->flags & MTD_WRITEABLE)) 961 return -EROFS; 962 963 if (!instr->len) 964 return 0; 965 966 ledtrig_mtd_activity(); 967 return mtd->_erase(mtd, instr); 968 } 969 EXPORT_SYMBOL_GPL(mtd_erase); 970 971 /* 972 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 973 */ 974 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 975 void **virt, resource_size_t *phys) 976 { 977 *retlen = 0; 978 *virt = NULL; 979 if (phys) 980 *phys = 0; 981 if (!mtd->_point) 982 return -EOPNOTSUPP; 983 if (from < 0 || from >= mtd->size || len > mtd->size - from) 984 return -EINVAL; 985 if (!len) 986 return 0; 987 return mtd->_point(mtd, from, len, retlen, virt, phys); 988 } 989 EXPORT_SYMBOL_GPL(mtd_point); 990 991 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 992 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 993 { 994 if (!mtd->_unpoint) 995 return -EOPNOTSUPP; 996 if (from < 0 || from >= mtd->size || len > mtd->size - from) 997 return -EINVAL; 998 if (!len) 999 return 0; 1000 return mtd->_unpoint(mtd, from, len); 1001 } 1002 EXPORT_SYMBOL_GPL(mtd_unpoint); 1003 1004 /* 1005 * Allow NOMMU mmap() to directly map the device (if not NULL) 1006 * - return the address to which the offset maps 1007 * - return -ENOSYS to indicate refusal to do the mapping 1008 */ 1009 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1010 unsigned long offset, unsigned long flags) 1011 { 1012 size_t retlen; 1013 void *virt; 1014 int ret; 1015 1016 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); 1017 if (ret) 1018 return ret; 1019 if (retlen != len) { 1020 mtd_unpoint(mtd, offset, retlen); 1021 return -ENOSYS; 1022 } 1023 return (unsigned long)virt; 1024 } 1025 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1026 1027 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1028 u_char *buf) 1029 { 1030 int ret_code; 1031 *retlen = 0; 1032 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1033 return -EINVAL; 1034 if (!len) 1035 return 0; 1036 1037 ledtrig_mtd_activity(); 1038 /* 1039 * In the absence of an error, drivers return a non-negative integer 1040 * representing the maximum number of bitflips that were corrected on 1041 * any one ecc region (if applicable; zero otherwise). 1042 */ 1043 if (mtd->_read) { 1044 ret_code = mtd->_read(mtd, from, len, retlen, buf); 1045 } else if (mtd->_read_oob) { 1046 struct mtd_oob_ops ops = { 1047 .len = len, 1048 .datbuf = buf, 1049 }; 1050 1051 ret_code = mtd->_read_oob(mtd, from, &ops); 1052 *retlen = ops.retlen; 1053 } else { 1054 return -ENOTSUPP; 1055 } 1056 1057 if (unlikely(ret_code < 0)) 1058 return ret_code; 1059 if (mtd->ecc_strength == 0) 1060 return 0; /* device lacks ecc */ 1061 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1062 } 1063 EXPORT_SYMBOL_GPL(mtd_read); 1064 1065 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1066 const u_char *buf) 1067 { 1068 *retlen = 0; 1069 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1070 return -EINVAL; 1071 if ((!mtd->_write && !mtd->_write_oob) || 1072 !(mtd->flags & MTD_WRITEABLE)) 1073 return -EROFS; 1074 if (!len) 1075 return 0; 1076 ledtrig_mtd_activity(); 1077 1078 if (!mtd->_write) { 1079 struct mtd_oob_ops ops = { 1080 .len = len, 1081 .datbuf = (u8 *)buf, 1082 }; 1083 int ret; 1084 1085 ret = mtd->_write_oob(mtd, to, &ops); 1086 *retlen = ops.retlen; 1087 return ret; 1088 } 1089 1090 return mtd->_write(mtd, to, len, retlen, buf); 1091 } 1092 EXPORT_SYMBOL_GPL(mtd_write); 1093 1094 /* 1095 * In blackbox flight recorder like scenarios we want to make successful writes 1096 * in interrupt context. panic_write() is only intended to be called when its 1097 * known the kernel is about to panic and we need the write to succeed. Since 1098 * the kernel is not going to be running for much longer, this function can 1099 * break locks and delay to ensure the write succeeds (but not sleep). 1100 */ 1101 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1102 const u_char *buf) 1103 { 1104 *retlen = 0; 1105 if (!mtd->_panic_write) 1106 return -EOPNOTSUPP; 1107 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1108 return -EINVAL; 1109 if (!(mtd->flags & MTD_WRITEABLE)) 1110 return -EROFS; 1111 if (!len) 1112 return 0; 1113 return mtd->_panic_write(mtd, to, len, retlen, buf); 1114 } 1115 EXPORT_SYMBOL_GPL(mtd_panic_write); 1116 1117 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1118 struct mtd_oob_ops *ops) 1119 { 1120 /* 1121 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1122 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1123 * this case. 1124 */ 1125 if (!ops->datbuf) 1126 ops->len = 0; 1127 1128 if (!ops->oobbuf) 1129 ops->ooblen = 0; 1130 1131 if (offs < 0 || offs + ops->len > mtd->size) 1132 return -EINVAL; 1133 1134 if (ops->ooblen) { 1135 u64 maxooblen; 1136 1137 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1138 return -EINVAL; 1139 1140 maxooblen = ((mtd_div_by_ws(mtd->size, mtd) - 1141 mtd_div_by_ws(offs, mtd)) * 1142 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1143 if (ops->ooblen > maxooblen) 1144 return -EINVAL; 1145 } 1146 1147 return 0; 1148 } 1149 1150 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1151 { 1152 int ret_code; 1153 ops->retlen = ops->oobretlen = 0; 1154 if (!mtd->_read_oob) 1155 return -EOPNOTSUPP; 1156 1157 ret_code = mtd_check_oob_ops(mtd, from, ops); 1158 if (ret_code) 1159 return ret_code; 1160 1161 ledtrig_mtd_activity(); 1162 /* 1163 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1164 * similar to mtd->_read(), returning a non-negative integer 1165 * representing max bitflips. In other cases, mtd->_read_oob() may 1166 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1167 */ 1168 ret_code = mtd->_read_oob(mtd, from, ops); 1169 if (unlikely(ret_code < 0)) 1170 return ret_code; 1171 if (mtd->ecc_strength == 0) 1172 return 0; /* device lacks ecc */ 1173 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1174 } 1175 EXPORT_SYMBOL_GPL(mtd_read_oob); 1176 1177 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1178 struct mtd_oob_ops *ops) 1179 { 1180 int ret; 1181 1182 ops->retlen = ops->oobretlen = 0; 1183 if (!mtd->_write_oob) 1184 return -EOPNOTSUPP; 1185 if (!(mtd->flags & MTD_WRITEABLE)) 1186 return -EROFS; 1187 1188 ret = mtd_check_oob_ops(mtd, to, ops); 1189 if (ret) 1190 return ret; 1191 1192 ledtrig_mtd_activity(); 1193 return mtd->_write_oob(mtd, to, ops); 1194 } 1195 EXPORT_SYMBOL_GPL(mtd_write_oob); 1196 1197 /** 1198 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1199 * @mtd: MTD device structure 1200 * @section: ECC section. Depending on the layout you may have all the ECC 1201 * bytes stored in a single contiguous section, or one section 1202 * per ECC chunk (and sometime several sections for a single ECC 1203 * ECC chunk) 1204 * @oobecc: OOB region struct filled with the appropriate ECC position 1205 * information 1206 * 1207 * This function returns ECC section information in the OOB area. If you want 1208 * to get all the ECC bytes information, then you should call 1209 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1210 * 1211 * Returns zero on success, a negative error code otherwise. 1212 */ 1213 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1214 struct mtd_oob_region *oobecc) 1215 { 1216 memset(oobecc, 0, sizeof(*oobecc)); 1217 1218 if (!mtd || section < 0) 1219 return -EINVAL; 1220 1221 if (!mtd->ooblayout || !mtd->ooblayout->ecc) 1222 return -ENOTSUPP; 1223 1224 return mtd->ooblayout->ecc(mtd, section, oobecc); 1225 } 1226 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1227 1228 /** 1229 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1230 * section 1231 * @mtd: MTD device structure 1232 * @section: Free section you are interested in. Depending on the layout 1233 * you may have all the free bytes stored in a single contiguous 1234 * section, or one section per ECC chunk plus an extra section 1235 * for the remaining bytes (or other funky layout). 1236 * @oobfree: OOB region struct filled with the appropriate free position 1237 * information 1238 * 1239 * This function returns free bytes position in the OOB area. If you want 1240 * to get all the free bytes information, then you should call 1241 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1242 * 1243 * Returns zero on success, a negative error code otherwise. 1244 */ 1245 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1246 struct mtd_oob_region *oobfree) 1247 { 1248 memset(oobfree, 0, sizeof(*oobfree)); 1249 1250 if (!mtd || section < 0) 1251 return -EINVAL; 1252 1253 if (!mtd->ooblayout || !mtd->ooblayout->free) 1254 return -ENOTSUPP; 1255 1256 return mtd->ooblayout->free(mtd, section, oobfree); 1257 } 1258 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1259 1260 /** 1261 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1262 * @mtd: mtd info structure 1263 * @byte: the byte we are searching for 1264 * @sectionp: pointer where the section id will be stored 1265 * @oobregion: used to retrieve the ECC position 1266 * @iter: iterator function. Should be either mtd_ooblayout_free or 1267 * mtd_ooblayout_ecc depending on the region type you're searching for 1268 * 1269 * This function returns the section id and oobregion information of a 1270 * specific byte. For example, say you want to know where the 4th ECC byte is 1271 * stored, you'll use: 1272 * 1273 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1274 * 1275 * Returns zero on success, a negative error code otherwise. 1276 */ 1277 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1278 int *sectionp, struct mtd_oob_region *oobregion, 1279 int (*iter)(struct mtd_info *, 1280 int section, 1281 struct mtd_oob_region *oobregion)) 1282 { 1283 int pos = 0, ret, section = 0; 1284 1285 memset(oobregion, 0, sizeof(*oobregion)); 1286 1287 while (1) { 1288 ret = iter(mtd, section, oobregion); 1289 if (ret) 1290 return ret; 1291 1292 if (pos + oobregion->length > byte) 1293 break; 1294 1295 pos += oobregion->length; 1296 section++; 1297 } 1298 1299 /* 1300 * Adjust region info to make it start at the beginning at the 1301 * 'start' ECC byte. 1302 */ 1303 oobregion->offset += byte - pos; 1304 oobregion->length -= byte - pos; 1305 *sectionp = section; 1306 1307 return 0; 1308 } 1309 1310 /** 1311 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1312 * ECC byte 1313 * @mtd: mtd info structure 1314 * @eccbyte: the byte we are searching for 1315 * @sectionp: pointer where the section id will be stored 1316 * @oobregion: OOB region information 1317 * 1318 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1319 * byte. 1320 * 1321 * Returns zero on success, a negative error code otherwise. 1322 */ 1323 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1324 int *section, 1325 struct mtd_oob_region *oobregion) 1326 { 1327 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1328 mtd_ooblayout_ecc); 1329 } 1330 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1331 1332 /** 1333 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1334 * @mtd: mtd info structure 1335 * @buf: destination buffer to store OOB bytes 1336 * @oobbuf: OOB buffer 1337 * @start: first byte to retrieve 1338 * @nbytes: number of bytes to retrieve 1339 * @iter: section iterator 1340 * 1341 * Extract bytes attached to a specific category (ECC or free) 1342 * from the OOB buffer and copy them into buf. 1343 * 1344 * Returns zero on success, a negative error code otherwise. 1345 */ 1346 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1347 const u8 *oobbuf, int start, int nbytes, 1348 int (*iter)(struct mtd_info *, 1349 int section, 1350 struct mtd_oob_region *oobregion)) 1351 { 1352 struct mtd_oob_region oobregion; 1353 int section, ret; 1354 1355 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1356 &oobregion, iter); 1357 1358 while (!ret) { 1359 int cnt; 1360 1361 cnt = min_t(int, nbytes, oobregion.length); 1362 memcpy(buf, oobbuf + oobregion.offset, cnt); 1363 buf += cnt; 1364 nbytes -= cnt; 1365 1366 if (!nbytes) 1367 break; 1368 1369 ret = iter(mtd, ++section, &oobregion); 1370 } 1371 1372 return ret; 1373 } 1374 1375 /** 1376 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1377 * @mtd: mtd info structure 1378 * @buf: source buffer to get OOB bytes from 1379 * @oobbuf: OOB buffer 1380 * @start: first OOB byte to set 1381 * @nbytes: number of OOB bytes to set 1382 * @iter: section iterator 1383 * 1384 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1385 * is selected by passing the appropriate iterator. 1386 * 1387 * Returns zero on success, a negative error code otherwise. 1388 */ 1389 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1390 u8 *oobbuf, int start, int nbytes, 1391 int (*iter)(struct mtd_info *, 1392 int section, 1393 struct mtd_oob_region *oobregion)) 1394 { 1395 struct mtd_oob_region oobregion; 1396 int section, ret; 1397 1398 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1399 &oobregion, iter); 1400 1401 while (!ret) { 1402 int cnt; 1403 1404 cnt = min_t(int, nbytes, oobregion.length); 1405 memcpy(oobbuf + oobregion.offset, buf, cnt); 1406 buf += cnt; 1407 nbytes -= cnt; 1408 1409 if (!nbytes) 1410 break; 1411 1412 ret = iter(mtd, ++section, &oobregion); 1413 } 1414 1415 return ret; 1416 } 1417 1418 /** 1419 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1420 * @mtd: mtd info structure 1421 * @iter: category iterator 1422 * 1423 * Count the number of bytes in a given category. 1424 * 1425 * Returns a positive value on success, a negative error code otherwise. 1426 */ 1427 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1428 int (*iter)(struct mtd_info *, 1429 int section, 1430 struct mtd_oob_region *oobregion)) 1431 { 1432 struct mtd_oob_region oobregion; 1433 int section = 0, ret, nbytes = 0; 1434 1435 while (1) { 1436 ret = iter(mtd, section++, &oobregion); 1437 if (ret) { 1438 if (ret == -ERANGE) 1439 ret = nbytes; 1440 break; 1441 } 1442 1443 nbytes += oobregion.length; 1444 } 1445 1446 return ret; 1447 } 1448 1449 /** 1450 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1451 * @mtd: mtd info structure 1452 * @eccbuf: destination buffer to store ECC bytes 1453 * @oobbuf: OOB buffer 1454 * @start: first ECC byte to retrieve 1455 * @nbytes: number of ECC bytes to retrieve 1456 * 1457 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1458 * 1459 * Returns zero on success, a negative error code otherwise. 1460 */ 1461 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1462 const u8 *oobbuf, int start, int nbytes) 1463 { 1464 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1465 mtd_ooblayout_ecc); 1466 } 1467 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1468 1469 /** 1470 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1471 * @mtd: mtd info structure 1472 * @eccbuf: source buffer to get ECC bytes from 1473 * @oobbuf: OOB buffer 1474 * @start: first ECC byte to set 1475 * @nbytes: number of ECC bytes to set 1476 * 1477 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 1478 * 1479 * Returns zero on success, a negative error code otherwise. 1480 */ 1481 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 1482 u8 *oobbuf, int start, int nbytes) 1483 { 1484 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1485 mtd_ooblayout_ecc); 1486 } 1487 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 1488 1489 /** 1490 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 1491 * @mtd: mtd info structure 1492 * @databuf: destination buffer to store ECC bytes 1493 * @oobbuf: OOB buffer 1494 * @start: first ECC byte to retrieve 1495 * @nbytes: number of ECC bytes to retrieve 1496 * 1497 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1498 * 1499 * Returns zero on success, a negative error code otherwise. 1500 */ 1501 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 1502 const u8 *oobbuf, int start, int nbytes) 1503 { 1504 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 1505 mtd_ooblayout_free); 1506 } 1507 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 1508 1509 /** 1510 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer 1511 * @mtd: mtd info structure 1512 * @databuf: source buffer to get data bytes from 1513 * @oobbuf: OOB buffer 1514 * @start: first ECC byte to set 1515 * @nbytes: number of ECC bytes to set 1516 * 1517 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1518 * 1519 * Returns zero on success, a negative error code otherwise. 1520 */ 1521 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 1522 u8 *oobbuf, int start, int nbytes) 1523 { 1524 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 1525 mtd_ooblayout_free); 1526 } 1527 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 1528 1529 /** 1530 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 1531 * @mtd: mtd info structure 1532 * 1533 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 1534 * 1535 * Returns zero on success, a negative error code otherwise. 1536 */ 1537 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 1538 { 1539 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 1540 } 1541 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 1542 1543 /** 1544 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB 1545 * @mtd: mtd info structure 1546 * 1547 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 1548 * 1549 * Returns zero on success, a negative error code otherwise. 1550 */ 1551 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 1552 { 1553 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 1554 } 1555 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 1556 1557 /* 1558 * Method to access the protection register area, present in some flash 1559 * devices. The user data is one time programmable but the factory data is read 1560 * only. 1561 */ 1562 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1563 struct otp_info *buf) 1564 { 1565 if (!mtd->_get_fact_prot_info) 1566 return -EOPNOTSUPP; 1567 if (!len) 1568 return 0; 1569 return mtd->_get_fact_prot_info(mtd, len, retlen, buf); 1570 } 1571 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 1572 1573 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1574 size_t *retlen, u_char *buf) 1575 { 1576 *retlen = 0; 1577 if (!mtd->_read_fact_prot_reg) 1578 return -EOPNOTSUPP; 1579 if (!len) 1580 return 0; 1581 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); 1582 } 1583 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 1584 1585 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1586 struct otp_info *buf) 1587 { 1588 if (!mtd->_get_user_prot_info) 1589 return -EOPNOTSUPP; 1590 if (!len) 1591 return 0; 1592 return mtd->_get_user_prot_info(mtd, len, retlen, buf); 1593 } 1594 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 1595 1596 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1597 size_t *retlen, u_char *buf) 1598 { 1599 *retlen = 0; 1600 if (!mtd->_read_user_prot_reg) 1601 return -EOPNOTSUPP; 1602 if (!len) 1603 return 0; 1604 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); 1605 } 1606 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 1607 1608 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 1609 size_t *retlen, u_char *buf) 1610 { 1611 int ret; 1612 1613 *retlen = 0; 1614 if (!mtd->_write_user_prot_reg) 1615 return -EOPNOTSUPP; 1616 if (!len) 1617 return 0; 1618 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); 1619 if (ret) 1620 return ret; 1621 1622 /* 1623 * If no data could be written at all, we are out of memory and 1624 * must return -ENOSPC. 1625 */ 1626 return (*retlen) ? 0 : -ENOSPC; 1627 } 1628 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1629 1630 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1631 { 1632 if (!mtd->_lock_user_prot_reg) 1633 return -EOPNOTSUPP; 1634 if (!len) 1635 return 0; 1636 return mtd->_lock_user_prot_reg(mtd, from, len); 1637 } 1638 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1639 1640 /* Chip-supported device locking */ 1641 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1642 { 1643 if (!mtd->_lock) 1644 return -EOPNOTSUPP; 1645 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1646 return -EINVAL; 1647 if (!len) 1648 return 0; 1649 return mtd->_lock(mtd, ofs, len); 1650 } 1651 EXPORT_SYMBOL_GPL(mtd_lock); 1652 1653 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1654 { 1655 if (!mtd->_unlock) 1656 return -EOPNOTSUPP; 1657 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1658 return -EINVAL; 1659 if (!len) 1660 return 0; 1661 return mtd->_unlock(mtd, ofs, len); 1662 } 1663 EXPORT_SYMBOL_GPL(mtd_unlock); 1664 1665 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1666 { 1667 if (!mtd->_is_locked) 1668 return -EOPNOTSUPP; 1669 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1670 return -EINVAL; 1671 if (!len) 1672 return 0; 1673 return mtd->_is_locked(mtd, ofs, len); 1674 } 1675 EXPORT_SYMBOL_GPL(mtd_is_locked); 1676 1677 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 1678 { 1679 if (ofs < 0 || ofs >= mtd->size) 1680 return -EINVAL; 1681 if (!mtd->_block_isreserved) 1682 return 0; 1683 return mtd->_block_isreserved(mtd, ofs); 1684 } 1685 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 1686 1687 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 1688 { 1689 if (ofs < 0 || ofs >= mtd->size) 1690 return -EINVAL; 1691 if (!mtd->_block_isbad) 1692 return 0; 1693 return mtd->_block_isbad(mtd, ofs); 1694 } 1695 EXPORT_SYMBOL_GPL(mtd_block_isbad); 1696 1697 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 1698 { 1699 if (!mtd->_block_markbad) 1700 return -EOPNOTSUPP; 1701 if (ofs < 0 || ofs >= mtd->size) 1702 return -EINVAL; 1703 if (!(mtd->flags & MTD_WRITEABLE)) 1704 return -EROFS; 1705 return mtd->_block_markbad(mtd, ofs); 1706 } 1707 EXPORT_SYMBOL_GPL(mtd_block_markbad); 1708 1709 /* 1710 * default_mtd_writev - the default writev method 1711 * @mtd: mtd device description object pointer 1712 * @vecs: the vectors to write 1713 * @count: count of vectors in @vecs 1714 * @to: the MTD device offset to write to 1715 * @retlen: on exit contains the count of bytes written to the MTD device. 1716 * 1717 * This function returns zero in case of success and a negative error code in 1718 * case of failure. 1719 */ 1720 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1721 unsigned long count, loff_t to, size_t *retlen) 1722 { 1723 unsigned long i; 1724 size_t totlen = 0, thislen; 1725 int ret = 0; 1726 1727 for (i = 0; i < count; i++) { 1728 if (!vecs[i].iov_len) 1729 continue; 1730 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1731 vecs[i].iov_base); 1732 totlen += thislen; 1733 if (ret || thislen != vecs[i].iov_len) 1734 break; 1735 to += vecs[i].iov_len; 1736 } 1737 *retlen = totlen; 1738 return ret; 1739 } 1740 1741 /* 1742 * mtd_writev - the vector-based MTD write method 1743 * @mtd: mtd device description object pointer 1744 * @vecs: the vectors to write 1745 * @count: count of vectors in @vecs 1746 * @to: the MTD device offset to write to 1747 * @retlen: on exit contains the count of bytes written to the MTD device. 1748 * 1749 * This function returns zero in case of success and a negative error code in 1750 * case of failure. 1751 */ 1752 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1753 unsigned long count, loff_t to, size_t *retlen) 1754 { 1755 *retlen = 0; 1756 if (!(mtd->flags & MTD_WRITEABLE)) 1757 return -EROFS; 1758 if (!mtd->_writev) 1759 return default_mtd_writev(mtd, vecs, count, to, retlen); 1760 return mtd->_writev(mtd, vecs, count, to, retlen); 1761 } 1762 EXPORT_SYMBOL_GPL(mtd_writev); 1763 1764 /** 1765 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1766 * @mtd: mtd device description object pointer 1767 * @size: a pointer to the ideal or maximum size of the allocation, points 1768 * to the actual allocation size on success. 1769 * 1770 * This routine attempts to allocate a contiguous kernel buffer up to 1771 * the specified size, backing off the size of the request exponentially 1772 * until the request succeeds or until the allocation size falls below 1773 * the system page size. This attempts to make sure it does not adversely 1774 * impact system performance, so when allocating more than one page, we 1775 * ask the memory allocator to avoid re-trying, swapping, writing back 1776 * or performing I/O. 1777 * 1778 * Note, this function also makes sure that the allocated buffer is aligned to 1779 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1780 * 1781 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1782 * to handle smaller (i.e. degraded) buffer allocations under low- or 1783 * fragmented-memory situations where such reduced allocations, from a 1784 * requested ideal, are allowed. 1785 * 1786 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1787 */ 1788 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1789 { 1790 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 1791 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1792 void *kbuf; 1793 1794 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1795 1796 while (*size > min_alloc) { 1797 kbuf = kmalloc(*size, flags); 1798 if (kbuf) 1799 return kbuf; 1800 1801 *size >>= 1; 1802 *size = ALIGN(*size, mtd->writesize); 1803 } 1804 1805 /* 1806 * For the last resort allocation allow 'kmalloc()' to do all sorts of 1807 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 1808 */ 1809 return kmalloc(*size, GFP_KERNEL); 1810 } 1811 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 1812 1813 #ifdef CONFIG_PROC_FS 1814 1815 /*====================================================================*/ 1816 /* Support for /proc/mtd */ 1817 1818 static int mtd_proc_show(struct seq_file *m, void *v) 1819 { 1820 struct mtd_info *mtd; 1821 1822 seq_puts(m, "dev: size erasesize name\n"); 1823 mutex_lock(&mtd_table_mutex); 1824 mtd_for_each_device(mtd) { 1825 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 1826 mtd->index, (unsigned long long)mtd->size, 1827 mtd->erasesize, mtd->name); 1828 } 1829 mutex_unlock(&mtd_table_mutex); 1830 return 0; 1831 } 1832 1833 static int mtd_proc_open(struct inode *inode, struct file *file) 1834 { 1835 return single_open(file, mtd_proc_show, NULL); 1836 } 1837 1838 static const struct file_operations mtd_proc_ops = { 1839 .open = mtd_proc_open, 1840 .read = seq_read, 1841 .llseek = seq_lseek, 1842 .release = single_release, 1843 }; 1844 #endif /* CONFIG_PROC_FS */ 1845 1846 /*====================================================================*/ 1847 /* Init code */ 1848 1849 static struct backing_dev_info * __init mtd_bdi_init(char *name) 1850 { 1851 struct backing_dev_info *bdi; 1852 int ret; 1853 1854 bdi = bdi_alloc(GFP_KERNEL); 1855 if (!bdi) 1856 return ERR_PTR(-ENOMEM); 1857 1858 bdi->name = name; 1859 /* 1860 * We put '-0' suffix to the name to get the same name format as we 1861 * used to get. Since this is called only once, we get a unique name. 1862 */ 1863 ret = bdi_register(bdi, "%.28s-0", name); 1864 if (ret) 1865 bdi_put(bdi); 1866 1867 return ret ? ERR_PTR(ret) : bdi; 1868 } 1869 1870 static struct proc_dir_entry *proc_mtd; 1871 1872 static int __init init_mtd(void) 1873 { 1874 int ret; 1875 1876 ret = class_register(&mtd_class); 1877 if (ret) 1878 goto err_reg; 1879 1880 mtd_bdi = mtd_bdi_init("mtd"); 1881 if (IS_ERR(mtd_bdi)) { 1882 ret = PTR_ERR(mtd_bdi); 1883 goto err_bdi; 1884 } 1885 1886 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops); 1887 1888 ret = init_mtdchar(); 1889 if (ret) 1890 goto out_procfs; 1891 1892 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 1893 1894 return 0; 1895 1896 out_procfs: 1897 if (proc_mtd) 1898 remove_proc_entry("mtd", NULL); 1899 bdi_put(mtd_bdi); 1900 err_bdi: 1901 class_unregister(&mtd_class); 1902 err_reg: 1903 pr_err("Error registering mtd class or bdi: %d\n", ret); 1904 return ret; 1905 } 1906 1907 static void __exit cleanup_mtd(void) 1908 { 1909 debugfs_remove_recursive(dfs_dir_mtd); 1910 cleanup_mtdchar(); 1911 if (proc_mtd) 1912 remove_proc_entry("mtd", NULL); 1913 class_unregister(&mtd_class); 1914 bdi_put(mtd_bdi); 1915 idr_destroy(&mtd_idr); 1916 } 1917 1918 module_init(init_mtd); 1919 module_exit(cleanup_mtd); 1920 1921 MODULE_LICENSE("GPL"); 1922 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1923 MODULE_DESCRIPTION("Core MTD registration and access routines"); 1924