xref: /openbmc/linux/drivers/mtd/mtdcore.c (revision 2e6ae11dd0d1c37f44cec51a58fb2092e55ed0f5)
1 /*
2  * Core registration and callback routines for MTD
3  * drivers and users.
4  *
5  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6  * Copyright © 2006      Red Hat UK Limited
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/of.h>
36 #include <linux/proc_fs.h>
37 #include <linux/idr.h>
38 #include <linux/backing-dev.h>
39 #include <linux/gfp.h>
40 #include <linux/slab.h>
41 #include <linux/reboot.h>
42 #include <linux/leds.h>
43 #include <linux/debugfs.h>
44 
45 #include <linux/mtd/mtd.h>
46 #include <linux/mtd/partitions.h>
47 
48 #include "mtdcore.h"
49 
50 struct backing_dev_info *mtd_bdi;
51 
52 #ifdef CONFIG_PM_SLEEP
53 
54 static int mtd_cls_suspend(struct device *dev)
55 {
56 	struct mtd_info *mtd = dev_get_drvdata(dev);
57 
58 	return mtd ? mtd_suspend(mtd) : 0;
59 }
60 
61 static int mtd_cls_resume(struct device *dev)
62 {
63 	struct mtd_info *mtd = dev_get_drvdata(dev);
64 
65 	if (mtd)
66 		mtd_resume(mtd);
67 	return 0;
68 }
69 
70 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
71 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
72 #else
73 #define MTD_CLS_PM_OPS NULL
74 #endif
75 
76 static struct class mtd_class = {
77 	.name = "mtd",
78 	.owner = THIS_MODULE,
79 	.pm = MTD_CLS_PM_OPS,
80 };
81 
82 static DEFINE_IDR(mtd_idr);
83 
84 /* These are exported solely for the purpose of mtd_blkdevs.c. You
85    should not use them for _anything_ else */
86 DEFINE_MUTEX(mtd_table_mutex);
87 EXPORT_SYMBOL_GPL(mtd_table_mutex);
88 
89 struct mtd_info *__mtd_next_device(int i)
90 {
91 	return idr_get_next(&mtd_idr, &i);
92 }
93 EXPORT_SYMBOL_GPL(__mtd_next_device);
94 
95 static LIST_HEAD(mtd_notifiers);
96 
97 
98 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
99 
100 /* REVISIT once MTD uses the driver model better, whoever allocates
101  * the mtd_info will probably want to use the release() hook...
102  */
103 static void mtd_release(struct device *dev)
104 {
105 	struct mtd_info *mtd = dev_get_drvdata(dev);
106 	dev_t index = MTD_DEVT(mtd->index);
107 
108 	/* remove /dev/mtdXro node */
109 	device_destroy(&mtd_class, index + 1);
110 }
111 
112 static ssize_t mtd_type_show(struct device *dev,
113 		struct device_attribute *attr, char *buf)
114 {
115 	struct mtd_info *mtd = dev_get_drvdata(dev);
116 	char *type;
117 
118 	switch (mtd->type) {
119 	case MTD_ABSENT:
120 		type = "absent";
121 		break;
122 	case MTD_RAM:
123 		type = "ram";
124 		break;
125 	case MTD_ROM:
126 		type = "rom";
127 		break;
128 	case MTD_NORFLASH:
129 		type = "nor";
130 		break;
131 	case MTD_NANDFLASH:
132 		type = "nand";
133 		break;
134 	case MTD_DATAFLASH:
135 		type = "dataflash";
136 		break;
137 	case MTD_UBIVOLUME:
138 		type = "ubi";
139 		break;
140 	case MTD_MLCNANDFLASH:
141 		type = "mlc-nand";
142 		break;
143 	default:
144 		type = "unknown";
145 	}
146 
147 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
148 }
149 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
150 
151 static ssize_t mtd_flags_show(struct device *dev,
152 		struct device_attribute *attr, char *buf)
153 {
154 	struct mtd_info *mtd = dev_get_drvdata(dev);
155 
156 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
157 
158 }
159 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
160 
161 static ssize_t mtd_size_show(struct device *dev,
162 		struct device_attribute *attr, char *buf)
163 {
164 	struct mtd_info *mtd = dev_get_drvdata(dev);
165 
166 	return snprintf(buf, PAGE_SIZE, "%llu\n",
167 		(unsigned long long)mtd->size);
168 
169 }
170 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
171 
172 static ssize_t mtd_erasesize_show(struct device *dev,
173 		struct device_attribute *attr, char *buf)
174 {
175 	struct mtd_info *mtd = dev_get_drvdata(dev);
176 
177 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
178 
179 }
180 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
181 
182 static ssize_t mtd_writesize_show(struct device *dev,
183 		struct device_attribute *attr, char *buf)
184 {
185 	struct mtd_info *mtd = dev_get_drvdata(dev);
186 
187 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
188 
189 }
190 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
191 
192 static ssize_t mtd_subpagesize_show(struct device *dev,
193 		struct device_attribute *attr, char *buf)
194 {
195 	struct mtd_info *mtd = dev_get_drvdata(dev);
196 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
197 
198 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
199 
200 }
201 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
202 
203 static ssize_t mtd_oobsize_show(struct device *dev,
204 		struct device_attribute *attr, char *buf)
205 {
206 	struct mtd_info *mtd = dev_get_drvdata(dev);
207 
208 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
209 
210 }
211 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
212 
213 static ssize_t mtd_oobavail_show(struct device *dev,
214 				 struct device_attribute *attr, char *buf)
215 {
216 	struct mtd_info *mtd = dev_get_drvdata(dev);
217 
218 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
219 }
220 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
221 
222 static ssize_t mtd_numeraseregions_show(struct device *dev,
223 		struct device_attribute *attr, char *buf)
224 {
225 	struct mtd_info *mtd = dev_get_drvdata(dev);
226 
227 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
228 
229 }
230 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
231 	NULL);
232 
233 static ssize_t mtd_name_show(struct device *dev,
234 		struct device_attribute *attr, char *buf)
235 {
236 	struct mtd_info *mtd = dev_get_drvdata(dev);
237 
238 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
239 
240 }
241 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
242 
243 static ssize_t mtd_ecc_strength_show(struct device *dev,
244 				     struct device_attribute *attr, char *buf)
245 {
246 	struct mtd_info *mtd = dev_get_drvdata(dev);
247 
248 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
249 }
250 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
251 
252 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
253 					  struct device_attribute *attr,
254 					  char *buf)
255 {
256 	struct mtd_info *mtd = dev_get_drvdata(dev);
257 
258 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
259 }
260 
261 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
262 					   struct device_attribute *attr,
263 					   const char *buf, size_t count)
264 {
265 	struct mtd_info *mtd = dev_get_drvdata(dev);
266 	unsigned int bitflip_threshold;
267 	int retval;
268 
269 	retval = kstrtouint(buf, 0, &bitflip_threshold);
270 	if (retval)
271 		return retval;
272 
273 	mtd->bitflip_threshold = bitflip_threshold;
274 	return count;
275 }
276 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
277 		   mtd_bitflip_threshold_show,
278 		   mtd_bitflip_threshold_store);
279 
280 static ssize_t mtd_ecc_step_size_show(struct device *dev,
281 		struct device_attribute *attr, char *buf)
282 {
283 	struct mtd_info *mtd = dev_get_drvdata(dev);
284 
285 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
286 
287 }
288 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
289 
290 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
291 		struct device_attribute *attr, char *buf)
292 {
293 	struct mtd_info *mtd = dev_get_drvdata(dev);
294 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
295 
296 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
297 }
298 static DEVICE_ATTR(corrected_bits, S_IRUGO,
299 		   mtd_ecc_stats_corrected_show, NULL);
300 
301 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
302 		struct device_attribute *attr, char *buf)
303 {
304 	struct mtd_info *mtd = dev_get_drvdata(dev);
305 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306 
307 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
308 }
309 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
310 
311 static ssize_t mtd_badblocks_show(struct device *dev,
312 		struct device_attribute *attr, char *buf)
313 {
314 	struct mtd_info *mtd = dev_get_drvdata(dev);
315 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
316 
317 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
318 }
319 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
320 
321 static ssize_t mtd_bbtblocks_show(struct device *dev,
322 		struct device_attribute *attr, char *buf)
323 {
324 	struct mtd_info *mtd = dev_get_drvdata(dev);
325 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
326 
327 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
328 }
329 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
330 
331 static struct attribute *mtd_attrs[] = {
332 	&dev_attr_type.attr,
333 	&dev_attr_flags.attr,
334 	&dev_attr_size.attr,
335 	&dev_attr_erasesize.attr,
336 	&dev_attr_writesize.attr,
337 	&dev_attr_subpagesize.attr,
338 	&dev_attr_oobsize.attr,
339 	&dev_attr_oobavail.attr,
340 	&dev_attr_numeraseregions.attr,
341 	&dev_attr_name.attr,
342 	&dev_attr_ecc_strength.attr,
343 	&dev_attr_ecc_step_size.attr,
344 	&dev_attr_corrected_bits.attr,
345 	&dev_attr_ecc_failures.attr,
346 	&dev_attr_bad_blocks.attr,
347 	&dev_attr_bbt_blocks.attr,
348 	&dev_attr_bitflip_threshold.attr,
349 	NULL,
350 };
351 ATTRIBUTE_GROUPS(mtd);
352 
353 static const struct device_type mtd_devtype = {
354 	.name		= "mtd",
355 	.groups		= mtd_groups,
356 	.release	= mtd_release,
357 };
358 
359 #ifndef CONFIG_MMU
360 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
361 {
362 	switch (mtd->type) {
363 	case MTD_RAM:
364 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
365 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
366 	case MTD_ROM:
367 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
368 			NOMMU_MAP_READ;
369 	default:
370 		return NOMMU_MAP_COPY;
371 	}
372 }
373 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
374 #endif
375 
376 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
377 			       void *cmd)
378 {
379 	struct mtd_info *mtd;
380 
381 	mtd = container_of(n, struct mtd_info, reboot_notifier);
382 	mtd->_reboot(mtd);
383 
384 	return NOTIFY_DONE;
385 }
386 
387 /**
388  * mtd_wunit_to_pairing_info - get pairing information of a wunit
389  * @mtd: pointer to new MTD device info structure
390  * @wunit: write unit we are interested in
391  * @info: returned pairing information
392  *
393  * Retrieve pairing information associated to the wunit.
394  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
395  * paired together, and where programming a page may influence the page it is
396  * paired with.
397  * The notion of page is replaced by the term wunit (write-unit) to stay
398  * consistent with the ->writesize field.
399  *
400  * The @wunit argument can be extracted from an absolute offset using
401  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
402  * to @wunit.
403  *
404  * From the pairing info the MTD user can find all the wunits paired with
405  * @wunit using the following loop:
406  *
407  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
408  *	info.pair = i;
409  *	mtd_pairing_info_to_wunit(mtd, &info);
410  *	...
411  * }
412  */
413 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
414 			      struct mtd_pairing_info *info)
415 {
416 	int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
417 
418 	if (wunit < 0 || wunit >= npairs)
419 		return -EINVAL;
420 
421 	if (mtd->pairing && mtd->pairing->get_info)
422 		return mtd->pairing->get_info(mtd, wunit, info);
423 
424 	info->group = 0;
425 	info->pair = wunit;
426 
427 	return 0;
428 }
429 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
430 
431 /**
432  * mtd_pairing_info_to_wunit - get wunit from pairing information
433  * @mtd: pointer to new MTD device info structure
434  * @info: pairing information struct
435  *
436  * Returns a positive number representing the wunit associated to the info
437  * struct, or a negative error code.
438  *
439  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
440  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
441  * doc).
442  *
443  * It can also be used to only program the first page of each pair (i.e.
444  * page attached to group 0), which allows one to use an MLC NAND in
445  * software-emulated SLC mode:
446  *
447  * info.group = 0;
448  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
449  * for (info.pair = 0; info.pair < npairs; info.pair++) {
450  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
451  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
452  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
453  * }
454  */
455 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
456 			      const struct mtd_pairing_info *info)
457 {
458 	int ngroups = mtd_pairing_groups(mtd);
459 	int npairs = mtd_wunit_per_eb(mtd) / ngroups;
460 
461 	if (!info || info->pair < 0 || info->pair >= npairs ||
462 	    info->group < 0 || info->group >= ngroups)
463 		return -EINVAL;
464 
465 	if (mtd->pairing && mtd->pairing->get_wunit)
466 		return mtd->pairing->get_wunit(mtd, info);
467 
468 	return info->pair;
469 }
470 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
471 
472 /**
473  * mtd_pairing_groups - get the number of pairing groups
474  * @mtd: pointer to new MTD device info structure
475  *
476  * Returns the number of pairing groups.
477  *
478  * This number is usually equal to the number of bits exposed by a single
479  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
480  * to iterate over all pages of a given pair.
481  */
482 int mtd_pairing_groups(struct mtd_info *mtd)
483 {
484 	if (!mtd->pairing || !mtd->pairing->ngroups)
485 		return 1;
486 
487 	return mtd->pairing->ngroups;
488 }
489 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
490 
491 static struct dentry *dfs_dir_mtd;
492 
493 /**
494  *	add_mtd_device - register an MTD device
495  *	@mtd: pointer to new MTD device info structure
496  *
497  *	Add a device to the list of MTD devices present in the system, and
498  *	notify each currently active MTD 'user' of its arrival. Returns
499  *	zero on success or non-zero on failure.
500  */
501 
502 int add_mtd_device(struct mtd_info *mtd)
503 {
504 	struct mtd_notifier *not;
505 	int i, error;
506 
507 	/*
508 	 * May occur, for instance, on buggy drivers which call
509 	 * mtd_device_parse_register() multiple times on the same master MTD,
510 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
511 	 */
512 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
513 		return -EEXIST;
514 
515 	BUG_ON(mtd->writesize == 0);
516 
517 	if (WARN_ON((!mtd->erasesize || !mtd->_erase) &&
518 		    !(mtd->flags & MTD_NO_ERASE)))
519 		return -EINVAL;
520 
521 	mutex_lock(&mtd_table_mutex);
522 
523 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
524 	if (i < 0) {
525 		error = i;
526 		goto fail_locked;
527 	}
528 
529 	mtd->index = i;
530 	mtd->usecount = 0;
531 
532 	/* default value if not set by driver */
533 	if (mtd->bitflip_threshold == 0)
534 		mtd->bitflip_threshold = mtd->ecc_strength;
535 
536 	if (is_power_of_2(mtd->erasesize))
537 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
538 	else
539 		mtd->erasesize_shift = 0;
540 
541 	if (is_power_of_2(mtd->writesize))
542 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
543 	else
544 		mtd->writesize_shift = 0;
545 
546 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
547 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
548 
549 	/* Some chips always power up locked. Unlock them now */
550 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
551 		error = mtd_unlock(mtd, 0, mtd->size);
552 		if (error && error != -EOPNOTSUPP)
553 			printk(KERN_WARNING
554 			       "%s: unlock failed, writes may not work\n",
555 			       mtd->name);
556 		/* Ignore unlock failures? */
557 		error = 0;
558 	}
559 
560 	/* Caller should have set dev.parent to match the
561 	 * physical device, if appropriate.
562 	 */
563 	mtd->dev.type = &mtd_devtype;
564 	mtd->dev.class = &mtd_class;
565 	mtd->dev.devt = MTD_DEVT(i);
566 	dev_set_name(&mtd->dev, "mtd%d", i);
567 	dev_set_drvdata(&mtd->dev, mtd);
568 	of_node_get(mtd_get_of_node(mtd));
569 	error = device_register(&mtd->dev);
570 	if (error)
571 		goto fail_added;
572 
573 	if (!IS_ERR_OR_NULL(dfs_dir_mtd)) {
574 		mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd);
575 		if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) {
576 			pr_debug("mtd device %s won't show data in debugfs\n",
577 				 dev_name(&mtd->dev));
578 		}
579 	}
580 
581 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
582 		      "mtd%dro", i);
583 
584 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
585 	/* No need to get a refcount on the module containing
586 	   the notifier, since we hold the mtd_table_mutex */
587 	list_for_each_entry(not, &mtd_notifiers, list)
588 		not->add(mtd);
589 
590 	mutex_unlock(&mtd_table_mutex);
591 	/* We _know_ we aren't being removed, because
592 	   our caller is still holding us here. So none
593 	   of this try_ nonsense, and no bitching about it
594 	   either. :) */
595 	__module_get(THIS_MODULE);
596 	return 0;
597 
598 fail_added:
599 	of_node_put(mtd_get_of_node(mtd));
600 	idr_remove(&mtd_idr, i);
601 fail_locked:
602 	mutex_unlock(&mtd_table_mutex);
603 	return error;
604 }
605 
606 /**
607  *	del_mtd_device - unregister an MTD device
608  *	@mtd: pointer to MTD device info structure
609  *
610  *	Remove a device from the list of MTD devices present in the system,
611  *	and notify each currently active MTD 'user' of its departure.
612  *	Returns zero on success or 1 on failure, which currently will happen
613  *	if the requested device does not appear to be present in the list.
614  */
615 
616 int del_mtd_device(struct mtd_info *mtd)
617 {
618 	int ret;
619 	struct mtd_notifier *not;
620 
621 	mutex_lock(&mtd_table_mutex);
622 
623 	debugfs_remove_recursive(mtd->dbg.dfs_dir);
624 
625 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
626 		ret = -ENODEV;
627 		goto out_error;
628 	}
629 
630 	/* No need to get a refcount on the module containing
631 		the notifier, since we hold the mtd_table_mutex */
632 	list_for_each_entry(not, &mtd_notifiers, list)
633 		not->remove(mtd);
634 
635 	if (mtd->usecount) {
636 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
637 		       mtd->index, mtd->name, mtd->usecount);
638 		ret = -EBUSY;
639 	} else {
640 		device_unregister(&mtd->dev);
641 
642 		idr_remove(&mtd_idr, mtd->index);
643 		of_node_put(mtd_get_of_node(mtd));
644 
645 		module_put(THIS_MODULE);
646 		ret = 0;
647 	}
648 
649 out_error:
650 	mutex_unlock(&mtd_table_mutex);
651 	return ret;
652 }
653 
654 /*
655  * Set a few defaults based on the parent devices, if not provided by the
656  * driver
657  */
658 static void mtd_set_dev_defaults(struct mtd_info *mtd)
659 {
660 	if (mtd->dev.parent) {
661 		if (!mtd->owner && mtd->dev.parent->driver)
662 			mtd->owner = mtd->dev.parent->driver->owner;
663 		if (!mtd->name)
664 			mtd->name = dev_name(mtd->dev.parent);
665 	} else {
666 		pr_debug("mtd device won't show a device symlink in sysfs\n");
667 	}
668 }
669 
670 /**
671  * mtd_device_parse_register - parse partitions and register an MTD device.
672  *
673  * @mtd: the MTD device to register
674  * @types: the list of MTD partition probes to try, see
675  *         'parse_mtd_partitions()' for more information
676  * @parser_data: MTD partition parser-specific data
677  * @parts: fallback partition information to register, if parsing fails;
678  *         only valid if %nr_parts > %0
679  * @nr_parts: the number of partitions in parts, if zero then the full
680  *            MTD device is registered if no partition info is found
681  *
682  * This function aggregates MTD partitions parsing (done by
683  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
684  * basically follows the most common pattern found in many MTD drivers:
685  *
686  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
687  *   registered first.
688  * * Then It tries to probe partitions on MTD device @mtd using parsers
689  *   specified in @types (if @types is %NULL, then the default list of parsers
690  *   is used, see 'parse_mtd_partitions()' for more information). If none are
691  *   found this functions tries to fallback to information specified in
692  *   @parts/@nr_parts.
693  * * If no partitions were found this function just registers the MTD device
694  *   @mtd and exits.
695  *
696  * Returns zero in case of success and a negative error code in case of failure.
697  */
698 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
699 			      struct mtd_part_parser_data *parser_data,
700 			      const struct mtd_partition *parts,
701 			      int nr_parts)
702 {
703 	int ret;
704 
705 	mtd_set_dev_defaults(mtd);
706 
707 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
708 		ret = add_mtd_device(mtd);
709 		if (ret)
710 			return ret;
711 	}
712 
713 	/* Prefer parsed partitions over driver-provided fallback */
714 	ret = parse_mtd_partitions(mtd, types, parser_data);
715 	if (ret > 0)
716 		ret = 0;
717 	else if (nr_parts)
718 		ret = add_mtd_partitions(mtd, parts, nr_parts);
719 	else if (!device_is_registered(&mtd->dev))
720 		ret = add_mtd_device(mtd);
721 	else
722 		ret = 0;
723 
724 	if (ret)
725 		goto out;
726 
727 	/*
728 	 * FIXME: some drivers unfortunately call this function more than once.
729 	 * So we have to check if we've already assigned the reboot notifier.
730 	 *
731 	 * Generally, we can make multiple calls work for most cases, but it
732 	 * does cause problems with parse_mtd_partitions() above (e.g.,
733 	 * cmdlineparts will register partitions more than once).
734 	 */
735 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
736 		  "MTD already registered\n");
737 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
738 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
739 		register_reboot_notifier(&mtd->reboot_notifier);
740 	}
741 
742 out:
743 	if (ret && device_is_registered(&mtd->dev))
744 		del_mtd_device(mtd);
745 
746 	return ret;
747 }
748 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
749 
750 /**
751  * mtd_device_unregister - unregister an existing MTD device.
752  *
753  * @master: the MTD device to unregister.  This will unregister both the master
754  *          and any partitions if registered.
755  */
756 int mtd_device_unregister(struct mtd_info *master)
757 {
758 	int err;
759 
760 	if (master->_reboot)
761 		unregister_reboot_notifier(&master->reboot_notifier);
762 
763 	err = del_mtd_partitions(master);
764 	if (err)
765 		return err;
766 
767 	if (!device_is_registered(&master->dev))
768 		return 0;
769 
770 	return del_mtd_device(master);
771 }
772 EXPORT_SYMBOL_GPL(mtd_device_unregister);
773 
774 /**
775  *	register_mtd_user - register a 'user' of MTD devices.
776  *	@new: pointer to notifier info structure
777  *
778  *	Registers a pair of callbacks function to be called upon addition
779  *	or removal of MTD devices. Causes the 'add' callback to be immediately
780  *	invoked for each MTD device currently present in the system.
781  */
782 void register_mtd_user (struct mtd_notifier *new)
783 {
784 	struct mtd_info *mtd;
785 
786 	mutex_lock(&mtd_table_mutex);
787 
788 	list_add(&new->list, &mtd_notifiers);
789 
790 	__module_get(THIS_MODULE);
791 
792 	mtd_for_each_device(mtd)
793 		new->add(mtd);
794 
795 	mutex_unlock(&mtd_table_mutex);
796 }
797 EXPORT_SYMBOL_GPL(register_mtd_user);
798 
799 /**
800  *	unregister_mtd_user - unregister a 'user' of MTD devices.
801  *	@old: pointer to notifier info structure
802  *
803  *	Removes a callback function pair from the list of 'users' to be
804  *	notified upon addition or removal of MTD devices. Causes the
805  *	'remove' callback to be immediately invoked for each MTD device
806  *	currently present in the system.
807  */
808 int unregister_mtd_user (struct mtd_notifier *old)
809 {
810 	struct mtd_info *mtd;
811 
812 	mutex_lock(&mtd_table_mutex);
813 
814 	module_put(THIS_MODULE);
815 
816 	mtd_for_each_device(mtd)
817 		old->remove(mtd);
818 
819 	list_del(&old->list);
820 	mutex_unlock(&mtd_table_mutex);
821 	return 0;
822 }
823 EXPORT_SYMBOL_GPL(unregister_mtd_user);
824 
825 /**
826  *	get_mtd_device - obtain a validated handle for an MTD device
827  *	@mtd: last known address of the required MTD device
828  *	@num: internal device number of the required MTD device
829  *
830  *	Given a number and NULL address, return the num'th entry in the device
831  *	table, if any.	Given an address and num == -1, search the device table
832  *	for a device with that address and return if it's still present. Given
833  *	both, return the num'th driver only if its address matches. Return
834  *	error code if not.
835  */
836 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
837 {
838 	struct mtd_info *ret = NULL, *other;
839 	int err = -ENODEV;
840 
841 	mutex_lock(&mtd_table_mutex);
842 
843 	if (num == -1) {
844 		mtd_for_each_device(other) {
845 			if (other == mtd) {
846 				ret = mtd;
847 				break;
848 			}
849 		}
850 	} else if (num >= 0) {
851 		ret = idr_find(&mtd_idr, num);
852 		if (mtd && mtd != ret)
853 			ret = NULL;
854 	}
855 
856 	if (!ret) {
857 		ret = ERR_PTR(err);
858 		goto out;
859 	}
860 
861 	err = __get_mtd_device(ret);
862 	if (err)
863 		ret = ERR_PTR(err);
864 out:
865 	mutex_unlock(&mtd_table_mutex);
866 	return ret;
867 }
868 EXPORT_SYMBOL_GPL(get_mtd_device);
869 
870 
871 int __get_mtd_device(struct mtd_info *mtd)
872 {
873 	int err;
874 
875 	if (!try_module_get(mtd->owner))
876 		return -ENODEV;
877 
878 	if (mtd->_get_device) {
879 		err = mtd->_get_device(mtd);
880 
881 		if (err) {
882 			module_put(mtd->owner);
883 			return err;
884 		}
885 	}
886 	mtd->usecount++;
887 	return 0;
888 }
889 EXPORT_SYMBOL_GPL(__get_mtd_device);
890 
891 /**
892  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
893  *	device name
894  *	@name: MTD device name to open
895  *
896  * 	This function returns MTD device description structure in case of
897  * 	success and an error code in case of failure.
898  */
899 struct mtd_info *get_mtd_device_nm(const char *name)
900 {
901 	int err = -ENODEV;
902 	struct mtd_info *mtd = NULL, *other;
903 
904 	mutex_lock(&mtd_table_mutex);
905 
906 	mtd_for_each_device(other) {
907 		if (!strcmp(name, other->name)) {
908 			mtd = other;
909 			break;
910 		}
911 	}
912 
913 	if (!mtd)
914 		goto out_unlock;
915 
916 	err = __get_mtd_device(mtd);
917 	if (err)
918 		goto out_unlock;
919 
920 	mutex_unlock(&mtd_table_mutex);
921 	return mtd;
922 
923 out_unlock:
924 	mutex_unlock(&mtd_table_mutex);
925 	return ERR_PTR(err);
926 }
927 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
928 
929 void put_mtd_device(struct mtd_info *mtd)
930 {
931 	mutex_lock(&mtd_table_mutex);
932 	__put_mtd_device(mtd);
933 	mutex_unlock(&mtd_table_mutex);
934 
935 }
936 EXPORT_SYMBOL_GPL(put_mtd_device);
937 
938 void __put_mtd_device(struct mtd_info *mtd)
939 {
940 	--mtd->usecount;
941 	BUG_ON(mtd->usecount < 0);
942 
943 	if (mtd->_put_device)
944 		mtd->_put_device(mtd);
945 
946 	module_put(mtd->owner);
947 }
948 EXPORT_SYMBOL_GPL(__put_mtd_device);
949 
950 /*
951  * Erase is an synchronous operation. Device drivers are epected to return a
952  * negative error code if the operation failed and update instr->fail_addr
953  * to point the portion that was not properly erased.
954  */
955 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
956 {
957 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
958 
959 	if (!mtd->erasesize || !mtd->_erase)
960 		return -ENOTSUPP;
961 
962 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
963 		return -EINVAL;
964 	if (!(mtd->flags & MTD_WRITEABLE))
965 		return -EROFS;
966 
967 	if (!instr->len)
968 		return 0;
969 
970 	ledtrig_mtd_activity();
971 	return mtd->_erase(mtd, instr);
972 }
973 EXPORT_SYMBOL_GPL(mtd_erase);
974 
975 /*
976  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
977  */
978 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
979 	      void **virt, resource_size_t *phys)
980 {
981 	*retlen = 0;
982 	*virt = NULL;
983 	if (phys)
984 		*phys = 0;
985 	if (!mtd->_point)
986 		return -EOPNOTSUPP;
987 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
988 		return -EINVAL;
989 	if (!len)
990 		return 0;
991 	return mtd->_point(mtd, from, len, retlen, virt, phys);
992 }
993 EXPORT_SYMBOL_GPL(mtd_point);
994 
995 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
996 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
997 {
998 	if (!mtd->_unpoint)
999 		return -EOPNOTSUPP;
1000 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1001 		return -EINVAL;
1002 	if (!len)
1003 		return 0;
1004 	return mtd->_unpoint(mtd, from, len);
1005 }
1006 EXPORT_SYMBOL_GPL(mtd_unpoint);
1007 
1008 /*
1009  * Allow NOMMU mmap() to directly map the device (if not NULL)
1010  * - return the address to which the offset maps
1011  * - return -ENOSYS to indicate refusal to do the mapping
1012  */
1013 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1014 				    unsigned long offset, unsigned long flags)
1015 {
1016 	size_t retlen;
1017 	void *virt;
1018 	int ret;
1019 
1020 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1021 	if (ret)
1022 		return ret;
1023 	if (retlen != len) {
1024 		mtd_unpoint(mtd, offset, retlen);
1025 		return -ENOSYS;
1026 	}
1027 	return (unsigned long)virt;
1028 }
1029 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1030 
1031 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1032 	     u_char *buf)
1033 {
1034 	int ret_code;
1035 	*retlen = 0;
1036 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1037 		return -EINVAL;
1038 	if (!len)
1039 		return 0;
1040 
1041 	ledtrig_mtd_activity();
1042 	/*
1043 	 * In the absence of an error, drivers return a non-negative integer
1044 	 * representing the maximum number of bitflips that were corrected on
1045 	 * any one ecc region (if applicable; zero otherwise).
1046 	 */
1047 	if (mtd->_read) {
1048 		ret_code = mtd->_read(mtd, from, len, retlen, buf);
1049 	} else if (mtd->_read_oob) {
1050 		struct mtd_oob_ops ops = {
1051 			.len = len,
1052 			.datbuf = buf,
1053 		};
1054 
1055 		ret_code = mtd->_read_oob(mtd, from, &ops);
1056 		*retlen = ops.retlen;
1057 	} else {
1058 		return -ENOTSUPP;
1059 	}
1060 
1061 	if (unlikely(ret_code < 0))
1062 		return ret_code;
1063 	if (mtd->ecc_strength == 0)
1064 		return 0;	/* device lacks ecc */
1065 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1066 }
1067 EXPORT_SYMBOL_GPL(mtd_read);
1068 
1069 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1070 	      const u_char *buf)
1071 {
1072 	*retlen = 0;
1073 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1074 		return -EINVAL;
1075 	if ((!mtd->_write && !mtd->_write_oob) ||
1076 	    !(mtd->flags & MTD_WRITEABLE))
1077 		return -EROFS;
1078 	if (!len)
1079 		return 0;
1080 	ledtrig_mtd_activity();
1081 
1082 	if (!mtd->_write) {
1083 		struct mtd_oob_ops ops = {
1084 			.len = len,
1085 			.datbuf = (u8 *)buf,
1086 		};
1087 		int ret;
1088 
1089 		ret = mtd->_write_oob(mtd, to, &ops);
1090 		*retlen = ops.retlen;
1091 		return ret;
1092 	}
1093 
1094 	return mtd->_write(mtd, to, len, retlen, buf);
1095 }
1096 EXPORT_SYMBOL_GPL(mtd_write);
1097 
1098 /*
1099  * In blackbox flight recorder like scenarios we want to make successful writes
1100  * in interrupt context. panic_write() is only intended to be called when its
1101  * known the kernel is about to panic and we need the write to succeed. Since
1102  * the kernel is not going to be running for much longer, this function can
1103  * break locks and delay to ensure the write succeeds (but not sleep).
1104  */
1105 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1106 		    const u_char *buf)
1107 {
1108 	*retlen = 0;
1109 	if (!mtd->_panic_write)
1110 		return -EOPNOTSUPP;
1111 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1112 		return -EINVAL;
1113 	if (!(mtd->flags & MTD_WRITEABLE))
1114 		return -EROFS;
1115 	if (!len)
1116 		return 0;
1117 	return mtd->_panic_write(mtd, to, len, retlen, buf);
1118 }
1119 EXPORT_SYMBOL_GPL(mtd_panic_write);
1120 
1121 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1122 			     struct mtd_oob_ops *ops)
1123 {
1124 	/*
1125 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1126 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1127 	 *  this case.
1128 	 */
1129 	if (!ops->datbuf)
1130 		ops->len = 0;
1131 
1132 	if (!ops->oobbuf)
1133 		ops->ooblen = 0;
1134 
1135 	if (offs < 0 || offs + ops->len > mtd->size)
1136 		return -EINVAL;
1137 
1138 	if (ops->ooblen) {
1139 		u64 maxooblen;
1140 
1141 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1142 			return -EINVAL;
1143 
1144 		maxooblen = ((mtd_div_by_ws(mtd->size, mtd) -
1145 			      mtd_div_by_ws(offs, mtd)) *
1146 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1147 		if (ops->ooblen > maxooblen)
1148 			return -EINVAL;
1149 	}
1150 
1151 	return 0;
1152 }
1153 
1154 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1155 {
1156 	int ret_code;
1157 	ops->retlen = ops->oobretlen = 0;
1158 
1159 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1160 	if (ret_code)
1161 		return ret_code;
1162 
1163 	ledtrig_mtd_activity();
1164 
1165 	/* Check the validity of a potential fallback on mtd->_read */
1166 	if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf))
1167 		return -EOPNOTSUPP;
1168 
1169 	if (mtd->_read_oob)
1170 		ret_code = mtd->_read_oob(mtd, from, ops);
1171 	else
1172 		ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen,
1173 				      ops->datbuf);
1174 
1175 	/*
1176 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1177 	 * similar to mtd->_read(), returning a non-negative integer
1178 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1179 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1180 	 */
1181 	if (unlikely(ret_code < 0))
1182 		return ret_code;
1183 	if (mtd->ecc_strength == 0)
1184 		return 0;	/* device lacks ecc */
1185 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1186 }
1187 EXPORT_SYMBOL_GPL(mtd_read_oob);
1188 
1189 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1190 				struct mtd_oob_ops *ops)
1191 {
1192 	int ret;
1193 
1194 	ops->retlen = ops->oobretlen = 0;
1195 
1196 	if (!(mtd->flags & MTD_WRITEABLE))
1197 		return -EROFS;
1198 
1199 	ret = mtd_check_oob_ops(mtd, to, ops);
1200 	if (ret)
1201 		return ret;
1202 
1203 	ledtrig_mtd_activity();
1204 
1205 	/* Check the validity of a potential fallback on mtd->_write */
1206 	if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf))
1207 		return -EOPNOTSUPP;
1208 
1209 	if (mtd->_write_oob)
1210 		return mtd->_write_oob(mtd, to, ops);
1211 	else
1212 		return mtd->_write(mtd, to, ops->len, &ops->retlen,
1213 				   ops->datbuf);
1214 }
1215 EXPORT_SYMBOL_GPL(mtd_write_oob);
1216 
1217 /**
1218  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1219  * @mtd: MTD device structure
1220  * @section: ECC section. Depending on the layout you may have all the ECC
1221  *	     bytes stored in a single contiguous section, or one section
1222  *	     per ECC chunk (and sometime several sections for a single ECC
1223  *	     ECC chunk)
1224  * @oobecc: OOB region struct filled with the appropriate ECC position
1225  *	    information
1226  *
1227  * This function returns ECC section information in the OOB area. If you want
1228  * to get all the ECC bytes information, then you should call
1229  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1230  *
1231  * Returns zero on success, a negative error code otherwise.
1232  */
1233 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1234 		      struct mtd_oob_region *oobecc)
1235 {
1236 	memset(oobecc, 0, sizeof(*oobecc));
1237 
1238 	if (!mtd || section < 0)
1239 		return -EINVAL;
1240 
1241 	if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1242 		return -ENOTSUPP;
1243 
1244 	return mtd->ooblayout->ecc(mtd, section, oobecc);
1245 }
1246 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1247 
1248 /**
1249  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1250  *			section
1251  * @mtd: MTD device structure
1252  * @section: Free section you are interested in. Depending on the layout
1253  *	     you may have all the free bytes stored in a single contiguous
1254  *	     section, or one section per ECC chunk plus an extra section
1255  *	     for the remaining bytes (or other funky layout).
1256  * @oobfree: OOB region struct filled with the appropriate free position
1257  *	     information
1258  *
1259  * This function returns free bytes position in the OOB area. If you want
1260  * to get all the free bytes information, then you should call
1261  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1262  *
1263  * Returns zero on success, a negative error code otherwise.
1264  */
1265 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1266 		       struct mtd_oob_region *oobfree)
1267 {
1268 	memset(oobfree, 0, sizeof(*oobfree));
1269 
1270 	if (!mtd || section < 0)
1271 		return -EINVAL;
1272 
1273 	if (!mtd->ooblayout || !mtd->ooblayout->free)
1274 		return -ENOTSUPP;
1275 
1276 	return mtd->ooblayout->free(mtd, section, oobfree);
1277 }
1278 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1279 
1280 /**
1281  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1282  * @mtd: mtd info structure
1283  * @byte: the byte we are searching for
1284  * @sectionp: pointer where the section id will be stored
1285  * @oobregion: used to retrieve the ECC position
1286  * @iter: iterator function. Should be either mtd_ooblayout_free or
1287  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1288  *
1289  * This function returns the section id and oobregion information of a
1290  * specific byte. For example, say you want to know where the 4th ECC byte is
1291  * stored, you'll use:
1292  *
1293  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1294  *
1295  * Returns zero on success, a negative error code otherwise.
1296  */
1297 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1298 				int *sectionp, struct mtd_oob_region *oobregion,
1299 				int (*iter)(struct mtd_info *,
1300 					    int section,
1301 					    struct mtd_oob_region *oobregion))
1302 {
1303 	int pos = 0, ret, section = 0;
1304 
1305 	memset(oobregion, 0, sizeof(*oobregion));
1306 
1307 	while (1) {
1308 		ret = iter(mtd, section, oobregion);
1309 		if (ret)
1310 			return ret;
1311 
1312 		if (pos + oobregion->length > byte)
1313 			break;
1314 
1315 		pos += oobregion->length;
1316 		section++;
1317 	}
1318 
1319 	/*
1320 	 * Adjust region info to make it start at the beginning at the
1321 	 * 'start' ECC byte.
1322 	 */
1323 	oobregion->offset += byte - pos;
1324 	oobregion->length -= byte - pos;
1325 	*sectionp = section;
1326 
1327 	return 0;
1328 }
1329 
1330 /**
1331  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1332  *				  ECC byte
1333  * @mtd: mtd info structure
1334  * @eccbyte: the byte we are searching for
1335  * @sectionp: pointer where the section id will be stored
1336  * @oobregion: OOB region information
1337  *
1338  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1339  * byte.
1340  *
1341  * Returns zero on success, a negative error code otherwise.
1342  */
1343 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1344 				 int *section,
1345 				 struct mtd_oob_region *oobregion)
1346 {
1347 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1348 					 mtd_ooblayout_ecc);
1349 }
1350 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1351 
1352 /**
1353  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1354  * @mtd: mtd info structure
1355  * @buf: destination buffer to store OOB bytes
1356  * @oobbuf: OOB buffer
1357  * @start: first byte to retrieve
1358  * @nbytes: number of bytes to retrieve
1359  * @iter: section iterator
1360  *
1361  * Extract bytes attached to a specific category (ECC or free)
1362  * from the OOB buffer and copy them into buf.
1363  *
1364  * Returns zero on success, a negative error code otherwise.
1365  */
1366 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1367 				const u8 *oobbuf, int start, int nbytes,
1368 				int (*iter)(struct mtd_info *,
1369 					    int section,
1370 					    struct mtd_oob_region *oobregion))
1371 {
1372 	struct mtd_oob_region oobregion;
1373 	int section, ret;
1374 
1375 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1376 					&oobregion, iter);
1377 
1378 	while (!ret) {
1379 		int cnt;
1380 
1381 		cnt = min_t(int, nbytes, oobregion.length);
1382 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1383 		buf += cnt;
1384 		nbytes -= cnt;
1385 
1386 		if (!nbytes)
1387 			break;
1388 
1389 		ret = iter(mtd, ++section, &oobregion);
1390 	}
1391 
1392 	return ret;
1393 }
1394 
1395 /**
1396  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1397  * @mtd: mtd info structure
1398  * @buf: source buffer to get OOB bytes from
1399  * @oobbuf: OOB buffer
1400  * @start: first OOB byte to set
1401  * @nbytes: number of OOB bytes to set
1402  * @iter: section iterator
1403  *
1404  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1405  * is selected by passing the appropriate iterator.
1406  *
1407  * Returns zero on success, a negative error code otherwise.
1408  */
1409 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1410 				u8 *oobbuf, int start, int nbytes,
1411 				int (*iter)(struct mtd_info *,
1412 					    int section,
1413 					    struct mtd_oob_region *oobregion))
1414 {
1415 	struct mtd_oob_region oobregion;
1416 	int section, ret;
1417 
1418 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1419 					&oobregion, iter);
1420 
1421 	while (!ret) {
1422 		int cnt;
1423 
1424 		cnt = min_t(int, nbytes, oobregion.length);
1425 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1426 		buf += cnt;
1427 		nbytes -= cnt;
1428 
1429 		if (!nbytes)
1430 			break;
1431 
1432 		ret = iter(mtd, ++section, &oobregion);
1433 	}
1434 
1435 	return ret;
1436 }
1437 
1438 /**
1439  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1440  * @mtd: mtd info structure
1441  * @iter: category iterator
1442  *
1443  * Count the number of bytes in a given category.
1444  *
1445  * Returns a positive value on success, a negative error code otherwise.
1446  */
1447 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1448 				int (*iter)(struct mtd_info *,
1449 					    int section,
1450 					    struct mtd_oob_region *oobregion))
1451 {
1452 	struct mtd_oob_region oobregion;
1453 	int section = 0, ret, nbytes = 0;
1454 
1455 	while (1) {
1456 		ret = iter(mtd, section++, &oobregion);
1457 		if (ret) {
1458 			if (ret == -ERANGE)
1459 				ret = nbytes;
1460 			break;
1461 		}
1462 
1463 		nbytes += oobregion.length;
1464 	}
1465 
1466 	return ret;
1467 }
1468 
1469 /**
1470  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1471  * @mtd: mtd info structure
1472  * @eccbuf: destination buffer to store ECC bytes
1473  * @oobbuf: OOB buffer
1474  * @start: first ECC byte to retrieve
1475  * @nbytes: number of ECC bytes to retrieve
1476  *
1477  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1478  *
1479  * Returns zero on success, a negative error code otherwise.
1480  */
1481 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1482 			       const u8 *oobbuf, int start, int nbytes)
1483 {
1484 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1485 				       mtd_ooblayout_ecc);
1486 }
1487 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1488 
1489 /**
1490  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1491  * @mtd: mtd info structure
1492  * @eccbuf: source buffer to get ECC bytes from
1493  * @oobbuf: OOB buffer
1494  * @start: first ECC byte to set
1495  * @nbytes: number of ECC bytes to set
1496  *
1497  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1498  *
1499  * Returns zero on success, a negative error code otherwise.
1500  */
1501 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1502 			       u8 *oobbuf, int start, int nbytes)
1503 {
1504 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1505 				       mtd_ooblayout_ecc);
1506 }
1507 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1508 
1509 /**
1510  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1511  * @mtd: mtd info structure
1512  * @databuf: destination buffer to store ECC bytes
1513  * @oobbuf: OOB buffer
1514  * @start: first ECC byte to retrieve
1515  * @nbytes: number of ECC bytes to retrieve
1516  *
1517  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1518  *
1519  * Returns zero on success, a negative error code otherwise.
1520  */
1521 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1522 				const u8 *oobbuf, int start, int nbytes)
1523 {
1524 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1525 				       mtd_ooblayout_free);
1526 }
1527 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1528 
1529 /**
1530  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1531  * @mtd: mtd info structure
1532  * @databuf: source buffer to get data bytes from
1533  * @oobbuf: OOB buffer
1534  * @start: first ECC byte to set
1535  * @nbytes: number of ECC bytes to set
1536  *
1537  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1538  *
1539  * Returns zero on success, a negative error code otherwise.
1540  */
1541 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1542 				u8 *oobbuf, int start, int nbytes)
1543 {
1544 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1545 				       mtd_ooblayout_free);
1546 }
1547 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1548 
1549 /**
1550  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1551  * @mtd: mtd info structure
1552  *
1553  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1554  *
1555  * Returns zero on success, a negative error code otherwise.
1556  */
1557 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1558 {
1559 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1560 }
1561 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1562 
1563 /**
1564  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1565  * @mtd: mtd info structure
1566  *
1567  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1568  *
1569  * Returns zero on success, a negative error code otherwise.
1570  */
1571 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1572 {
1573 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1574 }
1575 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1576 
1577 /*
1578  * Method to access the protection register area, present in some flash
1579  * devices. The user data is one time programmable but the factory data is read
1580  * only.
1581  */
1582 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1583 			   struct otp_info *buf)
1584 {
1585 	if (!mtd->_get_fact_prot_info)
1586 		return -EOPNOTSUPP;
1587 	if (!len)
1588 		return 0;
1589 	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1590 }
1591 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1592 
1593 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1594 			   size_t *retlen, u_char *buf)
1595 {
1596 	*retlen = 0;
1597 	if (!mtd->_read_fact_prot_reg)
1598 		return -EOPNOTSUPP;
1599 	if (!len)
1600 		return 0;
1601 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1602 }
1603 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1604 
1605 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1606 			   struct otp_info *buf)
1607 {
1608 	if (!mtd->_get_user_prot_info)
1609 		return -EOPNOTSUPP;
1610 	if (!len)
1611 		return 0;
1612 	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1613 }
1614 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1615 
1616 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1617 			   size_t *retlen, u_char *buf)
1618 {
1619 	*retlen = 0;
1620 	if (!mtd->_read_user_prot_reg)
1621 		return -EOPNOTSUPP;
1622 	if (!len)
1623 		return 0;
1624 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1625 }
1626 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1627 
1628 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1629 			    size_t *retlen, u_char *buf)
1630 {
1631 	int ret;
1632 
1633 	*retlen = 0;
1634 	if (!mtd->_write_user_prot_reg)
1635 		return -EOPNOTSUPP;
1636 	if (!len)
1637 		return 0;
1638 	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1639 	if (ret)
1640 		return ret;
1641 
1642 	/*
1643 	 * If no data could be written at all, we are out of memory and
1644 	 * must return -ENOSPC.
1645 	 */
1646 	return (*retlen) ? 0 : -ENOSPC;
1647 }
1648 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1649 
1650 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1651 {
1652 	if (!mtd->_lock_user_prot_reg)
1653 		return -EOPNOTSUPP;
1654 	if (!len)
1655 		return 0;
1656 	return mtd->_lock_user_prot_reg(mtd, from, len);
1657 }
1658 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1659 
1660 /* Chip-supported device locking */
1661 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1662 {
1663 	if (!mtd->_lock)
1664 		return -EOPNOTSUPP;
1665 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1666 		return -EINVAL;
1667 	if (!len)
1668 		return 0;
1669 	return mtd->_lock(mtd, ofs, len);
1670 }
1671 EXPORT_SYMBOL_GPL(mtd_lock);
1672 
1673 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1674 {
1675 	if (!mtd->_unlock)
1676 		return -EOPNOTSUPP;
1677 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1678 		return -EINVAL;
1679 	if (!len)
1680 		return 0;
1681 	return mtd->_unlock(mtd, ofs, len);
1682 }
1683 EXPORT_SYMBOL_GPL(mtd_unlock);
1684 
1685 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1686 {
1687 	if (!mtd->_is_locked)
1688 		return -EOPNOTSUPP;
1689 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1690 		return -EINVAL;
1691 	if (!len)
1692 		return 0;
1693 	return mtd->_is_locked(mtd, ofs, len);
1694 }
1695 EXPORT_SYMBOL_GPL(mtd_is_locked);
1696 
1697 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1698 {
1699 	if (ofs < 0 || ofs >= mtd->size)
1700 		return -EINVAL;
1701 	if (!mtd->_block_isreserved)
1702 		return 0;
1703 	return mtd->_block_isreserved(mtd, ofs);
1704 }
1705 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1706 
1707 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1708 {
1709 	if (ofs < 0 || ofs >= mtd->size)
1710 		return -EINVAL;
1711 	if (!mtd->_block_isbad)
1712 		return 0;
1713 	return mtd->_block_isbad(mtd, ofs);
1714 }
1715 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1716 
1717 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1718 {
1719 	if (!mtd->_block_markbad)
1720 		return -EOPNOTSUPP;
1721 	if (ofs < 0 || ofs >= mtd->size)
1722 		return -EINVAL;
1723 	if (!(mtd->flags & MTD_WRITEABLE))
1724 		return -EROFS;
1725 	return mtd->_block_markbad(mtd, ofs);
1726 }
1727 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1728 
1729 /*
1730  * default_mtd_writev - the default writev method
1731  * @mtd: mtd device description object pointer
1732  * @vecs: the vectors to write
1733  * @count: count of vectors in @vecs
1734  * @to: the MTD device offset to write to
1735  * @retlen: on exit contains the count of bytes written to the MTD device.
1736  *
1737  * This function returns zero in case of success and a negative error code in
1738  * case of failure.
1739  */
1740 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1741 			      unsigned long count, loff_t to, size_t *retlen)
1742 {
1743 	unsigned long i;
1744 	size_t totlen = 0, thislen;
1745 	int ret = 0;
1746 
1747 	for (i = 0; i < count; i++) {
1748 		if (!vecs[i].iov_len)
1749 			continue;
1750 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1751 				vecs[i].iov_base);
1752 		totlen += thislen;
1753 		if (ret || thislen != vecs[i].iov_len)
1754 			break;
1755 		to += vecs[i].iov_len;
1756 	}
1757 	*retlen = totlen;
1758 	return ret;
1759 }
1760 
1761 /*
1762  * mtd_writev - the vector-based MTD write method
1763  * @mtd: mtd device description object pointer
1764  * @vecs: the vectors to write
1765  * @count: count of vectors in @vecs
1766  * @to: the MTD device offset to write to
1767  * @retlen: on exit contains the count of bytes written to the MTD device.
1768  *
1769  * This function returns zero in case of success and a negative error code in
1770  * case of failure.
1771  */
1772 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1773 	       unsigned long count, loff_t to, size_t *retlen)
1774 {
1775 	*retlen = 0;
1776 	if (!(mtd->flags & MTD_WRITEABLE))
1777 		return -EROFS;
1778 	if (!mtd->_writev)
1779 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1780 	return mtd->_writev(mtd, vecs, count, to, retlen);
1781 }
1782 EXPORT_SYMBOL_GPL(mtd_writev);
1783 
1784 /**
1785  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1786  * @mtd: mtd device description object pointer
1787  * @size: a pointer to the ideal or maximum size of the allocation, points
1788  *        to the actual allocation size on success.
1789  *
1790  * This routine attempts to allocate a contiguous kernel buffer up to
1791  * the specified size, backing off the size of the request exponentially
1792  * until the request succeeds or until the allocation size falls below
1793  * the system page size. This attempts to make sure it does not adversely
1794  * impact system performance, so when allocating more than one page, we
1795  * ask the memory allocator to avoid re-trying, swapping, writing back
1796  * or performing I/O.
1797  *
1798  * Note, this function also makes sure that the allocated buffer is aligned to
1799  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1800  *
1801  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1802  * to handle smaller (i.e. degraded) buffer allocations under low- or
1803  * fragmented-memory situations where such reduced allocations, from a
1804  * requested ideal, are allowed.
1805  *
1806  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1807  */
1808 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1809 {
1810 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1811 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1812 	void *kbuf;
1813 
1814 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1815 
1816 	while (*size > min_alloc) {
1817 		kbuf = kmalloc(*size, flags);
1818 		if (kbuf)
1819 			return kbuf;
1820 
1821 		*size >>= 1;
1822 		*size = ALIGN(*size, mtd->writesize);
1823 	}
1824 
1825 	/*
1826 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1827 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1828 	 */
1829 	return kmalloc(*size, GFP_KERNEL);
1830 }
1831 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1832 
1833 #ifdef CONFIG_PROC_FS
1834 
1835 /*====================================================================*/
1836 /* Support for /proc/mtd */
1837 
1838 static int mtd_proc_show(struct seq_file *m, void *v)
1839 {
1840 	struct mtd_info *mtd;
1841 
1842 	seq_puts(m, "dev:    size   erasesize  name\n");
1843 	mutex_lock(&mtd_table_mutex);
1844 	mtd_for_each_device(mtd) {
1845 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1846 			   mtd->index, (unsigned long long)mtd->size,
1847 			   mtd->erasesize, mtd->name);
1848 	}
1849 	mutex_unlock(&mtd_table_mutex);
1850 	return 0;
1851 }
1852 #endif /* CONFIG_PROC_FS */
1853 
1854 /*====================================================================*/
1855 /* Init code */
1856 
1857 static struct backing_dev_info * __init mtd_bdi_init(char *name)
1858 {
1859 	struct backing_dev_info *bdi;
1860 	int ret;
1861 
1862 	bdi = bdi_alloc(GFP_KERNEL);
1863 	if (!bdi)
1864 		return ERR_PTR(-ENOMEM);
1865 
1866 	bdi->name = name;
1867 	/*
1868 	 * We put '-0' suffix to the name to get the same name format as we
1869 	 * used to get. Since this is called only once, we get a unique name.
1870 	 */
1871 	ret = bdi_register(bdi, "%.28s-0", name);
1872 	if (ret)
1873 		bdi_put(bdi);
1874 
1875 	return ret ? ERR_PTR(ret) : bdi;
1876 }
1877 
1878 static struct proc_dir_entry *proc_mtd;
1879 
1880 static int __init init_mtd(void)
1881 {
1882 	int ret;
1883 
1884 	ret = class_register(&mtd_class);
1885 	if (ret)
1886 		goto err_reg;
1887 
1888 	mtd_bdi = mtd_bdi_init("mtd");
1889 	if (IS_ERR(mtd_bdi)) {
1890 		ret = PTR_ERR(mtd_bdi);
1891 		goto err_bdi;
1892 	}
1893 
1894 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
1895 
1896 	ret = init_mtdchar();
1897 	if (ret)
1898 		goto out_procfs;
1899 
1900 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
1901 
1902 	return 0;
1903 
1904 out_procfs:
1905 	if (proc_mtd)
1906 		remove_proc_entry("mtd", NULL);
1907 	bdi_put(mtd_bdi);
1908 err_bdi:
1909 	class_unregister(&mtd_class);
1910 err_reg:
1911 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1912 	return ret;
1913 }
1914 
1915 static void __exit cleanup_mtd(void)
1916 {
1917 	debugfs_remove_recursive(dfs_dir_mtd);
1918 	cleanup_mtdchar();
1919 	if (proc_mtd)
1920 		remove_proc_entry("mtd", NULL);
1921 	class_unregister(&mtd_class);
1922 	bdi_put(mtd_bdi);
1923 	idr_destroy(&mtd_idr);
1924 }
1925 
1926 module_init(init_mtd);
1927 module_exit(cleanup_mtd);
1928 
1929 MODULE_LICENSE("GPL");
1930 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1931 MODULE_DESCRIPTION("Core MTD registration and access routines");
1932