xref: /openbmc/linux/drivers/mtd/mtdcore.c (revision 28dce2c4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/slab.h>
27 #include <linux/reboot.h>
28 #include <linux/leds.h>
29 #include <linux/debugfs.h>
30 #include <linux/nvmem-provider.h>
31 
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/partitions.h>
34 
35 #include "mtdcore.h"
36 
37 struct backing_dev_info *mtd_bdi;
38 
39 #ifdef CONFIG_PM_SLEEP
40 
41 static int mtd_cls_suspend(struct device *dev)
42 {
43 	struct mtd_info *mtd = dev_get_drvdata(dev);
44 
45 	return mtd ? mtd_suspend(mtd) : 0;
46 }
47 
48 static int mtd_cls_resume(struct device *dev)
49 {
50 	struct mtd_info *mtd = dev_get_drvdata(dev);
51 
52 	if (mtd)
53 		mtd_resume(mtd);
54 	return 0;
55 }
56 
57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59 #else
60 #define MTD_CLS_PM_OPS NULL
61 #endif
62 
63 static struct class mtd_class = {
64 	.name = "mtd",
65 	.owner = THIS_MODULE,
66 	.pm = MTD_CLS_PM_OPS,
67 };
68 
69 static DEFINE_IDR(mtd_idr);
70 
71 /* These are exported solely for the purpose of mtd_blkdevs.c. You
72    should not use them for _anything_ else */
73 DEFINE_MUTEX(mtd_table_mutex);
74 EXPORT_SYMBOL_GPL(mtd_table_mutex);
75 
76 struct mtd_info *__mtd_next_device(int i)
77 {
78 	return idr_get_next(&mtd_idr, &i);
79 }
80 EXPORT_SYMBOL_GPL(__mtd_next_device);
81 
82 static LIST_HEAD(mtd_notifiers);
83 
84 
85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
86 
87 /* REVISIT once MTD uses the driver model better, whoever allocates
88  * the mtd_info will probably want to use the release() hook...
89  */
90 static void mtd_release(struct device *dev)
91 {
92 	struct mtd_info *mtd = dev_get_drvdata(dev);
93 	dev_t index = MTD_DEVT(mtd->index);
94 
95 	/* remove /dev/mtdXro node */
96 	device_destroy(&mtd_class, index + 1);
97 }
98 
99 static ssize_t mtd_type_show(struct device *dev,
100 		struct device_attribute *attr, char *buf)
101 {
102 	struct mtd_info *mtd = dev_get_drvdata(dev);
103 	char *type;
104 
105 	switch (mtd->type) {
106 	case MTD_ABSENT:
107 		type = "absent";
108 		break;
109 	case MTD_RAM:
110 		type = "ram";
111 		break;
112 	case MTD_ROM:
113 		type = "rom";
114 		break;
115 	case MTD_NORFLASH:
116 		type = "nor";
117 		break;
118 	case MTD_NANDFLASH:
119 		type = "nand";
120 		break;
121 	case MTD_DATAFLASH:
122 		type = "dataflash";
123 		break;
124 	case MTD_UBIVOLUME:
125 		type = "ubi";
126 		break;
127 	case MTD_MLCNANDFLASH:
128 		type = "mlc-nand";
129 		break;
130 	default:
131 		type = "unknown";
132 	}
133 
134 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
135 }
136 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
137 
138 static ssize_t mtd_flags_show(struct device *dev,
139 		struct device_attribute *attr, char *buf)
140 {
141 	struct mtd_info *mtd = dev_get_drvdata(dev);
142 
143 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
144 }
145 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
146 
147 static ssize_t mtd_size_show(struct device *dev,
148 		struct device_attribute *attr, char *buf)
149 {
150 	struct mtd_info *mtd = dev_get_drvdata(dev);
151 
152 	return snprintf(buf, PAGE_SIZE, "%llu\n",
153 		(unsigned long long)mtd->size);
154 }
155 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
156 
157 static ssize_t mtd_erasesize_show(struct device *dev,
158 		struct device_attribute *attr, char *buf)
159 {
160 	struct mtd_info *mtd = dev_get_drvdata(dev);
161 
162 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
163 }
164 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
165 
166 static ssize_t mtd_writesize_show(struct device *dev,
167 		struct device_attribute *attr, char *buf)
168 {
169 	struct mtd_info *mtd = dev_get_drvdata(dev);
170 
171 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
172 }
173 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
174 
175 static ssize_t mtd_subpagesize_show(struct device *dev,
176 		struct device_attribute *attr, char *buf)
177 {
178 	struct mtd_info *mtd = dev_get_drvdata(dev);
179 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
180 
181 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
182 }
183 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
184 
185 static ssize_t mtd_oobsize_show(struct device *dev,
186 		struct device_attribute *attr, char *buf)
187 {
188 	struct mtd_info *mtd = dev_get_drvdata(dev);
189 
190 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
191 }
192 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
193 
194 static ssize_t mtd_oobavail_show(struct device *dev,
195 				 struct device_attribute *attr, char *buf)
196 {
197 	struct mtd_info *mtd = dev_get_drvdata(dev);
198 
199 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
200 }
201 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
202 
203 static ssize_t mtd_numeraseregions_show(struct device *dev,
204 		struct device_attribute *attr, char *buf)
205 {
206 	struct mtd_info *mtd = dev_get_drvdata(dev);
207 
208 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
209 }
210 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
211 	NULL);
212 
213 static ssize_t mtd_name_show(struct device *dev,
214 		struct device_attribute *attr, char *buf)
215 {
216 	struct mtd_info *mtd = dev_get_drvdata(dev);
217 
218 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
219 }
220 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
221 
222 static ssize_t mtd_ecc_strength_show(struct device *dev,
223 				     struct device_attribute *attr, char *buf)
224 {
225 	struct mtd_info *mtd = dev_get_drvdata(dev);
226 
227 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
228 }
229 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
230 
231 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
232 					  struct device_attribute *attr,
233 					  char *buf)
234 {
235 	struct mtd_info *mtd = dev_get_drvdata(dev);
236 
237 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
238 }
239 
240 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
241 					   struct device_attribute *attr,
242 					   const char *buf, size_t count)
243 {
244 	struct mtd_info *mtd = dev_get_drvdata(dev);
245 	unsigned int bitflip_threshold;
246 	int retval;
247 
248 	retval = kstrtouint(buf, 0, &bitflip_threshold);
249 	if (retval)
250 		return retval;
251 
252 	mtd->bitflip_threshold = bitflip_threshold;
253 	return count;
254 }
255 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
256 		   mtd_bitflip_threshold_show,
257 		   mtd_bitflip_threshold_store);
258 
259 static ssize_t mtd_ecc_step_size_show(struct device *dev,
260 		struct device_attribute *attr, char *buf)
261 {
262 	struct mtd_info *mtd = dev_get_drvdata(dev);
263 
264 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
265 
266 }
267 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
268 
269 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
270 		struct device_attribute *attr, char *buf)
271 {
272 	struct mtd_info *mtd = dev_get_drvdata(dev);
273 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
274 
275 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
276 }
277 static DEVICE_ATTR(corrected_bits, S_IRUGO,
278 		   mtd_ecc_stats_corrected_show, NULL);
279 
280 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
281 		struct device_attribute *attr, char *buf)
282 {
283 	struct mtd_info *mtd = dev_get_drvdata(dev);
284 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
285 
286 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
287 }
288 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
289 
290 static ssize_t mtd_badblocks_show(struct device *dev,
291 		struct device_attribute *attr, char *buf)
292 {
293 	struct mtd_info *mtd = dev_get_drvdata(dev);
294 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
295 
296 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
297 }
298 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
299 
300 static ssize_t mtd_bbtblocks_show(struct device *dev,
301 		struct device_attribute *attr, char *buf)
302 {
303 	struct mtd_info *mtd = dev_get_drvdata(dev);
304 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
305 
306 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
307 }
308 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
309 
310 static struct attribute *mtd_attrs[] = {
311 	&dev_attr_type.attr,
312 	&dev_attr_flags.attr,
313 	&dev_attr_size.attr,
314 	&dev_attr_erasesize.attr,
315 	&dev_attr_writesize.attr,
316 	&dev_attr_subpagesize.attr,
317 	&dev_attr_oobsize.attr,
318 	&dev_attr_oobavail.attr,
319 	&dev_attr_numeraseregions.attr,
320 	&dev_attr_name.attr,
321 	&dev_attr_ecc_strength.attr,
322 	&dev_attr_ecc_step_size.attr,
323 	&dev_attr_corrected_bits.attr,
324 	&dev_attr_ecc_failures.attr,
325 	&dev_attr_bad_blocks.attr,
326 	&dev_attr_bbt_blocks.attr,
327 	&dev_attr_bitflip_threshold.attr,
328 	NULL,
329 };
330 ATTRIBUTE_GROUPS(mtd);
331 
332 static const struct device_type mtd_devtype = {
333 	.name		= "mtd",
334 	.groups		= mtd_groups,
335 	.release	= mtd_release,
336 };
337 
338 static int mtd_partid_debug_show(struct seq_file *s, void *p)
339 {
340 	struct mtd_info *mtd = s->private;
341 
342 	seq_printf(s, "%s\n", mtd->dbg.partid);
343 
344 	return 0;
345 }
346 
347 DEFINE_SHOW_ATTRIBUTE(mtd_partid_debug);
348 
349 static int mtd_partname_debug_show(struct seq_file *s, void *p)
350 {
351 	struct mtd_info *mtd = s->private;
352 
353 	seq_printf(s, "%s\n", mtd->dbg.partname);
354 
355 	return 0;
356 }
357 
358 DEFINE_SHOW_ATTRIBUTE(mtd_partname_debug);
359 
360 static struct dentry *dfs_dir_mtd;
361 
362 static void mtd_debugfs_populate(struct mtd_info *mtd)
363 {
364 	struct device *dev = &mtd->dev;
365 	struct dentry *root;
366 
367 	if (IS_ERR_OR_NULL(dfs_dir_mtd))
368 		return;
369 
370 	root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
371 	mtd->dbg.dfs_dir = root;
372 
373 	if (mtd->dbg.partid)
374 		debugfs_create_file("partid", 0400, root, mtd,
375 				    &mtd_partid_debug_fops);
376 
377 	if (mtd->dbg.partname)
378 		debugfs_create_file("partname", 0400, root, mtd,
379 				    &mtd_partname_debug_fops);
380 }
381 
382 #ifndef CONFIG_MMU
383 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
384 {
385 	switch (mtd->type) {
386 	case MTD_RAM:
387 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
388 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
389 	case MTD_ROM:
390 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
391 			NOMMU_MAP_READ;
392 	default:
393 		return NOMMU_MAP_COPY;
394 	}
395 }
396 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
397 #endif
398 
399 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
400 			       void *cmd)
401 {
402 	struct mtd_info *mtd;
403 
404 	mtd = container_of(n, struct mtd_info, reboot_notifier);
405 	mtd->_reboot(mtd);
406 
407 	return NOTIFY_DONE;
408 }
409 
410 /**
411  * mtd_wunit_to_pairing_info - get pairing information of a wunit
412  * @mtd: pointer to new MTD device info structure
413  * @wunit: write unit we are interested in
414  * @info: returned pairing information
415  *
416  * Retrieve pairing information associated to the wunit.
417  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
418  * paired together, and where programming a page may influence the page it is
419  * paired with.
420  * The notion of page is replaced by the term wunit (write-unit) to stay
421  * consistent with the ->writesize field.
422  *
423  * The @wunit argument can be extracted from an absolute offset using
424  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
425  * to @wunit.
426  *
427  * From the pairing info the MTD user can find all the wunits paired with
428  * @wunit using the following loop:
429  *
430  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
431  *	info.pair = i;
432  *	mtd_pairing_info_to_wunit(mtd, &info);
433  *	...
434  * }
435  */
436 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
437 			      struct mtd_pairing_info *info)
438 {
439 	struct mtd_info *master = mtd_get_master(mtd);
440 	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
441 
442 	if (wunit < 0 || wunit >= npairs)
443 		return -EINVAL;
444 
445 	if (master->pairing && master->pairing->get_info)
446 		return master->pairing->get_info(master, wunit, info);
447 
448 	info->group = 0;
449 	info->pair = wunit;
450 
451 	return 0;
452 }
453 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
454 
455 /**
456  * mtd_pairing_info_to_wunit - get wunit from pairing information
457  * @mtd: pointer to new MTD device info structure
458  * @info: pairing information struct
459  *
460  * Returns a positive number representing the wunit associated to the info
461  * struct, or a negative error code.
462  *
463  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
464  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
465  * doc).
466  *
467  * It can also be used to only program the first page of each pair (i.e.
468  * page attached to group 0), which allows one to use an MLC NAND in
469  * software-emulated SLC mode:
470  *
471  * info.group = 0;
472  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
473  * for (info.pair = 0; info.pair < npairs; info.pair++) {
474  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
475  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
476  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
477  * }
478  */
479 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
480 			      const struct mtd_pairing_info *info)
481 {
482 	struct mtd_info *master = mtd_get_master(mtd);
483 	int ngroups = mtd_pairing_groups(master);
484 	int npairs = mtd_wunit_per_eb(master) / ngroups;
485 
486 	if (!info || info->pair < 0 || info->pair >= npairs ||
487 	    info->group < 0 || info->group >= ngroups)
488 		return -EINVAL;
489 
490 	if (master->pairing && master->pairing->get_wunit)
491 		return mtd->pairing->get_wunit(master, info);
492 
493 	return info->pair;
494 }
495 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
496 
497 /**
498  * mtd_pairing_groups - get the number of pairing groups
499  * @mtd: pointer to new MTD device info structure
500  *
501  * Returns the number of pairing groups.
502  *
503  * This number is usually equal to the number of bits exposed by a single
504  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
505  * to iterate over all pages of a given pair.
506  */
507 int mtd_pairing_groups(struct mtd_info *mtd)
508 {
509 	struct mtd_info *master = mtd_get_master(mtd);
510 
511 	if (!master->pairing || !master->pairing->ngroups)
512 		return 1;
513 
514 	return master->pairing->ngroups;
515 }
516 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
517 
518 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
519 			      void *val, size_t bytes)
520 {
521 	struct mtd_info *mtd = priv;
522 	size_t retlen;
523 	int err;
524 
525 	err = mtd_read(mtd, offset, bytes, &retlen, val);
526 	if (err && err != -EUCLEAN)
527 		return err;
528 
529 	return retlen == bytes ? 0 : -EIO;
530 }
531 
532 static int mtd_nvmem_add(struct mtd_info *mtd)
533 {
534 	struct device_node *node = mtd_get_of_node(mtd);
535 	struct nvmem_config config = {};
536 
537 	config.id = -1;
538 	config.dev = &mtd->dev;
539 	config.name = dev_name(&mtd->dev);
540 	config.owner = THIS_MODULE;
541 	config.reg_read = mtd_nvmem_reg_read;
542 	config.size = mtd->size;
543 	config.word_size = 1;
544 	config.stride = 1;
545 	config.read_only = true;
546 	config.root_only = true;
547 	config.no_of_node = !of_device_is_compatible(node, "nvmem-cells");
548 	config.priv = mtd;
549 
550 	mtd->nvmem = nvmem_register(&config);
551 	if (IS_ERR(mtd->nvmem)) {
552 		/* Just ignore if there is no NVMEM support in the kernel */
553 		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
554 			mtd->nvmem = NULL;
555 		} else {
556 			dev_err(&mtd->dev, "Failed to register NVMEM device\n");
557 			return PTR_ERR(mtd->nvmem);
558 		}
559 	}
560 
561 	return 0;
562 }
563 
564 /**
565  *	add_mtd_device - register an MTD device
566  *	@mtd: pointer to new MTD device info structure
567  *
568  *	Add a device to the list of MTD devices present in the system, and
569  *	notify each currently active MTD 'user' of its arrival. Returns
570  *	zero on success or non-zero on failure.
571  */
572 
573 int add_mtd_device(struct mtd_info *mtd)
574 {
575 	struct mtd_info *master = mtd_get_master(mtd);
576 	struct mtd_notifier *not;
577 	int i, error;
578 
579 	/*
580 	 * May occur, for instance, on buggy drivers which call
581 	 * mtd_device_parse_register() multiple times on the same master MTD,
582 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
583 	 */
584 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
585 		return -EEXIST;
586 
587 	BUG_ON(mtd->writesize == 0);
588 
589 	/*
590 	 * MTD drivers should implement ->_{write,read}() or
591 	 * ->_{write,read}_oob(), but not both.
592 	 */
593 	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
594 		    (mtd->_read && mtd->_read_oob)))
595 		return -EINVAL;
596 
597 	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
598 		    !(mtd->flags & MTD_NO_ERASE)))
599 		return -EINVAL;
600 
601 	/*
602 	 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
603 	 * master is an MLC NAND and has a proper pairing scheme defined.
604 	 * We also reject masters that implement ->_writev() for now, because
605 	 * NAND controller drivers don't implement this hook, and adding the
606 	 * SLC -> MLC address/length conversion to this path is useless if we
607 	 * don't have a user.
608 	 */
609 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
610 	    (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
611 	     !master->pairing || master->_writev))
612 		return -EINVAL;
613 
614 	mutex_lock(&mtd_table_mutex);
615 
616 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
617 	if (i < 0) {
618 		error = i;
619 		goto fail_locked;
620 	}
621 
622 	mtd->index = i;
623 	mtd->usecount = 0;
624 
625 	/* default value if not set by driver */
626 	if (mtd->bitflip_threshold == 0)
627 		mtd->bitflip_threshold = mtd->ecc_strength;
628 
629 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
630 		int ngroups = mtd_pairing_groups(master);
631 
632 		mtd->erasesize /= ngroups;
633 		mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
634 			    mtd->erasesize;
635 	}
636 
637 	if (is_power_of_2(mtd->erasesize))
638 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
639 	else
640 		mtd->erasesize_shift = 0;
641 
642 	if (is_power_of_2(mtd->writesize))
643 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
644 	else
645 		mtd->writesize_shift = 0;
646 
647 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
648 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
649 
650 	/* Some chips always power up locked. Unlock them now */
651 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
652 		error = mtd_unlock(mtd, 0, mtd->size);
653 		if (error && error != -EOPNOTSUPP)
654 			printk(KERN_WARNING
655 			       "%s: unlock failed, writes may not work\n",
656 			       mtd->name);
657 		/* Ignore unlock failures? */
658 		error = 0;
659 	}
660 
661 	/* Caller should have set dev.parent to match the
662 	 * physical device, if appropriate.
663 	 */
664 	mtd->dev.type = &mtd_devtype;
665 	mtd->dev.class = &mtd_class;
666 	mtd->dev.devt = MTD_DEVT(i);
667 	dev_set_name(&mtd->dev, "mtd%d", i);
668 	dev_set_drvdata(&mtd->dev, mtd);
669 	of_node_get(mtd_get_of_node(mtd));
670 	error = device_register(&mtd->dev);
671 	if (error)
672 		goto fail_added;
673 
674 	/* Add the nvmem provider */
675 	error = mtd_nvmem_add(mtd);
676 	if (error)
677 		goto fail_nvmem_add;
678 
679 	mtd_debugfs_populate(mtd);
680 
681 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
682 		      "mtd%dro", i);
683 
684 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
685 	/* No need to get a refcount on the module containing
686 	   the notifier, since we hold the mtd_table_mutex */
687 	list_for_each_entry(not, &mtd_notifiers, list)
688 		not->add(mtd);
689 
690 	mutex_unlock(&mtd_table_mutex);
691 	/* We _know_ we aren't being removed, because
692 	   our caller is still holding us here. So none
693 	   of this try_ nonsense, and no bitching about it
694 	   either. :) */
695 	__module_get(THIS_MODULE);
696 	return 0;
697 
698 fail_nvmem_add:
699 	device_unregister(&mtd->dev);
700 fail_added:
701 	of_node_put(mtd_get_of_node(mtd));
702 	idr_remove(&mtd_idr, i);
703 fail_locked:
704 	mutex_unlock(&mtd_table_mutex);
705 	return error;
706 }
707 
708 /**
709  *	del_mtd_device - unregister an MTD device
710  *	@mtd: pointer to MTD device info structure
711  *
712  *	Remove a device from the list of MTD devices present in the system,
713  *	and notify each currently active MTD 'user' of its departure.
714  *	Returns zero on success or 1 on failure, which currently will happen
715  *	if the requested device does not appear to be present in the list.
716  */
717 
718 int del_mtd_device(struct mtd_info *mtd)
719 {
720 	int ret;
721 	struct mtd_notifier *not;
722 
723 	mutex_lock(&mtd_table_mutex);
724 
725 	debugfs_remove_recursive(mtd->dbg.dfs_dir);
726 
727 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
728 		ret = -ENODEV;
729 		goto out_error;
730 	}
731 
732 	/* No need to get a refcount on the module containing
733 		the notifier, since we hold the mtd_table_mutex */
734 	list_for_each_entry(not, &mtd_notifiers, list)
735 		not->remove(mtd);
736 
737 	if (mtd->usecount) {
738 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
739 		       mtd->index, mtd->name, mtd->usecount);
740 		ret = -EBUSY;
741 	} else {
742 		/* Try to remove the NVMEM provider */
743 		if (mtd->nvmem)
744 			nvmem_unregister(mtd->nvmem);
745 
746 		device_unregister(&mtd->dev);
747 
748 		idr_remove(&mtd_idr, mtd->index);
749 		of_node_put(mtd_get_of_node(mtd));
750 
751 		module_put(THIS_MODULE);
752 		ret = 0;
753 	}
754 
755 out_error:
756 	mutex_unlock(&mtd_table_mutex);
757 	return ret;
758 }
759 
760 /*
761  * Set a few defaults based on the parent devices, if not provided by the
762  * driver
763  */
764 static void mtd_set_dev_defaults(struct mtd_info *mtd)
765 {
766 	if (mtd->dev.parent) {
767 		if (!mtd->owner && mtd->dev.parent->driver)
768 			mtd->owner = mtd->dev.parent->driver->owner;
769 		if (!mtd->name)
770 			mtd->name = dev_name(mtd->dev.parent);
771 	} else {
772 		pr_debug("mtd device won't show a device symlink in sysfs\n");
773 	}
774 
775 	INIT_LIST_HEAD(&mtd->partitions);
776 	mutex_init(&mtd->master.partitions_lock);
777 	mutex_init(&mtd->master.chrdev_lock);
778 }
779 
780 /**
781  * mtd_device_parse_register - parse partitions and register an MTD device.
782  *
783  * @mtd: the MTD device to register
784  * @types: the list of MTD partition probes to try, see
785  *         'parse_mtd_partitions()' for more information
786  * @parser_data: MTD partition parser-specific data
787  * @parts: fallback partition information to register, if parsing fails;
788  *         only valid if %nr_parts > %0
789  * @nr_parts: the number of partitions in parts, if zero then the full
790  *            MTD device is registered if no partition info is found
791  *
792  * This function aggregates MTD partitions parsing (done by
793  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
794  * basically follows the most common pattern found in many MTD drivers:
795  *
796  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
797  *   registered first.
798  * * Then It tries to probe partitions on MTD device @mtd using parsers
799  *   specified in @types (if @types is %NULL, then the default list of parsers
800  *   is used, see 'parse_mtd_partitions()' for more information). If none are
801  *   found this functions tries to fallback to information specified in
802  *   @parts/@nr_parts.
803  * * If no partitions were found this function just registers the MTD device
804  *   @mtd and exits.
805  *
806  * Returns zero in case of success and a negative error code in case of failure.
807  */
808 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
809 			      struct mtd_part_parser_data *parser_data,
810 			      const struct mtd_partition *parts,
811 			      int nr_parts)
812 {
813 	int ret;
814 
815 	mtd_set_dev_defaults(mtd);
816 
817 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
818 		ret = add_mtd_device(mtd);
819 		if (ret)
820 			return ret;
821 	}
822 
823 	/* Prefer parsed partitions over driver-provided fallback */
824 	ret = parse_mtd_partitions(mtd, types, parser_data);
825 	if (ret == -EPROBE_DEFER)
826 		goto out;
827 
828 	if (ret > 0)
829 		ret = 0;
830 	else if (nr_parts)
831 		ret = add_mtd_partitions(mtd, parts, nr_parts);
832 	else if (!device_is_registered(&mtd->dev))
833 		ret = add_mtd_device(mtd);
834 	else
835 		ret = 0;
836 
837 	if (ret)
838 		goto out;
839 
840 	/*
841 	 * FIXME: some drivers unfortunately call this function more than once.
842 	 * So we have to check if we've already assigned the reboot notifier.
843 	 *
844 	 * Generally, we can make multiple calls work for most cases, but it
845 	 * does cause problems with parse_mtd_partitions() above (e.g.,
846 	 * cmdlineparts will register partitions more than once).
847 	 */
848 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
849 		  "MTD already registered\n");
850 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
851 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
852 		register_reboot_notifier(&mtd->reboot_notifier);
853 	}
854 
855 out:
856 	if (ret && device_is_registered(&mtd->dev))
857 		del_mtd_device(mtd);
858 
859 	return ret;
860 }
861 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
862 
863 /**
864  * mtd_device_unregister - unregister an existing MTD device.
865  *
866  * @master: the MTD device to unregister.  This will unregister both the master
867  *          and any partitions if registered.
868  */
869 int mtd_device_unregister(struct mtd_info *master)
870 {
871 	int err;
872 
873 	if (master->_reboot)
874 		unregister_reboot_notifier(&master->reboot_notifier);
875 
876 	err = del_mtd_partitions(master);
877 	if (err)
878 		return err;
879 
880 	if (!device_is_registered(&master->dev))
881 		return 0;
882 
883 	return del_mtd_device(master);
884 }
885 EXPORT_SYMBOL_GPL(mtd_device_unregister);
886 
887 /**
888  *	register_mtd_user - register a 'user' of MTD devices.
889  *	@new: pointer to notifier info structure
890  *
891  *	Registers a pair of callbacks function to be called upon addition
892  *	or removal of MTD devices. Causes the 'add' callback to be immediately
893  *	invoked for each MTD device currently present in the system.
894  */
895 void register_mtd_user (struct mtd_notifier *new)
896 {
897 	struct mtd_info *mtd;
898 
899 	mutex_lock(&mtd_table_mutex);
900 
901 	list_add(&new->list, &mtd_notifiers);
902 
903 	__module_get(THIS_MODULE);
904 
905 	mtd_for_each_device(mtd)
906 		new->add(mtd);
907 
908 	mutex_unlock(&mtd_table_mutex);
909 }
910 EXPORT_SYMBOL_GPL(register_mtd_user);
911 
912 /**
913  *	unregister_mtd_user - unregister a 'user' of MTD devices.
914  *	@old: pointer to notifier info structure
915  *
916  *	Removes a callback function pair from the list of 'users' to be
917  *	notified upon addition or removal of MTD devices. Causes the
918  *	'remove' callback to be immediately invoked for each MTD device
919  *	currently present in the system.
920  */
921 int unregister_mtd_user (struct mtd_notifier *old)
922 {
923 	struct mtd_info *mtd;
924 
925 	mutex_lock(&mtd_table_mutex);
926 
927 	module_put(THIS_MODULE);
928 
929 	mtd_for_each_device(mtd)
930 		old->remove(mtd);
931 
932 	list_del(&old->list);
933 	mutex_unlock(&mtd_table_mutex);
934 	return 0;
935 }
936 EXPORT_SYMBOL_GPL(unregister_mtd_user);
937 
938 /**
939  *	get_mtd_device - obtain a validated handle for an MTD device
940  *	@mtd: last known address of the required MTD device
941  *	@num: internal device number of the required MTD device
942  *
943  *	Given a number and NULL address, return the num'th entry in the device
944  *	table, if any.	Given an address and num == -1, search the device table
945  *	for a device with that address and return if it's still present. Given
946  *	both, return the num'th driver only if its address matches. Return
947  *	error code if not.
948  */
949 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
950 {
951 	struct mtd_info *ret = NULL, *other;
952 	int err = -ENODEV;
953 
954 	mutex_lock(&mtd_table_mutex);
955 
956 	if (num == -1) {
957 		mtd_for_each_device(other) {
958 			if (other == mtd) {
959 				ret = mtd;
960 				break;
961 			}
962 		}
963 	} else if (num >= 0) {
964 		ret = idr_find(&mtd_idr, num);
965 		if (mtd && mtd != ret)
966 			ret = NULL;
967 	}
968 
969 	if (!ret) {
970 		ret = ERR_PTR(err);
971 		goto out;
972 	}
973 
974 	err = __get_mtd_device(ret);
975 	if (err)
976 		ret = ERR_PTR(err);
977 out:
978 	mutex_unlock(&mtd_table_mutex);
979 	return ret;
980 }
981 EXPORT_SYMBOL_GPL(get_mtd_device);
982 
983 
984 int __get_mtd_device(struct mtd_info *mtd)
985 {
986 	struct mtd_info *master = mtd_get_master(mtd);
987 	int err;
988 
989 	if (!try_module_get(master->owner))
990 		return -ENODEV;
991 
992 	if (master->_get_device) {
993 		err = master->_get_device(mtd);
994 
995 		if (err) {
996 			module_put(master->owner);
997 			return err;
998 		}
999 	}
1000 
1001 	master->usecount++;
1002 
1003 	while (mtd->parent) {
1004 		mtd->usecount++;
1005 		mtd = mtd->parent;
1006 	}
1007 
1008 	return 0;
1009 }
1010 EXPORT_SYMBOL_GPL(__get_mtd_device);
1011 
1012 /**
1013  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1014  *	device name
1015  *	@name: MTD device name to open
1016  *
1017  * 	This function returns MTD device description structure in case of
1018  * 	success and an error code in case of failure.
1019  */
1020 struct mtd_info *get_mtd_device_nm(const char *name)
1021 {
1022 	int err = -ENODEV;
1023 	struct mtd_info *mtd = NULL, *other;
1024 
1025 	mutex_lock(&mtd_table_mutex);
1026 
1027 	mtd_for_each_device(other) {
1028 		if (!strcmp(name, other->name)) {
1029 			mtd = other;
1030 			break;
1031 		}
1032 	}
1033 
1034 	if (!mtd)
1035 		goto out_unlock;
1036 
1037 	err = __get_mtd_device(mtd);
1038 	if (err)
1039 		goto out_unlock;
1040 
1041 	mutex_unlock(&mtd_table_mutex);
1042 	return mtd;
1043 
1044 out_unlock:
1045 	mutex_unlock(&mtd_table_mutex);
1046 	return ERR_PTR(err);
1047 }
1048 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1049 
1050 void put_mtd_device(struct mtd_info *mtd)
1051 {
1052 	mutex_lock(&mtd_table_mutex);
1053 	__put_mtd_device(mtd);
1054 	mutex_unlock(&mtd_table_mutex);
1055 
1056 }
1057 EXPORT_SYMBOL_GPL(put_mtd_device);
1058 
1059 void __put_mtd_device(struct mtd_info *mtd)
1060 {
1061 	struct mtd_info *master = mtd_get_master(mtd);
1062 
1063 	while (mtd->parent) {
1064 		--mtd->usecount;
1065 		BUG_ON(mtd->usecount < 0);
1066 		mtd = mtd->parent;
1067 	}
1068 
1069 	master->usecount--;
1070 
1071 	if (master->_put_device)
1072 		master->_put_device(master);
1073 
1074 	module_put(master->owner);
1075 }
1076 EXPORT_SYMBOL_GPL(__put_mtd_device);
1077 
1078 /*
1079  * Erase is an synchronous operation. Device drivers are epected to return a
1080  * negative error code if the operation failed and update instr->fail_addr
1081  * to point the portion that was not properly erased.
1082  */
1083 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1084 {
1085 	struct mtd_info *master = mtd_get_master(mtd);
1086 	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1087 	struct erase_info adjinstr;
1088 	int ret;
1089 
1090 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1091 	adjinstr = *instr;
1092 
1093 	if (!mtd->erasesize || !master->_erase)
1094 		return -ENOTSUPP;
1095 
1096 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1097 		return -EINVAL;
1098 	if (!(mtd->flags & MTD_WRITEABLE))
1099 		return -EROFS;
1100 
1101 	if (!instr->len)
1102 		return 0;
1103 
1104 	ledtrig_mtd_activity();
1105 
1106 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1107 		adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1108 				master->erasesize;
1109 		adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1110 				master->erasesize) -
1111 			       adjinstr.addr;
1112 	}
1113 
1114 	adjinstr.addr += mst_ofs;
1115 
1116 	ret = master->_erase(master, &adjinstr);
1117 
1118 	if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1119 		instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1120 		if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1121 			instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1122 							 master);
1123 			instr->fail_addr *= mtd->erasesize;
1124 		}
1125 	}
1126 
1127 	return ret;
1128 }
1129 EXPORT_SYMBOL_GPL(mtd_erase);
1130 
1131 /*
1132  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1133  */
1134 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1135 	      void **virt, resource_size_t *phys)
1136 {
1137 	struct mtd_info *master = mtd_get_master(mtd);
1138 
1139 	*retlen = 0;
1140 	*virt = NULL;
1141 	if (phys)
1142 		*phys = 0;
1143 	if (!master->_point)
1144 		return -EOPNOTSUPP;
1145 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1146 		return -EINVAL;
1147 	if (!len)
1148 		return 0;
1149 
1150 	from = mtd_get_master_ofs(mtd, from);
1151 	return master->_point(master, from, len, retlen, virt, phys);
1152 }
1153 EXPORT_SYMBOL_GPL(mtd_point);
1154 
1155 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1156 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1157 {
1158 	struct mtd_info *master = mtd_get_master(mtd);
1159 
1160 	if (!master->_unpoint)
1161 		return -EOPNOTSUPP;
1162 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1163 		return -EINVAL;
1164 	if (!len)
1165 		return 0;
1166 	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1167 }
1168 EXPORT_SYMBOL_GPL(mtd_unpoint);
1169 
1170 /*
1171  * Allow NOMMU mmap() to directly map the device (if not NULL)
1172  * - return the address to which the offset maps
1173  * - return -ENOSYS to indicate refusal to do the mapping
1174  */
1175 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1176 				    unsigned long offset, unsigned long flags)
1177 {
1178 	size_t retlen;
1179 	void *virt;
1180 	int ret;
1181 
1182 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1183 	if (ret)
1184 		return ret;
1185 	if (retlen != len) {
1186 		mtd_unpoint(mtd, offset, retlen);
1187 		return -ENOSYS;
1188 	}
1189 	return (unsigned long)virt;
1190 }
1191 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1192 
1193 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1194 				 const struct mtd_ecc_stats *old_stats)
1195 {
1196 	struct mtd_ecc_stats diff;
1197 
1198 	if (master == mtd)
1199 		return;
1200 
1201 	diff = master->ecc_stats;
1202 	diff.failed -= old_stats->failed;
1203 	diff.corrected -= old_stats->corrected;
1204 
1205 	while (mtd->parent) {
1206 		mtd->ecc_stats.failed += diff.failed;
1207 		mtd->ecc_stats.corrected += diff.corrected;
1208 		mtd = mtd->parent;
1209 	}
1210 }
1211 
1212 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1213 	     u_char *buf)
1214 {
1215 	struct mtd_oob_ops ops = {
1216 		.len = len,
1217 		.datbuf = buf,
1218 	};
1219 	int ret;
1220 
1221 	ret = mtd_read_oob(mtd, from, &ops);
1222 	*retlen = ops.retlen;
1223 
1224 	return ret;
1225 }
1226 EXPORT_SYMBOL_GPL(mtd_read);
1227 
1228 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1229 	      const u_char *buf)
1230 {
1231 	struct mtd_oob_ops ops = {
1232 		.len = len,
1233 		.datbuf = (u8 *)buf,
1234 	};
1235 	int ret;
1236 
1237 	ret = mtd_write_oob(mtd, to, &ops);
1238 	*retlen = ops.retlen;
1239 
1240 	return ret;
1241 }
1242 EXPORT_SYMBOL_GPL(mtd_write);
1243 
1244 /*
1245  * In blackbox flight recorder like scenarios we want to make successful writes
1246  * in interrupt context. panic_write() is only intended to be called when its
1247  * known the kernel is about to panic and we need the write to succeed. Since
1248  * the kernel is not going to be running for much longer, this function can
1249  * break locks and delay to ensure the write succeeds (but not sleep).
1250  */
1251 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1252 		    const u_char *buf)
1253 {
1254 	struct mtd_info *master = mtd_get_master(mtd);
1255 
1256 	*retlen = 0;
1257 	if (!master->_panic_write)
1258 		return -EOPNOTSUPP;
1259 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1260 		return -EINVAL;
1261 	if (!(mtd->flags & MTD_WRITEABLE))
1262 		return -EROFS;
1263 	if (!len)
1264 		return 0;
1265 	if (!master->oops_panic_write)
1266 		master->oops_panic_write = true;
1267 
1268 	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1269 				    retlen, buf);
1270 }
1271 EXPORT_SYMBOL_GPL(mtd_panic_write);
1272 
1273 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1274 			     struct mtd_oob_ops *ops)
1275 {
1276 	/*
1277 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1278 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1279 	 *  this case.
1280 	 */
1281 	if (!ops->datbuf)
1282 		ops->len = 0;
1283 
1284 	if (!ops->oobbuf)
1285 		ops->ooblen = 0;
1286 
1287 	if (offs < 0 || offs + ops->len > mtd->size)
1288 		return -EINVAL;
1289 
1290 	if (ops->ooblen) {
1291 		size_t maxooblen;
1292 
1293 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1294 			return -EINVAL;
1295 
1296 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1297 				      mtd_div_by_ws(offs, mtd)) *
1298 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1299 		if (ops->ooblen > maxooblen)
1300 			return -EINVAL;
1301 	}
1302 
1303 	return 0;
1304 }
1305 
1306 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1307 			    struct mtd_oob_ops *ops)
1308 {
1309 	struct mtd_info *master = mtd_get_master(mtd);
1310 	int ret;
1311 
1312 	from = mtd_get_master_ofs(mtd, from);
1313 	if (master->_read_oob)
1314 		ret = master->_read_oob(master, from, ops);
1315 	else
1316 		ret = master->_read(master, from, ops->len, &ops->retlen,
1317 				    ops->datbuf);
1318 
1319 	return ret;
1320 }
1321 
1322 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1323 			     struct mtd_oob_ops *ops)
1324 {
1325 	struct mtd_info *master = mtd_get_master(mtd);
1326 	int ret;
1327 
1328 	to = mtd_get_master_ofs(mtd, to);
1329 	if (master->_write_oob)
1330 		ret = master->_write_oob(master, to, ops);
1331 	else
1332 		ret = master->_write(master, to, ops->len, &ops->retlen,
1333 				     ops->datbuf);
1334 
1335 	return ret;
1336 }
1337 
1338 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1339 			       struct mtd_oob_ops *ops)
1340 {
1341 	struct mtd_info *master = mtd_get_master(mtd);
1342 	int ngroups = mtd_pairing_groups(master);
1343 	int npairs = mtd_wunit_per_eb(master) / ngroups;
1344 	struct mtd_oob_ops adjops = *ops;
1345 	unsigned int wunit, oobavail;
1346 	struct mtd_pairing_info info;
1347 	int max_bitflips = 0;
1348 	u32 ebofs, pageofs;
1349 	loff_t base, pos;
1350 
1351 	ebofs = mtd_mod_by_eb(start, mtd);
1352 	base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1353 	info.group = 0;
1354 	info.pair = mtd_div_by_ws(ebofs, mtd);
1355 	pageofs = mtd_mod_by_ws(ebofs, mtd);
1356 	oobavail = mtd_oobavail(mtd, ops);
1357 
1358 	while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1359 		int ret;
1360 
1361 		if (info.pair >= npairs) {
1362 			info.pair = 0;
1363 			base += master->erasesize;
1364 		}
1365 
1366 		wunit = mtd_pairing_info_to_wunit(master, &info);
1367 		pos = mtd_wunit_to_offset(mtd, base, wunit);
1368 
1369 		adjops.len = ops->len - ops->retlen;
1370 		if (adjops.len > mtd->writesize - pageofs)
1371 			adjops.len = mtd->writesize - pageofs;
1372 
1373 		adjops.ooblen = ops->ooblen - ops->oobretlen;
1374 		if (adjops.ooblen > oobavail - adjops.ooboffs)
1375 			adjops.ooblen = oobavail - adjops.ooboffs;
1376 
1377 		if (read) {
1378 			ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1379 			if (ret > 0)
1380 				max_bitflips = max(max_bitflips, ret);
1381 		} else {
1382 			ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1383 		}
1384 
1385 		if (ret < 0)
1386 			return ret;
1387 
1388 		max_bitflips = max(max_bitflips, ret);
1389 		ops->retlen += adjops.retlen;
1390 		ops->oobretlen += adjops.oobretlen;
1391 		adjops.datbuf += adjops.retlen;
1392 		adjops.oobbuf += adjops.oobretlen;
1393 		adjops.ooboffs = 0;
1394 		pageofs = 0;
1395 		info.pair++;
1396 	}
1397 
1398 	return max_bitflips;
1399 }
1400 
1401 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1402 {
1403 	struct mtd_info *master = mtd_get_master(mtd);
1404 	struct mtd_ecc_stats old_stats = master->ecc_stats;
1405 	int ret_code;
1406 
1407 	ops->retlen = ops->oobretlen = 0;
1408 
1409 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1410 	if (ret_code)
1411 		return ret_code;
1412 
1413 	ledtrig_mtd_activity();
1414 
1415 	/* Check the validity of a potential fallback on mtd->_read */
1416 	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1417 		return -EOPNOTSUPP;
1418 
1419 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1420 		ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1421 	else
1422 		ret_code = mtd_read_oob_std(mtd, from, ops);
1423 
1424 	mtd_update_ecc_stats(mtd, master, &old_stats);
1425 
1426 	/*
1427 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1428 	 * similar to mtd->_read(), returning a non-negative integer
1429 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1430 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1431 	 */
1432 	if (unlikely(ret_code < 0))
1433 		return ret_code;
1434 	if (mtd->ecc_strength == 0)
1435 		return 0;	/* device lacks ecc */
1436 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1437 }
1438 EXPORT_SYMBOL_GPL(mtd_read_oob);
1439 
1440 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1441 				struct mtd_oob_ops *ops)
1442 {
1443 	struct mtd_info *master = mtd_get_master(mtd);
1444 	int ret;
1445 
1446 	ops->retlen = ops->oobretlen = 0;
1447 
1448 	if (!(mtd->flags & MTD_WRITEABLE))
1449 		return -EROFS;
1450 
1451 	ret = mtd_check_oob_ops(mtd, to, ops);
1452 	if (ret)
1453 		return ret;
1454 
1455 	ledtrig_mtd_activity();
1456 
1457 	/* Check the validity of a potential fallback on mtd->_write */
1458 	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1459 		return -EOPNOTSUPP;
1460 
1461 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1462 		return mtd_io_emulated_slc(mtd, to, false, ops);
1463 
1464 	return mtd_write_oob_std(mtd, to, ops);
1465 }
1466 EXPORT_SYMBOL_GPL(mtd_write_oob);
1467 
1468 /**
1469  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1470  * @mtd: MTD device structure
1471  * @section: ECC section. Depending on the layout you may have all the ECC
1472  *	     bytes stored in a single contiguous section, or one section
1473  *	     per ECC chunk (and sometime several sections for a single ECC
1474  *	     ECC chunk)
1475  * @oobecc: OOB region struct filled with the appropriate ECC position
1476  *	    information
1477  *
1478  * This function returns ECC section information in the OOB area. If you want
1479  * to get all the ECC bytes information, then you should call
1480  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1481  *
1482  * Returns zero on success, a negative error code otherwise.
1483  */
1484 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1485 		      struct mtd_oob_region *oobecc)
1486 {
1487 	struct mtd_info *master = mtd_get_master(mtd);
1488 
1489 	memset(oobecc, 0, sizeof(*oobecc));
1490 
1491 	if (!master || section < 0)
1492 		return -EINVAL;
1493 
1494 	if (!master->ooblayout || !master->ooblayout->ecc)
1495 		return -ENOTSUPP;
1496 
1497 	return master->ooblayout->ecc(master, section, oobecc);
1498 }
1499 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1500 
1501 /**
1502  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1503  *			section
1504  * @mtd: MTD device structure
1505  * @section: Free section you are interested in. Depending on the layout
1506  *	     you may have all the free bytes stored in a single contiguous
1507  *	     section, or one section per ECC chunk plus an extra section
1508  *	     for the remaining bytes (or other funky layout).
1509  * @oobfree: OOB region struct filled with the appropriate free position
1510  *	     information
1511  *
1512  * This function returns free bytes position in the OOB area. If you want
1513  * to get all the free bytes information, then you should call
1514  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1515  *
1516  * Returns zero on success, a negative error code otherwise.
1517  */
1518 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1519 		       struct mtd_oob_region *oobfree)
1520 {
1521 	struct mtd_info *master = mtd_get_master(mtd);
1522 
1523 	memset(oobfree, 0, sizeof(*oobfree));
1524 
1525 	if (!master || section < 0)
1526 		return -EINVAL;
1527 
1528 	if (!master->ooblayout || !master->ooblayout->free)
1529 		return -ENOTSUPP;
1530 
1531 	return master->ooblayout->free(master, section, oobfree);
1532 }
1533 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1534 
1535 /**
1536  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1537  * @mtd: mtd info structure
1538  * @byte: the byte we are searching for
1539  * @sectionp: pointer where the section id will be stored
1540  * @oobregion: used to retrieve the ECC position
1541  * @iter: iterator function. Should be either mtd_ooblayout_free or
1542  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1543  *
1544  * This function returns the section id and oobregion information of a
1545  * specific byte. For example, say you want to know where the 4th ECC byte is
1546  * stored, you'll use:
1547  *
1548  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1549  *
1550  * Returns zero on success, a negative error code otherwise.
1551  */
1552 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1553 				int *sectionp, struct mtd_oob_region *oobregion,
1554 				int (*iter)(struct mtd_info *,
1555 					    int section,
1556 					    struct mtd_oob_region *oobregion))
1557 {
1558 	int pos = 0, ret, section = 0;
1559 
1560 	memset(oobregion, 0, sizeof(*oobregion));
1561 
1562 	while (1) {
1563 		ret = iter(mtd, section, oobregion);
1564 		if (ret)
1565 			return ret;
1566 
1567 		if (pos + oobregion->length > byte)
1568 			break;
1569 
1570 		pos += oobregion->length;
1571 		section++;
1572 	}
1573 
1574 	/*
1575 	 * Adjust region info to make it start at the beginning at the
1576 	 * 'start' ECC byte.
1577 	 */
1578 	oobregion->offset += byte - pos;
1579 	oobregion->length -= byte - pos;
1580 	*sectionp = section;
1581 
1582 	return 0;
1583 }
1584 
1585 /**
1586  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1587  *				  ECC byte
1588  * @mtd: mtd info structure
1589  * @eccbyte: the byte we are searching for
1590  * @section: pointer where the section id will be stored
1591  * @oobregion: OOB region information
1592  *
1593  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1594  * byte.
1595  *
1596  * Returns zero on success, a negative error code otherwise.
1597  */
1598 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1599 				 int *section,
1600 				 struct mtd_oob_region *oobregion)
1601 {
1602 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1603 					 mtd_ooblayout_ecc);
1604 }
1605 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1606 
1607 /**
1608  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1609  * @mtd: mtd info structure
1610  * @buf: destination buffer to store OOB bytes
1611  * @oobbuf: OOB buffer
1612  * @start: first byte to retrieve
1613  * @nbytes: number of bytes to retrieve
1614  * @iter: section iterator
1615  *
1616  * Extract bytes attached to a specific category (ECC or free)
1617  * from the OOB buffer and copy them into buf.
1618  *
1619  * Returns zero on success, a negative error code otherwise.
1620  */
1621 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1622 				const u8 *oobbuf, int start, int nbytes,
1623 				int (*iter)(struct mtd_info *,
1624 					    int section,
1625 					    struct mtd_oob_region *oobregion))
1626 {
1627 	struct mtd_oob_region oobregion;
1628 	int section, ret;
1629 
1630 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1631 					&oobregion, iter);
1632 
1633 	while (!ret) {
1634 		int cnt;
1635 
1636 		cnt = min_t(int, nbytes, oobregion.length);
1637 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1638 		buf += cnt;
1639 		nbytes -= cnt;
1640 
1641 		if (!nbytes)
1642 			break;
1643 
1644 		ret = iter(mtd, ++section, &oobregion);
1645 	}
1646 
1647 	return ret;
1648 }
1649 
1650 /**
1651  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1652  * @mtd: mtd info structure
1653  * @buf: source buffer to get OOB bytes from
1654  * @oobbuf: OOB buffer
1655  * @start: first OOB byte to set
1656  * @nbytes: number of OOB bytes to set
1657  * @iter: section iterator
1658  *
1659  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1660  * is selected by passing the appropriate iterator.
1661  *
1662  * Returns zero on success, a negative error code otherwise.
1663  */
1664 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1665 				u8 *oobbuf, int start, int nbytes,
1666 				int (*iter)(struct mtd_info *,
1667 					    int section,
1668 					    struct mtd_oob_region *oobregion))
1669 {
1670 	struct mtd_oob_region oobregion;
1671 	int section, ret;
1672 
1673 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1674 					&oobregion, iter);
1675 
1676 	while (!ret) {
1677 		int cnt;
1678 
1679 		cnt = min_t(int, nbytes, oobregion.length);
1680 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1681 		buf += cnt;
1682 		nbytes -= cnt;
1683 
1684 		if (!nbytes)
1685 			break;
1686 
1687 		ret = iter(mtd, ++section, &oobregion);
1688 	}
1689 
1690 	return ret;
1691 }
1692 
1693 /**
1694  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1695  * @mtd: mtd info structure
1696  * @iter: category iterator
1697  *
1698  * Count the number of bytes in a given category.
1699  *
1700  * Returns a positive value on success, a negative error code otherwise.
1701  */
1702 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1703 				int (*iter)(struct mtd_info *,
1704 					    int section,
1705 					    struct mtd_oob_region *oobregion))
1706 {
1707 	struct mtd_oob_region oobregion;
1708 	int section = 0, ret, nbytes = 0;
1709 
1710 	while (1) {
1711 		ret = iter(mtd, section++, &oobregion);
1712 		if (ret) {
1713 			if (ret == -ERANGE)
1714 				ret = nbytes;
1715 			break;
1716 		}
1717 
1718 		nbytes += oobregion.length;
1719 	}
1720 
1721 	return ret;
1722 }
1723 
1724 /**
1725  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1726  * @mtd: mtd info structure
1727  * @eccbuf: destination buffer to store ECC bytes
1728  * @oobbuf: OOB buffer
1729  * @start: first ECC byte to retrieve
1730  * @nbytes: number of ECC bytes to retrieve
1731  *
1732  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1733  *
1734  * Returns zero on success, a negative error code otherwise.
1735  */
1736 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1737 			       const u8 *oobbuf, int start, int nbytes)
1738 {
1739 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1740 				       mtd_ooblayout_ecc);
1741 }
1742 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1743 
1744 /**
1745  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1746  * @mtd: mtd info structure
1747  * @eccbuf: source buffer to get ECC bytes from
1748  * @oobbuf: OOB buffer
1749  * @start: first ECC byte to set
1750  * @nbytes: number of ECC bytes to set
1751  *
1752  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1753  *
1754  * Returns zero on success, a negative error code otherwise.
1755  */
1756 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1757 			       u8 *oobbuf, int start, int nbytes)
1758 {
1759 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1760 				       mtd_ooblayout_ecc);
1761 }
1762 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1763 
1764 /**
1765  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1766  * @mtd: mtd info structure
1767  * @databuf: destination buffer to store ECC bytes
1768  * @oobbuf: OOB buffer
1769  * @start: first ECC byte to retrieve
1770  * @nbytes: number of ECC bytes to retrieve
1771  *
1772  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1773  *
1774  * Returns zero on success, a negative error code otherwise.
1775  */
1776 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1777 				const u8 *oobbuf, int start, int nbytes)
1778 {
1779 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1780 				       mtd_ooblayout_free);
1781 }
1782 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1783 
1784 /**
1785  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1786  * @mtd: mtd info structure
1787  * @databuf: source buffer to get data bytes from
1788  * @oobbuf: OOB buffer
1789  * @start: first ECC byte to set
1790  * @nbytes: number of ECC bytes to set
1791  *
1792  * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
1793  *
1794  * Returns zero on success, a negative error code otherwise.
1795  */
1796 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1797 				u8 *oobbuf, int start, int nbytes)
1798 {
1799 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1800 				       mtd_ooblayout_free);
1801 }
1802 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1803 
1804 /**
1805  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1806  * @mtd: mtd info structure
1807  *
1808  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1809  *
1810  * Returns zero on success, a negative error code otherwise.
1811  */
1812 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1813 {
1814 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1815 }
1816 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1817 
1818 /**
1819  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1820  * @mtd: mtd info structure
1821  *
1822  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1823  *
1824  * Returns zero on success, a negative error code otherwise.
1825  */
1826 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1827 {
1828 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1829 }
1830 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1831 
1832 /*
1833  * Method to access the protection register area, present in some flash
1834  * devices. The user data is one time programmable but the factory data is read
1835  * only.
1836  */
1837 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1838 			   struct otp_info *buf)
1839 {
1840 	struct mtd_info *master = mtd_get_master(mtd);
1841 
1842 	if (!master->_get_fact_prot_info)
1843 		return -EOPNOTSUPP;
1844 	if (!len)
1845 		return 0;
1846 	return master->_get_fact_prot_info(master, len, retlen, buf);
1847 }
1848 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1849 
1850 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1851 			   size_t *retlen, u_char *buf)
1852 {
1853 	struct mtd_info *master = mtd_get_master(mtd);
1854 
1855 	*retlen = 0;
1856 	if (!master->_read_fact_prot_reg)
1857 		return -EOPNOTSUPP;
1858 	if (!len)
1859 		return 0;
1860 	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
1861 }
1862 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1863 
1864 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1865 			   struct otp_info *buf)
1866 {
1867 	struct mtd_info *master = mtd_get_master(mtd);
1868 
1869 	if (!master->_get_user_prot_info)
1870 		return -EOPNOTSUPP;
1871 	if (!len)
1872 		return 0;
1873 	return master->_get_user_prot_info(master, len, retlen, buf);
1874 }
1875 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1876 
1877 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1878 			   size_t *retlen, u_char *buf)
1879 {
1880 	struct mtd_info *master = mtd_get_master(mtd);
1881 
1882 	*retlen = 0;
1883 	if (!master->_read_user_prot_reg)
1884 		return -EOPNOTSUPP;
1885 	if (!len)
1886 		return 0;
1887 	return master->_read_user_prot_reg(master, from, len, retlen, buf);
1888 }
1889 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1890 
1891 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1892 			    size_t *retlen, const u_char *buf)
1893 {
1894 	struct mtd_info *master = mtd_get_master(mtd);
1895 	int ret;
1896 
1897 	*retlen = 0;
1898 	if (!master->_write_user_prot_reg)
1899 		return -EOPNOTSUPP;
1900 	if (!len)
1901 		return 0;
1902 	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
1903 	if (ret)
1904 		return ret;
1905 
1906 	/*
1907 	 * If no data could be written at all, we are out of memory and
1908 	 * must return -ENOSPC.
1909 	 */
1910 	return (*retlen) ? 0 : -ENOSPC;
1911 }
1912 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1913 
1914 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1915 {
1916 	struct mtd_info *master = mtd_get_master(mtd);
1917 
1918 	if (!master->_lock_user_prot_reg)
1919 		return -EOPNOTSUPP;
1920 	if (!len)
1921 		return 0;
1922 	return master->_lock_user_prot_reg(master, from, len);
1923 }
1924 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1925 
1926 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1927 {
1928 	struct mtd_info *master = mtd_get_master(mtd);
1929 
1930 	if (!master->_erase_user_prot_reg)
1931 		return -EOPNOTSUPP;
1932 	if (!len)
1933 		return 0;
1934 	return master->_erase_user_prot_reg(master, from, len);
1935 }
1936 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
1937 
1938 /* Chip-supported device locking */
1939 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1940 {
1941 	struct mtd_info *master = mtd_get_master(mtd);
1942 
1943 	if (!master->_lock)
1944 		return -EOPNOTSUPP;
1945 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1946 		return -EINVAL;
1947 	if (!len)
1948 		return 0;
1949 
1950 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1951 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1952 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1953 	}
1954 
1955 	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
1956 }
1957 EXPORT_SYMBOL_GPL(mtd_lock);
1958 
1959 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1960 {
1961 	struct mtd_info *master = mtd_get_master(mtd);
1962 
1963 	if (!master->_unlock)
1964 		return -EOPNOTSUPP;
1965 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1966 		return -EINVAL;
1967 	if (!len)
1968 		return 0;
1969 
1970 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1971 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1972 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1973 	}
1974 
1975 	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
1976 }
1977 EXPORT_SYMBOL_GPL(mtd_unlock);
1978 
1979 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1980 {
1981 	struct mtd_info *master = mtd_get_master(mtd);
1982 
1983 	if (!master->_is_locked)
1984 		return -EOPNOTSUPP;
1985 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1986 		return -EINVAL;
1987 	if (!len)
1988 		return 0;
1989 
1990 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1991 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1992 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1993 	}
1994 
1995 	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
1996 }
1997 EXPORT_SYMBOL_GPL(mtd_is_locked);
1998 
1999 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2000 {
2001 	struct mtd_info *master = mtd_get_master(mtd);
2002 
2003 	if (ofs < 0 || ofs >= mtd->size)
2004 		return -EINVAL;
2005 	if (!master->_block_isreserved)
2006 		return 0;
2007 
2008 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2009 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2010 
2011 	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2012 }
2013 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2014 
2015 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2016 {
2017 	struct mtd_info *master = mtd_get_master(mtd);
2018 
2019 	if (ofs < 0 || ofs >= mtd->size)
2020 		return -EINVAL;
2021 	if (!master->_block_isbad)
2022 		return 0;
2023 
2024 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2025 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2026 
2027 	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2028 }
2029 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2030 
2031 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2032 {
2033 	struct mtd_info *master = mtd_get_master(mtd);
2034 	int ret;
2035 
2036 	if (!master->_block_markbad)
2037 		return -EOPNOTSUPP;
2038 	if (ofs < 0 || ofs >= mtd->size)
2039 		return -EINVAL;
2040 	if (!(mtd->flags & MTD_WRITEABLE))
2041 		return -EROFS;
2042 
2043 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2044 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2045 
2046 	ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2047 	if (ret)
2048 		return ret;
2049 
2050 	while (mtd->parent) {
2051 		mtd->ecc_stats.badblocks++;
2052 		mtd = mtd->parent;
2053 	}
2054 
2055 	return 0;
2056 }
2057 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2058 
2059 /*
2060  * default_mtd_writev - the default writev method
2061  * @mtd: mtd device description object pointer
2062  * @vecs: the vectors to write
2063  * @count: count of vectors in @vecs
2064  * @to: the MTD device offset to write to
2065  * @retlen: on exit contains the count of bytes written to the MTD device.
2066  *
2067  * This function returns zero in case of success and a negative error code in
2068  * case of failure.
2069  */
2070 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2071 			      unsigned long count, loff_t to, size_t *retlen)
2072 {
2073 	unsigned long i;
2074 	size_t totlen = 0, thislen;
2075 	int ret = 0;
2076 
2077 	for (i = 0; i < count; i++) {
2078 		if (!vecs[i].iov_len)
2079 			continue;
2080 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2081 				vecs[i].iov_base);
2082 		totlen += thislen;
2083 		if (ret || thislen != vecs[i].iov_len)
2084 			break;
2085 		to += vecs[i].iov_len;
2086 	}
2087 	*retlen = totlen;
2088 	return ret;
2089 }
2090 
2091 /*
2092  * mtd_writev - the vector-based MTD write method
2093  * @mtd: mtd device description object pointer
2094  * @vecs: the vectors to write
2095  * @count: count of vectors in @vecs
2096  * @to: the MTD device offset to write to
2097  * @retlen: on exit contains the count of bytes written to the MTD device.
2098  *
2099  * This function returns zero in case of success and a negative error code in
2100  * case of failure.
2101  */
2102 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2103 	       unsigned long count, loff_t to, size_t *retlen)
2104 {
2105 	struct mtd_info *master = mtd_get_master(mtd);
2106 
2107 	*retlen = 0;
2108 	if (!(mtd->flags & MTD_WRITEABLE))
2109 		return -EROFS;
2110 
2111 	if (!master->_writev)
2112 		return default_mtd_writev(mtd, vecs, count, to, retlen);
2113 
2114 	return master->_writev(master, vecs, count,
2115 			       mtd_get_master_ofs(mtd, to), retlen);
2116 }
2117 EXPORT_SYMBOL_GPL(mtd_writev);
2118 
2119 /**
2120  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2121  * @mtd: mtd device description object pointer
2122  * @size: a pointer to the ideal or maximum size of the allocation, points
2123  *        to the actual allocation size on success.
2124  *
2125  * This routine attempts to allocate a contiguous kernel buffer up to
2126  * the specified size, backing off the size of the request exponentially
2127  * until the request succeeds or until the allocation size falls below
2128  * the system page size. This attempts to make sure it does not adversely
2129  * impact system performance, so when allocating more than one page, we
2130  * ask the memory allocator to avoid re-trying, swapping, writing back
2131  * or performing I/O.
2132  *
2133  * Note, this function also makes sure that the allocated buffer is aligned to
2134  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2135  *
2136  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2137  * to handle smaller (i.e. degraded) buffer allocations under low- or
2138  * fragmented-memory situations where such reduced allocations, from a
2139  * requested ideal, are allowed.
2140  *
2141  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2142  */
2143 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2144 {
2145 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2146 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2147 	void *kbuf;
2148 
2149 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2150 
2151 	while (*size > min_alloc) {
2152 		kbuf = kmalloc(*size, flags);
2153 		if (kbuf)
2154 			return kbuf;
2155 
2156 		*size >>= 1;
2157 		*size = ALIGN(*size, mtd->writesize);
2158 	}
2159 
2160 	/*
2161 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2162 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2163 	 */
2164 	return kmalloc(*size, GFP_KERNEL);
2165 }
2166 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2167 
2168 #ifdef CONFIG_PROC_FS
2169 
2170 /*====================================================================*/
2171 /* Support for /proc/mtd */
2172 
2173 static int mtd_proc_show(struct seq_file *m, void *v)
2174 {
2175 	struct mtd_info *mtd;
2176 
2177 	seq_puts(m, "dev:    size   erasesize  name\n");
2178 	mutex_lock(&mtd_table_mutex);
2179 	mtd_for_each_device(mtd) {
2180 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2181 			   mtd->index, (unsigned long long)mtd->size,
2182 			   mtd->erasesize, mtd->name);
2183 	}
2184 	mutex_unlock(&mtd_table_mutex);
2185 	return 0;
2186 }
2187 #endif /* CONFIG_PROC_FS */
2188 
2189 /*====================================================================*/
2190 /* Init code */
2191 
2192 static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2193 {
2194 	struct backing_dev_info *bdi;
2195 	int ret;
2196 
2197 	bdi = bdi_alloc(NUMA_NO_NODE);
2198 	if (!bdi)
2199 		return ERR_PTR(-ENOMEM);
2200 	bdi->ra_pages = 0;
2201 	bdi->io_pages = 0;
2202 
2203 	/*
2204 	 * We put '-0' suffix to the name to get the same name format as we
2205 	 * used to get. Since this is called only once, we get a unique name.
2206 	 */
2207 	ret = bdi_register(bdi, "%.28s-0", name);
2208 	if (ret)
2209 		bdi_put(bdi);
2210 
2211 	return ret ? ERR_PTR(ret) : bdi;
2212 }
2213 
2214 static struct proc_dir_entry *proc_mtd;
2215 
2216 static int __init init_mtd(void)
2217 {
2218 	int ret;
2219 
2220 	ret = class_register(&mtd_class);
2221 	if (ret)
2222 		goto err_reg;
2223 
2224 	mtd_bdi = mtd_bdi_init("mtd");
2225 	if (IS_ERR(mtd_bdi)) {
2226 		ret = PTR_ERR(mtd_bdi);
2227 		goto err_bdi;
2228 	}
2229 
2230 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2231 
2232 	ret = init_mtdchar();
2233 	if (ret)
2234 		goto out_procfs;
2235 
2236 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2237 
2238 	return 0;
2239 
2240 out_procfs:
2241 	if (proc_mtd)
2242 		remove_proc_entry("mtd", NULL);
2243 	bdi_put(mtd_bdi);
2244 err_bdi:
2245 	class_unregister(&mtd_class);
2246 err_reg:
2247 	pr_err("Error registering mtd class or bdi: %d\n", ret);
2248 	return ret;
2249 }
2250 
2251 static void __exit cleanup_mtd(void)
2252 {
2253 	debugfs_remove_recursive(dfs_dir_mtd);
2254 	cleanup_mtdchar();
2255 	if (proc_mtd)
2256 		remove_proc_entry("mtd", NULL);
2257 	class_unregister(&mtd_class);
2258 	bdi_put(mtd_bdi);
2259 	idr_destroy(&mtd_idr);
2260 }
2261 
2262 module_init(init_mtd);
2263 module_exit(cleanup_mtd);
2264 
2265 MODULE_LICENSE("GPL");
2266 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2267 MODULE_DESCRIPTION("Core MTD registration and access routines");
2268