xref: /openbmc/linux/drivers/mtd/mtdcore.c (revision 1e1129b65ef3f72dbccf24de56b700a181b45227)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/slab.h>
27 #include <linux/reboot.h>
28 #include <linux/leds.h>
29 #include <linux/debugfs.h>
30 #include <linux/nvmem-provider.h>
31 
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/partitions.h>
34 
35 #include "mtdcore.h"
36 
37 struct backing_dev_info *mtd_bdi;
38 
39 #ifdef CONFIG_PM_SLEEP
40 
41 static int mtd_cls_suspend(struct device *dev)
42 {
43 	struct mtd_info *mtd = dev_get_drvdata(dev);
44 
45 	return mtd ? mtd_suspend(mtd) : 0;
46 }
47 
48 static int mtd_cls_resume(struct device *dev)
49 {
50 	struct mtd_info *mtd = dev_get_drvdata(dev);
51 
52 	if (mtd)
53 		mtd_resume(mtd);
54 	return 0;
55 }
56 
57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59 #else
60 #define MTD_CLS_PM_OPS NULL
61 #endif
62 
63 static struct class mtd_class = {
64 	.name = "mtd",
65 	.owner = THIS_MODULE,
66 	.pm = MTD_CLS_PM_OPS,
67 };
68 
69 static DEFINE_IDR(mtd_idr);
70 
71 /* These are exported solely for the purpose of mtd_blkdevs.c. You
72    should not use them for _anything_ else */
73 DEFINE_MUTEX(mtd_table_mutex);
74 EXPORT_SYMBOL_GPL(mtd_table_mutex);
75 
76 struct mtd_info *__mtd_next_device(int i)
77 {
78 	return idr_get_next(&mtd_idr, &i);
79 }
80 EXPORT_SYMBOL_GPL(__mtd_next_device);
81 
82 static LIST_HEAD(mtd_notifiers);
83 
84 
85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
86 
87 /* REVISIT once MTD uses the driver model better, whoever allocates
88  * the mtd_info will probably want to use the release() hook...
89  */
90 static void mtd_release(struct device *dev)
91 {
92 	struct mtd_info *mtd = dev_get_drvdata(dev);
93 	dev_t index = MTD_DEVT(mtd->index);
94 
95 	/* remove /dev/mtdXro node */
96 	device_destroy(&mtd_class, index + 1);
97 }
98 
99 static ssize_t mtd_type_show(struct device *dev,
100 		struct device_attribute *attr, char *buf)
101 {
102 	struct mtd_info *mtd = dev_get_drvdata(dev);
103 	char *type;
104 
105 	switch (mtd->type) {
106 	case MTD_ABSENT:
107 		type = "absent";
108 		break;
109 	case MTD_RAM:
110 		type = "ram";
111 		break;
112 	case MTD_ROM:
113 		type = "rom";
114 		break;
115 	case MTD_NORFLASH:
116 		type = "nor";
117 		break;
118 	case MTD_NANDFLASH:
119 		type = "nand";
120 		break;
121 	case MTD_DATAFLASH:
122 		type = "dataflash";
123 		break;
124 	case MTD_UBIVOLUME:
125 		type = "ubi";
126 		break;
127 	case MTD_MLCNANDFLASH:
128 		type = "mlc-nand";
129 		break;
130 	default:
131 		type = "unknown";
132 	}
133 
134 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
135 }
136 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
137 
138 static ssize_t mtd_flags_show(struct device *dev,
139 		struct device_attribute *attr, char *buf)
140 {
141 	struct mtd_info *mtd = dev_get_drvdata(dev);
142 
143 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
144 }
145 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
146 
147 static ssize_t mtd_size_show(struct device *dev,
148 		struct device_attribute *attr, char *buf)
149 {
150 	struct mtd_info *mtd = dev_get_drvdata(dev);
151 
152 	return snprintf(buf, PAGE_SIZE, "%llu\n",
153 		(unsigned long long)mtd->size);
154 }
155 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
156 
157 static ssize_t mtd_erasesize_show(struct device *dev,
158 		struct device_attribute *attr, char *buf)
159 {
160 	struct mtd_info *mtd = dev_get_drvdata(dev);
161 
162 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
163 }
164 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
165 
166 static ssize_t mtd_writesize_show(struct device *dev,
167 		struct device_attribute *attr, char *buf)
168 {
169 	struct mtd_info *mtd = dev_get_drvdata(dev);
170 
171 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
172 }
173 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
174 
175 static ssize_t mtd_subpagesize_show(struct device *dev,
176 		struct device_attribute *attr, char *buf)
177 {
178 	struct mtd_info *mtd = dev_get_drvdata(dev);
179 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
180 
181 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
182 }
183 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
184 
185 static ssize_t mtd_oobsize_show(struct device *dev,
186 		struct device_attribute *attr, char *buf)
187 {
188 	struct mtd_info *mtd = dev_get_drvdata(dev);
189 
190 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
191 }
192 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
193 
194 static ssize_t mtd_oobavail_show(struct device *dev,
195 				 struct device_attribute *attr, char *buf)
196 {
197 	struct mtd_info *mtd = dev_get_drvdata(dev);
198 
199 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
200 }
201 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
202 
203 static ssize_t mtd_numeraseregions_show(struct device *dev,
204 		struct device_attribute *attr, char *buf)
205 {
206 	struct mtd_info *mtd = dev_get_drvdata(dev);
207 
208 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
209 }
210 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
211 	NULL);
212 
213 static ssize_t mtd_name_show(struct device *dev,
214 		struct device_attribute *attr, char *buf)
215 {
216 	struct mtd_info *mtd = dev_get_drvdata(dev);
217 
218 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
219 }
220 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
221 
222 static ssize_t mtd_ecc_strength_show(struct device *dev,
223 				     struct device_attribute *attr, char *buf)
224 {
225 	struct mtd_info *mtd = dev_get_drvdata(dev);
226 
227 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
228 }
229 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
230 
231 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
232 					  struct device_attribute *attr,
233 					  char *buf)
234 {
235 	struct mtd_info *mtd = dev_get_drvdata(dev);
236 
237 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
238 }
239 
240 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
241 					   struct device_attribute *attr,
242 					   const char *buf, size_t count)
243 {
244 	struct mtd_info *mtd = dev_get_drvdata(dev);
245 	unsigned int bitflip_threshold;
246 	int retval;
247 
248 	retval = kstrtouint(buf, 0, &bitflip_threshold);
249 	if (retval)
250 		return retval;
251 
252 	mtd->bitflip_threshold = bitflip_threshold;
253 	return count;
254 }
255 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
256 		   mtd_bitflip_threshold_show,
257 		   mtd_bitflip_threshold_store);
258 
259 static ssize_t mtd_ecc_step_size_show(struct device *dev,
260 		struct device_attribute *attr, char *buf)
261 {
262 	struct mtd_info *mtd = dev_get_drvdata(dev);
263 
264 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
265 
266 }
267 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
268 
269 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
270 		struct device_attribute *attr, char *buf)
271 {
272 	struct mtd_info *mtd = dev_get_drvdata(dev);
273 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
274 
275 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
276 }
277 static DEVICE_ATTR(corrected_bits, S_IRUGO,
278 		   mtd_ecc_stats_corrected_show, NULL);
279 
280 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
281 		struct device_attribute *attr, char *buf)
282 {
283 	struct mtd_info *mtd = dev_get_drvdata(dev);
284 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
285 
286 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
287 }
288 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
289 
290 static ssize_t mtd_badblocks_show(struct device *dev,
291 		struct device_attribute *attr, char *buf)
292 {
293 	struct mtd_info *mtd = dev_get_drvdata(dev);
294 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
295 
296 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
297 }
298 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
299 
300 static ssize_t mtd_bbtblocks_show(struct device *dev,
301 		struct device_attribute *attr, char *buf)
302 {
303 	struct mtd_info *mtd = dev_get_drvdata(dev);
304 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
305 
306 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
307 }
308 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
309 
310 static struct attribute *mtd_attrs[] = {
311 	&dev_attr_type.attr,
312 	&dev_attr_flags.attr,
313 	&dev_attr_size.attr,
314 	&dev_attr_erasesize.attr,
315 	&dev_attr_writesize.attr,
316 	&dev_attr_subpagesize.attr,
317 	&dev_attr_oobsize.attr,
318 	&dev_attr_oobavail.attr,
319 	&dev_attr_numeraseregions.attr,
320 	&dev_attr_name.attr,
321 	&dev_attr_ecc_strength.attr,
322 	&dev_attr_ecc_step_size.attr,
323 	&dev_attr_corrected_bits.attr,
324 	&dev_attr_ecc_failures.attr,
325 	&dev_attr_bad_blocks.attr,
326 	&dev_attr_bbt_blocks.attr,
327 	&dev_attr_bitflip_threshold.attr,
328 	NULL,
329 };
330 ATTRIBUTE_GROUPS(mtd);
331 
332 static const struct device_type mtd_devtype = {
333 	.name		= "mtd",
334 	.groups		= mtd_groups,
335 	.release	= mtd_release,
336 };
337 
338 static int mtd_partid_show(struct seq_file *s, void *p)
339 {
340 	struct mtd_info *mtd = s->private;
341 
342 	seq_printf(s, "%s\n", mtd->dbg.partid);
343 
344 	return 0;
345 }
346 
347 static int mtd_partid_debugfs_open(struct inode *inode, struct file *file)
348 {
349 	return single_open(file, mtd_partid_show, inode->i_private);
350 }
351 
352 static const struct file_operations mtd_partid_debug_fops = {
353 	.open           = mtd_partid_debugfs_open,
354 	.read           = seq_read,
355 	.llseek         = seq_lseek,
356 	.release        = single_release,
357 };
358 
359 static int mtd_partname_show(struct seq_file *s, void *p)
360 {
361 	struct mtd_info *mtd = s->private;
362 
363 	seq_printf(s, "%s\n", mtd->dbg.partname);
364 
365 	return 0;
366 }
367 
368 static int mtd_partname_debugfs_open(struct inode *inode, struct file *file)
369 {
370 	return single_open(file, mtd_partname_show, inode->i_private);
371 }
372 
373 static const struct file_operations mtd_partname_debug_fops = {
374 	.open           = mtd_partname_debugfs_open,
375 	.read           = seq_read,
376 	.llseek         = seq_lseek,
377 	.release        = single_release,
378 };
379 
380 static struct dentry *dfs_dir_mtd;
381 
382 static void mtd_debugfs_populate(struct mtd_info *mtd)
383 {
384 	struct device *dev = &mtd->dev;
385 	struct dentry *root;
386 
387 	if (IS_ERR_OR_NULL(dfs_dir_mtd))
388 		return;
389 
390 	root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
391 	mtd->dbg.dfs_dir = root;
392 
393 	if (mtd->dbg.partid)
394 		debugfs_create_file("partid", 0400, root, mtd,
395 				    &mtd_partid_debug_fops);
396 
397 	if (mtd->dbg.partname)
398 		debugfs_create_file("partname", 0400, root, mtd,
399 				    &mtd_partname_debug_fops);
400 }
401 
402 #ifndef CONFIG_MMU
403 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
404 {
405 	switch (mtd->type) {
406 	case MTD_RAM:
407 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
408 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
409 	case MTD_ROM:
410 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
411 			NOMMU_MAP_READ;
412 	default:
413 		return NOMMU_MAP_COPY;
414 	}
415 }
416 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
417 #endif
418 
419 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
420 			       void *cmd)
421 {
422 	struct mtd_info *mtd;
423 
424 	mtd = container_of(n, struct mtd_info, reboot_notifier);
425 	mtd->_reboot(mtd);
426 
427 	return NOTIFY_DONE;
428 }
429 
430 /**
431  * mtd_wunit_to_pairing_info - get pairing information of a wunit
432  * @mtd: pointer to new MTD device info structure
433  * @wunit: write unit we are interested in
434  * @info: returned pairing information
435  *
436  * Retrieve pairing information associated to the wunit.
437  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
438  * paired together, and where programming a page may influence the page it is
439  * paired with.
440  * The notion of page is replaced by the term wunit (write-unit) to stay
441  * consistent with the ->writesize field.
442  *
443  * The @wunit argument can be extracted from an absolute offset using
444  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
445  * to @wunit.
446  *
447  * From the pairing info the MTD user can find all the wunits paired with
448  * @wunit using the following loop:
449  *
450  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
451  *	info.pair = i;
452  *	mtd_pairing_info_to_wunit(mtd, &info);
453  *	...
454  * }
455  */
456 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
457 			      struct mtd_pairing_info *info)
458 {
459 	struct mtd_info *master = mtd_get_master(mtd);
460 	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
461 
462 	if (wunit < 0 || wunit >= npairs)
463 		return -EINVAL;
464 
465 	if (master->pairing && master->pairing->get_info)
466 		return master->pairing->get_info(master, wunit, info);
467 
468 	info->group = 0;
469 	info->pair = wunit;
470 
471 	return 0;
472 }
473 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
474 
475 /**
476  * mtd_pairing_info_to_wunit - get wunit from pairing information
477  * @mtd: pointer to new MTD device info structure
478  * @info: pairing information struct
479  *
480  * Returns a positive number representing the wunit associated to the info
481  * struct, or a negative error code.
482  *
483  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
484  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
485  * doc).
486  *
487  * It can also be used to only program the first page of each pair (i.e.
488  * page attached to group 0), which allows one to use an MLC NAND in
489  * software-emulated SLC mode:
490  *
491  * info.group = 0;
492  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
493  * for (info.pair = 0; info.pair < npairs; info.pair++) {
494  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
495  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
496  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
497  * }
498  */
499 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
500 			      const struct mtd_pairing_info *info)
501 {
502 	struct mtd_info *master = mtd_get_master(mtd);
503 	int ngroups = mtd_pairing_groups(master);
504 	int npairs = mtd_wunit_per_eb(master) / ngroups;
505 
506 	if (!info || info->pair < 0 || info->pair >= npairs ||
507 	    info->group < 0 || info->group >= ngroups)
508 		return -EINVAL;
509 
510 	if (master->pairing && master->pairing->get_wunit)
511 		return mtd->pairing->get_wunit(master, info);
512 
513 	return info->pair;
514 }
515 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
516 
517 /**
518  * mtd_pairing_groups - get the number of pairing groups
519  * @mtd: pointer to new MTD device info structure
520  *
521  * Returns the number of pairing groups.
522  *
523  * This number is usually equal to the number of bits exposed by a single
524  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
525  * to iterate over all pages of a given pair.
526  */
527 int mtd_pairing_groups(struct mtd_info *mtd)
528 {
529 	struct mtd_info *master = mtd_get_master(mtd);
530 
531 	if (!master->pairing || !master->pairing->ngroups)
532 		return 1;
533 
534 	return master->pairing->ngroups;
535 }
536 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
537 
538 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
539 			      void *val, size_t bytes)
540 {
541 	struct mtd_info *mtd = priv;
542 	size_t retlen;
543 	int err;
544 
545 	err = mtd_read(mtd, offset, bytes, &retlen, val);
546 	if (err && err != -EUCLEAN)
547 		return err;
548 
549 	return retlen == bytes ? 0 : -EIO;
550 }
551 
552 static int mtd_nvmem_add(struct mtd_info *mtd)
553 {
554 	struct nvmem_config config = {};
555 
556 	config.id = -1;
557 	config.dev = &mtd->dev;
558 	config.name = dev_name(&mtd->dev);
559 	config.owner = THIS_MODULE;
560 	config.reg_read = mtd_nvmem_reg_read;
561 	config.size = mtd->size;
562 	config.word_size = 1;
563 	config.stride = 1;
564 	config.read_only = true;
565 	config.root_only = true;
566 	config.no_of_node = true;
567 	config.priv = mtd;
568 
569 	mtd->nvmem = nvmem_register(&config);
570 	if (IS_ERR(mtd->nvmem)) {
571 		/* Just ignore if there is no NVMEM support in the kernel */
572 		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
573 			mtd->nvmem = NULL;
574 		} else {
575 			dev_err(&mtd->dev, "Failed to register NVMEM device\n");
576 			return PTR_ERR(mtd->nvmem);
577 		}
578 	}
579 
580 	return 0;
581 }
582 
583 /**
584  *	add_mtd_device - register an MTD device
585  *	@mtd: pointer to new MTD device info structure
586  *
587  *	Add a device to the list of MTD devices present in the system, and
588  *	notify each currently active MTD 'user' of its arrival. Returns
589  *	zero on success or non-zero on failure.
590  */
591 
592 int add_mtd_device(struct mtd_info *mtd)
593 {
594 	struct mtd_info *master = mtd_get_master(mtd);
595 	struct mtd_notifier *not;
596 	int i, error;
597 
598 	/*
599 	 * May occur, for instance, on buggy drivers which call
600 	 * mtd_device_parse_register() multiple times on the same master MTD,
601 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
602 	 */
603 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
604 		return -EEXIST;
605 
606 	BUG_ON(mtd->writesize == 0);
607 
608 	/*
609 	 * MTD drivers should implement ->_{write,read}() or
610 	 * ->_{write,read}_oob(), but not both.
611 	 */
612 	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
613 		    (mtd->_read && mtd->_read_oob)))
614 		return -EINVAL;
615 
616 	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
617 		    !(mtd->flags & MTD_NO_ERASE)))
618 		return -EINVAL;
619 
620 	/*
621 	 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
622 	 * master is an MLC NAND and has a proper pairing scheme defined.
623 	 * We also reject masters that implement ->_writev() for now, because
624 	 * NAND controller drivers don't implement this hook, and adding the
625 	 * SLC -> MLC address/length conversion to this path is useless if we
626 	 * don't have a user.
627 	 */
628 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
629 	    (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
630 	     !master->pairing || master->_writev))
631 		return -EINVAL;
632 
633 	mutex_lock(&mtd_table_mutex);
634 
635 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
636 	if (i < 0) {
637 		error = i;
638 		goto fail_locked;
639 	}
640 
641 	mtd->index = i;
642 	mtd->usecount = 0;
643 
644 	/* default value if not set by driver */
645 	if (mtd->bitflip_threshold == 0)
646 		mtd->bitflip_threshold = mtd->ecc_strength;
647 
648 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
649 		int ngroups = mtd_pairing_groups(master);
650 
651 		mtd->erasesize /= ngroups;
652 		mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
653 			    mtd->erasesize;
654 	}
655 
656 	if (is_power_of_2(mtd->erasesize))
657 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
658 	else
659 		mtd->erasesize_shift = 0;
660 
661 	if (is_power_of_2(mtd->writesize))
662 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
663 	else
664 		mtd->writesize_shift = 0;
665 
666 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
667 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
668 
669 	/* Some chips always power up locked. Unlock them now */
670 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
671 		error = mtd_unlock(mtd, 0, mtd->size);
672 		if (error && error != -EOPNOTSUPP)
673 			printk(KERN_WARNING
674 			       "%s: unlock failed, writes may not work\n",
675 			       mtd->name);
676 		/* Ignore unlock failures? */
677 		error = 0;
678 	}
679 
680 	/* Caller should have set dev.parent to match the
681 	 * physical device, if appropriate.
682 	 */
683 	mtd->dev.type = &mtd_devtype;
684 	mtd->dev.class = &mtd_class;
685 	mtd->dev.devt = MTD_DEVT(i);
686 	dev_set_name(&mtd->dev, "mtd%d", i);
687 	dev_set_drvdata(&mtd->dev, mtd);
688 	of_node_get(mtd_get_of_node(mtd));
689 	error = device_register(&mtd->dev);
690 	if (error)
691 		goto fail_added;
692 
693 	/* Add the nvmem provider */
694 	error = mtd_nvmem_add(mtd);
695 	if (error)
696 		goto fail_nvmem_add;
697 
698 	mtd_debugfs_populate(mtd);
699 
700 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
701 		      "mtd%dro", i);
702 
703 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
704 	/* No need to get a refcount on the module containing
705 	   the notifier, since we hold the mtd_table_mutex */
706 	list_for_each_entry(not, &mtd_notifiers, list)
707 		not->add(mtd);
708 
709 	mutex_unlock(&mtd_table_mutex);
710 	/* We _know_ we aren't being removed, because
711 	   our caller is still holding us here. So none
712 	   of this try_ nonsense, and no bitching about it
713 	   either. :) */
714 	__module_get(THIS_MODULE);
715 	return 0;
716 
717 fail_nvmem_add:
718 	device_unregister(&mtd->dev);
719 fail_added:
720 	of_node_put(mtd_get_of_node(mtd));
721 	idr_remove(&mtd_idr, i);
722 fail_locked:
723 	mutex_unlock(&mtd_table_mutex);
724 	return error;
725 }
726 
727 /**
728  *	del_mtd_device - unregister an MTD device
729  *	@mtd: pointer to MTD device info structure
730  *
731  *	Remove a device from the list of MTD devices present in the system,
732  *	and notify each currently active MTD 'user' of its departure.
733  *	Returns zero on success or 1 on failure, which currently will happen
734  *	if the requested device does not appear to be present in the list.
735  */
736 
737 int del_mtd_device(struct mtd_info *mtd)
738 {
739 	int ret;
740 	struct mtd_notifier *not;
741 
742 	mutex_lock(&mtd_table_mutex);
743 
744 	debugfs_remove_recursive(mtd->dbg.dfs_dir);
745 
746 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
747 		ret = -ENODEV;
748 		goto out_error;
749 	}
750 
751 	/* No need to get a refcount on the module containing
752 		the notifier, since we hold the mtd_table_mutex */
753 	list_for_each_entry(not, &mtd_notifiers, list)
754 		not->remove(mtd);
755 
756 	if (mtd->usecount) {
757 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
758 		       mtd->index, mtd->name, mtd->usecount);
759 		ret = -EBUSY;
760 	} else {
761 		/* Try to remove the NVMEM provider */
762 		if (mtd->nvmem)
763 			nvmem_unregister(mtd->nvmem);
764 
765 		device_unregister(&mtd->dev);
766 
767 		idr_remove(&mtd_idr, mtd->index);
768 		of_node_put(mtd_get_of_node(mtd));
769 
770 		module_put(THIS_MODULE);
771 		ret = 0;
772 	}
773 
774 out_error:
775 	mutex_unlock(&mtd_table_mutex);
776 	return ret;
777 }
778 
779 /*
780  * Set a few defaults based on the parent devices, if not provided by the
781  * driver
782  */
783 static void mtd_set_dev_defaults(struct mtd_info *mtd)
784 {
785 	if (mtd->dev.parent) {
786 		if (!mtd->owner && mtd->dev.parent->driver)
787 			mtd->owner = mtd->dev.parent->driver->owner;
788 		if (!mtd->name)
789 			mtd->name = dev_name(mtd->dev.parent);
790 	} else {
791 		pr_debug("mtd device won't show a device symlink in sysfs\n");
792 	}
793 
794 	INIT_LIST_HEAD(&mtd->partitions);
795 	mutex_init(&mtd->master.partitions_lock);
796 }
797 
798 /**
799  * mtd_device_parse_register - parse partitions and register an MTD device.
800  *
801  * @mtd: the MTD device to register
802  * @types: the list of MTD partition probes to try, see
803  *         'parse_mtd_partitions()' for more information
804  * @parser_data: MTD partition parser-specific data
805  * @parts: fallback partition information to register, if parsing fails;
806  *         only valid if %nr_parts > %0
807  * @nr_parts: the number of partitions in parts, if zero then the full
808  *            MTD device is registered if no partition info is found
809  *
810  * This function aggregates MTD partitions parsing (done by
811  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
812  * basically follows the most common pattern found in many MTD drivers:
813  *
814  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
815  *   registered first.
816  * * Then It tries to probe partitions on MTD device @mtd using parsers
817  *   specified in @types (if @types is %NULL, then the default list of parsers
818  *   is used, see 'parse_mtd_partitions()' for more information). If none are
819  *   found this functions tries to fallback to information specified in
820  *   @parts/@nr_parts.
821  * * If no partitions were found this function just registers the MTD device
822  *   @mtd and exits.
823  *
824  * Returns zero in case of success and a negative error code in case of failure.
825  */
826 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
827 			      struct mtd_part_parser_data *parser_data,
828 			      const struct mtd_partition *parts,
829 			      int nr_parts)
830 {
831 	int ret;
832 
833 	mtd_set_dev_defaults(mtd);
834 
835 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
836 		ret = add_mtd_device(mtd);
837 		if (ret)
838 			return ret;
839 	}
840 
841 	/* Prefer parsed partitions over driver-provided fallback */
842 	ret = parse_mtd_partitions(mtd, types, parser_data);
843 	if (ret > 0)
844 		ret = 0;
845 	else if (nr_parts)
846 		ret = add_mtd_partitions(mtd, parts, nr_parts);
847 	else if (!device_is_registered(&mtd->dev))
848 		ret = add_mtd_device(mtd);
849 	else
850 		ret = 0;
851 
852 	if (ret)
853 		goto out;
854 
855 	/*
856 	 * FIXME: some drivers unfortunately call this function more than once.
857 	 * So we have to check if we've already assigned the reboot notifier.
858 	 *
859 	 * Generally, we can make multiple calls work for most cases, but it
860 	 * does cause problems with parse_mtd_partitions() above (e.g.,
861 	 * cmdlineparts will register partitions more than once).
862 	 */
863 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
864 		  "MTD already registered\n");
865 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
866 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
867 		register_reboot_notifier(&mtd->reboot_notifier);
868 	}
869 
870 out:
871 	if (ret && device_is_registered(&mtd->dev))
872 		del_mtd_device(mtd);
873 
874 	return ret;
875 }
876 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
877 
878 /**
879  * mtd_device_unregister - unregister an existing MTD device.
880  *
881  * @master: the MTD device to unregister.  This will unregister both the master
882  *          and any partitions if registered.
883  */
884 int mtd_device_unregister(struct mtd_info *master)
885 {
886 	int err;
887 
888 	if (master->_reboot)
889 		unregister_reboot_notifier(&master->reboot_notifier);
890 
891 	err = del_mtd_partitions(master);
892 	if (err)
893 		return err;
894 
895 	if (!device_is_registered(&master->dev))
896 		return 0;
897 
898 	return del_mtd_device(master);
899 }
900 EXPORT_SYMBOL_GPL(mtd_device_unregister);
901 
902 /**
903  *	register_mtd_user - register a 'user' of MTD devices.
904  *	@new: pointer to notifier info structure
905  *
906  *	Registers a pair of callbacks function to be called upon addition
907  *	or removal of MTD devices. Causes the 'add' callback to be immediately
908  *	invoked for each MTD device currently present in the system.
909  */
910 void register_mtd_user (struct mtd_notifier *new)
911 {
912 	struct mtd_info *mtd;
913 
914 	mutex_lock(&mtd_table_mutex);
915 
916 	list_add(&new->list, &mtd_notifiers);
917 
918 	__module_get(THIS_MODULE);
919 
920 	mtd_for_each_device(mtd)
921 		new->add(mtd);
922 
923 	mutex_unlock(&mtd_table_mutex);
924 }
925 EXPORT_SYMBOL_GPL(register_mtd_user);
926 
927 /**
928  *	unregister_mtd_user - unregister a 'user' of MTD devices.
929  *	@old: pointer to notifier info structure
930  *
931  *	Removes a callback function pair from the list of 'users' to be
932  *	notified upon addition or removal of MTD devices. Causes the
933  *	'remove' callback to be immediately invoked for each MTD device
934  *	currently present in the system.
935  */
936 int unregister_mtd_user (struct mtd_notifier *old)
937 {
938 	struct mtd_info *mtd;
939 
940 	mutex_lock(&mtd_table_mutex);
941 
942 	module_put(THIS_MODULE);
943 
944 	mtd_for_each_device(mtd)
945 		old->remove(mtd);
946 
947 	list_del(&old->list);
948 	mutex_unlock(&mtd_table_mutex);
949 	return 0;
950 }
951 EXPORT_SYMBOL_GPL(unregister_mtd_user);
952 
953 /**
954  *	get_mtd_device - obtain a validated handle for an MTD device
955  *	@mtd: last known address of the required MTD device
956  *	@num: internal device number of the required MTD device
957  *
958  *	Given a number and NULL address, return the num'th entry in the device
959  *	table, if any.	Given an address and num == -1, search the device table
960  *	for a device with that address and return if it's still present. Given
961  *	both, return the num'th driver only if its address matches. Return
962  *	error code if not.
963  */
964 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
965 {
966 	struct mtd_info *ret = NULL, *other;
967 	int err = -ENODEV;
968 
969 	mutex_lock(&mtd_table_mutex);
970 
971 	if (num == -1) {
972 		mtd_for_each_device(other) {
973 			if (other == mtd) {
974 				ret = mtd;
975 				break;
976 			}
977 		}
978 	} else if (num >= 0) {
979 		ret = idr_find(&mtd_idr, num);
980 		if (mtd && mtd != ret)
981 			ret = NULL;
982 	}
983 
984 	if (!ret) {
985 		ret = ERR_PTR(err);
986 		goto out;
987 	}
988 
989 	err = __get_mtd_device(ret);
990 	if (err)
991 		ret = ERR_PTR(err);
992 out:
993 	mutex_unlock(&mtd_table_mutex);
994 	return ret;
995 }
996 EXPORT_SYMBOL_GPL(get_mtd_device);
997 
998 
999 int __get_mtd_device(struct mtd_info *mtd)
1000 {
1001 	struct mtd_info *master = mtd_get_master(mtd);
1002 	int err;
1003 
1004 	if (!try_module_get(master->owner))
1005 		return -ENODEV;
1006 
1007 	if (master->_get_device) {
1008 		err = master->_get_device(mtd);
1009 
1010 		if (err) {
1011 			module_put(master->owner);
1012 			return err;
1013 		}
1014 	}
1015 
1016 	while (mtd->parent) {
1017 		mtd->usecount++;
1018 		mtd = mtd->parent;
1019 	}
1020 
1021 	return 0;
1022 }
1023 EXPORT_SYMBOL_GPL(__get_mtd_device);
1024 
1025 /**
1026  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1027  *	device name
1028  *	@name: MTD device name to open
1029  *
1030  * 	This function returns MTD device description structure in case of
1031  * 	success and an error code in case of failure.
1032  */
1033 struct mtd_info *get_mtd_device_nm(const char *name)
1034 {
1035 	int err = -ENODEV;
1036 	struct mtd_info *mtd = NULL, *other;
1037 
1038 	mutex_lock(&mtd_table_mutex);
1039 
1040 	mtd_for_each_device(other) {
1041 		if (!strcmp(name, other->name)) {
1042 			mtd = other;
1043 			break;
1044 		}
1045 	}
1046 
1047 	if (!mtd)
1048 		goto out_unlock;
1049 
1050 	err = __get_mtd_device(mtd);
1051 	if (err)
1052 		goto out_unlock;
1053 
1054 	mutex_unlock(&mtd_table_mutex);
1055 	return mtd;
1056 
1057 out_unlock:
1058 	mutex_unlock(&mtd_table_mutex);
1059 	return ERR_PTR(err);
1060 }
1061 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1062 
1063 void put_mtd_device(struct mtd_info *mtd)
1064 {
1065 	mutex_lock(&mtd_table_mutex);
1066 	__put_mtd_device(mtd);
1067 	mutex_unlock(&mtd_table_mutex);
1068 
1069 }
1070 EXPORT_SYMBOL_GPL(put_mtd_device);
1071 
1072 void __put_mtd_device(struct mtd_info *mtd)
1073 {
1074 	struct mtd_info *master = mtd_get_master(mtd);
1075 
1076 	while (mtd->parent) {
1077 		--mtd->usecount;
1078 		BUG_ON(mtd->usecount < 0);
1079 		mtd = mtd->parent;
1080 	}
1081 
1082 	if (master->_put_device)
1083 		master->_put_device(master);
1084 
1085 	module_put(master->owner);
1086 }
1087 EXPORT_SYMBOL_GPL(__put_mtd_device);
1088 
1089 /*
1090  * Erase is an synchronous operation. Device drivers are epected to return a
1091  * negative error code if the operation failed and update instr->fail_addr
1092  * to point the portion that was not properly erased.
1093  */
1094 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1095 {
1096 	struct mtd_info *master = mtd_get_master(mtd);
1097 	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1098 	struct erase_info adjinstr;
1099 	int ret;
1100 
1101 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1102 	adjinstr = *instr;
1103 
1104 	if (!mtd->erasesize || !master->_erase)
1105 		return -ENOTSUPP;
1106 
1107 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1108 		return -EINVAL;
1109 	if (!(mtd->flags & MTD_WRITEABLE))
1110 		return -EROFS;
1111 
1112 	if (!instr->len)
1113 		return 0;
1114 
1115 	ledtrig_mtd_activity();
1116 
1117 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1118 		adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1119 				master->erasesize;
1120 		adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1121 				master->erasesize) -
1122 			       adjinstr.addr;
1123 	}
1124 
1125 	adjinstr.addr += mst_ofs;
1126 
1127 	ret = master->_erase(master, &adjinstr);
1128 
1129 	if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1130 		instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1131 		if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1132 			instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1133 							 master);
1134 			instr->fail_addr *= mtd->erasesize;
1135 		}
1136 	}
1137 
1138 	return ret;
1139 }
1140 EXPORT_SYMBOL_GPL(mtd_erase);
1141 
1142 /*
1143  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1144  */
1145 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1146 	      void **virt, resource_size_t *phys)
1147 {
1148 	struct mtd_info *master = mtd_get_master(mtd);
1149 
1150 	*retlen = 0;
1151 	*virt = NULL;
1152 	if (phys)
1153 		*phys = 0;
1154 	if (!master->_point)
1155 		return -EOPNOTSUPP;
1156 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1157 		return -EINVAL;
1158 	if (!len)
1159 		return 0;
1160 
1161 	from = mtd_get_master_ofs(mtd, from);
1162 	return master->_point(master, from, len, retlen, virt, phys);
1163 }
1164 EXPORT_SYMBOL_GPL(mtd_point);
1165 
1166 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1167 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1168 {
1169 	struct mtd_info *master = mtd_get_master(mtd);
1170 
1171 	if (!master->_unpoint)
1172 		return -EOPNOTSUPP;
1173 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1174 		return -EINVAL;
1175 	if (!len)
1176 		return 0;
1177 	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1178 }
1179 EXPORT_SYMBOL_GPL(mtd_unpoint);
1180 
1181 /*
1182  * Allow NOMMU mmap() to directly map the device (if not NULL)
1183  * - return the address to which the offset maps
1184  * - return -ENOSYS to indicate refusal to do the mapping
1185  */
1186 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1187 				    unsigned long offset, unsigned long flags)
1188 {
1189 	size_t retlen;
1190 	void *virt;
1191 	int ret;
1192 
1193 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1194 	if (ret)
1195 		return ret;
1196 	if (retlen != len) {
1197 		mtd_unpoint(mtd, offset, retlen);
1198 		return -ENOSYS;
1199 	}
1200 	return (unsigned long)virt;
1201 }
1202 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1203 
1204 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1205 				 const struct mtd_ecc_stats *old_stats)
1206 {
1207 	struct mtd_ecc_stats diff;
1208 
1209 	if (master == mtd)
1210 		return;
1211 
1212 	diff = master->ecc_stats;
1213 	diff.failed -= old_stats->failed;
1214 	diff.corrected -= old_stats->corrected;
1215 
1216 	while (mtd->parent) {
1217 		mtd->ecc_stats.failed += diff.failed;
1218 		mtd->ecc_stats.corrected += diff.corrected;
1219 		mtd = mtd->parent;
1220 	}
1221 }
1222 
1223 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1224 	     u_char *buf)
1225 {
1226 	struct mtd_oob_ops ops = {
1227 		.len = len,
1228 		.datbuf = buf,
1229 	};
1230 	int ret;
1231 
1232 	ret = mtd_read_oob(mtd, from, &ops);
1233 	*retlen = ops.retlen;
1234 
1235 	return ret;
1236 }
1237 EXPORT_SYMBOL_GPL(mtd_read);
1238 
1239 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1240 	      const u_char *buf)
1241 {
1242 	struct mtd_oob_ops ops = {
1243 		.len = len,
1244 		.datbuf = (u8 *)buf,
1245 	};
1246 	int ret;
1247 
1248 	ret = mtd_write_oob(mtd, to, &ops);
1249 	*retlen = ops.retlen;
1250 
1251 	return ret;
1252 }
1253 EXPORT_SYMBOL_GPL(mtd_write);
1254 
1255 /*
1256  * In blackbox flight recorder like scenarios we want to make successful writes
1257  * in interrupt context. panic_write() is only intended to be called when its
1258  * known the kernel is about to panic and we need the write to succeed. Since
1259  * the kernel is not going to be running for much longer, this function can
1260  * break locks and delay to ensure the write succeeds (but not sleep).
1261  */
1262 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1263 		    const u_char *buf)
1264 {
1265 	struct mtd_info *master = mtd_get_master(mtd);
1266 
1267 	*retlen = 0;
1268 	if (!master->_panic_write)
1269 		return -EOPNOTSUPP;
1270 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1271 		return -EINVAL;
1272 	if (!(mtd->flags & MTD_WRITEABLE))
1273 		return -EROFS;
1274 	if (!len)
1275 		return 0;
1276 	if (!master->oops_panic_write)
1277 		master->oops_panic_write = true;
1278 
1279 	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1280 				    retlen, buf);
1281 }
1282 EXPORT_SYMBOL_GPL(mtd_panic_write);
1283 
1284 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1285 			     struct mtd_oob_ops *ops)
1286 {
1287 	/*
1288 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1289 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1290 	 *  this case.
1291 	 */
1292 	if (!ops->datbuf)
1293 		ops->len = 0;
1294 
1295 	if (!ops->oobbuf)
1296 		ops->ooblen = 0;
1297 
1298 	if (offs < 0 || offs + ops->len > mtd->size)
1299 		return -EINVAL;
1300 
1301 	if (ops->ooblen) {
1302 		size_t maxooblen;
1303 
1304 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1305 			return -EINVAL;
1306 
1307 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1308 				      mtd_div_by_ws(offs, mtd)) *
1309 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1310 		if (ops->ooblen > maxooblen)
1311 			return -EINVAL;
1312 	}
1313 
1314 	return 0;
1315 }
1316 
1317 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1318 			    struct mtd_oob_ops *ops)
1319 {
1320 	struct mtd_info *master = mtd_get_master(mtd);
1321 	int ret;
1322 
1323 	from = mtd_get_master_ofs(mtd, from);
1324 	if (master->_read_oob)
1325 		ret = master->_read_oob(master, from, ops);
1326 	else
1327 		ret = master->_read(master, from, ops->len, &ops->retlen,
1328 				    ops->datbuf);
1329 
1330 	return ret;
1331 }
1332 
1333 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1334 			     struct mtd_oob_ops *ops)
1335 {
1336 	struct mtd_info *master = mtd_get_master(mtd);
1337 	int ret;
1338 
1339 	to = mtd_get_master_ofs(mtd, to);
1340 	if (master->_write_oob)
1341 		ret = master->_write_oob(master, to, ops);
1342 	else
1343 		ret = master->_write(master, to, ops->len, &ops->retlen,
1344 				     ops->datbuf);
1345 
1346 	return ret;
1347 }
1348 
1349 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1350 			       struct mtd_oob_ops *ops)
1351 {
1352 	struct mtd_info *master = mtd_get_master(mtd);
1353 	int ngroups = mtd_pairing_groups(master);
1354 	int npairs = mtd_wunit_per_eb(master) / ngroups;
1355 	struct mtd_oob_ops adjops = *ops;
1356 	unsigned int wunit, oobavail;
1357 	struct mtd_pairing_info info;
1358 	int max_bitflips = 0;
1359 	u32 ebofs, pageofs;
1360 	loff_t base, pos;
1361 
1362 	ebofs = mtd_mod_by_eb(start, mtd);
1363 	base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1364 	info.group = 0;
1365 	info.pair = mtd_div_by_ws(ebofs, mtd);
1366 	pageofs = mtd_mod_by_ws(ebofs, mtd);
1367 	oobavail = mtd_oobavail(mtd, ops);
1368 
1369 	while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1370 		int ret;
1371 
1372 		if (info.pair >= npairs) {
1373 			info.pair = 0;
1374 			base += master->erasesize;
1375 		}
1376 
1377 		wunit = mtd_pairing_info_to_wunit(master, &info);
1378 		pos = mtd_wunit_to_offset(mtd, base, wunit);
1379 
1380 		adjops.len = ops->len - ops->retlen;
1381 		if (adjops.len > mtd->writesize - pageofs)
1382 			adjops.len = mtd->writesize - pageofs;
1383 
1384 		adjops.ooblen = ops->ooblen - ops->oobretlen;
1385 		if (adjops.ooblen > oobavail - adjops.ooboffs)
1386 			adjops.ooblen = oobavail - adjops.ooboffs;
1387 
1388 		if (read) {
1389 			ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1390 			if (ret > 0)
1391 				max_bitflips = max(max_bitflips, ret);
1392 		} else {
1393 			ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1394 		}
1395 
1396 		if (ret < 0)
1397 			return ret;
1398 
1399 		max_bitflips = max(max_bitflips, ret);
1400 		ops->retlen += adjops.retlen;
1401 		ops->oobretlen += adjops.oobretlen;
1402 		adjops.datbuf += adjops.retlen;
1403 		adjops.oobbuf += adjops.oobretlen;
1404 		adjops.ooboffs = 0;
1405 		pageofs = 0;
1406 		info.pair++;
1407 	}
1408 
1409 	return max_bitflips;
1410 }
1411 
1412 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1413 {
1414 	struct mtd_info *master = mtd_get_master(mtd);
1415 	struct mtd_ecc_stats old_stats = master->ecc_stats;
1416 	int ret_code;
1417 
1418 	ops->retlen = ops->oobretlen = 0;
1419 
1420 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1421 	if (ret_code)
1422 		return ret_code;
1423 
1424 	ledtrig_mtd_activity();
1425 
1426 	/* Check the validity of a potential fallback on mtd->_read */
1427 	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1428 		return -EOPNOTSUPP;
1429 
1430 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1431 		ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1432 	else
1433 		ret_code = mtd_read_oob_std(mtd, from, ops);
1434 
1435 	mtd_update_ecc_stats(mtd, master, &old_stats);
1436 
1437 	/*
1438 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1439 	 * similar to mtd->_read(), returning a non-negative integer
1440 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1441 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1442 	 */
1443 	if (unlikely(ret_code < 0))
1444 		return ret_code;
1445 	if (mtd->ecc_strength == 0)
1446 		return 0;	/* device lacks ecc */
1447 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1448 }
1449 EXPORT_SYMBOL_GPL(mtd_read_oob);
1450 
1451 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1452 				struct mtd_oob_ops *ops)
1453 {
1454 	struct mtd_info *master = mtd_get_master(mtd);
1455 	int ret;
1456 
1457 	ops->retlen = ops->oobretlen = 0;
1458 
1459 	if (!(mtd->flags & MTD_WRITEABLE))
1460 		return -EROFS;
1461 
1462 	ret = mtd_check_oob_ops(mtd, to, ops);
1463 	if (ret)
1464 		return ret;
1465 
1466 	ledtrig_mtd_activity();
1467 
1468 	/* Check the validity of a potential fallback on mtd->_write */
1469 	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1470 		return -EOPNOTSUPP;
1471 
1472 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1473 		return mtd_io_emulated_slc(mtd, to, false, ops);
1474 
1475 	return mtd_write_oob_std(mtd, to, ops);
1476 }
1477 EXPORT_SYMBOL_GPL(mtd_write_oob);
1478 
1479 /**
1480  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1481  * @mtd: MTD device structure
1482  * @section: ECC section. Depending on the layout you may have all the ECC
1483  *	     bytes stored in a single contiguous section, or one section
1484  *	     per ECC chunk (and sometime several sections for a single ECC
1485  *	     ECC chunk)
1486  * @oobecc: OOB region struct filled with the appropriate ECC position
1487  *	    information
1488  *
1489  * This function returns ECC section information in the OOB area. If you want
1490  * to get all the ECC bytes information, then you should call
1491  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1492  *
1493  * Returns zero on success, a negative error code otherwise.
1494  */
1495 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1496 		      struct mtd_oob_region *oobecc)
1497 {
1498 	struct mtd_info *master = mtd_get_master(mtd);
1499 
1500 	memset(oobecc, 0, sizeof(*oobecc));
1501 
1502 	if (!master || section < 0)
1503 		return -EINVAL;
1504 
1505 	if (!master->ooblayout || !master->ooblayout->ecc)
1506 		return -ENOTSUPP;
1507 
1508 	return master->ooblayout->ecc(master, section, oobecc);
1509 }
1510 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1511 
1512 /**
1513  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1514  *			section
1515  * @mtd: MTD device structure
1516  * @section: Free section you are interested in. Depending on the layout
1517  *	     you may have all the free bytes stored in a single contiguous
1518  *	     section, or one section per ECC chunk plus an extra section
1519  *	     for the remaining bytes (or other funky layout).
1520  * @oobfree: OOB region struct filled with the appropriate free position
1521  *	     information
1522  *
1523  * This function returns free bytes position in the OOB area. If you want
1524  * to get all the free bytes information, then you should call
1525  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1526  *
1527  * Returns zero on success, a negative error code otherwise.
1528  */
1529 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1530 		       struct mtd_oob_region *oobfree)
1531 {
1532 	struct mtd_info *master = mtd_get_master(mtd);
1533 
1534 	memset(oobfree, 0, sizeof(*oobfree));
1535 
1536 	if (!master || section < 0)
1537 		return -EINVAL;
1538 
1539 	if (!master->ooblayout || !master->ooblayout->free)
1540 		return -ENOTSUPP;
1541 
1542 	return master->ooblayout->free(master, section, oobfree);
1543 }
1544 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1545 
1546 /**
1547  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1548  * @mtd: mtd info structure
1549  * @byte: the byte we are searching for
1550  * @sectionp: pointer where the section id will be stored
1551  * @oobregion: used to retrieve the ECC position
1552  * @iter: iterator function. Should be either mtd_ooblayout_free or
1553  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1554  *
1555  * This function returns the section id and oobregion information of a
1556  * specific byte. For example, say you want to know where the 4th ECC byte is
1557  * stored, you'll use:
1558  *
1559  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1560  *
1561  * Returns zero on success, a negative error code otherwise.
1562  */
1563 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1564 				int *sectionp, struct mtd_oob_region *oobregion,
1565 				int (*iter)(struct mtd_info *,
1566 					    int section,
1567 					    struct mtd_oob_region *oobregion))
1568 {
1569 	int pos = 0, ret, section = 0;
1570 
1571 	memset(oobregion, 0, sizeof(*oobregion));
1572 
1573 	while (1) {
1574 		ret = iter(mtd, section, oobregion);
1575 		if (ret)
1576 			return ret;
1577 
1578 		if (pos + oobregion->length > byte)
1579 			break;
1580 
1581 		pos += oobregion->length;
1582 		section++;
1583 	}
1584 
1585 	/*
1586 	 * Adjust region info to make it start at the beginning at the
1587 	 * 'start' ECC byte.
1588 	 */
1589 	oobregion->offset += byte - pos;
1590 	oobregion->length -= byte - pos;
1591 	*sectionp = section;
1592 
1593 	return 0;
1594 }
1595 
1596 /**
1597  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1598  *				  ECC byte
1599  * @mtd: mtd info structure
1600  * @eccbyte: the byte we are searching for
1601  * @sectionp: pointer where the section id will be stored
1602  * @oobregion: OOB region information
1603  *
1604  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1605  * byte.
1606  *
1607  * Returns zero on success, a negative error code otherwise.
1608  */
1609 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1610 				 int *section,
1611 				 struct mtd_oob_region *oobregion)
1612 {
1613 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1614 					 mtd_ooblayout_ecc);
1615 }
1616 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1617 
1618 /**
1619  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1620  * @mtd: mtd info structure
1621  * @buf: destination buffer to store OOB bytes
1622  * @oobbuf: OOB buffer
1623  * @start: first byte to retrieve
1624  * @nbytes: number of bytes to retrieve
1625  * @iter: section iterator
1626  *
1627  * Extract bytes attached to a specific category (ECC or free)
1628  * from the OOB buffer and copy them into buf.
1629  *
1630  * Returns zero on success, a negative error code otherwise.
1631  */
1632 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1633 				const u8 *oobbuf, int start, int nbytes,
1634 				int (*iter)(struct mtd_info *,
1635 					    int section,
1636 					    struct mtd_oob_region *oobregion))
1637 {
1638 	struct mtd_oob_region oobregion;
1639 	int section, ret;
1640 
1641 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1642 					&oobregion, iter);
1643 
1644 	while (!ret) {
1645 		int cnt;
1646 
1647 		cnt = min_t(int, nbytes, oobregion.length);
1648 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1649 		buf += cnt;
1650 		nbytes -= cnt;
1651 
1652 		if (!nbytes)
1653 			break;
1654 
1655 		ret = iter(mtd, ++section, &oobregion);
1656 	}
1657 
1658 	return ret;
1659 }
1660 
1661 /**
1662  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1663  * @mtd: mtd info structure
1664  * @buf: source buffer to get OOB bytes from
1665  * @oobbuf: OOB buffer
1666  * @start: first OOB byte to set
1667  * @nbytes: number of OOB bytes to set
1668  * @iter: section iterator
1669  *
1670  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1671  * is selected by passing the appropriate iterator.
1672  *
1673  * Returns zero on success, a negative error code otherwise.
1674  */
1675 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1676 				u8 *oobbuf, int start, int nbytes,
1677 				int (*iter)(struct mtd_info *,
1678 					    int section,
1679 					    struct mtd_oob_region *oobregion))
1680 {
1681 	struct mtd_oob_region oobregion;
1682 	int section, ret;
1683 
1684 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1685 					&oobregion, iter);
1686 
1687 	while (!ret) {
1688 		int cnt;
1689 
1690 		cnt = min_t(int, nbytes, oobregion.length);
1691 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1692 		buf += cnt;
1693 		nbytes -= cnt;
1694 
1695 		if (!nbytes)
1696 			break;
1697 
1698 		ret = iter(mtd, ++section, &oobregion);
1699 	}
1700 
1701 	return ret;
1702 }
1703 
1704 /**
1705  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1706  * @mtd: mtd info structure
1707  * @iter: category iterator
1708  *
1709  * Count the number of bytes in a given category.
1710  *
1711  * Returns a positive value on success, a negative error code otherwise.
1712  */
1713 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1714 				int (*iter)(struct mtd_info *,
1715 					    int section,
1716 					    struct mtd_oob_region *oobregion))
1717 {
1718 	struct mtd_oob_region oobregion;
1719 	int section = 0, ret, nbytes = 0;
1720 
1721 	while (1) {
1722 		ret = iter(mtd, section++, &oobregion);
1723 		if (ret) {
1724 			if (ret == -ERANGE)
1725 				ret = nbytes;
1726 			break;
1727 		}
1728 
1729 		nbytes += oobregion.length;
1730 	}
1731 
1732 	return ret;
1733 }
1734 
1735 /**
1736  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1737  * @mtd: mtd info structure
1738  * @eccbuf: destination buffer to store ECC bytes
1739  * @oobbuf: OOB buffer
1740  * @start: first ECC byte to retrieve
1741  * @nbytes: number of ECC bytes to retrieve
1742  *
1743  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1744  *
1745  * Returns zero on success, a negative error code otherwise.
1746  */
1747 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1748 			       const u8 *oobbuf, int start, int nbytes)
1749 {
1750 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1751 				       mtd_ooblayout_ecc);
1752 }
1753 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1754 
1755 /**
1756  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1757  * @mtd: mtd info structure
1758  * @eccbuf: source buffer to get ECC bytes from
1759  * @oobbuf: OOB buffer
1760  * @start: first ECC byte to set
1761  * @nbytes: number of ECC bytes to set
1762  *
1763  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1764  *
1765  * Returns zero on success, a negative error code otherwise.
1766  */
1767 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1768 			       u8 *oobbuf, int start, int nbytes)
1769 {
1770 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1771 				       mtd_ooblayout_ecc);
1772 }
1773 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1774 
1775 /**
1776  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1777  * @mtd: mtd info structure
1778  * @databuf: destination buffer to store ECC bytes
1779  * @oobbuf: OOB buffer
1780  * @start: first ECC byte to retrieve
1781  * @nbytes: number of ECC bytes to retrieve
1782  *
1783  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1784  *
1785  * Returns zero on success, a negative error code otherwise.
1786  */
1787 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1788 				const u8 *oobbuf, int start, int nbytes)
1789 {
1790 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1791 				       mtd_ooblayout_free);
1792 }
1793 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1794 
1795 /**
1796  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1797  * @mtd: mtd info structure
1798  * @databuf: source buffer to get data bytes from
1799  * @oobbuf: OOB buffer
1800  * @start: first ECC byte to set
1801  * @nbytes: number of ECC bytes to set
1802  *
1803  * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
1804  *
1805  * Returns zero on success, a negative error code otherwise.
1806  */
1807 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1808 				u8 *oobbuf, int start, int nbytes)
1809 {
1810 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1811 				       mtd_ooblayout_free);
1812 }
1813 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1814 
1815 /**
1816  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1817  * @mtd: mtd info structure
1818  *
1819  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1820  *
1821  * Returns zero on success, a negative error code otherwise.
1822  */
1823 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1824 {
1825 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1826 }
1827 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1828 
1829 /**
1830  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1831  * @mtd: mtd info structure
1832  *
1833  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1834  *
1835  * Returns zero on success, a negative error code otherwise.
1836  */
1837 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1838 {
1839 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1840 }
1841 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1842 
1843 /*
1844  * Method to access the protection register area, present in some flash
1845  * devices. The user data is one time programmable but the factory data is read
1846  * only.
1847  */
1848 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1849 			   struct otp_info *buf)
1850 {
1851 	struct mtd_info *master = mtd_get_master(mtd);
1852 
1853 	if (!master->_get_fact_prot_info)
1854 		return -EOPNOTSUPP;
1855 	if (!len)
1856 		return 0;
1857 	return master->_get_fact_prot_info(master, len, retlen, buf);
1858 }
1859 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1860 
1861 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1862 			   size_t *retlen, u_char *buf)
1863 {
1864 	struct mtd_info *master = mtd_get_master(mtd);
1865 
1866 	*retlen = 0;
1867 	if (!master->_read_fact_prot_reg)
1868 		return -EOPNOTSUPP;
1869 	if (!len)
1870 		return 0;
1871 	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
1872 }
1873 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1874 
1875 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1876 			   struct otp_info *buf)
1877 {
1878 	struct mtd_info *master = mtd_get_master(mtd);
1879 
1880 	if (!master->_get_user_prot_info)
1881 		return -EOPNOTSUPP;
1882 	if (!len)
1883 		return 0;
1884 	return master->_get_user_prot_info(master, len, retlen, buf);
1885 }
1886 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1887 
1888 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1889 			   size_t *retlen, u_char *buf)
1890 {
1891 	struct mtd_info *master = mtd_get_master(mtd);
1892 
1893 	*retlen = 0;
1894 	if (!master->_read_user_prot_reg)
1895 		return -EOPNOTSUPP;
1896 	if (!len)
1897 		return 0;
1898 	return master->_read_user_prot_reg(master, from, len, retlen, buf);
1899 }
1900 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1901 
1902 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1903 			    size_t *retlen, u_char *buf)
1904 {
1905 	struct mtd_info *master = mtd_get_master(mtd);
1906 	int ret;
1907 
1908 	*retlen = 0;
1909 	if (!master->_write_user_prot_reg)
1910 		return -EOPNOTSUPP;
1911 	if (!len)
1912 		return 0;
1913 	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
1914 	if (ret)
1915 		return ret;
1916 
1917 	/*
1918 	 * If no data could be written at all, we are out of memory and
1919 	 * must return -ENOSPC.
1920 	 */
1921 	return (*retlen) ? 0 : -ENOSPC;
1922 }
1923 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1924 
1925 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1926 {
1927 	struct mtd_info *master = mtd_get_master(mtd);
1928 
1929 	if (!master->_lock_user_prot_reg)
1930 		return -EOPNOTSUPP;
1931 	if (!len)
1932 		return 0;
1933 	return master->_lock_user_prot_reg(master, from, len);
1934 }
1935 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1936 
1937 /* Chip-supported device locking */
1938 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1939 {
1940 	struct mtd_info *master = mtd_get_master(mtd);
1941 
1942 	if (!master->_lock)
1943 		return -EOPNOTSUPP;
1944 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1945 		return -EINVAL;
1946 	if (!len)
1947 		return 0;
1948 
1949 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1950 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1951 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1952 	}
1953 
1954 	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
1955 }
1956 EXPORT_SYMBOL_GPL(mtd_lock);
1957 
1958 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1959 {
1960 	struct mtd_info *master = mtd_get_master(mtd);
1961 
1962 	if (!master->_unlock)
1963 		return -EOPNOTSUPP;
1964 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1965 		return -EINVAL;
1966 	if (!len)
1967 		return 0;
1968 
1969 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1970 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1971 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1972 	}
1973 
1974 	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
1975 }
1976 EXPORT_SYMBOL_GPL(mtd_unlock);
1977 
1978 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1979 {
1980 	struct mtd_info *master = mtd_get_master(mtd);
1981 
1982 	if (!master->_is_locked)
1983 		return -EOPNOTSUPP;
1984 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1985 		return -EINVAL;
1986 	if (!len)
1987 		return 0;
1988 
1989 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1990 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1991 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1992 	}
1993 
1994 	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
1995 }
1996 EXPORT_SYMBOL_GPL(mtd_is_locked);
1997 
1998 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1999 {
2000 	struct mtd_info *master = mtd_get_master(mtd);
2001 
2002 	if (ofs < 0 || ofs >= mtd->size)
2003 		return -EINVAL;
2004 	if (!master->_block_isreserved)
2005 		return 0;
2006 
2007 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2008 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2009 
2010 	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2011 }
2012 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2013 
2014 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2015 {
2016 	struct mtd_info *master = mtd_get_master(mtd);
2017 
2018 	if (ofs < 0 || ofs >= mtd->size)
2019 		return -EINVAL;
2020 	if (!master->_block_isbad)
2021 		return 0;
2022 
2023 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2024 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2025 
2026 	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2027 }
2028 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2029 
2030 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2031 {
2032 	struct mtd_info *master = mtd_get_master(mtd);
2033 	int ret;
2034 
2035 	if (!master->_block_markbad)
2036 		return -EOPNOTSUPP;
2037 	if (ofs < 0 || ofs >= mtd->size)
2038 		return -EINVAL;
2039 	if (!(mtd->flags & MTD_WRITEABLE))
2040 		return -EROFS;
2041 
2042 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2043 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2044 
2045 	ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2046 	if (ret)
2047 		return ret;
2048 
2049 	while (mtd->parent) {
2050 		mtd->ecc_stats.badblocks++;
2051 		mtd = mtd->parent;
2052 	}
2053 
2054 	return 0;
2055 }
2056 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2057 
2058 /*
2059  * default_mtd_writev - the default writev method
2060  * @mtd: mtd device description object pointer
2061  * @vecs: the vectors to write
2062  * @count: count of vectors in @vecs
2063  * @to: the MTD device offset to write to
2064  * @retlen: on exit contains the count of bytes written to the MTD device.
2065  *
2066  * This function returns zero in case of success and a negative error code in
2067  * case of failure.
2068  */
2069 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2070 			      unsigned long count, loff_t to, size_t *retlen)
2071 {
2072 	unsigned long i;
2073 	size_t totlen = 0, thislen;
2074 	int ret = 0;
2075 
2076 	for (i = 0; i < count; i++) {
2077 		if (!vecs[i].iov_len)
2078 			continue;
2079 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2080 				vecs[i].iov_base);
2081 		totlen += thislen;
2082 		if (ret || thislen != vecs[i].iov_len)
2083 			break;
2084 		to += vecs[i].iov_len;
2085 	}
2086 	*retlen = totlen;
2087 	return ret;
2088 }
2089 
2090 /*
2091  * mtd_writev - the vector-based MTD write method
2092  * @mtd: mtd device description object pointer
2093  * @vecs: the vectors to write
2094  * @count: count of vectors in @vecs
2095  * @to: the MTD device offset to write to
2096  * @retlen: on exit contains the count of bytes written to the MTD device.
2097  *
2098  * This function returns zero in case of success and a negative error code in
2099  * case of failure.
2100  */
2101 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2102 	       unsigned long count, loff_t to, size_t *retlen)
2103 {
2104 	struct mtd_info *master = mtd_get_master(mtd);
2105 
2106 	*retlen = 0;
2107 	if (!(mtd->flags & MTD_WRITEABLE))
2108 		return -EROFS;
2109 
2110 	if (!master->_writev)
2111 		return default_mtd_writev(mtd, vecs, count, to, retlen);
2112 
2113 	return master->_writev(master, vecs, count,
2114 			       mtd_get_master_ofs(mtd, to), retlen);
2115 }
2116 EXPORT_SYMBOL_GPL(mtd_writev);
2117 
2118 /**
2119  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2120  * @mtd: mtd device description object pointer
2121  * @size: a pointer to the ideal or maximum size of the allocation, points
2122  *        to the actual allocation size on success.
2123  *
2124  * This routine attempts to allocate a contiguous kernel buffer up to
2125  * the specified size, backing off the size of the request exponentially
2126  * until the request succeeds or until the allocation size falls below
2127  * the system page size. This attempts to make sure it does not adversely
2128  * impact system performance, so when allocating more than one page, we
2129  * ask the memory allocator to avoid re-trying, swapping, writing back
2130  * or performing I/O.
2131  *
2132  * Note, this function also makes sure that the allocated buffer is aligned to
2133  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2134  *
2135  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2136  * to handle smaller (i.e. degraded) buffer allocations under low- or
2137  * fragmented-memory situations where such reduced allocations, from a
2138  * requested ideal, are allowed.
2139  *
2140  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2141  */
2142 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2143 {
2144 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2145 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2146 	void *kbuf;
2147 
2148 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2149 
2150 	while (*size > min_alloc) {
2151 		kbuf = kmalloc(*size, flags);
2152 		if (kbuf)
2153 			return kbuf;
2154 
2155 		*size >>= 1;
2156 		*size = ALIGN(*size, mtd->writesize);
2157 	}
2158 
2159 	/*
2160 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2161 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2162 	 */
2163 	return kmalloc(*size, GFP_KERNEL);
2164 }
2165 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2166 
2167 #ifdef CONFIG_PROC_FS
2168 
2169 /*====================================================================*/
2170 /* Support for /proc/mtd */
2171 
2172 static int mtd_proc_show(struct seq_file *m, void *v)
2173 {
2174 	struct mtd_info *mtd;
2175 
2176 	seq_puts(m, "dev:    size   erasesize  name\n");
2177 	mutex_lock(&mtd_table_mutex);
2178 	mtd_for_each_device(mtd) {
2179 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2180 			   mtd->index, (unsigned long long)mtd->size,
2181 			   mtd->erasesize, mtd->name);
2182 	}
2183 	mutex_unlock(&mtd_table_mutex);
2184 	return 0;
2185 }
2186 #endif /* CONFIG_PROC_FS */
2187 
2188 /*====================================================================*/
2189 /* Init code */
2190 
2191 static struct backing_dev_info * __init mtd_bdi_init(char *name)
2192 {
2193 	struct backing_dev_info *bdi;
2194 	int ret;
2195 
2196 	bdi = bdi_alloc(NUMA_NO_NODE);
2197 	if (!bdi)
2198 		return ERR_PTR(-ENOMEM);
2199 
2200 	/*
2201 	 * We put '-0' suffix to the name to get the same name format as we
2202 	 * used to get. Since this is called only once, we get a unique name.
2203 	 */
2204 	ret = bdi_register(bdi, "%.28s-0", name);
2205 	if (ret)
2206 		bdi_put(bdi);
2207 
2208 	return ret ? ERR_PTR(ret) : bdi;
2209 }
2210 
2211 static struct proc_dir_entry *proc_mtd;
2212 
2213 static int __init init_mtd(void)
2214 {
2215 	int ret;
2216 
2217 	ret = class_register(&mtd_class);
2218 	if (ret)
2219 		goto err_reg;
2220 
2221 	mtd_bdi = mtd_bdi_init("mtd");
2222 	if (IS_ERR(mtd_bdi)) {
2223 		ret = PTR_ERR(mtd_bdi);
2224 		goto err_bdi;
2225 	}
2226 
2227 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2228 
2229 	ret = init_mtdchar();
2230 	if (ret)
2231 		goto out_procfs;
2232 
2233 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2234 
2235 	return 0;
2236 
2237 out_procfs:
2238 	if (proc_mtd)
2239 		remove_proc_entry("mtd", NULL);
2240 	bdi_put(mtd_bdi);
2241 err_bdi:
2242 	class_unregister(&mtd_class);
2243 err_reg:
2244 	pr_err("Error registering mtd class or bdi: %d\n", ret);
2245 	return ret;
2246 }
2247 
2248 static void __exit cleanup_mtd(void)
2249 {
2250 	debugfs_remove_recursive(dfs_dir_mtd);
2251 	cleanup_mtdchar();
2252 	if (proc_mtd)
2253 		remove_proc_entry("mtd", NULL);
2254 	class_unregister(&mtd_class);
2255 	bdi_put(mtd_bdi);
2256 	idr_destroy(&mtd_idr);
2257 }
2258 
2259 module_init(init_mtd);
2260 module_exit(cleanup_mtd);
2261 
2262 MODULE_LICENSE("GPL");
2263 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2264 MODULE_DESCRIPTION("Core MTD registration and access routines");
2265