xref: /openbmc/linux/drivers/mtd/mtdcore.c (revision 0bea2a65)
1 /*
2  * Core registration and callback routines for MTD
3  * drivers and users.
4  *
5  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6  * Copyright © 2006      Red Hat UK Limited
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/of.h>
36 #include <linux/proc_fs.h>
37 #include <linux/idr.h>
38 #include <linux/backing-dev.h>
39 #include <linux/gfp.h>
40 #include <linux/slab.h>
41 #include <linux/reboot.h>
42 #include <linux/leds.h>
43 #include <linux/debugfs.h>
44 
45 #include <linux/mtd/mtd.h>
46 #include <linux/mtd/partitions.h>
47 
48 #include "mtdcore.h"
49 
50 struct backing_dev_info *mtd_bdi;
51 
52 #ifdef CONFIG_PM_SLEEP
53 
54 static int mtd_cls_suspend(struct device *dev)
55 {
56 	struct mtd_info *mtd = dev_get_drvdata(dev);
57 
58 	return mtd ? mtd_suspend(mtd) : 0;
59 }
60 
61 static int mtd_cls_resume(struct device *dev)
62 {
63 	struct mtd_info *mtd = dev_get_drvdata(dev);
64 
65 	if (mtd)
66 		mtd_resume(mtd);
67 	return 0;
68 }
69 
70 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
71 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
72 #else
73 #define MTD_CLS_PM_OPS NULL
74 #endif
75 
76 static struct class mtd_class = {
77 	.name = "mtd",
78 	.owner = THIS_MODULE,
79 	.pm = MTD_CLS_PM_OPS,
80 };
81 
82 static DEFINE_IDR(mtd_idr);
83 
84 /* These are exported solely for the purpose of mtd_blkdevs.c. You
85    should not use them for _anything_ else */
86 DEFINE_MUTEX(mtd_table_mutex);
87 EXPORT_SYMBOL_GPL(mtd_table_mutex);
88 
89 struct mtd_info *__mtd_next_device(int i)
90 {
91 	return idr_get_next(&mtd_idr, &i);
92 }
93 EXPORT_SYMBOL_GPL(__mtd_next_device);
94 
95 static LIST_HEAD(mtd_notifiers);
96 
97 
98 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
99 
100 /* REVISIT once MTD uses the driver model better, whoever allocates
101  * the mtd_info will probably want to use the release() hook...
102  */
103 static void mtd_release(struct device *dev)
104 {
105 	struct mtd_info *mtd = dev_get_drvdata(dev);
106 	dev_t index = MTD_DEVT(mtd->index);
107 
108 	/* remove /dev/mtdXro node */
109 	device_destroy(&mtd_class, index + 1);
110 }
111 
112 static ssize_t mtd_type_show(struct device *dev,
113 		struct device_attribute *attr, char *buf)
114 {
115 	struct mtd_info *mtd = dev_get_drvdata(dev);
116 	char *type;
117 
118 	switch (mtd->type) {
119 	case MTD_ABSENT:
120 		type = "absent";
121 		break;
122 	case MTD_RAM:
123 		type = "ram";
124 		break;
125 	case MTD_ROM:
126 		type = "rom";
127 		break;
128 	case MTD_NORFLASH:
129 		type = "nor";
130 		break;
131 	case MTD_NANDFLASH:
132 		type = "nand";
133 		break;
134 	case MTD_DATAFLASH:
135 		type = "dataflash";
136 		break;
137 	case MTD_UBIVOLUME:
138 		type = "ubi";
139 		break;
140 	case MTD_MLCNANDFLASH:
141 		type = "mlc-nand";
142 		break;
143 	default:
144 		type = "unknown";
145 	}
146 
147 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
148 }
149 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
150 
151 static ssize_t mtd_flags_show(struct device *dev,
152 		struct device_attribute *attr, char *buf)
153 {
154 	struct mtd_info *mtd = dev_get_drvdata(dev);
155 
156 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
157 
158 }
159 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
160 
161 static ssize_t mtd_size_show(struct device *dev,
162 		struct device_attribute *attr, char *buf)
163 {
164 	struct mtd_info *mtd = dev_get_drvdata(dev);
165 
166 	return snprintf(buf, PAGE_SIZE, "%llu\n",
167 		(unsigned long long)mtd->size);
168 
169 }
170 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
171 
172 static ssize_t mtd_erasesize_show(struct device *dev,
173 		struct device_attribute *attr, char *buf)
174 {
175 	struct mtd_info *mtd = dev_get_drvdata(dev);
176 
177 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
178 
179 }
180 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
181 
182 static ssize_t mtd_writesize_show(struct device *dev,
183 		struct device_attribute *attr, char *buf)
184 {
185 	struct mtd_info *mtd = dev_get_drvdata(dev);
186 
187 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
188 
189 }
190 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
191 
192 static ssize_t mtd_subpagesize_show(struct device *dev,
193 		struct device_attribute *attr, char *buf)
194 {
195 	struct mtd_info *mtd = dev_get_drvdata(dev);
196 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
197 
198 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
199 
200 }
201 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
202 
203 static ssize_t mtd_oobsize_show(struct device *dev,
204 		struct device_attribute *attr, char *buf)
205 {
206 	struct mtd_info *mtd = dev_get_drvdata(dev);
207 
208 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
209 
210 }
211 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
212 
213 static ssize_t mtd_numeraseregions_show(struct device *dev,
214 		struct device_attribute *attr, char *buf)
215 {
216 	struct mtd_info *mtd = dev_get_drvdata(dev);
217 
218 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
219 
220 }
221 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
222 	NULL);
223 
224 static ssize_t mtd_name_show(struct device *dev,
225 		struct device_attribute *attr, char *buf)
226 {
227 	struct mtd_info *mtd = dev_get_drvdata(dev);
228 
229 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
230 
231 }
232 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
233 
234 static ssize_t mtd_ecc_strength_show(struct device *dev,
235 				     struct device_attribute *attr, char *buf)
236 {
237 	struct mtd_info *mtd = dev_get_drvdata(dev);
238 
239 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
240 }
241 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
242 
243 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
244 					  struct device_attribute *attr,
245 					  char *buf)
246 {
247 	struct mtd_info *mtd = dev_get_drvdata(dev);
248 
249 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
250 }
251 
252 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
253 					   struct device_attribute *attr,
254 					   const char *buf, size_t count)
255 {
256 	struct mtd_info *mtd = dev_get_drvdata(dev);
257 	unsigned int bitflip_threshold;
258 	int retval;
259 
260 	retval = kstrtouint(buf, 0, &bitflip_threshold);
261 	if (retval)
262 		return retval;
263 
264 	mtd->bitflip_threshold = bitflip_threshold;
265 	return count;
266 }
267 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
268 		   mtd_bitflip_threshold_show,
269 		   mtd_bitflip_threshold_store);
270 
271 static ssize_t mtd_ecc_step_size_show(struct device *dev,
272 		struct device_attribute *attr, char *buf)
273 {
274 	struct mtd_info *mtd = dev_get_drvdata(dev);
275 
276 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
277 
278 }
279 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
280 
281 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
282 		struct device_attribute *attr, char *buf)
283 {
284 	struct mtd_info *mtd = dev_get_drvdata(dev);
285 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
286 
287 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
288 }
289 static DEVICE_ATTR(corrected_bits, S_IRUGO,
290 		   mtd_ecc_stats_corrected_show, NULL);
291 
292 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
293 		struct device_attribute *attr, char *buf)
294 {
295 	struct mtd_info *mtd = dev_get_drvdata(dev);
296 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
297 
298 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
299 }
300 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
301 
302 static ssize_t mtd_badblocks_show(struct device *dev,
303 		struct device_attribute *attr, char *buf)
304 {
305 	struct mtd_info *mtd = dev_get_drvdata(dev);
306 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
307 
308 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
309 }
310 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
311 
312 static ssize_t mtd_bbtblocks_show(struct device *dev,
313 		struct device_attribute *attr, char *buf)
314 {
315 	struct mtd_info *mtd = dev_get_drvdata(dev);
316 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
317 
318 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
319 }
320 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
321 
322 static struct attribute *mtd_attrs[] = {
323 	&dev_attr_type.attr,
324 	&dev_attr_flags.attr,
325 	&dev_attr_size.attr,
326 	&dev_attr_erasesize.attr,
327 	&dev_attr_writesize.attr,
328 	&dev_attr_subpagesize.attr,
329 	&dev_attr_oobsize.attr,
330 	&dev_attr_numeraseregions.attr,
331 	&dev_attr_name.attr,
332 	&dev_attr_ecc_strength.attr,
333 	&dev_attr_ecc_step_size.attr,
334 	&dev_attr_corrected_bits.attr,
335 	&dev_attr_ecc_failures.attr,
336 	&dev_attr_bad_blocks.attr,
337 	&dev_attr_bbt_blocks.attr,
338 	&dev_attr_bitflip_threshold.attr,
339 	NULL,
340 };
341 ATTRIBUTE_GROUPS(mtd);
342 
343 static const struct device_type mtd_devtype = {
344 	.name		= "mtd",
345 	.groups		= mtd_groups,
346 	.release	= mtd_release,
347 };
348 
349 #ifndef CONFIG_MMU
350 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
351 {
352 	switch (mtd->type) {
353 	case MTD_RAM:
354 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
355 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
356 	case MTD_ROM:
357 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
358 			NOMMU_MAP_READ;
359 	default:
360 		return NOMMU_MAP_COPY;
361 	}
362 }
363 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
364 #endif
365 
366 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
367 			       void *cmd)
368 {
369 	struct mtd_info *mtd;
370 
371 	mtd = container_of(n, struct mtd_info, reboot_notifier);
372 	mtd->_reboot(mtd);
373 
374 	return NOTIFY_DONE;
375 }
376 
377 /**
378  * mtd_wunit_to_pairing_info - get pairing information of a wunit
379  * @mtd: pointer to new MTD device info structure
380  * @wunit: write unit we are interested in
381  * @info: returned pairing information
382  *
383  * Retrieve pairing information associated to the wunit.
384  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
385  * paired together, and where programming a page may influence the page it is
386  * paired with.
387  * The notion of page is replaced by the term wunit (write-unit) to stay
388  * consistent with the ->writesize field.
389  *
390  * The @wunit argument can be extracted from an absolute offset using
391  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
392  * to @wunit.
393  *
394  * From the pairing info the MTD user can find all the wunits paired with
395  * @wunit using the following loop:
396  *
397  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
398  *	info.pair = i;
399  *	mtd_pairing_info_to_wunit(mtd, &info);
400  *	...
401  * }
402  */
403 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
404 			      struct mtd_pairing_info *info)
405 {
406 	int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
407 
408 	if (wunit < 0 || wunit >= npairs)
409 		return -EINVAL;
410 
411 	if (mtd->pairing && mtd->pairing->get_info)
412 		return mtd->pairing->get_info(mtd, wunit, info);
413 
414 	info->group = 0;
415 	info->pair = wunit;
416 
417 	return 0;
418 }
419 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
420 
421 /**
422  * mtd_wunit_to_pairing_info - get wunit from pairing information
423  * @mtd: pointer to new MTD device info structure
424  * @info: pairing information struct
425  *
426  * Returns a positive number representing the wunit associated to the info
427  * struct, or a negative error code.
428  *
429  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
430  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
431  * doc).
432  *
433  * It can also be used to only program the first page of each pair (i.e.
434  * page attached to group 0), which allows one to use an MLC NAND in
435  * software-emulated SLC mode:
436  *
437  * info.group = 0;
438  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
439  * for (info.pair = 0; info.pair < npairs; info.pair++) {
440  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
441  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
442  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
443  * }
444  */
445 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
446 			      const struct mtd_pairing_info *info)
447 {
448 	int ngroups = mtd_pairing_groups(mtd);
449 	int npairs = mtd_wunit_per_eb(mtd) / ngroups;
450 
451 	if (!info || info->pair < 0 || info->pair >= npairs ||
452 	    info->group < 0 || info->group >= ngroups)
453 		return -EINVAL;
454 
455 	if (mtd->pairing && mtd->pairing->get_wunit)
456 		return mtd->pairing->get_wunit(mtd, info);
457 
458 	return info->pair;
459 }
460 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
461 
462 /**
463  * mtd_pairing_groups - get the number of pairing groups
464  * @mtd: pointer to new MTD device info structure
465  *
466  * Returns the number of pairing groups.
467  *
468  * This number is usually equal to the number of bits exposed by a single
469  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
470  * to iterate over all pages of a given pair.
471  */
472 int mtd_pairing_groups(struct mtd_info *mtd)
473 {
474 	if (!mtd->pairing || !mtd->pairing->ngroups)
475 		return 1;
476 
477 	return mtd->pairing->ngroups;
478 }
479 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
480 
481 static struct dentry *dfs_dir_mtd;
482 
483 /**
484  *	add_mtd_device - register an MTD device
485  *	@mtd: pointer to new MTD device info structure
486  *
487  *	Add a device to the list of MTD devices present in the system, and
488  *	notify each currently active MTD 'user' of its arrival. Returns
489  *	zero on success or non-zero on failure.
490  */
491 
492 int add_mtd_device(struct mtd_info *mtd)
493 {
494 	struct mtd_notifier *not;
495 	int i, error;
496 
497 	/*
498 	 * May occur, for instance, on buggy drivers which call
499 	 * mtd_device_parse_register() multiple times on the same master MTD,
500 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
501 	 */
502 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
503 		return -EEXIST;
504 
505 	BUG_ON(mtd->writesize == 0);
506 	mutex_lock(&mtd_table_mutex);
507 
508 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
509 	if (i < 0) {
510 		error = i;
511 		goto fail_locked;
512 	}
513 
514 	mtd->index = i;
515 	mtd->usecount = 0;
516 
517 	/* default value if not set by driver */
518 	if (mtd->bitflip_threshold == 0)
519 		mtd->bitflip_threshold = mtd->ecc_strength;
520 
521 	if (is_power_of_2(mtd->erasesize))
522 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
523 	else
524 		mtd->erasesize_shift = 0;
525 
526 	if (is_power_of_2(mtd->writesize))
527 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
528 	else
529 		mtd->writesize_shift = 0;
530 
531 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
532 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
533 
534 	/* Some chips always power up locked. Unlock them now */
535 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
536 		error = mtd_unlock(mtd, 0, mtd->size);
537 		if (error && error != -EOPNOTSUPP)
538 			printk(KERN_WARNING
539 			       "%s: unlock failed, writes may not work\n",
540 			       mtd->name);
541 		/* Ignore unlock failures? */
542 		error = 0;
543 	}
544 
545 	/* Caller should have set dev.parent to match the
546 	 * physical device, if appropriate.
547 	 */
548 	mtd->dev.type = &mtd_devtype;
549 	mtd->dev.class = &mtd_class;
550 	mtd->dev.devt = MTD_DEVT(i);
551 	dev_set_name(&mtd->dev, "mtd%d", i);
552 	dev_set_drvdata(&mtd->dev, mtd);
553 	of_node_get(mtd_get_of_node(mtd));
554 	error = device_register(&mtd->dev);
555 	if (error)
556 		goto fail_added;
557 
558 	if (!IS_ERR_OR_NULL(dfs_dir_mtd)) {
559 		mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd);
560 		if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) {
561 			pr_debug("mtd device %s won't show data in debugfs\n",
562 				 dev_name(&mtd->dev));
563 		}
564 	}
565 
566 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
567 		      "mtd%dro", i);
568 
569 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
570 	/* No need to get a refcount on the module containing
571 	   the notifier, since we hold the mtd_table_mutex */
572 	list_for_each_entry(not, &mtd_notifiers, list)
573 		not->add(mtd);
574 
575 	mutex_unlock(&mtd_table_mutex);
576 	/* We _know_ we aren't being removed, because
577 	   our caller is still holding us here. So none
578 	   of this try_ nonsense, and no bitching about it
579 	   either. :) */
580 	__module_get(THIS_MODULE);
581 	return 0;
582 
583 fail_added:
584 	of_node_put(mtd_get_of_node(mtd));
585 	idr_remove(&mtd_idr, i);
586 fail_locked:
587 	mutex_unlock(&mtd_table_mutex);
588 	return error;
589 }
590 
591 /**
592  *	del_mtd_device - unregister an MTD device
593  *	@mtd: pointer to MTD device info structure
594  *
595  *	Remove a device from the list of MTD devices present in the system,
596  *	and notify each currently active MTD 'user' of its departure.
597  *	Returns zero on success or 1 on failure, which currently will happen
598  *	if the requested device does not appear to be present in the list.
599  */
600 
601 int del_mtd_device(struct mtd_info *mtd)
602 {
603 	int ret;
604 	struct mtd_notifier *not;
605 
606 	mutex_lock(&mtd_table_mutex);
607 
608 	debugfs_remove_recursive(mtd->dbg.dfs_dir);
609 
610 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
611 		ret = -ENODEV;
612 		goto out_error;
613 	}
614 
615 	/* No need to get a refcount on the module containing
616 		the notifier, since we hold the mtd_table_mutex */
617 	list_for_each_entry(not, &mtd_notifiers, list)
618 		not->remove(mtd);
619 
620 	if (mtd->usecount) {
621 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
622 		       mtd->index, mtd->name, mtd->usecount);
623 		ret = -EBUSY;
624 	} else {
625 		device_unregister(&mtd->dev);
626 
627 		idr_remove(&mtd_idr, mtd->index);
628 		of_node_put(mtd_get_of_node(mtd));
629 
630 		module_put(THIS_MODULE);
631 		ret = 0;
632 	}
633 
634 out_error:
635 	mutex_unlock(&mtd_table_mutex);
636 	return ret;
637 }
638 
639 static int mtd_add_device_partitions(struct mtd_info *mtd,
640 				     struct mtd_partitions *parts)
641 {
642 	const struct mtd_partition *real_parts = parts->parts;
643 	int nbparts = parts->nr_parts;
644 	int ret;
645 
646 	if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
647 		ret = add_mtd_device(mtd);
648 		if (ret)
649 			return ret;
650 	}
651 
652 	if (nbparts > 0) {
653 		ret = add_mtd_partitions(mtd, real_parts, nbparts);
654 		if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
655 			del_mtd_device(mtd);
656 		return ret;
657 	}
658 
659 	return 0;
660 }
661 
662 /*
663  * Set a few defaults based on the parent devices, if not provided by the
664  * driver
665  */
666 static void mtd_set_dev_defaults(struct mtd_info *mtd)
667 {
668 	if (mtd->dev.parent) {
669 		if (!mtd->owner && mtd->dev.parent->driver)
670 			mtd->owner = mtd->dev.parent->driver->owner;
671 		if (!mtd->name)
672 			mtd->name = dev_name(mtd->dev.parent);
673 	} else {
674 		pr_debug("mtd device won't show a device symlink in sysfs\n");
675 	}
676 }
677 
678 /**
679  * mtd_device_parse_register - parse partitions and register an MTD device.
680  *
681  * @mtd: the MTD device to register
682  * @types: the list of MTD partition probes to try, see
683  *         'parse_mtd_partitions()' for more information
684  * @parser_data: MTD partition parser-specific data
685  * @parts: fallback partition information to register, if parsing fails;
686  *         only valid if %nr_parts > %0
687  * @nr_parts: the number of partitions in parts, if zero then the full
688  *            MTD device is registered if no partition info is found
689  *
690  * This function aggregates MTD partitions parsing (done by
691  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
692  * basically follows the most common pattern found in many MTD drivers:
693  *
694  * * It first tries to probe partitions on MTD device @mtd using parsers
695  *   specified in @types (if @types is %NULL, then the default list of parsers
696  *   is used, see 'parse_mtd_partitions()' for more information). If none are
697  *   found this functions tries to fallback to information specified in
698  *   @parts/@nr_parts.
699  * * If any partitioning info was found, this function registers the found
700  *   partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
701  *   as a whole is registered first.
702  * * If no partitions were found this function just registers the MTD device
703  *   @mtd and exits.
704  *
705  * Returns zero in case of success and a negative error code in case of failure.
706  */
707 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
708 			      struct mtd_part_parser_data *parser_data,
709 			      const struct mtd_partition *parts,
710 			      int nr_parts)
711 {
712 	struct mtd_partitions parsed;
713 	int ret;
714 
715 	mtd_set_dev_defaults(mtd);
716 
717 	memset(&parsed, 0, sizeof(parsed));
718 
719 	ret = parse_mtd_partitions(mtd, types, &parsed, parser_data);
720 	if ((ret < 0 || parsed.nr_parts == 0) && parts && nr_parts) {
721 		/* Fall back to driver-provided partitions */
722 		parsed = (struct mtd_partitions){
723 			.parts		= parts,
724 			.nr_parts	= nr_parts,
725 		};
726 	} else if (ret < 0) {
727 		/* Didn't come up with parsed OR fallback partitions */
728 		pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n",
729 			ret);
730 		/* Don't abort on errors; we can still use unpartitioned MTD */
731 		memset(&parsed, 0, sizeof(parsed));
732 	}
733 
734 	ret = mtd_add_device_partitions(mtd, &parsed);
735 	if (ret)
736 		goto out;
737 
738 	/*
739 	 * FIXME: some drivers unfortunately call this function more than once.
740 	 * So we have to check if we've already assigned the reboot notifier.
741 	 *
742 	 * Generally, we can make multiple calls work for most cases, but it
743 	 * does cause problems with parse_mtd_partitions() above (e.g.,
744 	 * cmdlineparts will register partitions more than once).
745 	 */
746 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
747 		  "MTD already registered\n");
748 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
749 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
750 		register_reboot_notifier(&mtd->reboot_notifier);
751 	}
752 
753 out:
754 	/* Cleanup any parsed partitions */
755 	mtd_part_parser_cleanup(&parsed);
756 	return ret;
757 }
758 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
759 
760 /**
761  * mtd_device_unregister - unregister an existing MTD device.
762  *
763  * @master: the MTD device to unregister.  This will unregister both the master
764  *          and any partitions if registered.
765  */
766 int mtd_device_unregister(struct mtd_info *master)
767 {
768 	int err;
769 
770 	if (master->_reboot)
771 		unregister_reboot_notifier(&master->reboot_notifier);
772 
773 	err = del_mtd_partitions(master);
774 	if (err)
775 		return err;
776 
777 	if (!device_is_registered(&master->dev))
778 		return 0;
779 
780 	return del_mtd_device(master);
781 }
782 EXPORT_SYMBOL_GPL(mtd_device_unregister);
783 
784 /**
785  *	register_mtd_user - register a 'user' of MTD devices.
786  *	@new: pointer to notifier info structure
787  *
788  *	Registers a pair of callbacks function to be called upon addition
789  *	or removal of MTD devices. Causes the 'add' callback to be immediately
790  *	invoked for each MTD device currently present in the system.
791  */
792 void register_mtd_user (struct mtd_notifier *new)
793 {
794 	struct mtd_info *mtd;
795 
796 	mutex_lock(&mtd_table_mutex);
797 
798 	list_add(&new->list, &mtd_notifiers);
799 
800 	__module_get(THIS_MODULE);
801 
802 	mtd_for_each_device(mtd)
803 		new->add(mtd);
804 
805 	mutex_unlock(&mtd_table_mutex);
806 }
807 EXPORT_SYMBOL_GPL(register_mtd_user);
808 
809 /**
810  *	unregister_mtd_user - unregister a 'user' of MTD devices.
811  *	@old: pointer to notifier info structure
812  *
813  *	Removes a callback function pair from the list of 'users' to be
814  *	notified upon addition or removal of MTD devices. Causes the
815  *	'remove' callback to be immediately invoked for each MTD device
816  *	currently present in the system.
817  */
818 int unregister_mtd_user (struct mtd_notifier *old)
819 {
820 	struct mtd_info *mtd;
821 
822 	mutex_lock(&mtd_table_mutex);
823 
824 	module_put(THIS_MODULE);
825 
826 	mtd_for_each_device(mtd)
827 		old->remove(mtd);
828 
829 	list_del(&old->list);
830 	mutex_unlock(&mtd_table_mutex);
831 	return 0;
832 }
833 EXPORT_SYMBOL_GPL(unregister_mtd_user);
834 
835 /**
836  *	get_mtd_device - obtain a validated handle for an MTD device
837  *	@mtd: last known address of the required MTD device
838  *	@num: internal device number of the required MTD device
839  *
840  *	Given a number and NULL address, return the num'th entry in the device
841  *	table, if any.	Given an address and num == -1, search the device table
842  *	for a device with that address and return if it's still present. Given
843  *	both, return the num'th driver only if its address matches. Return
844  *	error code if not.
845  */
846 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
847 {
848 	struct mtd_info *ret = NULL, *other;
849 	int err = -ENODEV;
850 
851 	mutex_lock(&mtd_table_mutex);
852 
853 	if (num == -1) {
854 		mtd_for_each_device(other) {
855 			if (other == mtd) {
856 				ret = mtd;
857 				break;
858 			}
859 		}
860 	} else if (num >= 0) {
861 		ret = idr_find(&mtd_idr, num);
862 		if (mtd && mtd != ret)
863 			ret = NULL;
864 	}
865 
866 	if (!ret) {
867 		ret = ERR_PTR(err);
868 		goto out;
869 	}
870 
871 	err = __get_mtd_device(ret);
872 	if (err)
873 		ret = ERR_PTR(err);
874 out:
875 	mutex_unlock(&mtd_table_mutex);
876 	return ret;
877 }
878 EXPORT_SYMBOL_GPL(get_mtd_device);
879 
880 
881 int __get_mtd_device(struct mtd_info *mtd)
882 {
883 	int err;
884 
885 	if (!try_module_get(mtd->owner))
886 		return -ENODEV;
887 
888 	if (mtd->_get_device) {
889 		err = mtd->_get_device(mtd);
890 
891 		if (err) {
892 			module_put(mtd->owner);
893 			return err;
894 		}
895 	}
896 	mtd->usecount++;
897 	return 0;
898 }
899 EXPORT_SYMBOL_GPL(__get_mtd_device);
900 
901 /**
902  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
903  *	device name
904  *	@name: MTD device name to open
905  *
906  * 	This function returns MTD device description structure in case of
907  * 	success and an error code in case of failure.
908  */
909 struct mtd_info *get_mtd_device_nm(const char *name)
910 {
911 	int err = -ENODEV;
912 	struct mtd_info *mtd = NULL, *other;
913 
914 	mutex_lock(&mtd_table_mutex);
915 
916 	mtd_for_each_device(other) {
917 		if (!strcmp(name, other->name)) {
918 			mtd = other;
919 			break;
920 		}
921 	}
922 
923 	if (!mtd)
924 		goto out_unlock;
925 
926 	err = __get_mtd_device(mtd);
927 	if (err)
928 		goto out_unlock;
929 
930 	mutex_unlock(&mtd_table_mutex);
931 	return mtd;
932 
933 out_unlock:
934 	mutex_unlock(&mtd_table_mutex);
935 	return ERR_PTR(err);
936 }
937 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
938 
939 void put_mtd_device(struct mtd_info *mtd)
940 {
941 	mutex_lock(&mtd_table_mutex);
942 	__put_mtd_device(mtd);
943 	mutex_unlock(&mtd_table_mutex);
944 
945 }
946 EXPORT_SYMBOL_GPL(put_mtd_device);
947 
948 void __put_mtd_device(struct mtd_info *mtd)
949 {
950 	--mtd->usecount;
951 	BUG_ON(mtd->usecount < 0);
952 
953 	if (mtd->_put_device)
954 		mtd->_put_device(mtd);
955 
956 	module_put(mtd->owner);
957 }
958 EXPORT_SYMBOL_GPL(__put_mtd_device);
959 
960 /*
961  * Erase is an asynchronous operation.  Device drivers are supposed
962  * to call instr->callback() whenever the operation completes, even
963  * if it completes with a failure.
964  * Callers are supposed to pass a callback function and wait for it
965  * to be called before writing to the block.
966  */
967 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
968 {
969 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
970 		return -EINVAL;
971 	if (!(mtd->flags & MTD_WRITEABLE))
972 		return -EROFS;
973 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
974 	if (!instr->len) {
975 		instr->state = MTD_ERASE_DONE;
976 		mtd_erase_callback(instr);
977 		return 0;
978 	}
979 	ledtrig_mtd_activity();
980 	return mtd->_erase(mtd, instr);
981 }
982 EXPORT_SYMBOL_GPL(mtd_erase);
983 
984 /*
985  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
986  */
987 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
988 	      void **virt, resource_size_t *phys)
989 {
990 	*retlen = 0;
991 	*virt = NULL;
992 	if (phys)
993 		*phys = 0;
994 	if (!mtd->_point)
995 		return -EOPNOTSUPP;
996 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
997 		return -EINVAL;
998 	if (!len)
999 		return 0;
1000 	return mtd->_point(mtd, from, len, retlen, virt, phys);
1001 }
1002 EXPORT_SYMBOL_GPL(mtd_point);
1003 
1004 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1005 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1006 {
1007 	if (!mtd->_unpoint)
1008 		return -EOPNOTSUPP;
1009 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1010 		return -EINVAL;
1011 	if (!len)
1012 		return 0;
1013 	return mtd->_unpoint(mtd, from, len);
1014 }
1015 EXPORT_SYMBOL_GPL(mtd_unpoint);
1016 
1017 /*
1018  * Allow NOMMU mmap() to directly map the device (if not NULL)
1019  * - return the address to which the offset maps
1020  * - return -ENOSYS to indicate refusal to do the mapping
1021  */
1022 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1023 				    unsigned long offset, unsigned long flags)
1024 {
1025 	size_t retlen;
1026 	void *virt;
1027 	int ret;
1028 
1029 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1030 	if (ret)
1031 		return ret;
1032 	if (retlen != len) {
1033 		mtd_unpoint(mtd, offset, retlen);
1034 		return -ENOSYS;
1035 	}
1036 	return (unsigned long)virt;
1037 }
1038 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1039 
1040 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1041 	     u_char *buf)
1042 {
1043 	int ret_code;
1044 	*retlen = 0;
1045 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1046 		return -EINVAL;
1047 	if (!len)
1048 		return 0;
1049 
1050 	ledtrig_mtd_activity();
1051 	/*
1052 	 * In the absence of an error, drivers return a non-negative integer
1053 	 * representing the maximum number of bitflips that were corrected on
1054 	 * any one ecc region (if applicable; zero otherwise).
1055 	 */
1056 	ret_code = mtd->_read(mtd, from, len, retlen, buf);
1057 	if (unlikely(ret_code < 0))
1058 		return ret_code;
1059 	if (mtd->ecc_strength == 0)
1060 		return 0;	/* device lacks ecc */
1061 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1062 }
1063 EXPORT_SYMBOL_GPL(mtd_read);
1064 
1065 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1066 	      const u_char *buf)
1067 {
1068 	*retlen = 0;
1069 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1070 		return -EINVAL;
1071 	if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
1072 		return -EROFS;
1073 	if (!len)
1074 		return 0;
1075 	ledtrig_mtd_activity();
1076 	return mtd->_write(mtd, to, len, retlen, buf);
1077 }
1078 EXPORT_SYMBOL_GPL(mtd_write);
1079 
1080 /*
1081  * In blackbox flight recorder like scenarios we want to make successful writes
1082  * in interrupt context. panic_write() is only intended to be called when its
1083  * known the kernel is about to panic and we need the write to succeed. Since
1084  * the kernel is not going to be running for much longer, this function can
1085  * break locks and delay to ensure the write succeeds (but not sleep).
1086  */
1087 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1088 		    const u_char *buf)
1089 {
1090 	*retlen = 0;
1091 	if (!mtd->_panic_write)
1092 		return -EOPNOTSUPP;
1093 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1094 		return -EINVAL;
1095 	if (!(mtd->flags & MTD_WRITEABLE))
1096 		return -EROFS;
1097 	if (!len)
1098 		return 0;
1099 	return mtd->_panic_write(mtd, to, len, retlen, buf);
1100 }
1101 EXPORT_SYMBOL_GPL(mtd_panic_write);
1102 
1103 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1104 			     struct mtd_oob_ops *ops)
1105 {
1106 	/*
1107 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1108 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1109 	 *  this case.
1110 	 */
1111 	if (!ops->datbuf)
1112 		ops->len = 0;
1113 
1114 	if (!ops->oobbuf)
1115 		ops->ooblen = 0;
1116 
1117 	if (offs < 0 || offs + ops->len >= mtd->size)
1118 		return -EINVAL;
1119 
1120 	if (ops->ooblen) {
1121 		u64 maxooblen;
1122 
1123 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1124 			return -EINVAL;
1125 
1126 		maxooblen = ((mtd_div_by_ws(mtd->size, mtd) -
1127 			      mtd_div_by_ws(offs, mtd)) *
1128 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1129 		if (ops->ooblen > maxooblen)
1130 			return -EINVAL;
1131 	}
1132 
1133 	return 0;
1134 }
1135 
1136 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1137 {
1138 	int ret_code;
1139 	ops->retlen = ops->oobretlen = 0;
1140 	if (!mtd->_read_oob)
1141 		return -EOPNOTSUPP;
1142 
1143 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1144 	if (ret_code)
1145 		return ret_code;
1146 
1147 	ledtrig_mtd_activity();
1148 	/*
1149 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1150 	 * similar to mtd->_read(), returning a non-negative integer
1151 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1152 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1153 	 */
1154 	ret_code = mtd->_read_oob(mtd, from, ops);
1155 	if (unlikely(ret_code < 0))
1156 		return ret_code;
1157 	if (mtd->ecc_strength == 0)
1158 		return 0;	/* device lacks ecc */
1159 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1160 }
1161 EXPORT_SYMBOL_GPL(mtd_read_oob);
1162 
1163 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1164 				struct mtd_oob_ops *ops)
1165 {
1166 	int ret;
1167 
1168 	ops->retlen = ops->oobretlen = 0;
1169 	if (!mtd->_write_oob)
1170 		return -EOPNOTSUPP;
1171 	if (!(mtd->flags & MTD_WRITEABLE))
1172 		return -EROFS;
1173 
1174 	ret = mtd_check_oob_ops(mtd, to, ops);
1175 	if (ret)
1176 		return ret;
1177 
1178 	ledtrig_mtd_activity();
1179 	return mtd->_write_oob(mtd, to, ops);
1180 }
1181 EXPORT_SYMBOL_GPL(mtd_write_oob);
1182 
1183 /**
1184  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1185  * @mtd: MTD device structure
1186  * @section: ECC section. Depending on the layout you may have all the ECC
1187  *	     bytes stored in a single contiguous section, or one section
1188  *	     per ECC chunk (and sometime several sections for a single ECC
1189  *	     ECC chunk)
1190  * @oobecc: OOB region struct filled with the appropriate ECC position
1191  *	    information
1192  *
1193  * This function returns ECC section information in the OOB area. If you want
1194  * to get all the ECC bytes information, then you should call
1195  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1196  *
1197  * Returns zero on success, a negative error code otherwise.
1198  */
1199 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1200 		      struct mtd_oob_region *oobecc)
1201 {
1202 	memset(oobecc, 0, sizeof(*oobecc));
1203 
1204 	if (!mtd || section < 0)
1205 		return -EINVAL;
1206 
1207 	if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1208 		return -ENOTSUPP;
1209 
1210 	return mtd->ooblayout->ecc(mtd, section, oobecc);
1211 }
1212 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1213 
1214 /**
1215  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1216  *			section
1217  * @mtd: MTD device structure
1218  * @section: Free section you are interested in. Depending on the layout
1219  *	     you may have all the free bytes stored in a single contiguous
1220  *	     section, or one section per ECC chunk plus an extra section
1221  *	     for the remaining bytes (or other funky layout).
1222  * @oobfree: OOB region struct filled with the appropriate free position
1223  *	     information
1224  *
1225  * This function returns free bytes position in the OOB area. If you want
1226  * to get all the free bytes information, then you should call
1227  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1228  *
1229  * Returns zero on success, a negative error code otherwise.
1230  */
1231 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1232 		       struct mtd_oob_region *oobfree)
1233 {
1234 	memset(oobfree, 0, sizeof(*oobfree));
1235 
1236 	if (!mtd || section < 0)
1237 		return -EINVAL;
1238 
1239 	if (!mtd->ooblayout || !mtd->ooblayout->free)
1240 		return -ENOTSUPP;
1241 
1242 	return mtd->ooblayout->free(mtd, section, oobfree);
1243 }
1244 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1245 
1246 /**
1247  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1248  * @mtd: mtd info structure
1249  * @byte: the byte we are searching for
1250  * @sectionp: pointer where the section id will be stored
1251  * @oobregion: used to retrieve the ECC position
1252  * @iter: iterator function. Should be either mtd_ooblayout_free or
1253  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1254  *
1255  * This function returns the section id and oobregion information of a
1256  * specific byte. For example, say you want to know where the 4th ECC byte is
1257  * stored, you'll use:
1258  *
1259  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1260  *
1261  * Returns zero on success, a negative error code otherwise.
1262  */
1263 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1264 				int *sectionp, struct mtd_oob_region *oobregion,
1265 				int (*iter)(struct mtd_info *,
1266 					    int section,
1267 					    struct mtd_oob_region *oobregion))
1268 {
1269 	int pos = 0, ret, section = 0;
1270 
1271 	memset(oobregion, 0, sizeof(*oobregion));
1272 
1273 	while (1) {
1274 		ret = iter(mtd, section, oobregion);
1275 		if (ret)
1276 			return ret;
1277 
1278 		if (pos + oobregion->length > byte)
1279 			break;
1280 
1281 		pos += oobregion->length;
1282 		section++;
1283 	}
1284 
1285 	/*
1286 	 * Adjust region info to make it start at the beginning at the
1287 	 * 'start' ECC byte.
1288 	 */
1289 	oobregion->offset += byte - pos;
1290 	oobregion->length -= byte - pos;
1291 	*sectionp = section;
1292 
1293 	return 0;
1294 }
1295 
1296 /**
1297  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1298  *				  ECC byte
1299  * @mtd: mtd info structure
1300  * @eccbyte: the byte we are searching for
1301  * @sectionp: pointer where the section id will be stored
1302  * @oobregion: OOB region information
1303  *
1304  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1305  * byte.
1306  *
1307  * Returns zero on success, a negative error code otherwise.
1308  */
1309 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1310 				 int *section,
1311 				 struct mtd_oob_region *oobregion)
1312 {
1313 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1314 					 mtd_ooblayout_ecc);
1315 }
1316 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1317 
1318 /**
1319  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1320  * @mtd: mtd info structure
1321  * @buf: destination buffer to store OOB bytes
1322  * @oobbuf: OOB buffer
1323  * @start: first byte to retrieve
1324  * @nbytes: number of bytes to retrieve
1325  * @iter: section iterator
1326  *
1327  * Extract bytes attached to a specific category (ECC or free)
1328  * from the OOB buffer and copy them into buf.
1329  *
1330  * Returns zero on success, a negative error code otherwise.
1331  */
1332 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1333 				const u8 *oobbuf, int start, int nbytes,
1334 				int (*iter)(struct mtd_info *,
1335 					    int section,
1336 					    struct mtd_oob_region *oobregion))
1337 {
1338 	struct mtd_oob_region oobregion;
1339 	int section, ret;
1340 
1341 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1342 					&oobregion, iter);
1343 
1344 	while (!ret) {
1345 		int cnt;
1346 
1347 		cnt = min_t(int, nbytes, oobregion.length);
1348 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1349 		buf += cnt;
1350 		nbytes -= cnt;
1351 
1352 		if (!nbytes)
1353 			break;
1354 
1355 		ret = iter(mtd, ++section, &oobregion);
1356 	}
1357 
1358 	return ret;
1359 }
1360 
1361 /**
1362  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1363  * @mtd: mtd info structure
1364  * @buf: source buffer to get OOB bytes from
1365  * @oobbuf: OOB buffer
1366  * @start: first OOB byte to set
1367  * @nbytes: number of OOB bytes to set
1368  * @iter: section iterator
1369  *
1370  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1371  * is selected by passing the appropriate iterator.
1372  *
1373  * Returns zero on success, a negative error code otherwise.
1374  */
1375 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1376 				u8 *oobbuf, int start, int nbytes,
1377 				int (*iter)(struct mtd_info *,
1378 					    int section,
1379 					    struct mtd_oob_region *oobregion))
1380 {
1381 	struct mtd_oob_region oobregion;
1382 	int section, ret;
1383 
1384 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1385 					&oobregion, iter);
1386 
1387 	while (!ret) {
1388 		int cnt;
1389 
1390 		cnt = min_t(int, nbytes, oobregion.length);
1391 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1392 		buf += cnt;
1393 		nbytes -= cnt;
1394 
1395 		if (!nbytes)
1396 			break;
1397 
1398 		ret = iter(mtd, ++section, &oobregion);
1399 	}
1400 
1401 	return ret;
1402 }
1403 
1404 /**
1405  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1406  * @mtd: mtd info structure
1407  * @iter: category iterator
1408  *
1409  * Count the number of bytes in a given category.
1410  *
1411  * Returns a positive value on success, a negative error code otherwise.
1412  */
1413 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1414 				int (*iter)(struct mtd_info *,
1415 					    int section,
1416 					    struct mtd_oob_region *oobregion))
1417 {
1418 	struct mtd_oob_region oobregion;
1419 	int section = 0, ret, nbytes = 0;
1420 
1421 	while (1) {
1422 		ret = iter(mtd, section++, &oobregion);
1423 		if (ret) {
1424 			if (ret == -ERANGE)
1425 				ret = nbytes;
1426 			break;
1427 		}
1428 
1429 		nbytes += oobregion.length;
1430 	}
1431 
1432 	return ret;
1433 }
1434 
1435 /**
1436  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1437  * @mtd: mtd info structure
1438  * @eccbuf: destination buffer to store ECC bytes
1439  * @oobbuf: OOB buffer
1440  * @start: first ECC byte to retrieve
1441  * @nbytes: number of ECC bytes to retrieve
1442  *
1443  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1444  *
1445  * Returns zero on success, a negative error code otherwise.
1446  */
1447 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1448 			       const u8 *oobbuf, int start, int nbytes)
1449 {
1450 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1451 				       mtd_ooblayout_ecc);
1452 }
1453 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1454 
1455 /**
1456  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1457  * @mtd: mtd info structure
1458  * @eccbuf: source buffer to get ECC bytes from
1459  * @oobbuf: OOB buffer
1460  * @start: first ECC byte to set
1461  * @nbytes: number of ECC bytes to set
1462  *
1463  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1464  *
1465  * Returns zero on success, a negative error code otherwise.
1466  */
1467 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1468 			       u8 *oobbuf, int start, int nbytes)
1469 {
1470 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1471 				       mtd_ooblayout_ecc);
1472 }
1473 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1474 
1475 /**
1476  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1477  * @mtd: mtd info structure
1478  * @databuf: destination buffer to store ECC bytes
1479  * @oobbuf: OOB buffer
1480  * @start: first ECC byte to retrieve
1481  * @nbytes: number of ECC bytes to retrieve
1482  *
1483  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1484  *
1485  * Returns zero on success, a negative error code otherwise.
1486  */
1487 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1488 				const u8 *oobbuf, int start, int nbytes)
1489 {
1490 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1491 				       mtd_ooblayout_free);
1492 }
1493 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1494 
1495 /**
1496  * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
1497  * @mtd: mtd info structure
1498  * @eccbuf: source buffer to get data bytes from
1499  * @oobbuf: OOB buffer
1500  * @start: first ECC byte to set
1501  * @nbytes: number of ECC bytes to set
1502  *
1503  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1504  *
1505  * Returns zero on success, a negative error code otherwise.
1506  */
1507 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1508 				u8 *oobbuf, int start, int nbytes)
1509 {
1510 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1511 				       mtd_ooblayout_free);
1512 }
1513 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1514 
1515 /**
1516  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1517  * @mtd: mtd info structure
1518  *
1519  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1520  *
1521  * Returns zero on success, a negative error code otherwise.
1522  */
1523 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1524 {
1525 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1526 }
1527 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1528 
1529 /**
1530  * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
1531  * @mtd: mtd info structure
1532  *
1533  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1534  *
1535  * Returns zero on success, a negative error code otherwise.
1536  */
1537 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1538 {
1539 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1540 }
1541 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1542 
1543 /*
1544  * Method to access the protection register area, present in some flash
1545  * devices. The user data is one time programmable but the factory data is read
1546  * only.
1547  */
1548 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1549 			   struct otp_info *buf)
1550 {
1551 	if (!mtd->_get_fact_prot_info)
1552 		return -EOPNOTSUPP;
1553 	if (!len)
1554 		return 0;
1555 	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1556 }
1557 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1558 
1559 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1560 			   size_t *retlen, u_char *buf)
1561 {
1562 	*retlen = 0;
1563 	if (!mtd->_read_fact_prot_reg)
1564 		return -EOPNOTSUPP;
1565 	if (!len)
1566 		return 0;
1567 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1568 }
1569 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1570 
1571 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1572 			   struct otp_info *buf)
1573 {
1574 	if (!mtd->_get_user_prot_info)
1575 		return -EOPNOTSUPP;
1576 	if (!len)
1577 		return 0;
1578 	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1579 }
1580 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1581 
1582 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1583 			   size_t *retlen, u_char *buf)
1584 {
1585 	*retlen = 0;
1586 	if (!mtd->_read_user_prot_reg)
1587 		return -EOPNOTSUPP;
1588 	if (!len)
1589 		return 0;
1590 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1591 }
1592 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1593 
1594 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1595 			    size_t *retlen, u_char *buf)
1596 {
1597 	int ret;
1598 
1599 	*retlen = 0;
1600 	if (!mtd->_write_user_prot_reg)
1601 		return -EOPNOTSUPP;
1602 	if (!len)
1603 		return 0;
1604 	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1605 	if (ret)
1606 		return ret;
1607 
1608 	/*
1609 	 * If no data could be written at all, we are out of memory and
1610 	 * must return -ENOSPC.
1611 	 */
1612 	return (*retlen) ? 0 : -ENOSPC;
1613 }
1614 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1615 
1616 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1617 {
1618 	if (!mtd->_lock_user_prot_reg)
1619 		return -EOPNOTSUPP;
1620 	if (!len)
1621 		return 0;
1622 	return mtd->_lock_user_prot_reg(mtd, from, len);
1623 }
1624 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1625 
1626 /* Chip-supported device locking */
1627 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1628 {
1629 	if (!mtd->_lock)
1630 		return -EOPNOTSUPP;
1631 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1632 		return -EINVAL;
1633 	if (!len)
1634 		return 0;
1635 	return mtd->_lock(mtd, ofs, len);
1636 }
1637 EXPORT_SYMBOL_GPL(mtd_lock);
1638 
1639 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1640 {
1641 	if (!mtd->_unlock)
1642 		return -EOPNOTSUPP;
1643 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1644 		return -EINVAL;
1645 	if (!len)
1646 		return 0;
1647 	return mtd->_unlock(mtd, ofs, len);
1648 }
1649 EXPORT_SYMBOL_GPL(mtd_unlock);
1650 
1651 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1652 {
1653 	if (!mtd->_is_locked)
1654 		return -EOPNOTSUPP;
1655 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1656 		return -EINVAL;
1657 	if (!len)
1658 		return 0;
1659 	return mtd->_is_locked(mtd, ofs, len);
1660 }
1661 EXPORT_SYMBOL_GPL(mtd_is_locked);
1662 
1663 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1664 {
1665 	if (ofs < 0 || ofs >= mtd->size)
1666 		return -EINVAL;
1667 	if (!mtd->_block_isreserved)
1668 		return 0;
1669 	return mtd->_block_isreserved(mtd, ofs);
1670 }
1671 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1672 
1673 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1674 {
1675 	if (ofs < 0 || ofs >= mtd->size)
1676 		return -EINVAL;
1677 	if (!mtd->_block_isbad)
1678 		return 0;
1679 	return mtd->_block_isbad(mtd, ofs);
1680 }
1681 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1682 
1683 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1684 {
1685 	if (!mtd->_block_markbad)
1686 		return -EOPNOTSUPP;
1687 	if (ofs < 0 || ofs >= mtd->size)
1688 		return -EINVAL;
1689 	if (!(mtd->flags & MTD_WRITEABLE))
1690 		return -EROFS;
1691 	return mtd->_block_markbad(mtd, ofs);
1692 }
1693 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1694 
1695 /*
1696  * default_mtd_writev - the default writev method
1697  * @mtd: mtd device description object pointer
1698  * @vecs: the vectors to write
1699  * @count: count of vectors in @vecs
1700  * @to: the MTD device offset to write to
1701  * @retlen: on exit contains the count of bytes written to the MTD device.
1702  *
1703  * This function returns zero in case of success and a negative error code in
1704  * case of failure.
1705  */
1706 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1707 			      unsigned long count, loff_t to, size_t *retlen)
1708 {
1709 	unsigned long i;
1710 	size_t totlen = 0, thislen;
1711 	int ret = 0;
1712 
1713 	for (i = 0; i < count; i++) {
1714 		if (!vecs[i].iov_len)
1715 			continue;
1716 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1717 				vecs[i].iov_base);
1718 		totlen += thislen;
1719 		if (ret || thislen != vecs[i].iov_len)
1720 			break;
1721 		to += vecs[i].iov_len;
1722 	}
1723 	*retlen = totlen;
1724 	return ret;
1725 }
1726 
1727 /*
1728  * mtd_writev - the vector-based MTD write method
1729  * @mtd: mtd device description object pointer
1730  * @vecs: the vectors to write
1731  * @count: count of vectors in @vecs
1732  * @to: the MTD device offset to write to
1733  * @retlen: on exit contains the count of bytes written to the MTD device.
1734  *
1735  * This function returns zero in case of success and a negative error code in
1736  * case of failure.
1737  */
1738 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1739 	       unsigned long count, loff_t to, size_t *retlen)
1740 {
1741 	*retlen = 0;
1742 	if (!(mtd->flags & MTD_WRITEABLE))
1743 		return -EROFS;
1744 	if (!mtd->_writev)
1745 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1746 	return mtd->_writev(mtd, vecs, count, to, retlen);
1747 }
1748 EXPORT_SYMBOL_GPL(mtd_writev);
1749 
1750 /**
1751  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1752  * @mtd: mtd device description object pointer
1753  * @size: a pointer to the ideal or maximum size of the allocation, points
1754  *        to the actual allocation size on success.
1755  *
1756  * This routine attempts to allocate a contiguous kernel buffer up to
1757  * the specified size, backing off the size of the request exponentially
1758  * until the request succeeds or until the allocation size falls below
1759  * the system page size. This attempts to make sure it does not adversely
1760  * impact system performance, so when allocating more than one page, we
1761  * ask the memory allocator to avoid re-trying, swapping, writing back
1762  * or performing I/O.
1763  *
1764  * Note, this function also makes sure that the allocated buffer is aligned to
1765  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1766  *
1767  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1768  * to handle smaller (i.e. degraded) buffer allocations under low- or
1769  * fragmented-memory situations where such reduced allocations, from a
1770  * requested ideal, are allowed.
1771  *
1772  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1773  */
1774 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1775 {
1776 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1777 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1778 	void *kbuf;
1779 
1780 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1781 
1782 	while (*size > min_alloc) {
1783 		kbuf = kmalloc(*size, flags);
1784 		if (kbuf)
1785 			return kbuf;
1786 
1787 		*size >>= 1;
1788 		*size = ALIGN(*size, mtd->writesize);
1789 	}
1790 
1791 	/*
1792 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1793 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1794 	 */
1795 	return kmalloc(*size, GFP_KERNEL);
1796 }
1797 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1798 
1799 #ifdef CONFIG_PROC_FS
1800 
1801 /*====================================================================*/
1802 /* Support for /proc/mtd */
1803 
1804 static int mtd_proc_show(struct seq_file *m, void *v)
1805 {
1806 	struct mtd_info *mtd;
1807 
1808 	seq_puts(m, "dev:    size   erasesize  name\n");
1809 	mutex_lock(&mtd_table_mutex);
1810 	mtd_for_each_device(mtd) {
1811 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1812 			   mtd->index, (unsigned long long)mtd->size,
1813 			   mtd->erasesize, mtd->name);
1814 	}
1815 	mutex_unlock(&mtd_table_mutex);
1816 	return 0;
1817 }
1818 
1819 static int mtd_proc_open(struct inode *inode, struct file *file)
1820 {
1821 	return single_open(file, mtd_proc_show, NULL);
1822 }
1823 
1824 static const struct file_operations mtd_proc_ops = {
1825 	.open		= mtd_proc_open,
1826 	.read		= seq_read,
1827 	.llseek		= seq_lseek,
1828 	.release	= single_release,
1829 };
1830 #endif /* CONFIG_PROC_FS */
1831 
1832 /*====================================================================*/
1833 /* Init code */
1834 
1835 static struct backing_dev_info * __init mtd_bdi_init(char *name)
1836 {
1837 	struct backing_dev_info *bdi;
1838 	int ret;
1839 
1840 	bdi = bdi_alloc(GFP_KERNEL);
1841 	if (!bdi)
1842 		return ERR_PTR(-ENOMEM);
1843 
1844 	bdi->name = name;
1845 	/*
1846 	 * We put '-0' suffix to the name to get the same name format as we
1847 	 * used to get. Since this is called only once, we get a unique name.
1848 	 */
1849 	ret = bdi_register(bdi, "%.28s-0", name);
1850 	if (ret)
1851 		bdi_put(bdi);
1852 
1853 	return ret ? ERR_PTR(ret) : bdi;
1854 }
1855 
1856 static struct proc_dir_entry *proc_mtd;
1857 
1858 static int __init init_mtd(void)
1859 {
1860 	int ret;
1861 
1862 	ret = class_register(&mtd_class);
1863 	if (ret)
1864 		goto err_reg;
1865 
1866 	mtd_bdi = mtd_bdi_init("mtd");
1867 	if (IS_ERR(mtd_bdi)) {
1868 		ret = PTR_ERR(mtd_bdi);
1869 		goto err_bdi;
1870 	}
1871 
1872 	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1873 
1874 	ret = init_mtdchar();
1875 	if (ret)
1876 		goto out_procfs;
1877 
1878 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
1879 
1880 	return 0;
1881 
1882 out_procfs:
1883 	if (proc_mtd)
1884 		remove_proc_entry("mtd", NULL);
1885 	bdi_put(mtd_bdi);
1886 err_bdi:
1887 	class_unregister(&mtd_class);
1888 err_reg:
1889 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1890 	return ret;
1891 }
1892 
1893 static void __exit cleanup_mtd(void)
1894 {
1895 	debugfs_remove_recursive(dfs_dir_mtd);
1896 	cleanup_mtdchar();
1897 	if (proc_mtd)
1898 		remove_proc_entry("mtd", NULL);
1899 	class_unregister(&mtd_class);
1900 	bdi_put(mtd_bdi);
1901 	idr_destroy(&mtd_idr);
1902 }
1903 
1904 module_init(init_mtd);
1905 module_exit(cleanup_mtd);
1906 
1907 MODULE_LICENSE("GPL");
1908 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1909 MODULE_DESCRIPTION("Core MTD registration and access routines");
1910