xref: /openbmc/linux/drivers/mtd/mtdcore.c (revision 04eb94d526423ff082efce61f4f26b0369d0bfdd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/slab.h>
27 #include <linux/reboot.h>
28 #include <linux/leds.h>
29 #include <linux/debugfs.h>
30 #include <linux/nvmem-provider.h>
31 
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/partitions.h>
34 
35 #include "mtdcore.h"
36 
37 struct backing_dev_info *mtd_bdi;
38 
39 #ifdef CONFIG_PM_SLEEP
40 
41 static int mtd_cls_suspend(struct device *dev)
42 {
43 	struct mtd_info *mtd = dev_get_drvdata(dev);
44 
45 	return mtd ? mtd_suspend(mtd) : 0;
46 }
47 
48 static int mtd_cls_resume(struct device *dev)
49 {
50 	struct mtd_info *mtd = dev_get_drvdata(dev);
51 
52 	if (mtd)
53 		mtd_resume(mtd);
54 	return 0;
55 }
56 
57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59 #else
60 #define MTD_CLS_PM_OPS NULL
61 #endif
62 
63 static struct class mtd_class = {
64 	.name = "mtd",
65 	.owner = THIS_MODULE,
66 	.pm = MTD_CLS_PM_OPS,
67 };
68 
69 static DEFINE_IDR(mtd_idr);
70 
71 /* These are exported solely for the purpose of mtd_blkdevs.c. You
72    should not use them for _anything_ else */
73 DEFINE_MUTEX(mtd_table_mutex);
74 EXPORT_SYMBOL_GPL(mtd_table_mutex);
75 
76 struct mtd_info *__mtd_next_device(int i)
77 {
78 	return idr_get_next(&mtd_idr, &i);
79 }
80 EXPORT_SYMBOL_GPL(__mtd_next_device);
81 
82 static LIST_HEAD(mtd_notifiers);
83 
84 
85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
86 
87 /* REVISIT once MTD uses the driver model better, whoever allocates
88  * the mtd_info will probably want to use the release() hook...
89  */
90 static void mtd_release(struct device *dev)
91 {
92 	struct mtd_info *mtd = dev_get_drvdata(dev);
93 	dev_t index = MTD_DEVT(mtd->index);
94 
95 	/* remove /dev/mtdXro node */
96 	device_destroy(&mtd_class, index + 1);
97 }
98 
99 static ssize_t mtd_type_show(struct device *dev,
100 		struct device_attribute *attr, char *buf)
101 {
102 	struct mtd_info *mtd = dev_get_drvdata(dev);
103 	char *type;
104 
105 	switch (mtd->type) {
106 	case MTD_ABSENT:
107 		type = "absent";
108 		break;
109 	case MTD_RAM:
110 		type = "ram";
111 		break;
112 	case MTD_ROM:
113 		type = "rom";
114 		break;
115 	case MTD_NORFLASH:
116 		type = "nor";
117 		break;
118 	case MTD_NANDFLASH:
119 		type = "nand";
120 		break;
121 	case MTD_DATAFLASH:
122 		type = "dataflash";
123 		break;
124 	case MTD_UBIVOLUME:
125 		type = "ubi";
126 		break;
127 	case MTD_MLCNANDFLASH:
128 		type = "mlc-nand";
129 		break;
130 	default:
131 		type = "unknown";
132 	}
133 
134 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
135 }
136 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
137 
138 static ssize_t mtd_flags_show(struct device *dev,
139 		struct device_attribute *attr, char *buf)
140 {
141 	struct mtd_info *mtd = dev_get_drvdata(dev);
142 
143 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
144 }
145 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
146 
147 static ssize_t mtd_size_show(struct device *dev,
148 		struct device_attribute *attr, char *buf)
149 {
150 	struct mtd_info *mtd = dev_get_drvdata(dev);
151 
152 	return snprintf(buf, PAGE_SIZE, "%llu\n",
153 		(unsigned long long)mtd->size);
154 }
155 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
156 
157 static ssize_t mtd_erasesize_show(struct device *dev,
158 		struct device_attribute *attr, char *buf)
159 {
160 	struct mtd_info *mtd = dev_get_drvdata(dev);
161 
162 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
163 }
164 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
165 
166 static ssize_t mtd_writesize_show(struct device *dev,
167 		struct device_attribute *attr, char *buf)
168 {
169 	struct mtd_info *mtd = dev_get_drvdata(dev);
170 
171 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
172 }
173 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
174 
175 static ssize_t mtd_subpagesize_show(struct device *dev,
176 		struct device_attribute *attr, char *buf)
177 {
178 	struct mtd_info *mtd = dev_get_drvdata(dev);
179 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
180 
181 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
182 }
183 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
184 
185 static ssize_t mtd_oobsize_show(struct device *dev,
186 		struct device_attribute *attr, char *buf)
187 {
188 	struct mtd_info *mtd = dev_get_drvdata(dev);
189 
190 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
191 }
192 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
193 
194 static ssize_t mtd_oobavail_show(struct device *dev,
195 				 struct device_attribute *attr, char *buf)
196 {
197 	struct mtd_info *mtd = dev_get_drvdata(dev);
198 
199 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
200 }
201 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
202 
203 static ssize_t mtd_numeraseregions_show(struct device *dev,
204 		struct device_attribute *attr, char *buf)
205 {
206 	struct mtd_info *mtd = dev_get_drvdata(dev);
207 
208 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
209 }
210 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
211 	NULL);
212 
213 static ssize_t mtd_name_show(struct device *dev,
214 		struct device_attribute *attr, char *buf)
215 {
216 	struct mtd_info *mtd = dev_get_drvdata(dev);
217 
218 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
219 }
220 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
221 
222 static ssize_t mtd_ecc_strength_show(struct device *dev,
223 				     struct device_attribute *attr, char *buf)
224 {
225 	struct mtd_info *mtd = dev_get_drvdata(dev);
226 
227 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
228 }
229 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
230 
231 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
232 					  struct device_attribute *attr,
233 					  char *buf)
234 {
235 	struct mtd_info *mtd = dev_get_drvdata(dev);
236 
237 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
238 }
239 
240 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
241 					   struct device_attribute *attr,
242 					   const char *buf, size_t count)
243 {
244 	struct mtd_info *mtd = dev_get_drvdata(dev);
245 	unsigned int bitflip_threshold;
246 	int retval;
247 
248 	retval = kstrtouint(buf, 0, &bitflip_threshold);
249 	if (retval)
250 		return retval;
251 
252 	mtd->bitflip_threshold = bitflip_threshold;
253 	return count;
254 }
255 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
256 		   mtd_bitflip_threshold_show,
257 		   mtd_bitflip_threshold_store);
258 
259 static ssize_t mtd_ecc_step_size_show(struct device *dev,
260 		struct device_attribute *attr, char *buf)
261 {
262 	struct mtd_info *mtd = dev_get_drvdata(dev);
263 
264 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
265 
266 }
267 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
268 
269 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
270 		struct device_attribute *attr, char *buf)
271 {
272 	struct mtd_info *mtd = dev_get_drvdata(dev);
273 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
274 
275 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
276 }
277 static DEVICE_ATTR(corrected_bits, S_IRUGO,
278 		   mtd_ecc_stats_corrected_show, NULL);
279 
280 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
281 		struct device_attribute *attr, char *buf)
282 {
283 	struct mtd_info *mtd = dev_get_drvdata(dev);
284 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
285 
286 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
287 }
288 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
289 
290 static ssize_t mtd_badblocks_show(struct device *dev,
291 		struct device_attribute *attr, char *buf)
292 {
293 	struct mtd_info *mtd = dev_get_drvdata(dev);
294 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
295 
296 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
297 }
298 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
299 
300 static ssize_t mtd_bbtblocks_show(struct device *dev,
301 		struct device_attribute *attr, char *buf)
302 {
303 	struct mtd_info *mtd = dev_get_drvdata(dev);
304 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
305 
306 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
307 }
308 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
309 
310 static struct attribute *mtd_attrs[] = {
311 	&dev_attr_type.attr,
312 	&dev_attr_flags.attr,
313 	&dev_attr_size.attr,
314 	&dev_attr_erasesize.attr,
315 	&dev_attr_writesize.attr,
316 	&dev_attr_subpagesize.attr,
317 	&dev_attr_oobsize.attr,
318 	&dev_attr_oobavail.attr,
319 	&dev_attr_numeraseregions.attr,
320 	&dev_attr_name.attr,
321 	&dev_attr_ecc_strength.attr,
322 	&dev_attr_ecc_step_size.attr,
323 	&dev_attr_corrected_bits.attr,
324 	&dev_attr_ecc_failures.attr,
325 	&dev_attr_bad_blocks.attr,
326 	&dev_attr_bbt_blocks.attr,
327 	&dev_attr_bitflip_threshold.attr,
328 	NULL,
329 };
330 ATTRIBUTE_GROUPS(mtd);
331 
332 static const struct device_type mtd_devtype = {
333 	.name		= "mtd",
334 	.groups		= mtd_groups,
335 	.release	= mtd_release,
336 };
337 
338 #ifndef CONFIG_MMU
339 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
340 {
341 	switch (mtd->type) {
342 	case MTD_RAM:
343 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
344 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
345 	case MTD_ROM:
346 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
347 			NOMMU_MAP_READ;
348 	default:
349 		return NOMMU_MAP_COPY;
350 	}
351 }
352 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
353 #endif
354 
355 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
356 			       void *cmd)
357 {
358 	struct mtd_info *mtd;
359 
360 	mtd = container_of(n, struct mtd_info, reboot_notifier);
361 	mtd->_reboot(mtd);
362 
363 	return NOTIFY_DONE;
364 }
365 
366 /**
367  * mtd_wunit_to_pairing_info - get pairing information of a wunit
368  * @mtd: pointer to new MTD device info structure
369  * @wunit: write unit we are interested in
370  * @info: returned pairing information
371  *
372  * Retrieve pairing information associated to the wunit.
373  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
374  * paired together, and where programming a page may influence the page it is
375  * paired with.
376  * The notion of page is replaced by the term wunit (write-unit) to stay
377  * consistent with the ->writesize field.
378  *
379  * The @wunit argument can be extracted from an absolute offset using
380  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
381  * to @wunit.
382  *
383  * From the pairing info the MTD user can find all the wunits paired with
384  * @wunit using the following loop:
385  *
386  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
387  *	info.pair = i;
388  *	mtd_pairing_info_to_wunit(mtd, &info);
389  *	...
390  * }
391  */
392 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
393 			      struct mtd_pairing_info *info)
394 {
395 	int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
396 
397 	if (wunit < 0 || wunit >= npairs)
398 		return -EINVAL;
399 
400 	if (mtd->pairing && mtd->pairing->get_info)
401 		return mtd->pairing->get_info(mtd, wunit, info);
402 
403 	info->group = 0;
404 	info->pair = wunit;
405 
406 	return 0;
407 }
408 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
409 
410 /**
411  * mtd_pairing_info_to_wunit - get wunit from pairing information
412  * @mtd: pointer to new MTD device info structure
413  * @info: pairing information struct
414  *
415  * Returns a positive number representing the wunit associated to the info
416  * struct, or a negative error code.
417  *
418  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
419  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
420  * doc).
421  *
422  * It can also be used to only program the first page of each pair (i.e.
423  * page attached to group 0), which allows one to use an MLC NAND in
424  * software-emulated SLC mode:
425  *
426  * info.group = 0;
427  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
428  * for (info.pair = 0; info.pair < npairs; info.pair++) {
429  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
430  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
431  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
432  * }
433  */
434 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
435 			      const struct mtd_pairing_info *info)
436 {
437 	int ngroups = mtd_pairing_groups(mtd);
438 	int npairs = mtd_wunit_per_eb(mtd) / ngroups;
439 
440 	if (!info || info->pair < 0 || info->pair >= npairs ||
441 	    info->group < 0 || info->group >= ngroups)
442 		return -EINVAL;
443 
444 	if (mtd->pairing && mtd->pairing->get_wunit)
445 		return mtd->pairing->get_wunit(mtd, info);
446 
447 	return info->pair;
448 }
449 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
450 
451 /**
452  * mtd_pairing_groups - get the number of pairing groups
453  * @mtd: pointer to new MTD device info structure
454  *
455  * Returns the number of pairing groups.
456  *
457  * This number is usually equal to the number of bits exposed by a single
458  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
459  * to iterate over all pages of a given pair.
460  */
461 int mtd_pairing_groups(struct mtd_info *mtd)
462 {
463 	if (!mtd->pairing || !mtd->pairing->ngroups)
464 		return 1;
465 
466 	return mtd->pairing->ngroups;
467 }
468 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
469 
470 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
471 			      void *val, size_t bytes)
472 {
473 	struct mtd_info *mtd = priv;
474 	size_t retlen;
475 	int err;
476 
477 	err = mtd_read(mtd, offset, bytes, &retlen, val);
478 	if (err && err != -EUCLEAN)
479 		return err;
480 
481 	return retlen == bytes ? 0 : -EIO;
482 }
483 
484 static int mtd_nvmem_add(struct mtd_info *mtd)
485 {
486 	struct nvmem_config config = {};
487 
488 	config.id = -1;
489 	config.dev = &mtd->dev;
490 	config.name = mtd->name;
491 	config.owner = THIS_MODULE;
492 	config.reg_read = mtd_nvmem_reg_read;
493 	config.size = mtd->size;
494 	config.word_size = 1;
495 	config.stride = 1;
496 	config.read_only = true;
497 	config.root_only = true;
498 	config.no_of_node = true;
499 	config.priv = mtd;
500 
501 	mtd->nvmem = nvmem_register(&config);
502 	if (IS_ERR(mtd->nvmem)) {
503 		/* Just ignore if there is no NVMEM support in the kernel */
504 		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
505 			mtd->nvmem = NULL;
506 		} else {
507 			dev_err(&mtd->dev, "Failed to register NVMEM device\n");
508 			return PTR_ERR(mtd->nvmem);
509 		}
510 	}
511 
512 	return 0;
513 }
514 
515 static struct dentry *dfs_dir_mtd;
516 
517 /**
518  *	add_mtd_device - register an MTD device
519  *	@mtd: pointer to new MTD device info structure
520  *
521  *	Add a device to the list of MTD devices present in the system, and
522  *	notify each currently active MTD 'user' of its arrival. Returns
523  *	zero on success or non-zero on failure.
524  */
525 
526 int add_mtd_device(struct mtd_info *mtd)
527 {
528 	struct mtd_notifier *not;
529 	int i, error;
530 
531 	/*
532 	 * May occur, for instance, on buggy drivers which call
533 	 * mtd_device_parse_register() multiple times on the same master MTD,
534 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
535 	 */
536 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
537 		return -EEXIST;
538 
539 	BUG_ON(mtd->writesize == 0);
540 
541 	/*
542 	 * MTD drivers should implement ->_{write,read}() or
543 	 * ->_{write,read}_oob(), but not both.
544 	 */
545 	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
546 		    (mtd->_read && mtd->_read_oob)))
547 		return -EINVAL;
548 
549 	if (WARN_ON((!mtd->erasesize || !mtd->_erase) &&
550 		    !(mtd->flags & MTD_NO_ERASE)))
551 		return -EINVAL;
552 
553 	mutex_lock(&mtd_table_mutex);
554 
555 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
556 	if (i < 0) {
557 		error = i;
558 		goto fail_locked;
559 	}
560 
561 	mtd->index = i;
562 	mtd->usecount = 0;
563 
564 	/* default value if not set by driver */
565 	if (mtd->bitflip_threshold == 0)
566 		mtd->bitflip_threshold = mtd->ecc_strength;
567 
568 	if (is_power_of_2(mtd->erasesize))
569 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
570 	else
571 		mtd->erasesize_shift = 0;
572 
573 	if (is_power_of_2(mtd->writesize))
574 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
575 	else
576 		mtd->writesize_shift = 0;
577 
578 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
579 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
580 
581 	/* Some chips always power up locked. Unlock them now */
582 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
583 		error = mtd_unlock(mtd, 0, mtd->size);
584 		if (error && error != -EOPNOTSUPP)
585 			printk(KERN_WARNING
586 			       "%s: unlock failed, writes may not work\n",
587 			       mtd->name);
588 		/* Ignore unlock failures? */
589 		error = 0;
590 	}
591 
592 	/* Caller should have set dev.parent to match the
593 	 * physical device, if appropriate.
594 	 */
595 	mtd->dev.type = &mtd_devtype;
596 	mtd->dev.class = &mtd_class;
597 	mtd->dev.devt = MTD_DEVT(i);
598 	dev_set_name(&mtd->dev, "mtd%d", i);
599 	dev_set_drvdata(&mtd->dev, mtd);
600 	of_node_get(mtd_get_of_node(mtd));
601 	error = device_register(&mtd->dev);
602 	if (error)
603 		goto fail_added;
604 
605 	/* Add the nvmem provider */
606 	error = mtd_nvmem_add(mtd);
607 	if (error)
608 		goto fail_nvmem_add;
609 
610 	if (!IS_ERR_OR_NULL(dfs_dir_mtd)) {
611 		mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd);
612 		if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) {
613 			pr_debug("mtd device %s won't show data in debugfs\n",
614 				 dev_name(&mtd->dev));
615 		}
616 	}
617 
618 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
619 		      "mtd%dro", i);
620 
621 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
622 	/* No need to get a refcount on the module containing
623 	   the notifier, since we hold the mtd_table_mutex */
624 	list_for_each_entry(not, &mtd_notifiers, list)
625 		not->add(mtd);
626 
627 	mutex_unlock(&mtd_table_mutex);
628 	/* We _know_ we aren't being removed, because
629 	   our caller is still holding us here. So none
630 	   of this try_ nonsense, and no bitching about it
631 	   either. :) */
632 	__module_get(THIS_MODULE);
633 	return 0;
634 
635 fail_nvmem_add:
636 	device_unregister(&mtd->dev);
637 fail_added:
638 	of_node_put(mtd_get_of_node(mtd));
639 	idr_remove(&mtd_idr, i);
640 fail_locked:
641 	mutex_unlock(&mtd_table_mutex);
642 	return error;
643 }
644 
645 /**
646  *	del_mtd_device - unregister an MTD device
647  *	@mtd: pointer to MTD device info structure
648  *
649  *	Remove a device from the list of MTD devices present in the system,
650  *	and notify each currently active MTD 'user' of its departure.
651  *	Returns zero on success or 1 on failure, which currently will happen
652  *	if the requested device does not appear to be present in the list.
653  */
654 
655 int del_mtd_device(struct mtd_info *mtd)
656 {
657 	int ret;
658 	struct mtd_notifier *not;
659 
660 	mutex_lock(&mtd_table_mutex);
661 
662 	debugfs_remove_recursive(mtd->dbg.dfs_dir);
663 
664 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
665 		ret = -ENODEV;
666 		goto out_error;
667 	}
668 
669 	/* No need to get a refcount on the module containing
670 		the notifier, since we hold the mtd_table_mutex */
671 	list_for_each_entry(not, &mtd_notifiers, list)
672 		not->remove(mtd);
673 
674 	if (mtd->usecount) {
675 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
676 		       mtd->index, mtd->name, mtd->usecount);
677 		ret = -EBUSY;
678 	} else {
679 		/* Try to remove the NVMEM provider */
680 		if (mtd->nvmem)
681 			nvmem_unregister(mtd->nvmem);
682 
683 		device_unregister(&mtd->dev);
684 
685 		idr_remove(&mtd_idr, mtd->index);
686 		of_node_put(mtd_get_of_node(mtd));
687 
688 		module_put(THIS_MODULE);
689 		ret = 0;
690 	}
691 
692 out_error:
693 	mutex_unlock(&mtd_table_mutex);
694 	return ret;
695 }
696 
697 /*
698  * Set a few defaults based on the parent devices, if not provided by the
699  * driver
700  */
701 static void mtd_set_dev_defaults(struct mtd_info *mtd)
702 {
703 	if (mtd->dev.parent) {
704 		if (!mtd->owner && mtd->dev.parent->driver)
705 			mtd->owner = mtd->dev.parent->driver->owner;
706 		if (!mtd->name)
707 			mtd->name = dev_name(mtd->dev.parent);
708 	} else {
709 		pr_debug("mtd device won't show a device symlink in sysfs\n");
710 	}
711 
712 	mtd->orig_flags = mtd->flags;
713 }
714 
715 /**
716  * mtd_device_parse_register - parse partitions and register an MTD device.
717  *
718  * @mtd: the MTD device to register
719  * @types: the list of MTD partition probes to try, see
720  *         'parse_mtd_partitions()' for more information
721  * @parser_data: MTD partition parser-specific data
722  * @parts: fallback partition information to register, if parsing fails;
723  *         only valid if %nr_parts > %0
724  * @nr_parts: the number of partitions in parts, if zero then the full
725  *            MTD device is registered if no partition info is found
726  *
727  * This function aggregates MTD partitions parsing (done by
728  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
729  * basically follows the most common pattern found in many MTD drivers:
730  *
731  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
732  *   registered first.
733  * * Then It tries to probe partitions on MTD device @mtd using parsers
734  *   specified in @types (if @types is %NULL, then the default list of parsers
735  *   is used, see 'parse_mtd_partitions()' for more information). If none are
736  *   found this functions tries to fallback to information specified in
737  *   @parts/@nr_parts.
738  * * If no partitions were found this function just registers the MTD device
739  *   @mtd and exits.
740  *
741  * Returns zero in case of success and a negative error code in case of failure.
742  */
743 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
744 			      struct mtd_part_parser_data *parser_data,
745 			      const struct mtd_partition *parts,
746 			      int nr_parts)
747 {
748 	int ret;
749 
750 	mtd_set_dev_defaults(mtd);
751 
752 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
753 		ret = add_mtd_device(mtd);
754 		if (ret)
755 			return ret;
756 	}
757 
758 	/* Prefer parsed partitions over driver-provided fallback */
759 	ret = parse_mtd_partitions(mtd, types, parser_data);
760 	if (ret > 0)
761 		ret = 0;
762 	else if (nr_parts)
763 		ret = add_mtd_partitions(mtd, parts, nr_parts);
764 	else if (!device_is_registered(&mtd->dev))
765 		ret = add_mtd_device(mtd);
766 	else
767 		ret = 0;
768 
769 	if (ret)
770 		goto out;
771 
772 	/*
773 	 * FIXME: some drivers unfortunately call this function more than once.
774 	 * So we have to check if we've already assigned the reboot notifier.
775 	 *
776 	 * Generally, we can make multiple calls work for most cases, but it
777 	 * does cause problems with parse_mtd_partitions() above (e.g.,
778 	 * cmdlineparts will register partitions more than once).
779 	 */
780 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
781 		  "MTD already registered\n");
782 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
783 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
784 		register_reboot_notifier(&mtd->reboot_notifier);
785 	}
786 
787 out:
788 	if (ret && device_is_registered(&mtd->dev))
789 		del_mtd_device(mtd);
790 
791 	return ret;
792 }
793 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
794 
795 /**
796  * mtd_device_unregister - unregister an existing MTD device.
797  *
798  * @master: the MTD device to unregister.  This will unregister both the master
799  *          and any partitions if registered.
800  */
801 int mtd_device_unregister(struct mtd_info *master)
802 {
803 	int err;
804 
805 	if (master->_reboot)
806 		unregister_reboot_notifier(&master->reboot_notifier);
807 
808 	err = del_mtd_partitions(master);
809 	if (err)
810 		return err;
811 
812 	if (!device_is_registered(&master->dev))
813 		return 0;
814 
815 	return del_mtd_device(master);
816 }
817 EXPORT_SYMBOL_GPL(mtd_device_unregister);
818 
819 /**
820  *	register_mtd_user - register a 'user' of MTD devices.
821  *	@new: pointer to notifier info structure
822  *
823  *	Registers a pair of callbacks function to be called upon addition
824  *	or removal of MTD devices. Causes the 'add' callback to be immediately
825  *	invoked for each MTD device currently present in the system.
826  */
827 void register_mtd_user (struct mtd_notifier *new)
828 {
829 	struct mtd_info *mtd;
830 
831 	mutex_lock(&mtd_table_mutex);
832 
833 	list_add(&new->list, &mtd_notifiers);
834 
835 	__module_get(THIS_MODULE);
836 
837 	mtd_for_each_device(mtd)
838 		new->add(mtd);
839 
840 	mutex_unlock(&mtd_table_mutex);
841 }
842 EXPORT_SYMBOL_GPL(register_mtd_user);
843 
844 /**
845  *	unregister_mtd_user - unregister a 'user' of MTD devices.
846  *	@old: pointer to notifier info structure
847  *
848  *	Removes a callback function pair from the list of 'users' to be
849  *	notified upon addition or removal of MTD devices. Causes the
850  *	'remove' callback to be immediately invoked for each MTD device
851  *	currently present in the system.
852  */
853 int unregister_mtd_user (struct mtd_notifier *old)
854 {
855 	struct mtd_info *mtd;
856 
857 	mutex_lock(&mtd_table_mutex);
858 
859 	module_put(THIS_MODULE);
860 
861 	mtd_for_each_device(mtd)
862 		old->remove(mtd);
863 
864 	list_del(&old->list);
865 	mutex_unlock(&mtd_table_mutex);
866 	return 0;
867 }
868 EXPORT_SYMBOL_GPL(unregister_mtd_user);
869 
870 /**
871  *	get_mtd_device - obtain a validated handle for an MTD device
872  *	@mtd: last known address of the required MTD device
873  *	@num: internal device number of the required MTD device
874  *
875  *	Given a number and NULL address, return the num'th entry in the device
876  *	table, if any.	Given an address and num == -1, search the device table
877  *	for a device with that address and return if it's still present. Given
878  *	both, return the num'th driver only if its address matches. Return
879  *	error code if not.
880  */
881 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
882 {
883 	struct mtd_info *ret = NULL, *other;
884 	int err = -ENODEV;
885 
886 	mutex_lock(&mtd_table_mutex);
887 
888 	if (num == -1) {
889 		mtd_for_each_device(other) {
890 			if (other == mtd) {
891 				ret = mtd;
892 				break;
893 			}
894 		}
895 	} else if (num >= 0) {
896 		ret = idr_find(&mtd_idr, num);
897 		if (mtd && mtd != ret)
898 			ret = NULL;
899 	}
900 
901 	if (!ret) {
902 		ret = ERR_PTR(err);
903 		goto out;
904 	}
905 
906 	err = __get_mtd_device(ret);
907 	if (err)
908 		ret = ERR_PTR(err);
909 out:
910 	mutex_unlock(&mtd_table_mutex);
911 	return ret;
912 }
913 EXPORT_SYMBOL_GPL(get_mtd_device);
914 
915 
916 int __get_mtd_device(struct mtd_info *mtd)
917 {
918 	int err;
919 
920 	if (!try_module_get(mtd->owner))
921 		return -ENODEV;
922 
923 	if (mtd->_get_device) {
924 		err = mtd->_get_device(mtd);
925 
926 		if (err) {
927 			module_put(mtd->owner);
928 			return err;
929 		}
930 	}
931 	mtd->usecount++;
932 	return 0;
933 }
934 EXPORT_SYMBOL_GPL(__get_mtd_device);
935 
936 /**
937  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
938  *	device name
939  *	@name: MTD device name to open
940  *
941  * 	This function returns MTD device description structure in case of
942  * 	success and an error code in case of failure.
943  */
944 struct mtd_info *get_mtd_device_nm(const char *name)
945 {
946 	int err = -ENODEV;
947 	struct mtd_info *mtd = NULL, *other;
948 
949 	mutex_lock(&mtd_table_mutex);
950 
951 	mtd_for_each_device(other) {
952 		if (!strcmp(name, other->name)) {
953 			mtd = other;
954 			break;
955 		}
956 	}
957 
958 	if (!mtd)
959 		goto out_unlock;
960 
961 	err = __get_mtd_device(mtd);
962 	if (err)
963 		goto out_unlock;
964 
965 	mutex_unlock(&mtd_table_mutex);
966 	return mtd;
967 
968 out_unlock:
969 	mutex_unlock(&mtd_table_mutex);
970 	return ERR_PTR(err);
971 }
972 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
973 
974 void put_mtd_device(struct mtd_info *mtd)
975 {
976 	mutex_lock(&mtd_table_mutex);
977 	__put_mtd_device(mtd);
978 	mutex_unlock(&mtd_table_mutex);
979 
980 }
981 EXPORT_SYMBOL_GPL(put_mtd_device);
982 
983 void __put_mtd_device(struct mtd_info *mtd)
984 {
985 	--mtd->usecount;
986 	BUG_ON(mtd->usecount < 0);
987 
988 	if (mtd->_put_device)
989 		mtd->_put_device(mtd);
990 
991 	module_put(mtd->owner);
992 }
993 EXPORT_SYMBOL_GPL(__put_mtd_device);
994 
995 /*
996  * Erase is an synchronous operation. Device drivers are epected to return a
997  * negative error code if the operation failed and update instr->fail_addr
998  * to point the portion that was not properly erased.
999  */
1000 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1001 {
1002 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1003 
1004 	if (!mtd->erasesize || !mtd->_erase)
1005 		return -ENOTSUPP;
1006 
1007 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1008 		return -EINVAL;
1009 	if (!(mtd->flags & MTD_WRITEABLE))
1010 		return -EROFS;
1011 
1012 	if (!instr->len)
1013 		return 0;
1014 
1015 	ledtrig_mtd_activity();
1016 	return mtd->_erase(mtd, instr);
1017 }
1018 EXPORT_SYMBOL_GPL(mtd_erase);
1019 
1020 /*
1021  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1022  */
1023 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1024 	      void **virt, resource_size_t *phys)
1025 {
1026 	*retlen = 0;
1027 	*virt = NULL;
1028 	if (phys)
1029 		*phys = 0;
1030 	if (!mtd->_point)
1031 		return -EOPNOTSUPP;
1032 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1033 		return -EINVAL;
1034 	if (!len)
1035 		return 0;
1036 	return mtd->_point(mtd, from, len, retlen, virt, phys);
1037 }
1038 EXPORT_SYMBOL_GPL(mtd_point);
1039 
1040 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1041 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1042 {
1043 	if (!mtd->_unpoint)
1044 		return -EOPNOTSUPP;
1045 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1046 		return -EINVAL;
1047 	if (!len)
1048 		return 0;
1049 	return mtd->_unpoint(mtd, from, len);
1050 }
1051 EXPORT_SYMBOL_GPL(mtd_unpoint);
1052 
1053 /*
1054  * Allow NOMMU mmap() to directly map the device (if not NULL)
1055  * - return the address to which the offset maps
1056  * - return -ENOSYS to indicate refusal to do the mapping
1057  */
1058 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1059 				    unsigned long offset, unsigned long flags)
1060 {
1061 	size_t retlen;
1062 	void *virt;
1063 	int ret;
1064 
1065 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1066 	if (ret)
1067 		return ret;
1068 	if (retlen != len) {
1069 		mtd_unpoint(mtd, offset, retlen);
1070 		return -ENOSYS;
1071 	}
1072 	return (unsigned long)virt;
1073 }
1074 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1075 
1076 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1077 	     u_char *buf)
1078 {
1079 	struct mtd_oob_ops ops = {
1080 		.len = len,
1081 		.datbuf = buf,
1082 	};
1083 	int ret;
1084 
1085 	ret = mtd_read_oob(mtd, from, &ops);
1086 	*retlen = ops.retlen;
1087 
1088 	return ret;
1089 }
1090 EXPORT_SYMBOL_GPL(mtd_read);
1091 
1092 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1093 	      const u_char *buf)
1094 {
1095 	struct mtd_oob_ops ops = {
1096 		.len = len,
1097 		.datbuf = (u8 *)buf,
1098 	};
1099 	int ret;
1100 
1101 	ret = mtd_write_oob(mtd, to, &ops);
1102 	*retlen = ops.retlen;
1103 
1104 	return ret;
1105 }
1106 EXPORT_SYMBOL_GPL(mtd_write);
1107 
1108 /*
1109  * In blackbox flight recorder like scenarios we want to make successful writes
1110  * in interrupt context. panic_write() is only intended to be called when its
1111  * known the kernel is about to panic and we need the write to succeed. Since
1112  * the kernel is not going to be running for much longer, this function can
1113  * break locks and delay to ensure the write succeeds (but not sleep).
1114  */
1115 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1116 		    const u_char *buf)
1117 {
1118 	*retlen = 0;
1119 	if (!mtd->_panic_write)
1120 		return -EOPNOTSUPP;
1121 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1122 		return -EINVAL;
1123 	if (!(mtd->flags & MTD_WRITEABLE))
1124 		return -EROFS;
1125 	if (!len)
1126 		return 0;
1127 	if (!mtd->oops_panic_write)
1128 		mtd->oops_panic_write = true;
1129 
1130 	return mtd->_panic_write(mtd, to, len, retlen, buf);
1131 }
1132 EXPORT_SYMBOL_GPL(mtd_panic_write);
1133 
1134 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1135 			     struct mtd_oob_ops *ops)
1136 {
1137 	/*
1138 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1139 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1140 	 *  this case.
1141 	 */
1142 	if (!ops->datbuf)
1143 		ops->len = 0;
1144 
1145 	if (!ops->oobbuf)
1146 		ops->ooblen = 0;
1147 
1148 	if (offs < 0 || offs + ops->len > mtd->size)
1149 		return -EINVAL;
1150 
1151 	if (ops->ooblen) {
1152 		size_t maxooblen;
1153 
1154 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1155 			return -EINVAL;
1156 
1157 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1158 				      mtd_div_by_ws(offs, mtd)) *
1159 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1160 		if (ops->ooblen > maxooblen)
1161 			return -EINVAL;
1162 	}
1163 
1164 	return 0;
1165 }
1166 
1167 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1168 {
1169 	int ret_code;
1170 	ops->retlen = ops->oobretlen = 0;
1171 
1172 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1173 	if (ret_code)
1174 		return ret_code;
1175 
1176 	ledtrig_mtd_activity();
1177 
1178 	/* Check the validity of a potential fallback on mtd->_read */
1179 	if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf))
1180 		return -EOPNOTSUPP;
1181 
1182 	if (mtd->_read_oob)
1183 		ret_code = mtd->_read_oob(mtd, from, ops);
1184 	else
1185 		ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen,
1186 				      ops->datbuf);
1187 
1188 	/*
1189 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1190 	 * similar to mtd->_read(), returning a non-negative integer
1191 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1192 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1193 	 */
1194 	if (unlikely(ret_code < 0))
1195 		return ret_code;
1196 	if (mtd->ecc_strength == 0)
1197 		return 0;	/* device lacks ecc */
1198 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1199 }
1200 EXPORT_SYMBOL_GPL(mtd_read_oob);
1201 
1202 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1203 				struct mtd_oob_ops *ops)
1204 {
1205 	int ret;
1206 
1207 	ops->retlen = ops->oobretlen = 0;
1208 
1209 	if (!(mtd->flags & MTD_WRITEABLE))
1210 		return -EROFS;
1211 
1212 	ret = mtd_check_oob_ops(mtd, to, ops);
1213 	if (ret)
1214 		return ret;
1215 
1216 	ledtrig_mtd_activity();
1217 
1218 	/* Check the validity of a potential fallback on mtd->_write */
1219 	if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf))
1220 		return -EOPNOTSUPP;
1221 
1222 	if (mtd->_write_oob)
1223 		return mtd->_write_oob(mtd, to, ops);
1224 	else
1225 		return mtd->_write(mtd, to, ops->len, &ops->retlen,
1226 				   ops->datbuf);
1227 }
1228 EXPORT_SYMBOL_GPL(mtd_write_oob);
1229 
1230 /**
1231  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1232  * @mtd: MTD device structure
1233  * @section: ECC section. Depending on the layout you may have all the ECC
1234  *	     bytes stored in a single contiguous section, or one section
1235  *	     per ECC chunk (and sometime several sections for a single ECC
1236  *	     ECC chunk)
1237  * @oobecc: OOB region struct filled with the appropriate ECC position
1238  *	    information
1239  *
1240  * This function returns ECC section information in the OOB area. If you want
1241  * to get all the ECC bytes information, then you should call
1242  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1243  *
1244  * Returns zero on success, a negative error code otherwise.
1245  */
1246 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1247 		      struct mtd_oob_region *oobecc)
1248 {
1249 	memset(oobecc, 0, sizeof(*oobecc));
1250 
1251 	if (!mtd || section < 0)
1252 		return -EINVAL;
1253 
1254 	if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1255 		return -ENOTSUPP;
1256 
1257 	return mtd->ooblayout->ecc(mtd, section, oobecc);
1258 }
1259 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1260 
1261 /**
1262  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1263  *			section
1264  * @mtd: MTD device structure
1265  * @section: Free section you are interested in. Depending on the layout
1266  *	     you may have all the free bytes stored in a single contiguous
1267  *	     section, or one section per ECC chunk plus an extra section
1268  *	     for the remaining bytes (or other funky layout).
1269  * @oobfree: OOB region struct filled with the appropriate free position
1270  *	     information
1271  *
1272  * This function returns free bytes position in the OOB area. If you want
1273  * to get all the free bytes information, then you should call
1274  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1275  *
1276  * Returns zero on success, a negative error code otherwise.
1277  */
1278 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1279 		       struct mtd_oob_region *oobfree)
1280 {
1281 	memset(oobfree, 0, sizeof(*oobfree));
1282 
1283 	if (!mtd || section < 0)
1284 		return -EINVAL;
1285 
1286 	if (!mtd->ooblayout || !mtd->ooblayout->free)
1287 		return -ENOTSUPP;
1288 
1289 	return mtd->ooblayout->free(mtd, section, oobfree);
1290 }
1291 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1292 
1293 /**
1294  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1295  * @mtd: mtd info structure
1296  * @byte: the byte we are searching for
1297  * @sectionp: pointer where the section id will be stored
1298  * @oobregion: used to retrieve the ECC position
1299  * @iter: iterator function. Should be either mtd_ooblayout_free or
1300  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1301  *
1302  * This function returns the section id and oobregion information of a
1303  * specific byte. For example, say you want to know where the 4th ECC byte is
1304  * stored, you'll use:
1305  *
1306  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1307  *
1308  * Returns zero on success, a negative error code otherwise.
1309  */
1310 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1311 				int *sectionp, struct mtd_oob_region *oobregion,
1312 				int (*iter)(struct mtd_info *,
1313 					    int section,
1314 					    struct mtd_oob_region *oobregion))
1315 {
1316 	int pos = 0, ret, section = 0;
1317 
1318 	memset(oobregion, 0, sizeof(*oobregion));
1319 
1320 	while (1) {
1321 		ret = iter(mtd, section, oobregion);
1322 		if (ret)
1323 			return ret;
1324 
1325 		if (pos + oobregion->length > byte)
1326 			break;
1327 
1328 		pos += oobregion->length;
1329 		section++;
1330 	}
1331 
1332 	/*
1333 	 * Adjust region info to make it start at the beginning at the
1334 	 * 'start' ECC byte.
1335 	 */
1336 	oobregion->offset += byte - pos;
1337 	oobregion->length -= byte - pos;
1338 	*sectionp = section;
1339 
1340 	return 0;
1341 }
1342 
1343 /**
1344  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1345  *				  ECC byte
1346  * @mtd: mtd info structure
1347  * @eccbyte: the byte we are searching for
1348  * @sectionp: pointer where the section id will be stored
1349  * @oobregion: OOB region information
1350  *
1351  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1352  * byte.
1353  *
1354  * Returns zero on success, a negative error code otherwise.
1355  */
1356 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1357 				 int *section,
1358 				 struct mtd_oob_region *oobregion)
1359 {
1360 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1361 					 mtd_ooblayout_ecc);
1362 }
1363 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1364 
1365 /**
1366  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1367  * @mtd: mtd info structure
1368  * @buf: destination buffer to store OOB bytes
1369  * @oobbuf: OOB buffer
1370  * @start: first byte to retrieve
1371  * @nbytes: number of bytes to retrieve
1372  * @iter: section iterator
1373  *
1374  * Extract bytes attached to a specific category (ECC or free)
1375  * from the OOB buffer and copy them into buf.
1376  *
1377  * Returns zero on success, a negative error code otherwise.
1378  */
1379 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1380 				const u8 *oobbuf, int start, int nbytes,
1381 				int (*iter)(struct mtd_info *,
1382 					    int section,
1383 					    struct mtd_oob_region *oobregion))
1384 {
1385 	struct mtd_oob_region oobregion;
1386 	int section, ret;
1387 
1388 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1389 					&oobregion, iter);
1390 
1391 	while (!ret) {
1392 		int cnt;
1393 
1394 		cnt = min_t(int, nbytes, oobregion.length);
1395 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1396 		buf += cnt;
1397 		nbytes -= cnt;
1398 
1399 		if (!nbytes)
1400 			break;
1401 
1402 		ret = iter(mtd, ++section, &oobregion);
1403 	}
1404 
1405 	return ret;
1406 }
1407 
1408 /**
1409  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1410  * @mtd: mtd info structure
1411  * @buf: source buffer to get OOB bytes from
1412  * @oobbuf: OOB buffer
1413  * @start: first OOB byte to set
1414  * @nbytes: number of OOB bytes to set
1415  * @iter: section iterator
1416  *
1417  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1418  * is selected by passing the appropriate iterator.
1419  *
1420  * Returns zero on success, a negative error code otherwise.
1421  */
1422 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1423 				u8 *oobbuf, int start, int nbytes,
1424 				int (*iter)(struct mtd_info *,
1425 					    int section,
1426 					    struct mtd_oob_region *oobregion))
1427 {
1428 	struct mtd_oob_region oobregion;
1429 	int section, ret;
1430 
1431 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1432 					&oobregion, iter);
1433 
1434 	while (!ret) {
1435 		int cnt;
1436 
1437 		cnt = min_t(int, nbytes, oobregion.length);
1438 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1439 		buf += cnt;
1440 		nbytes -= cnt;
1441 
1442 		if (!nbytes)
1443 			break;
1444 
1445 		ret = iter(mtd, ++section, &oobregion);
1446 	}
1447 
1448 	return ret;
1449 }
1450 
1451 /**
1452  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1453  * @mtd: mtd info structure
1454  * @iter: category iterator
1455  *
1456  * Count the number of bytes in a given category.
1457  *
1458  * Returns a positive value on success, a negative error code otherwise.
1459  */
1460 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1461 				int (*iter)(struct mtd_info *,
1462 					    int section,
1463 					    struct mtd_oob_region *oobregion))
1464 {
1465 	struct mtd_oob_region oobregion;
1466 	int section = 0, ret, nbytes = 0;
1467 
1468 	while (1) {
1469 		ret = iter(mtd, section++, &oobregion);
1470 		if (ret) {
1471 			if (ret == -ERANGE)
1472 				ret = nbytes;
1473 			break;
1474 		}
1475 
1476 		nbytes += oobregion.length;
1477 	}
1478 
1479 	return ret;
1480 }
1481 
1482 /**
1483  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1484  * @mtd: mtd info structure
1485  * @eccbuf: destination buffer to store ECC bytes
1486  * @oobbuf: OOB buffer
1487  * @start: first ECC byte to retrieve
1488  * @nbytes: number of ECC bytes to retrieve
1489  *
1490  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1491  *
1492  * Returns zero on success, a negative error code otherwise.
1493  */
1494 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1495 			       const u8 *oobbuf, int start, int nbytes)
1496 {
1497 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1498 				       mtd_ooblayout_ecc);
1499 }
1500 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1501 
1502 /**
1503  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1504  * @mtd: mtd info structure
1505  * @eccbuf: source buffer to get ECC bytes from
1506  * @oobbuf: OOB buffer
1507  * @start: first ECC byte to set
1508  * @nbytes: number of ECC bytes to set
1509  *
1510  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1511  *
1512  * Returns zero on success, a negative error code otherwise.
1513  */
1514 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1515 			       u8 *oobbuf, int start, int nbytes)
1516 {
1517 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1518 				       mtd_ooblayout_ecc);
1519 }
1520 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1521 
1522 /**
1523  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1524  * @mtd: mtd info structure
1525  * @databuf: destination buffer to store ECC bytes
1526  * @oobbuf: OOB buffer
1527  * @start: first ECC byte to retrieve
1528  * @nbytes: number of ECC bytes to retrieve
1529  *
1530  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1531  *
1532  * Returns zero on success, a negative error code otherwise.
1533  */
1534 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1535 				const u8 *oobbuf, int start, int nbytes)
1536 {
1537 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1538 				       mtd_ooblayout_free);
1539 }
1540 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1541 
1542 /**
1543  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1544  * @mtd: mtd info structure
1545  * @databuf: source buffer to get data bytes from
1546  * @oobbuf: OOB buffer
1547  * @start: first ECC byte to set
1548  * @nbytes: number of ECC bytes to set
1549  *
1550  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1551  *
1552  * Returns zero on success, a negative error code otherwise.
1553  */
1554 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1555 				u8 *oobbuf, int start, int nbytes)
1556 {
1557 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1558 				       mtd_ooblayout_free);
1559 }
1560 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1561 
1562 /**
1563  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1564  * @mtd: mtd info structure
1565  *
1566  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1567  *
1568  * Returns zero on success, a negative error code otherwise.
1569  */
1570 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1571 {
1572 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1573 }
1574 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1575 
1576 /**
1577  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1578  * @mtd: mtd info structure
1579  *
1580  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1581  *
1582  * Returns zero on success, a negative error code otherwise.
1583  */
1584 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1585 {
1586 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1587 }
1588 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1589 
1590 /*
1591  * Method to access the protection register area, present in some flash
1592  * devices. The user data is one time programmable but the factory data is read
1593  * only.
1594  */
1595 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1596 			   struct otp_info *buf)
1597 {
1598 	if (!mtd->_get_fact_prot_info)
1599 		return -EOPNOTSUPP;
1600 	if (!len)
1601 		return 0;
1602 	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1603 }
1604 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1605 
1606 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1607 			   size_t *retlen, u_char *buf)
1608 {
1609 	*retlen = 0;
1610 	if (!mtd->_read_fact_prot_reg)
1611 		return -EOPNOTSUPP;
1612 	if (!len)
1613 		return 0;
1614 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1615 }
1616 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1617 
1618 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1619 			   struct otp_info *buf)
1620 {
1621 	if (!mtd->_get_user_prot_info)
1622 		return -EOPNOTSUPP;
1623 	if (!len)
1624 		return 0;
1625 	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1626 }
1627 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1628 
1629 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1630 			   size_t *retlen, u_char *buf)
1631 {
1632 	*retlen = 0;
1633 	if (!mtd->_read_user_prot_reg)
1634 		return -EOPNOTSUPP;
1635 	if (!len)
1636 		return 0;
1637 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1638 }
1639 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1640 
1641 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1642 			    size_t *retlen, u_char *buf)
1643 {
1644 	int ret;
1645 
1646 	*retlen = 0;
1647 	if (!mtd->_write_user_prot_reg)
1648 		return -EOPNOTSUPP;
1649 	if (!len)
1650 		return 0;
1651 	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1652 	if (ret)
1653 		return ret;
1654 
1655 	/*
1656 	 * If no data could be written at all, we are out of memory and
1657 	 * must return -ENOSPC.
1658 	 */
1659 	return (*retlen) ? 0 : -ENOSPC;
1660 }
1661 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1662 
1663 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1664 {
1665 	if (!mtd->_lock_user_prot_reg)
1666 		return -EOPNOTSUPP;
1667 	if (!len)
1668 		return 0;
1669 	return mtd->_lock_user_prot_reg(mtd, from, len);
1670 }
1671 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1672 
1673 /* Chip-supported device locking */
1674 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1675 {
1676 	if (!mtd->_lock)
1677 		return -EOPNOTSUPP;
1678 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1679 		return -EINVAL;
1680 	if (!len)
1681 		return 0;
1682 	return mtd->_lock(mtd, ofs, len);
1683 }
1684 EXPORT_SYMBOL_GPL(mtd_lock);
1685 
1686 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1687 {
1688 	if (!mtd->_unlock)
1689 		return -EOPNOTSUPP;
1690 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1691 		return -EINVAL;
1692 	if (!len)
1693 		return 0;
1694 	return mtd->_unlock(mtd, ofs, len);
1695 }
1696 EXPORT_SYMBOL_GPL(mtd_unlock);
1697 
1698 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1699 {
1700 	if (!mtd->_is_locked)
1701 		return -EOPNOTSUPP;
1702 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1703 		return -EINVAL;
1704 	if (!len)
1705 		return 0;
1706 	return mtd->_is_locked(mtd, ofs, len);
1707 }
1708 EXPORT_SYMBOL_GPL(mtd_is_locked);
1709 
1710 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1711 {
1712 	if (ofs < 0 || ofs >= mtd->size)
1713 		return -EINVAL;
1714 	if (!mtd->_block_isreserved)
1715 		return 0;
1716 	return mtd->_block_isreserved(mtd, ofs);
1717 }
1718 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1719 
1720 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1721 {
1722 	if (ofs < 0 || ofs >= mtd->size)
1723 		return -EINVAL;
1724 	if (!mtd->_block_isbad)
1725 		return 0;
1726 	return mtd->_block_isbad(mtd, ofs);
1727 }
1728 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1729 
1730 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1731 {
1732 	if (!mtd->_block_markbad)
1733 		return -EOPNOTSUPP;
1734 	if (ofs < 0 || ofs >= mtd->size)
1735 		return -EINVAL;
1736 	if (!(mtd->flags & MTD_WRITEABLE))
1737 		return -EROFS;
1738 	return mtd->_block_markbad(mtd, ofs);
1739 }
1740 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1741 
1742 /*
1743  * default_mtd_writev - the default writev method
1744  * @mtd: mtd device description object pointer
1745  * @vecs: the vectors to write
1746  * @count: count of vectors in @vecs
1747  * @to: the MTD device offset to write to
1748  * @retlen: on exit contains the count of bytes written to the MTD device.
1749  *
1750  * This function returns zero in case of success and a negative error code in
1751  * case of failure.
1752  */
1753 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1754 			      unsigned long count, loff_t to, size_t *retlen)
1755 {
1756 	unsigned long i;
1757 	size_t totlen = 0, thislen;
1758 	int ret = 0;
1759 
1760 	for (i = 0; i < count; i++) {
1761 		if (!vecs[i].iov_len)
1762 			continue;
1763 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1764 				vecs[i].iov_base);
1765 		totlen += thislen;
1766 		if (ret || thislen != vecs[i].iov_len)
1767 			break;
1768 		to += vecs[i].iov_len;
1769 	}
1770 	*retlen = totlen;
1771 	return ret;
1772 }
1773 
1774 /*
1775  * mtd_writev - the vector-based MTD write method
1776  * @mtd: mtd device description object pointer
1777  * @vecs: the vectors to write
1778  * @count: count of vectors in @vecs
1779  * @to: the MTD device offset to write to
1780  * @retlen: on exit contains the count of bytes written to the MTD device.
1781  *
1782  * This function returns zero in case of success and a negative error code in
1783  * case of failure.
1784  */
1785 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1786 	       unsigned long count, loff_t to, size_t *retlen)
1787 {
1788 	*retlen = 0;
1789 	if (!(mtd->flags & MTD_WRITEABLE))
1790 		return -EROFS;
1791 	if (!mtd->_writev)
1792 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1793 	return mtd->_writev(mtd, vecs, count, to, retlen);
1794 }
1795 EXPORT_SYMBOL_GPL(mtd_writev);
1796 
1797 /**
1798  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1799  * @mtd: mtd device description object pointer
1800  * @size: a pointer to the ideal or maximum size of the allocation, points
1801  *        to the actual allocation size on success.
1802  *
1803  * This routine attempts to allocate a contiguous kernel buffer up to
1804  * the specified size, backing off the size of the request exponentially
1805  * until the request succeeds or until the allocation size falls below
1806  * the system page size. This attempts to make sure it does not adversely
1807  * impact system performance, so when allocating more than one page, we
1808  * ask the memory allocator to avoid re-trying, swapping, writing back
1809  * or performing I/O.
1810  *
1811  * Note, this function also makes sure that the allocated buffer is aligned to
1812  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1813  *
1814  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1815  * to handle smaller (i.e. degraded) buffer allocations under low- or
1816  * fragmented-memory situations where such reduced allocations, from a
1817  * requested ideal, are allowed.
1818  *
1819  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1820  */
1821 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1822 {
1823 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1824 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1825 	void *kbuf;
1826 
1827 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1828 
1829 	while (*size > min_alloc) {
1830 		kbuf = kmalloc(*size, flags);
1831 		if (kbuf)
1832 			return kbuf;
1833 
1834 		*size >>= 1;
1835 		*size = ALIGN(*size, mtd->writesize);
1836 	}
1837 
1838 	/*
1839 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1840 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1841 	 */
1842 	return kmalloc(*size, GFP_KERNEL);
1843 }
1844 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1845 
1846 #ifdef CONFIG_PROC_FS
1847 
1848 /*====================================================================*/
1849 /* Support for /proc/mtd */
1850 
1851 static int mtd_proc_show(struct seq_file *m, void *v)
1852 {
1853 	struct mtd_info *mtd;
1854 
1855 	seq_puts(m, "dev:    size   erasesize  name\n");
1856 	mutex_lock(&mtd_table_mutex);
1857 	mtd_for_each_device(mtd) {
1858 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1859 			   mtd->index, (unsigned long long)mtd->size,
1860 			   mtd->erasesize, mtd->name);
1861 	}
1862 	mutex_unlock(&mtd_table_mutex);
1863 	return 0;
1864 }
1865 #endif /* CONFIG_PROC_FS */
1866 
1867 /*====================================================================*/
1868 /* Init code */
1869 
1870 static struct backing_dev_info * __init mtd_bdi_init(char *name)
1871 {
1872 	struct backing_dev_info *bdi;
1873 	int ret;
1874 
1875 	bdi = bdi_alloc(GFP_KERNEL);
1876 	if (!bdi)
1877 		return ERR_PTR(-ENOMEM);
1878 
1879 	bdi->name = name;
1880 	/*
1881 	 * We put '-0' suffix to the name to get the same name format as we
1882 	 * used to get. Since this is called only once, we get a unique name.
1883 	 */
1884 	ret = bdi_register(bdi, "%.28s-0", name);
1885 	if (ret)
1886 		bdi_put(bdi);
1887 
1888 	return ret ? ERR_PTR(ret) : bdi;
1889 }
1890 
1891 static struct proc_dir_entry *proc_mtd;
1892 
1893 static int __init init_mtd(void)
1894 {
1895 	int ret;
1896 
1897 	ret = class_register(&mtd_class);
1898 	if (ret)
1899 		goto err_reg;
1900 
1901 	mtd_bdi = mtd_bdi_init("mtd");
1902 	if (IS_ERR(mtd_bdi)) {
1903 		ret = PTR_ERR(mtd_bdi);
1904 		goto err_bdi;
1905 	}
1906 
1907 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
1908 
1909 	ret = init_mtdchar();
1910 	if (ret)
1911 		goto out_procfs;
1912 
1913 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
1914 
1915 	return 0;
1916 
1917 out_procfs:
1918 	if (proc_mtd)
1919 		remove_proc_entry("mtd", NULL);
1920 	bdi_put(mtd_bdi);
1921 err_bdi:
1922 	class_unregister(&mtd_class);
1923 err_reg:
1924 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1925 	return ret;
1926 }
1927 
1928 static void __exit cleanup_mtd(void)
1929 {
1930 	debugfs_remove_recursive(dfs_dir_mtd);
1931 	cleanup_mtdchar();
1932 	if (proc_mtd)
1933 		remove_proc_entry("mtd", NULL);
1934 	class_unregister(&mtd_class);
1935 	bdi_put(mtd_bdi);
1936 	idr_destroy(&mtd_idr);
1937 }
1938 
1939 module_init(init_mtd);
1940 module_exit(cleanup_mtd);
1941 
1942 MODULE_LICENSE("GPL");
1943 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1944 MODULE_DESCRIPTION("Core MTD registration and access routines");
1945