1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Core registration and callback routines for MTD 4 * drivers and users. 5 * 6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 7 * Copyright © 2006 Red Hat UK Limited 8 */ 9 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/ptrace.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/timer.h> 16 #include <linux/major.h> 17 #include <linux/fs.h> 18 #include <linux/err.h> 19 #include <linux/ioctl.h> 20 #include <linux/init.h> 21 #include <linux/of.h> 22 #include <linux/proc_fs.h> 23 #include <linux/idr.h> 24 #include <linux/backing-dev.h> 25 #include <linux/gfp.h> 26 #include <linux/slab.h> 27 #include <linux/reboot.h> 28 #include <linux/leds.h> 29 #include <linux/debugfs.h> 30 #include <linux/nvmem-provider.h> 31 32 #include <linux/mtd/mtd.h> 33 #include <linux/mtd/partitions.h> 34 35 #include "mtdcore.h" 36 37 struct backing_dev_info *mtd_bdi; 38 39 #ifdef CONFIG_PM_SLEEP 40 41 static int mtd_cls_suspend(struct device *dev) 42 { 43 struct mtd_info *mtd = dev_get_drvdata(dev); 44 45 return mtd ? mtd_suspend(mtd) : 0; 46 } 47 48 static int mtd_cls_resume(struct device *dev) 49 { 50 struct mtd_info *mtd = dev_get_drvdata(dev); 51 52 if (mtd) 53 mtd_resume(mtd); 54 return 0; 55 } 56 57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 59 #else 60 #define MTD_CLS_PM_OPS NULL 61 #endif 62 63 static struct class mtd_class = { 64 .name = "mtd", 65 .owner = THIS_MODULE, 66 .pm = MTD_CLS_PM_OPS, 67 }; 68 69 static DEFINE_IDR(mtd_idr); 70 71 /* These are exported solely for the purpose of mtd_blkdevs.c. You 72 should not use them for _anything_ else */ 73 DEFINE_MUTEX(mtd_table_mutex); 74 EXPORT_SYMBOL_GPL(mtd_table_mutex); 75 76 struct mtd_info *__mtd_next_device(int i) 77 { 78 return idr_get_next(&mtd_idr, &i); 79 } 80 EXPORT_SYMBOL_GPL(__mtd_next_device); 81 82 static LIST_HEAD(mtd_notifiers); 83 84 85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 86 87 /* REVISIT once MTD uses the driver model better, whoever allocates 88 * the mtd_info will probably want to use the release() hook... 89 */ 90 static void mtd_release(struct device *dev) 91 { 92 struct mtd_info *mtd = dev_get_drvdata(dev); 93 dev_t index = MTD_DEVT(mtd->index); 94 95 /* remove /dev/mtdXro node */ 96 device_destroy(&mtd_class, index + 1); 97 } 98 99 static ssize_t mtd_type_show(struct device *dev, 100 struct device_attribute *attr, char *buf) 101 { 102 struct mtd_info *mtd = dev_get_drvdata(dev); 103 char *type; 104 105 switch (mtd->type) { 106 case MTD_ABSENT: 107 type = "absent"; 108 break; 109 case MTD_RAM: 110 type = "ram"; 111 break; 112 case MTD_ROM: 113 type = "rom"; 114 break; 115 case MTD_NORFLASH: 116 type = "nor"; 117 break; 118 case MTD_NANDFLASH: 119 type = "nand"; 120 break; 121 case MTD_DATAFLASH: 122 type = "dataflash"; 123 break; 124 case MTD_UBIVOLUME: 125 type = "ubi"; 126 break; 127 case MTD_MLCNANDFLASH: 128 type = "mlc-nand"; 129 break; 130 default: 131 type = "unknown"; 132 } 133 134 return snprintf(buf, PAGE_SIZE, "%s\n", type); 135 } 136 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 137 138 static ssize_t mtd_flags_show(struct device *dev, 139 struct device_attribute *attr, char *buf) 140 { 141 struct mtd_info *mtd = dev_get_drvdata(dev); 142 143 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 144 } 145 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 146 147 static ssize_t mtd_size_show(struct device *dev, 148 struct device_attribute *attr, char *buf) 149 { 150 struct mtd_info *mtd = dev_get_drvdata(dev); 151 152 return snprintf(buf, PAGE_SIZE, "%llu\n", 153 (unsigned long long)mtd->size); 154 } 155 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 156 157 static ssize_t mtd_erasesize_show(struct device *dev, 158 struct device_attribute *attr, char *buf) 159 { 160 struct mtd_info *mtd = dev_get_drvdata(dev); 161 162 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 163 } 164 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 165 166 static ssize_t mtd_writesize_show(struct device *dev, 167 struct device_attribute *attr, char *buf) 168 { 169 struct mtd_info *mtd = dev_get_drvdata(dev); 170 171 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 172 } 173 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 174 175 static ssize_t mtd_subpagesize_show(struct device *dev, 176 struct device_attribute *attr, char *buf) 177 { 178 struct mtd_info *mtd = dev_get_drvdata(dev); 179 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 180 181 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 182 } 183 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 184 185 static ssize_t mtd_oobsize_show(struct device *dev, 186 struct device_attribute *attr, char *buf) 187 { 188 struct mtd_info *mtd = dev_get_drvdata(dev); 189 190 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 191 } 192 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 193 194 static ssize_t mtd_oobavail_show(struct device *dev, 195 struct device_attribute *attr, char *buf) 196 { 197 struct mtd_info *mtd = dev_get_drvdata(dev); 198 199 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail); 200 } 201 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL); 202 203 static ssize_t mtd_numeraseregions_show(struct device *dev, 204 struct device_attribute *attr, char *buf) 205 { 206 struct mtd_info *mtd = dev_get_drvdata(dev); 207 208 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 209 } 210 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 211 NULL); 212 213 static ssize_t mtd_name_show(struct device *dev, 214 struct device_attribute *attr, char *buf) 215 { 216 struct mtd_info *mtd = dev_get_drvdata(dev); 217 218 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 219 } 220 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 221 222 static ssize_t mtd_ecc_strength_show(struct device *dev, 223 struct device_attribute *attr, char *buf) 224 { 225 struct mtd_info *mtd = dev_get_drvdata(dev); 226 227 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 228 } 229 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 230 231 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 232 struct device_attribute *attr, 233 char *buf) 234 { 235 struct mtd_info *mtd = dev_get_drvdata(dev); 236 237 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 238 } 239 240 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 241 struct device_attribute *attr, 242 const char *buf, size_t count) 243 { 244 struct mtd_info *mtd = dev_get_drvdata(dev); 245 unsigned int bitflip_threshold; 246 int retval; 247 248 retval = kstrtouint(buf, 0, &bitflip_threshold); 249 if (retval) 250 return retval; 251 252 mtd->bitflip_threshold = bitflip_threshold; 253 return count; 254 } 255 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 256 mtd_bitflip_threshold_show, 257 mtd_bitflip_threshold_store); 258 259 static ssize_t mtd_ecc_step_size_show(struct device *dev, 260 struct device_attribute *attr, char *buf) 261 { 262 struct mtd_info *mtd = dev_get_drvdata(dev); 263 264 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 265 266 } 267 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 268 269 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev, 270 struct device_attribute *attr, char *buf) 271 { 272 struct mtd_info *mtd = dev_get_drvdata(dev); 273 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 274 275 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected); 276 } 277 static DEVICE_ATTR(corrected_bits, S_IRUGO, 278 mtd_ecc_stats_corrected_show, NULL); 279 280 static ssize_t mtd_ecc_stats_errors_show(struct device *dev, 281 struct device_attribute *attr, char *buf) 282 { 283 struct mtd_info *mtd = dev_get_drvdata(dev); 284 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 285 286 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed); 287 } 288 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL); 289 290 static ssize_t mtd_badblocks_show(struct device *dev, 291 struct device_attribute *attr, char *buf) 292 { 293 struct mtd_info *mtd = dev_get_drvdata(dev); 294 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 295 296 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks); 297 } 298 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL); 299 300 static ssize_t mtd_bbtblocks_show(struct device *dev, 301 struct device_attribute *attr, char *buf) 302 { 303 struct mtd_info *mtd = dev_get_drvdata(dev); 304 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 305 306 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks); 307 } 308 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL); 309 310 static struct attribute *mtd_attrs[] = { 311 &dev_attr_type.attr, 312 &dev_attr_flags.attr, 313 &dev_attr_size.attr, 314 &dev_attr_erasesize.attr, 315 &dev_attr_writesize.attr, 316 &dev_attr_subpagesize.attr, 317 &dev_attr_oobsize.attr, 318 &dev_attr_oobavail.attr, 319 &dev_attr_numeraseregions.attr, 320 &dev_attr_name.attr, 321 &dev_attr_ecc_strength.attr, 322 &dev_attr_ecc_step_size.attr, 323 &dev_attr_corrected_bits.attr, 324 &dev_attr_ecc_failures.attr, 325 &dev_attr_bad_blocks.attr, 326 &dev_attr_bbt_blocks.attr, 327 &dev_attr_bitflip_threshold.attr, 328 NULL, 329 }; 330 ATTRIBUTE_GROUPS(mtd); 331 332 static const struct device_type mtd_devtype = { 333 .name = "mtd", 334 .groups = mtd_groups, 335 .release = mtd_release, 336 }; 337 338 static int mtd_partid_show(struct seq_file *s, void *p) 339 { 340 struct mtd_info *mtd = s->private; 341 342 seq_printf(s, "%s\n", mtd->dbg.partid); 343 344 return 0; 345 } 346 347 static int mtd_partid_debugfs_open(struct inode *inode, struct file *file) 348 { 349 return single_open(file, mtd_partid_show, inode->i_private); 350 } 351 352 static const struct file_operations mtd_partid_debug_fops = { 353 .open = mtd_partid_debugfs_open, 354 .read = seq_read, 355 .llseek = seq_lseek, 356 .release = single_release, 357 }; 358 359 static int mtd_partname_show(struct seq_file *s, void *p) 360 { 361 struct mtd_info *mtd = s->private; 362 363 seq_printf(s, "%s\n", mtd->dbg.partname); 364 365 return 0; 366 } 367 368 static int mtd_partname_debugfs_open(struct inode *inode, struct file *file) 369 { 370 return single_open(file, mtd_partname_show, inode->i_private); 371 } 372 373 static const struct file_operations mtd_partname_debug_fops = { 374 .open = mtd_partname_debugfs_open, 375 .read = seq_read, 376 .llseek = seq_lseek, 377 .release = single_release, 378 }; 379 380 static struct dentry *dfs_dir_mtd; 381 382 static void mtd_debugfs_populate(struct mtd_info *mtd) 383 { 384 struct device *dev = &mtd->dev; 385 struct dentry *root; 386 387 if (IS_ERR_OR_NULL(dfs_dir_mtd)) 388 return; 389 390 root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd); 391 mtd->dbg.dfs_dir = root; 392 393 if (mtd->dbg.partid) 394 debugfs_create_file("partid", 0400, root, mtd, 395 &mtd_partid_debug_fops); 396 397 if (mtd->dbg.partname) 398 debugfs_create_file("partname", 0400, root, mtd, 399 &mtd_partname_debug_fops); 400 } 401 402 #ifndef CONFIG_MMU 403 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 404 { 405 switch (mtd->type) { 406 case MTD_RAM: 407 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 408 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 409 case MTD_ROM: 410 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 411 NOMMU_MAP_READ; 412 default: 413 return NOMMU_MAP_COPY; 414 } 415 } 416 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 417 #endif 418 419 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 420 void *cmd) 421 { 422 struct mtd_info *mtd; 423 424 mtd = container_of(n, struct mtd_info, reboot_notifier); 425 mtd->_reboot(mtd); 426 427 return NOTIFY_DONE; 428 } 429 430 /** 431 * mtd_wunit_to_pairing_info - get pairing information of a wunit 432 * @mtd: pointer to new MTD device info structure 433 * @wunit: write unit we are interested in 434 * @info: returned pairing information 435 * 436 * Retrieve pairing information associated to the wunit. 437 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 438 * paired together, and where programming a page may influence the page it is 439 * paired with. 440 * The notion of page is replaced by the term wunit (write-unit) to stay 441 * consistent with the ->writesize field. 442 * 443 * The @wunit argument can be extracted from an absolute offset using 444 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 445 * to @wunit. 446 * 447 * From the pairing info the MTD user can find all the wunits paired with 448 * @wunit using the following loop: 449 * 450 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 451 * info.pair = i; 452 * mtd_pairing_info_to_wunit(mtd, &info); 453 * ... 454 * } 455 */ 456 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 457 struct mtd_pairing_info *info) 458 { 459 struct mtd_info *master = mtd_get_master(mtd); 460 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master); 461 462 if (wunit < 0 || wunit >= npairs) 463 return -EINVAL; 464 465 if (master->pairing && master->pairing->get_info) 466 return master->pairing->get_info(master, wunit, info); 467 468 info->group = 0; 469 info->pair = wunit; 470 471 return 0; 472 } 473 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 474 475 /** 476 * mtd_pairing_info_to_wunit - get wunit from pairing information 477 * @mtd: pointer to new MTD device info structure 478 * @info: pairing information struct 479 * 480 * Returns a positive number representing the wunit associated to the info 481 * struct, or a negative error code. 482 * 483 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 484 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 485 * doc). 486 * 487 * It can also be used to only program the first page of each pair (i.e. 488 * page attached to group 0), which allows one to use an MLC NAND in 489 * software-emulated SLC mode: 490 * 491 * info.group = 0; 492 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 493 * for (info.pair = 0; info.pair < npairs; info.pair++) { 494 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 495 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 496 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 497 * } 498 */ 499 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 500 const struct mtd_pairing_info *info) 501 { 502 struct mtd_info *master = mtd_get_master(mtd); 503 int ngroups = mtd_pairing_groups(master); 504 int npairs = mtd_wunit_per_eb(master) / ngroups; 505 506 if (!info || info->pair < 0 || info->pair >= npairs || 507 info->group < 0 || info->group >= ngroups) 508 return -EINVAL; 509 510 if (master->pairing && master->pairing->get_wunit) 511 return mtd->pairing->get_wunit(master, info); 512 513 return info->pair; 514 } 515 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 516 517 /** 518 * mtd_pairing_groups - get the number of pairing groups 519 * @mtd: pointer to new MTD device info structure 520 * 521 * Returns the number of pairing groups. 522 * 523 * This number is usually equal to the number of bits exposed by a single 524 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 525 * to iterate over all pages of a given pair. 526 */ 527 int mtd_pairing_groups(struct mtd_info *mtd) 528 { 529 struct mtd_info *master = mtd_get_master(mtd); 530 531 if (!master->pairing || !master->pairing->ngroups) 532 return 1; 533 534 return master->pairing->ngroups; 535 } 536 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 537 538 static int mtd_nvmem_reg_read(void *priv, unsigned int offset, 539 void *val, size_t bytes) 540 { 541 struct mtd_info *mtd = priv; 542 size_t retlen; 543 int err; 544 545 err = mtd_read(mtd, offset, bytes, &retlen, val); 546 if (err && err != -EUCLEAN) 547 return err; 548 549 return retlen == bytes ? 0 : -EIO; 550 } 551 552 static int mtd_nvmem_add(struct mtd_info *mtd) 553 { 554 struct nvmem_config config = {}; 555 556 config.id = -1; 557 config.dev = &mtd->dev; 558 config.name = dev_name(&mtd->dev); 559 config.owner = THIS_MODULE; 560 config.reg_read = mtd_nvmem_reg_read; 561 config.size = mtd->size; 562 config.word_size = 1; 563 config.stride = 1; 564 config.read_only = true; 565 config.root_only = true; 566 config.no_of_node = true; 567 config.priv = mtd; 568 569 mtd->nvmem = nvmem_register(&config); 570 if (IS_ERR(mtd->nvmem)) { 571 /* Just ignore if there is no NVMEM support in the kernel */ 572 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) { 573 mtd->nvmem = NULL; 574 } else { 575 dev_err(&mtd->dev, "Failed to register NVMEM device\n"); 576 return PTR_ERR(mtd->nvmem); 577 } 578 } 579 580 return 0; 581 } 582 583 /** 584 * add_mtd_device - register an MTD device 585 * @mtd: pointer to new MTD device info structure 586 * 587 * Add a device to the list of MTD devices present in the system, and 588 * notify each currently active MTD 'user' of its arrival. Returns 589 * zero on success or non-zero on failure. 590 */ 591 592 int add_mtd_device(struct mtd_info *mtd) 593 { 594 struct mtd_info *master = mtd_get_master(mtd); 595 struct mtd_notifier *not; 596 int i, error; 597 598 /* 599 * May occur, for instance, on buggy drivers which call 600 * mtd_device_parse_register() multiple times on the same master MTD, 601 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 602 */ 603 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 604 return -EEXIST; 605 606 BUG_ON(mtd->writesize == 0); 607 608 /* 609 * MTD drivers should implement ->_{write,read}() or 610 * ->_{write,read}_oob(), but not both. 611 */ 612 if (WARN_ON((mtd->_write && mtd->_write_oob) || 613 (mtd->_read && mtd->_read_oob))) 614 return -EINVAL; 615 616 if (WARN_ON((!mtd->erasesize || !master->_erase) && 617 !(mtd->flags & MTD_NO_ERASE))) 618 return -EINVAL; 619 620 /* 621 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the 622 * master is an MLC NAND and has a proper pairing scheme defined. 623 * We also reject masters that implement ->_writev() for now, because 624 * NAND controller drivers don't implement this hook, and adding the 625 * SLC -> MLC address/length conversion to this path is useless if we 626 * don't have a user. 627 */ 628 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION && 629 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH || 630 !master->pairing || master->_writev)) 631 return -EINVAL; 632 633 mutex_lock(&mtd_table_mutex); 634 635 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 636 if (i < 0) { 637 error = i; 638 goto fail_locked; 639 } 640 641 mtd->index = i; 642 mtd->usecount = 0; 643 644 /* default value if not set by driver */ 645 if (mtd->bitflip_threshold == 0) 646 mtd->bitflip_threshold = mtd->ecc_strength; 647 648 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 649 int ngroups = mtd_pairing_groups(master); 650 651 mtd->erasesize /= ngroups; 652 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) * 653 mtd->erasesize; 654 } 655 656 if (is_power_of_2(mtd->erasesize)) 657 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 658 else 659 mtd->erasesize_shift = 0; 660 661 if (is_power_of_2(mtd->writesize)) 662 mtd->writesize_shift = ffs(mtd->writesize) - 1; 663 else 664 mtd->writesize_shift = 0; 665 666 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 667 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 668 669 /* Some chips always power up locked. Unlock them now */ 670 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 671 error = mtd_unlock(mtd, 0, mtd->size); 672 if (error && error != -EOPNOTSUPP) 673 printk(KERN_WARNING 674 "%s: unlock failed, writes may not work\n", 675 mtd->name); 676 /* Ignore unlock failures? */ 677 error = 0; 678 } 679 680 /* Caller should have set dev.parent to match the 681 * physical device, if appropriate. 682 */ 683 mtd->dev.type = &mtd_devtype; 684 mtd->dev.class = &mtd_class; 685 mtd->dev.devt = MTD_DEVT(i); 686 dev_set_name(&mtd->dev, "mtd%d", i); 687 dev_set_drvdata(&mtd->dev, mtd); 688 of_node_get(mtd_get_of_node(mtd)); 689 error = device_register(&mtd->dev); 690 if (error) 691 goto fail_added; 692 693 /* Add the nvmem provider */ 694 error = mtd_nvmem_add(mtd); 695 if (error) 696 goto fail_nvmem_add; 697 698 mtd_debugfs_populate(mtd); 699 700 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 701 "mtd%dro", i); 702 703 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 704 /* No need to get a refcount on the module containing 705 the notifier, since we hold the mtd_table_mutex */ 706 list_for_each_entry(not, &mtd_notifiers, list) 707 not->add(mtd); 708 709 mutex_unlock(&mtd_table_mutex); 710 /* We _know_ we aren't being removed, because 711 our caller is still holding us here. So none 712 of this try_ nonsense, and no bitching about it 713 either. :) */ 714 __module_get(THIS_MODULE); 715 return 0; 716 717 fail_nvmem_add: 718 device_unregister(&mtd->dev); 719 fail_added: 720 of_node_put(mtd_get_of_node(mtd)); 721 idr_remove(&mtd_idr, i); 722 fail_locked: 723 mutex_unlock(&mtd_table_mutex); 724 return error; 725 } 726 727 /** 728 * del_mtd_device - unregister an MTD device 729 * @mtd: pointer to MTD device info structure 730 * 731 * Remove a device from the list of MTD devices present in the system, 732 * and notify each currently active MTD 'user' of its departure. 733 * Returns zero on success or 1 on failure, which currently will happen 734 * if the requested device does not appear to be present in the list. 735 */ 736 737 int del_mtd_device(struct mtd_info *mtd) 738 { 739 int ret; 740 struct mtd_notifier *not; 741 742 mutex_lock(&mtd_table_mutex); 743 744 debugfs_remove_recursive(mtd->dbg.dfs_dir); 745 746 if (idr_find(&mtd_idr, mtd->index) != mtd) { 747 ret = -ENODEV; 748 goto out_error; 749 } 750 751 /* No need to get a refcount on the module containing 752 the notifier, since we hold the mtd_table_mutex */ 753 list_for_each_entry(not, &mtd_notifiers, list) 754 not->remove(mtd); 755 756 if (mtd->usecount) { 757 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 758 mtd->index, mtd->name, mtd->usecount); 759 ret = -EBUSY; 760 } else { 761 /* Try to remove the NVMEM provider */ 762 if (mtd->nvmem) 763 nvmem_unregister(mtd->nvmem); 764 765 device_unregister(&mtd->dev); 766 767 idr_remove(&mtd_idr, mtd->index); 768 of_node_put(mtd_get_of_node(mtd)); 769 770 module_put(THIS_MODULE); 771 ret = 0; 772 } 773 774 out_error: 775 mutex_unlock(&mtd_table_mutex); 776 return ret; 777 } 778 779 /* 780 * Set a few defaults based on the parent devices, if not provided by the 781 * driver 782 */ 783 static void mtd_set_dev_defaults(struct mtd_info *mtd) 784 { 785 if (mtd->dev.parent) { 786 if (!mtd->owner && mtd->dev.parent->driver) 787 mtd->owner = mtd->dev.parent->driver->owner; 788 if (!mtd->name) 789 mtd->name = dev_name(mtd->dev.parent); 790 } else { 791 pr_debug("mtd device won't show a device symlink in sysfs\n"); 792 } 793 794 INIT_LIST_HEAD(&mtd->partitions); 795 mutex_init(&mtd->master.partitions_lock); 796 } 797 798 /** 799 * mtd_device_parse_register - parse partitions and register an MTD device. 800 * 801 * @mtd: the MTD device to register 802 * @types: the list of MTD partition probes to try, see 803 * 'parse_mtd_partitions()' for more information 804 * @parser_data: MTD partition parser-specific data 805 * @parts: fallback partition information to register, if parsing fails; 806 * only valid if %nr_parts > %0 807 * @nr_parts: the number of partitions in parts, if zero then the full 808 * MTD device is registered if no partition info is found 809 * 810 * This function aggregates MTD partitions parsing (done by 811 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 812 * basically follows the most common pattern found in many MTD drivers: 813 * 814 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is 815 * registered first. 816 * * Then It tries to probe partitions on MTD device @mtd using parsers 817 * specified in @types (if @types is %NULL, then the default list of parsers 818 * is used, see 'parse_mtd_partitions()' for more information). If none are 819 * found this functions tries to fallback to information specified in 820 * @parts/@nr_parts. 821 * * If no partitions were found this function just registers the MTD device 822 * @mtd and exits. 823 * 824 * Returns zero in case of success and a negative error code in case of failure. 825 */ 826 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 827 struct mtd_part_parser_data *parser_data, 828 const struct mtd_partition *parts, 829 int nr_parts) 830 { 831 int ret; 832 833 mtd_set_dev_defaults(mtd); 834 835 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 836 ret = add_mtd_device(mtd); 837 if (ret) 838 return ret; 839 } 840 841 /* Prefer parsed partitions over driver-provided fallback */ 842 ret = parse_mtd_partitions(mtd, types, parser_data); 843 if (ret > 0) 844 ret = 0; 845 else if (nr_parts) 846 ret = add_mtd_partitions(mtd, parts, nr_parts); 847 else if (!device_is_registered(&mtd->dev)) 848 ret = add_mtd_device(mtd); 849 else 850 ret = 0; 851 852 if (ret) 853 goto out; 854 855 /* 856 * FIXME: some drivers unfortunately call this function more than once. 857 * So we have to check if we've already assigned the reboot notifier. 858 * 859 * Generally, we can make multiple calls work for most cases, but it 860 * does cause problems with parse_mtd_partitions() above (e.g., 861 * cmdlineparts will register partitions more than once). 862 */ 863 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 864 "MTD already registered\n"); 865 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 866 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 867 register_reboot_notifier(&mtd->reboot_notifier); 868 } 869 870 out: 871 if (ret && device_is_registered(&mtd->dev)) 872 del_mtd_device(mtd); 873 874 return ret; 875 } 876 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 877 878 /** 879 * mtd_device_unregister - unregister an existing MTD device. 880 * 881 * @master: the MTD device to unregister. This will unregister both the master 882 * and any partitions if registered. 883 */ 884 int mtd_device_unregister(struct mtd_info *master) 885 { 886 int err; 887 888 if (master->_reboot) 889 unregister_reboot_notifier(&master->reboot_notifier); 890 891 err = del_mtd_partitions(master); 892 if (err) 893 return err; 894 895 if (!device_is_registered(&master->dev)) 896 return 0; 897 898 return del_mtd_device(master); 899 } 900 EXPORT_SYMBOL_GPL(mtd_device_unregister); 901 902 /** 903 * register_mtd_user - register a 'user' of MTD devices. 904 * @new: pointer to notifier info structure 905 * 906 * Registers a pair of callbacks function to be called upon addition 907 * or removal of MTD devices. Causes the 'add' callback to be immediately 908 * invoked for each MTD device currently present in the system. 909 */ 910 void register_mtd_user (struct mtd_notifier *new) 911 { 912 struct mtd_info *mtd; 913 914 mutex_lock(&mtd_table_mutex); 915 916 list_add(&new->list, &mtd_notifiers); 917 918 __module_get(THIS_MODULE); 919 920 mtd_for_each_device(mtd) 921 new->add(mtd); 922 923 mutex_unlock(&mtd_table_mutex); 924 } 925 EXPORT_SYMBOL_GPL(register_mtd_user); 926 927 /** 928 * unregister_mtd_user - unregister a 'user' of MTD devices. 929 * @old: pointer to notifier info structure 930 * 931 * Removes a callback function pair from the list of 'users' to be 932 * notified upon addition or removal of MTD devices. Causes the 933 * 'remove' callback to be immediately invoked for each MTD device 934 * currently present in the system. 935 */ 936 int unregister_mtd_user (struct mtd_notifier *old) 937 { 938 struct mtd_info *mtd; 939 940 mutex_lock(&mtd_table_mutex); 941 942 module_put(THIS_MODULE); 943 944 mtd_for_each_device(mtd) 945 old->remove(mtd); 946 947 list_del(&old->list); 948 mutex_unlock(&mtd_table_mutex); 949 return 0; 950 } 951 EXPORT_SYMBOL_GPL(unregister_mtd_user); 952 953 /** 954 * get_mtd_device - obtain a validated handle for an MTD device 955 * @mtd: last known address of the required MTD device 956 * @num: internal device number of the required MTD device 957 * 958 * Given a number and NULL address, return the num'th entry in the device 959 * table, if any. Given an address and num == -1, search the device table 960 * for a device with that address and return if it's still present. Given 961 * both, return the num'th driver only if its address matches. Return 962 * error code if not. 963 */ 964 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 965 { 966 struct mtd_info *ret = NULL, *other; 967 int err = -ENODEV; 968 969 mutex_lock(&mtd_table_mutex); 970 971 if (num == -1) { 972 mtd_for_each_device(other) { 973 if (other == mtd) { 974 ret = mtd; 975 break; 976 } 977 } 978 } else if (num >= 0) { 979 ret = idr_find(&mtd_idr, num); 980 if (mtd && mtd != ret) 981 ret = NULL; 982 } 983 984 if (!ret) { 985 ret = ERR_PTR(err); 986 goto out; 987 } 988 989 err = __get_mtd_device(ret); 990 if (err) 991 ret = ERR_PTR(err); 992 out: 993 mutex_unlock(&mtd_table_mutex); 994 return ret; 995 } 996 EXPORT_SYMBOL_GPL(get_mtd_device); 997 998 999 int __get_mtd_device(struct mtd_info *mtd) 1000 { 1001 struct mtd_info *master = mtd_get_master(mtd); 1002 int err; 1003 1004 if (!try_module_get(master->owner)) 1005 return -ENODEV; 1006 1007 if (master->_get_device) { 1008 err = master->_get_device(mtd); 1009 1010 if (err) { 1011 module_put(master->owner); 1012 return err; 1013 } 1014 } 1015 1016 while (mtd->parent) { 1017 mtd->usecount++; 1018 mtd = mtd->parent; 1019 } 1020 1021 return 0; 1022 } 1023 EXPORT_SYMBOL_GPL(__get_mtd_device); 1024 1025 /** 1026 * get_mtd_device_nm - obtain a validated handle for an MTD device by 1027 * device name 1028 * @name: MTD device name to open 1029 * 1030 * This function returns MTD device description structure in case of 1031 * success and an error code in case of failure. 1032 */ 1033 struct mtd_info *get_mtd_device_nm(const char *name) 1034 { 1035 int err = -ENODEV; 1036 struct mtd_info *mtd = NULL, *other; 1037 1038 mutex_lock(&mtd_table_mutex); 1039 1040 mtd_for_each_device(other) { 1041 if (!strcmp(name, other->name)) { 1042 mtd = other; 1043 break; 1044 } 1045 } 1046 1047 if (!mtd) 1048 goto out_unlock; 1049 1050 err = __get_mtd_device(mtd); 1051 if (err) 1052 goto out_unlock; 1053 1054 mutex_unlock(&mtd_table_mutex); 1055 return mtd; 1056 1057 out_unlock: 1058 mutex_unlock(&mtd_table_mutex); 1059 return ERR_PTR(err); 1060 } 1061 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 1062 1063 void put_mtd_device(struct mtd_info *mtd) 1064 { 1065 mutex_lock(&mtd_table_mutex); 1066 __put_mtd_device(mtd); 1067 mutex_unlock(&mtd_table_mutex); 1068 1069 } 1070 EXPORT_SYMBOL_GPL(put_mtd_device); 1071 1072 void __put_mtd_device(struct mtd_info *mtd) 1073 { 1074 struct mtd_info *master = mtd_get_master(mtd); 1075 1076 while (mtd->parent) { 1077 --mtd->usecount; 1078 BUG_ON(mtd->usecount < 0); 1079 mtd = mtd->parent; 1080 } 1081 1082 if (master->_put_device) 1083 master->_put_device(master); 1084 1085 module_put(master->owner); 1086 } 1087 EXPORT_SYMBOL_GPL(__put_mtd_device); 1088 1089 /* 1090 * Erase is an synchronous operation. Device drivers are epected to return a 1091 * negative error code if the operation failed and update instr->fail_addr 1092 * to point the portion that was not properly erased. 1093 */ 1094 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 1095 { 1096 struct mtd_info *master = mtd_get_master(mtd); 1097 u64 mst_ofs = mtd_get_master_ofs(mtd, 0); 1098 struct erase_info adjinstr; 1099 int ret; 1100 1101 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 1102 adjinstr = *instr; 1103 1104 if (!mtd->erasesize || !master->_erase) 1105 return -ENOTSUPP; 1106 1107 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 1108 return -EINVAL; 1109 if (!(mtd->flags & MTD_WRITEABLE)) 1110 return -EROFS; 1111 1112 if (!instr->len) 1113 return 0; 1114 1115 ledtrig_mtd_activity(); 1116 1117 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1118 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) * 1119 master->erasesize; 1120 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) * 1121 master->erasesize) - 1122 adjinstr.addr; 1123 } 1124 1125 adjinstr.addr += mst_ofs; 1126 1127 ret = master->_erase(master, &adjinstr); 1128 1129 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) { 1130 instr->fail_addr = adjinstr.fail_addr - mst_ofs; 1131 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1132 instr->fail_addr = mtd_div_by_eb(instr->fail_addr, 1133 master); 1134 instr->fail_addr *= mtd->erasesize; 1135 } 1136 } 1137 1138 return ret; 1139 } 1140 EXPORT_SYMBOL_GPL(mtd_erase); 1141 1142 /* 1143 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 1144 */ 1145 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1146 void **virt, resource_size_t *phys) 1147 { 1148 struct mtd_info *master = mtd_get_master(mtd); 1149 1150 *retlen = 0; 1151 *virt = NULL; 1152 if (phys) 1153 *phys = 0; 1154 if (!master->_point) 1155 return -EOPNOTSUPP; 1156 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1157 return -EINVAL; 1158 if (!len) 1159 return 0; 1160 1161 from = mtd_get_master_ofs(mtd, from); 1162 return master->_point(master, from, len, retlen, virt, phys); 1163 } 1164 EXPORT_SYMBOL_GPL(mtd_point); 1165 1166 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 1167 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1168 { 1169 struct mtd_info *master = mtd_get_master(mtd); 1170 1171 if (!master->_unpoint) 1172 return -EOPNOTSUPP; 1173 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1174 return -EINVAL; 1175 if (!len) 1176 return 0; 1177 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len); 1178 } 1179 EXPORT_SYMBOL_GPL(mtd_unpoint); 1180 1181 /* 1182 * Allow NOMMU mmap() to directly map the device (if not NULL) 1183 * - return the address to which the offset maps 1184 * - return -ENOSYS to indicate refusal to do the mapping 1185 */ 1186 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1187 unsigned long offset, unsigned long flags) 1188 { 1189 size_t retlen; 1190 void *virt; 1191 int ret; 1192 1193 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); 1194 if (ret) 1195 return ret; 1196 if (retlen != len) { 1197 mtd_unpoint(mtd, offset, retlen); 1198 return -ENOSYS; 1199 } 1200 return (unsigned long)virt; 1201 } 1202 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1203 1204 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master, 1205 const struct mtd_ecc_stats *old_stats) 1206 { 1207 struct mtd_ecc_stats diff; 1208 1209 if (master == mtd) 1210 return; 1211 1212 diff = master->ecc_stats; 1213 diff.failed -= old_stats->failed; 1214 diff.corrected -= old_stats->corrected; 1215 1216 while (mtd->parent) { 1217 mtd->ecc_stats.failed += diff.failed; 1218 mtd->ecc_stats.corrected += diff.corrected; 1219 mtd = mtd->parent; 1220 } 1221 } 1222 1223 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1224 u_char *buf) 1225 { 1226 struct mtd_oob_ops ops = { 1227 .len = len, 1228 .datbuf = buf, 1229 }; 1230 int ret; 1231 1232 ret = mtd_read_oob(mtd, from, &ops); 1233 *retlen = ops.retlen; 1234 1235 return ret; 1236 } 1237 EXPORT_SYMBOL_GPL(mtd_read); 1238 1239 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1240 const u_char *buf) 1241 { 1242 struct mtd_oob_ops ops = { 1243 .len = len, 1244 .datbuf = (u8 *)buf, 1245 }; 1246 int ret; 1247 1248 ret = mtd_write_oob(mtd, to, &ops); 1249 *retlen = ops.retlen; 1250 1251 return ret; 1252 } 1253 EXPORT_SYMBOL_GPL(mtd_write); 1254 1255 /* 1256 * In blackbox flight recorder like scenarios we want to make successful writes 1257 * in interrupt context. panic_write() is only intended to be called when its 1258 * known the kernel is about to panic and we need the write to succeed. Since 1259 * the kernel is not going to be running for much longer, this function can 1260 * break locks and delay to ensure the write succeeds (but not sleep). 1261 */ 1262 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1263 const u_char *buf) 1264 { 1265 struct mtd_info *master = mtd_get_master(mtd); 1266 1267 *retlen = 0; 1268 if (!master->_panic_write) 1269 return -EOPNOTSUPP; 1270 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1271 return -EINVAL; 1272 if (!(mtd->flags & MTD_WRITEABLE)) 1273 return -EROFS; 1274 if (!len) 1275 return 0; 1276 if (!mtd->oops_panic_write) 1277 mtd->oops_panic_write = true; 1278 1279 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len, 1280 retlen, buf); 1281 } 1282 EXPORT_SYMBOL_GPL(mtd_panic_write); 1283 1284 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1285 struct mtd_oob_ops *ops) 1286 { 1287 /* 1288 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1289 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1290 * this case. 1291 */ 1292 if (!ops->datbuf) 1293 ops->len = 0; 1294 1295 if (!ops->oobbuf) 1296 ops->ooblen = 0; 1297 1298 if (offs < 0 || offs + ops->len > mtd->size) 1299 return -EINVAL; 1300 1301 if (ops->ooblen) { 1302 size_t maxooblen; 1303 1304 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1305 return -EINVAL; 1306 1307 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) - 1308 mtd_div_by_ws(offs, mtd)) * 1309 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1310 if (ops->ooblen > maxooblen) 1311 return -EINVAL; 1312 } 1313 1314 return 0; 1315 } 1316 1317 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from, 1318 struct mtd_oob_ops *ops) 1319 { 1320 struct mtd_info *master = mtd_get_master(mtd); 1321 int ret; 1322 1323 from = mtd_get_master_ofs(mtd, from); 1324 if (master->_read_oob) 1325 ret = master->_read_oob(master, from, ops); 1326 else 1327 ret = master->_read(master, from, ops->len, &ops->retlen, 1328 ops->datbuf); 1329 1330 return ret; 1331 } 1332 1333 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to, 1334 struct mtd_oob_ops *ops) 1335 { 1336 struct mtd_info *master = mtd_get_master(mtd); 1337 int ret; 1338 1339 to = mtd_get_master_ofs(mtd, to); 1340 if (master->_write_oob) 1341 ret = master->_write_oob(master, to, ops); 1342 else 1343 ret = master->_write(master, to, ops->len, &ops->retlen, 1344 ops->datbuf); 1345 1346 return ret; 1347 } 1348 1349 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read, 1350 struct mtd_oob_ops *ops) 1351 { 1352 struct mtd_info *master = mtd_get_master(mtd); 1353 int ngroups = mtd_pairing_groups(master); 1354 int npairs = mtd_wunit_per_eb(master) / ngroups; 1355 struct mtd_oob_ops adjops = *ops; 1356 unsigned int wunit, oobavail; 1357 struct mtd_pairing_info info; 1358 int max_bitflips = 0; 1359 u32 ebofs, pageofs; 1360 loff_t base, pos; 1361 1362 ebofs = mtd_mod_by_eb(start, mtd); 1363 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize; 1364 info.group = 0; 1365 info.pair = mtd_div_by_ws(ebofs, mtd); 1366 pageofs = mtd_mod_by_ws(ebofs, mtd); 1367 oobavail = mtd_oobavail(mtd, ops); 1368 1369 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) { 1370 int ret; 1371 1372 if (info.pair >= npairs) { 1373 info.pair = 0; 1374 base += master->erasesize; 1375 } 1376 1377 wunit = mtd_pairing_info_to_wunit(master, &info); 1378 pos = mtd_wunit_to_offset(mtd, base, wunit); 1379 1380 adjops.len = ops->len - ops->retlen; 1381 if (adjops.len > mtd->writesize - pageofs) 1382 adjops.len = mtd->writesize - pageofs; 1383 1384 adjops.ooblen = ops->ooblen - ops->oobretlen; 1385 if (adjops.ooblen > oobavail - adjops.ooboffs) 1386 adjops.ooblen = oobavail - adjops.ooboffs; 1387 1388 if (read) { 1389 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops); 1390 if (ret > 0) 1391 max_bitflips = max(max_bitflips, ret); 1392 } else { 1393 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops); 1394 } 1395 1396 if (ret < 0) 1397 return ret; 1398 1399 max_bitflips = max(max_bitflips, ret); 1400 ops->retlen += adjops.retlen; 1401 ops->oobretlen += adjops.oobretlen; 1402 adjops.datbuf += adjops.retlen; 1403 adjops.oobbuf += adjops.oobretlen; 1404 adjops.ooboffs = 0; 1405 pageofs = 0; 1406 info.pair++; 1407 } 1408 1409 return max_bitflips; 1410 } 1411 1412 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1413 { 1414 struct mtd_info *master = mtd_get_master(mtd); 1415 struct mtd_ecc_stats old_stats = master->ecc_stats; 1416 int ret_code; 1417 1418 ops->retlen = ops->oobretlen = 0; 1419 1420 ret_code = mtd_check_oob_ops(mtd, from, ops); 1421 if (ret_code) 1422 return ret_code; 1423 1424 ledtrig_mtd_activity(); 1425 1426 /* Check the validity of a potential fallback on mtd->_read */ 1427 if (!master->_read_oob && (!master->_read || ops->oobbuf)) 1428 return -EOPNOTSUPP; 1429 1430 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1431 ret_code = mtd_io_emulated_slc(mtd, from, true, ops); 1432 else 1433 ret_code = mtd_read_oob_std(mtd, from, ops); 1434 1435 mtd_update_ecc_stats(mtd, master, &old_stats); 1436 1437 /* 1438 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1439 * similar to mtd->_read(), returning a non-negative integer 1440 * representing max bitflips. In other cases, mtd->_read_oob() may 1441 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1442 */ 1443 if (unlikely(ret_code < 0)) 1444 return ret_code; 1445 if (mtd->ecc_strength == 0) 1446 return 0; /* device lacks ecc */ 1447 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1448 } 1449 EXPORT_SYMBOL_GPL(mtd_read_oob); 1450 1451 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1452 struct mtd_oob_ops *ops) 1453 { 1454 struct mtd_info *master = mtd_get_master(mtd); 1455 int ret; 1456 1457 ops->retlen = ops->oobretlen = 0; 1458 1459 if (!(mtd->flags & MTD_WRITEABLE)) 1460 return -EROFS; 1461 1462 ret = mtd_check_oob_ops(mtd, to, ops); 1463 if (ret) 1464 return ret; 1465 1466 ledtrig_mtd_activity(); 1467 1468 /* Check the validity of a potential fallback on mtd->_write */ 1469 if (!master->_write_oob && (!master->_write || ops->oobbuf)) 1470 return -EOPNOTSUPP; 1471 1472 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1473 return mtd_io_emulated_slc(mtd, to, false, ops); 1474 1475 return mtd_write_oob_std(mtd, to, ops); 1476 } 1477 EXPORT_SYMBOL_GPL(mtd_write_oob); 1478 1479 /** 1480 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1481 * @mtd: MTD device structure 1482 * @section: ECC section. Depending on the layout you may have all the ECC 1483 * bytes stored in a single contiguous section, or one section 1484 * per ECC chunk (and sometime several sections for a single ECC 1485 * ECC chunk) 1486 * @oobecc: OOB region struct filled with the appropriate ECC position 1487 * information 1488 * 1489 * This function returns ECC section information in the OOB area. If you want 1490 * to get all the ECC bytes information, then you should call 1491 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1492 * 1493 * Returns zero on success, a negative error code otherwise. 1494 */ 1495 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1496 struct mtd_oob_region *oobecc) 1497 { 1498 struct mtd_info *master = mtd_get_master(mtd); 1499 1500 memset(oobecc, 0, sizeof(*oobecc)); 1501 1502 if (!master || section < 0) 1503 return -EINVAL; 1504 1505 if (!master->ooblayout || !master->ooblayout->ecc) 1506 return -ENOTSUPP; 1507 1508 return master->ooblayout->ecc(master, section, oobecc); 1509 } 1510 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1511 1512 /** 1513 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1514 * section 1515 * @mtd: MTD device structure 1516 * @section: Free section you are interested in. Depending on the layout 1517 * you may have all the free bytes stored in a single contiguous 1518 * section, or one section per ECC chunk plus an extra section 1519 * for the remaining bytes (or other funky layout). 1520 * @oobfree: OOB region struct filled with the appropriate free position 1521 * information 1522 * 1523 * This function returns free bytes position in the OOB area. If you want 1524 * to get all the free bytes information, then you should call 1525 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1526 * 1527 * Returns zero on success, a negative error code otherwise. 1528 */ 1529 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1530 struct mtd_oob_region *oobfree) 1531 { 1532 struct mtd_info *master = mtd_get_master(mtd); 1533 1534 memset(oobfree, 0, sizeof(*oobfree)); 1535 1536 if (!master || section < 0) 1537 return -EINVAL; 1538 1539 if (!master->ooblayout || !master->ooblayout->free) 1540 return -ENOTSUPP; 1541 1542 return master->ooblayout->free(master, section, oobfree); 1543 } 1544 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1545 1546 /** 1547 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1548 * @mtd: mtd info structure 1549 * @byte: the byte we are searching for 1550 * @sectionp: pointer where the section id will be stored 1551 * @oobregion: used to retrieve the ECC position 1552 * @iter: iterator function. Should be either mtd_ooblayout_free or 1553 * mtd_ooblayout_ecc depending on the region type you're searching for 1554 * 1555 * This function returns the section id and oobregion information of a 1556 * specific byte. For example, say you want to know where the 4th ECC byte is 1557 * stored, you'll use: 1558 * 1559 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1560 * 1561 * Returns zero on success, a negative error code otherwise. 1562 */ 1563 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1564 int *sectionp, struct mtd_oob_region *oobregion, 1565 int (*iter)(struct mtd_info *, 1566 int section, 1567 struct mtd_oob_region *oobregion)) 1568 { 1569 int pos = 0, ret, section = 0; 1570 1571 memset(oobregion, 0, sizeof(*oobregion)); 1572 1573 while (1) { 1574 ret = iter(mtd, section, oobregion); 1575 if (ret) 1576 return ret; 1577 1578 if (pos + oobregion->length > byte) 1579 break; 1580 1581 pos += oobregion->length; 1582 section++; 1583 } 1584 1585 /* 1586 * Adjust region info to make it start at the beginning at the 1587 * 'start' ECC byte. 1588 */ 1589 oobregion->offset += byte - pos; 1590 oobregion->length -= byte - pos; 1591 *sectionp = section; 1592 1593 return 0; 1594 } 1595 1596 /** 1597 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1598 * ECC byte 1599 * @mtd: mtd info structure 1600 * @eccbyte: the byte we are searching for 1601 * @sectionp: pointer where the section id will be stored 1602 * @oobregion: OOB region information 1603 * 1604 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1605 * byte. 1606 * 1607 * Returns zero on success, a negative error code otherwise. 1608 */ 1609 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1610 int *section, 1611 struct mtd_oob_region *oobregion) 1612 { 1613 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1614 mtd_ooblayout_ecc); 1615 } 1616 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1617 1618 /** 1619 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1620 * @mtd: mtd info structure 1621 * @buf: destination buffer to store OOB bytes 1622 * @oobbuf: OOB buffer 1623 * @start: first byte to retrieve 1624 * @nbytes: number of bytes to retrieve 1625 * @iter: section iterator 1626 * 1627 * Extract bytes attached to a specific category (ECC or free) 1628 * from the OOB buffer and copy them into buf. 1629 * 1630 * Returns zero on success, a negative error code otherwise. 1631 */ 1632 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1633 const u8 *oobbuf, int start, int nbytes, 1634 int (*iter)(struct mtd_info *, 1635 int section, 1636 struct mtd_oob_region *oobregion)) 1637 { 1638 struct mtd_oob_region oobregion; 1639 int section, ret; 1640 1641 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1642 &oobregion, iter); 1643 1644 while (!ret) { 1645 int cnt; 1646 1647 cnt = min_t(int, nbytes, oobregion.length); 1648 memcpy(buf, oobbuf + oobregion.offset, cnt); 1649 buf += cnt; 1650 nbytes -= cnt; 1651 1652 if (!nbytes) 1653 break; 1654 1655 ret = iter(mtd, ++section, &oobregion); 1656 } 1657 1658 return ret; 1659 } 1660 1661 /** 1662 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1663 * @mtd: mtd info structure 1664 * @buf: source buffer to get OOB bytes from 1665 * @oobbuf: OOB buffer 1666 * @start: first OOB byte to set 1667 * @nbytes: number of OOB bytes to set 1668 * @iter: section iterator 1669 * 1670 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1671 * is selected by passing the appropriate iterator. 1672 * 1673 * Returns zero on success, a negative error code otherwise. 1674 */ 1675 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1676 u8 *oobbuf, int start, int nbytes, 1677 int (*iter)(struct mtd_info *, 1678 int section, 1679 struct mtd_oob_region *oobregion)) 1680 { 1681 struct mtd_oob_region oobregion; 1682 int section, ret; 1683 1684 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1685 &oobregion, iter); 1686 1687 while (!ret) { 1688 int cnt; 1689 1690 cnt = min_t(int, nbytes, oobregion.length); 1691 memcpy(oobbuf + oobregion.offset, buf, cnt); 1692 buf += cnt; 1693 nbytes -= cnt; 1694 1695 if (!nbytes) 1696 break; 1697 1698 ret = iter(mtd, ++section, &oobregion); 1699 } 1700 1701 return ret; 1702 } 1703 1704 /** 1705 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1706 * @mtd: mtd info structure 1707 * @iter: category iterator 1708 * 1709 * Count the number of bytes in a given category. 1710 * 1711 * Returns a positive value on success, a negative error code otherwise. 1712 */ 1713 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1714 int (*iter)(struct mtd_info *, 1715 int section, 1716 struct mtd_oob_region *oobregion)) 1717 { 1718 struct mtd_oob_region oobregion; 1719 int section = 0, ret, nbytes = 0; 1720 1721 while (1) { 1722 ret = iter(mtd, section++, &oobregion); 1723 if (ret) { 1724 if (ret == -ERANGE) 1725 ret = nbytes; 1726 break; 1727 } 1728 1729 nbytes += oobregion.length; 1730 } 1731 1732 return ret; 1733 } 1734 1735 /** 1736 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1737 * @mtd: mtd info structure 1738 * @eccbuf: destination buffer to store ECC bytes 1739 * @oobbuf: OOB buffer 1740 * @start: first ECC byte to retrieve 1741 * @nbytes: number of ECC bytes to retrieve 1742 * 1743 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1744 * 1745 * Returns zero on success, a negative error code otherwise. 1746 */ 1747 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1748 const u8 *oobbuf, int start, int nbytes) 1749 { 1750 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1751 mtd_ooblayout_ecc); 1752 } 1753 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1754 1755 /** 1756 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1757 * @mtd: mtd info structure 1758 * @eccbuf: source buffer to get ECC bytes from 1759 * @oobbuf: OOB buffer 1760 * @start: first ECC byte to set 1761 * @nbytes: number of ECC bytes to set 1762 * 1763 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 1764 * 1765 * Returns zero on success, a negative error code otherwise. 1766 */ 1767 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 1768 u8 *oobbuf, int start, int nbytes) 1769 { 1770 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1771 mtd_ooblayout_ecc); 1772 } 1773 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 1774 1775 /** 1776 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 1777 * @mtd: mtd info structure 1778 * @databuf: destination buffer to store ECC bytes 1779 * @oobbuf: OOB buffer 1780 * @start: first ECC byte to retrieve 1781 * @nbytes: number of ECC bytes to retrieve 1782 * 1783 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1784 * 1785 * Returns zero on success, a negative error code otherwise. 1786 */ 1787 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 1788 const u8 *oobbuf, int start, int nbytes) 1789 { 1790 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 1791 mtd_ooblayout_free); 1792 } 1793 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 1794 1795 /** 1796 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer 1797 * @mtd: mtd info structure 1798 * @databuf: source buffer to get data bytes from 1799 * @oobbuf: OOB buffer 1800 * @start: first ECC byte to set 1801 * @nbytes: number of ECC bytes to set 1802 * 1803 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes. 1804 * 1805 * Returns zero on success, a negative error code otherwise. 1806 */ 1807 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 1808 u8 *oobbuf, int start, int nbytes) 1809 { 1810 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 1811 mtd_ooblayout_free); 1812 } 1813 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 1814 1815 /** 1816 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 1817 * @mtd: mtd info structure 1818 * 1819 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 1820 * 1821 * Returns zero on success, a negative error code otherwise. 1822 */ 1823 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 1824 { 1825 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 1826 } 1827 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 1828 1829 /** 1830 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB 1831 * @mtd: mtd info structure 1832 * 1833 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 1834 * 1835 * Returns zero on success, a negative error code otherwise. 1836 */ 1837 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 1838 { 1839 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 1840 } 1841 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 1842 1843 /* 1844 * Method to access the protection register area, present in some flash 1845 * devices. The user data is one time programmable but the factory data is read 1846 * only. 1847 */ 1848 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1849 struct otp_info *buf) 1850 { 1851 struct mtd_info *master = mtd_get_master(mtd); 1852 1853 if (!master->_get_fact_prot_info) 1854 return -EOPNOTSUPP; 1855 if (!len) 1856 return 0; 1857 return master->_get_fact_prot_info(master, len, retlen, buf); 1858 } 1859 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 1860 1861 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1862 size_t *retlen, u_char *buf) 1863 { 1864 struct mtd_info *master = mtd_get_master(mtd); 1865 1866 *retlen = 0; 1867 if (!master->_read_fact_prot_reg) 1868 return -EOPNOTSUPP; 1869 if (!len) 1870 return 0; 1871 return master->_read_fact_prot_reg(master, from, len, retlen, buf); 1872 } 1873 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 1874 1875 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1876 struct otp_info *buf) 1877 { 1878 struct mtd_info *master = mtd_get_master(mtd); 1879 1880 if (!master->_get_user_prot_info) 1881 return -EOPNOTSUPP; 1882 if (!len) 1883 return 0; 1884 return master->_get_user_prot_info(master, len, retlen, buf); 1885 } 1886 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 1887 1888 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1889 size_t *retlen, u_char *buf) 1890 { 1891 struct mtd_info *master = mtd_get_master(mtd); 1892 1893 *retlen = 0; 1894 if (!master->_read_user_prot_reg) 1895 return -EOPNOTSUPP; 1896 if (!len) 1897 return 0; 1898 return master->_read_user_prot_reg(master, from, len, retlen, buf); 1899 } 1900 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 1901 1902 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 1903 size_t *retlen, u_char *buf) 1904 { 1905 struct mtd_info *master = mtd_get_master(mtd); 1906 int ret; 1907 1908 *retlen = 0; 1909 if (!master->_write_user_prot_reg) 1910 return -EOPNOTSUPP; 1911 if (!len) 1912 return 0; 1913 ret = master->_write_user_prot_reg(master, to, len, retlen, buf); 1914 if (ret) 1915 return ret; 1916 1917 /* 1918 * If no data could be written at all, we are out of memory and 1919 * must return -ENOSPC. 1920 */ 1921 return (*retlen) ? 0 : -ENOSPC; 1922 } 1923 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1924 1925 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1926 { 1927 struct mtd_info *master = mtd_get_master(mtd); 1928 1929 if (!master->_lock_user_prot_reg) 1930 return -EOPNOTSUPP; 1931 if (!len) 1932 return 0; 1933 return master->_lock_user_prot_reg(master, from, len); 1934 } 1935 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1936 1937 /* Chip-supported device locking */ 1938 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1939 { 1940 struct mtd_info *master = mtd_get_master(mtd); 1941 1942 if (!master->_lock) 1943 return -EOPNOTSUPP; 1944 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1945 return -EINVAL; 1946 if (!len) 1947 return 0; 1948 1949 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1950 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 1951 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 1952 } 1953 1954 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len); 1955 } 1956 EXPORT_SYMBOL_GPL(mtd_lock); 1957 1958 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1959 { 1960 struct mtd_info *master = mtd_get_master(mtd); 1961 1962 if (!master->_unlock) 1963 return -EOPNOTSUPP; 1964 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1965 return -EINVAL; 1966 if (!len) 1967 return 0; 1968 1969 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1970 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 1971 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 1972 } 1973 1974 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len); 1975 } 1976 EXPORT_SYMBOL_GPL(mtd_unlock); 1977 1978 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1979 { 1980 struct mtd_info *master = mtd_get_master(mtd); 1981 1982 if (!master->_is_locked) 1983 return -EOPNOTSUPP; 1984 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1985 return -EINVAL; 1986 if (!len) 1987 return 0; 1988 1989 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1990 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 1991 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 1992 } 1993 1994 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len); 1995 } 1996 EXPORT_SYMBOL_GPL(mtd_is_locked); 1997 1998 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 1999 { 2000 struct mtd_info *master = mtd_get_master(mtd); 2001 2002 if (ofs < 0 || ofs >= mtd->size) 2003 return -EINVAL; 2004 if (!master->_block_isreserved) 2005 return 0; 2006 2007 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2008 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2009 2010 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs)); 2011 } 2012 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 2013 2014 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 2015 { 2016 struct mtd_info *master = mtd_get_master(mtd); 2017 2018 if (ofs < 0 || ofs >= mtd->size) 2019 return -EINVAL; 2020 if (!master->_block_isbad) 2021 return 0; 2022 2023 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2024 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2025 2026 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs)); 2027 } 2028 EXPORT_SYMBOL_GPL(mtd_block_isbad); 2029 2030 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 2031 { 2032 struct mtd_info *master = mtd_get_master(mtd); 2033 int ret; 2034 2035 if (!master->_block_markbad) 2036 return -EOPNOTSUPP; 2037 if (ofs < 0 || ofs >= mtd->size) 2038 return -EINVAL; 2039 if (!(mtd->flags & MTD_WRITEABLE)) 2040 return -EROFS; 2041 2042 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2043 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2044 2045 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs)); 2046 if (ret) 2047 return ret; 2048 2049 while (mtd->parent) { 2050 mtd->ecc_stats.badblocks++; 2051 mtd = mtd->parent; 2052 } 2053 2054 return 0; 2055 } 2056 EXPORT_SYMBOL_GPL(mtd_block_markbad); 2057 2058 /* 2059 * default_mtd_writev - the default writev method 2060 * @mtd: mtd device description object pointer 2061 * @vecs: the vectors to write 2062 * @count: count of vectors in @vecs 2063 * @to: the MTD device offset to write to 2064 * @retlen: on exit contains the count of bytes written to the MTD device. 2065 * 2066 * This function returns zero in case of success and a negative error code in 2067 * case of failure. 2068 */ 2069 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2070 unsigned long count, loff_t to, size_t *retlen) 2071 { 2072 unsigned long i; 2073 size_t totlen = 0, thislen; 2074 int ret = 0; 2075 2076 for (i = 0; i < count; i++) { 2077 if (!vecs[i].iov_len) 2078 continue; 2079 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 2080 vecs[i].iov_base); 2081 totlen += thislen; 2082 if (ret || thislen != vecs[i].iov_len) 2083 break; 2084 to += vecs[i].iov_len; 2085 } 2086 *retlen = totlen; 2087 return ret; 2088 } 2089 2090 /* 2091 * mtd_writev - the vector-based MTD write method 2092 * @mtd: mtd device description object pointer 2093 * @vecs: the vectors to write 2094 * @count: count of vectors in @vecs 2095 * @to: the MTD device offset to write to 2096 * @retlen: on exit contains the count of bytes written to the MTD device. 2097 * 2098 * This function returns zero in case of success and a negative error code in 2099 * case of failure. 2100 */ 2101 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2102 unsigned long count, loff_t to, size_t *retlen) 2103 { 2104 struct mtd_info *master = mtd_get_master(mtd); 2105 2106 *retlen = 0; 2107 if (!(mtd->flags & MTD_WRITEABLE)) 2108 return -EROFS; 2109 2110 if (!master->_writev) 2111 return default_mtd_writev(mtd, vecs, count, to, retlen); 2112 2113 return master->_writev(master, vecs, count, 2114 mtd_get_master_ofs(mtd, to), retlen); 2115 } 2116 EXPORT_SYMBOL_GPL(mtd_writev); 2117 2118 /** 2119 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 2120 * @mtd: mtd device description object pointer 2121 * @size: a pointer to the ideal or maximum size of the allocation, points 2122 * to the actual allocation size on success. 2123 * 2124 * This routine attempts to allocate a contiguous kernel buffer up to 2125 * the specified size, backing off the size of the request exponentially 2126 * until the request succeeds or until the allocation size falls below 2127 * the system page size. This attempts to make sure it does not adversely 2128 * impact system performance, so when allocating more than one page, we 2129 * ask the memory allocator to avoid re-trying, swapping, writing back 2130 * or performing I/O. 2131 * 2132 * Note, this function also makes sure that the allocated buffer is aligned to 2133 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 2134 * 2135 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 2136 * to handle smaller (i.e. degraded) buffer allocations under low- or 2137 * fragmented-memory situations where such reduced allocations, from a 2138 * requested ideal, are allowed. 2139 * 2140 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 2141 */ 2142 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 2143 { 2144 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 2145 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 2146 void *kbuf; 2147 2148 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 2149 2150 while (*size > min_alloc) { 2151 kbuf = kmalloc(*size, flags); 2152 if (kbuf) 2153 return kbuf; 2154 2155 *size >>= 1; 2156 *size = ALIGN(*size, mtd->writesize); 2157 } 2158 2159 /* 2160 * For the last resort allocation allow 'kmalloc()' to do all sorts of 2161 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 2162 */ 2163 return kmalloc(*size, GFP_KERNEL); 2164 } 2165 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 2166 2167 #ifdef CONFIG_PROC_FS 2168 2169 /*====================================================================*/ 2170 /* Support for /proc/mtd */ 2171 2172 static int mtd_proc_show(struct seq_file *m, void *v) 2173 { 2174 struct mtd_info *mtd; 2175 2176 seq_puts(m, "dev: size erasesize name\n"); 2177 mutex_lock(&mtd_table_mutex); 2178 mtd_for_each_device(mtd) { 2179 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 2180 mtd->index, (unsigned long long)mtd->size, 2181 mtd->erasesize, mtd->name); 2182 } 2183 mutex_unlock(&mtd_table_mutex); 2184 return 0; 2185 } 2186 #endif /* CONFIG_PROC_FS */ 2187 2188 /*====================================================================*/ 2189 /* Init code */ 2190 2191 static struct backing_dev_info * __init mtd_bdi_init(char *name) 2192 { 2193 struct backing_dev_info *bdi; 2194 int ret; 2195 2196 bdi = bdi_alloc(NUMA_NO_NODE); 2197 if (!bdi) 2198 return ERR_PTR(-ENOMEM); 2199 2200 /* 2201 * We put '-0' suffix to the name to get the same name format as we 2202 * used to get. Since this is called only once, we get a unique name. 2203 */ 2204 ret = bdi_register(bdi, "%.28s-0", name); 2205 if (ret) 2206 bdi_put(bdi); 2207 2208 return ret ? ERR_PTR(ret) : bdi; 2209 } 2210 2211 static struct proc_dir_entry *proc_mtd; 2212 2213 static int __init init_mtd(void) 2214 { 2215 int ret; 2216 2217 ret = class_register(&mtd_class); 2218 if (ret) 2219 goto err_reg; 2220 2221 mtd_bdi = mtd_bdi_init("mtd"); 2222 if (IS_ERR(mtd_bdi)) { 2223 ret = PTR_ERR(mtd_bdi); 2224 goto err_bdi; 2225 } 2226 2227 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show); 2228 2229 ret = init_mtdchar(); 2230 if (ret) 2231 goto out_procfs; 2232 2233 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 2234 2235 return 0; 2236 2237 out_procfs: 2238 if (proc_mtd) 2239 remove_proc_entry("mtd", NULL); 2240 bdi_put(mtd_bdi); 2241 err_bdi: 2242 class_unregister(&mtd_class); 2243 err_reg: 2244 pr_err("Error registering mtd class or bdi: %d\n", ret); 2245 return ret; 2246 } 2247 2248 static void __exit cleanup_mtd(void) 2249 { 2250 debugfs_remove_recursive(dfs_dir_mtd); 2251 cleanup_mtdchar(); 2252 if (proc_mtd) 2253 remove_proc_entry("mtd", NULL); 2254 class_unregister(&mtd_class); 2255 bdi_put(mtd_bdi); 2256 idr_destroy(&mtd_idr); 2257 } 2258 2259 module_init(init_mtd); 2260 module_exit(cleanup_mtd); 2261 2262 MODULE_LICENSE("GPL"); 2263 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 2264 MODULE_DESCRIPTION("Core MTD registration and access routines"); 2265