xref: /openbmc/linux/drivers/mtd/mtdconcat.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * MTD device concatenation layer
4  *
5  * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de>
6  * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org>
7  *
8  * NAND support by Christian Gan <cgan@iders.ca>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/types.h>
16 #include <linux/backing-dev.h>
17 
18 #include <linux/mtd/mtd.h>
19 #include <linux/mtd/concat.h>
20 
21 #include <asm/div64.h>
22 
23 /*
24  * Our storage structure:
25  * Subdev points to an array of pointers to struct mtd_info objects
26  * which is allocated along with this structure
27  *
28  */
29 struct mtd_concat {
30 	struct mtd_info mtd;
31 	int num_subdev;
32 	struct mtd_info **subdev;
33 };
34 
35 /*
36  * how to calculate the size required for the above structure,
37  * including the pointer array subdev points to:
38  */
39 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)	\
40 	((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
41 
42 /*
43  * Given a pointer to the MTD object in the mtd_concat structure,
44  * we can retrieve the pointer to that structure with this macro.
45  */
46 #define CONCAT(x)  ((struct mtd_concat *)(x))
47 
48 /*
49  * MTD methods which look up the relevant subdevice, translate the
50  * effective address and pass through to the subdevice.
51  */
52 
53 static int
54 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
55 	    size_t * retlen, u_char * buf)
56 {
57 	struct mtd_concat *concat = CONCAT(mtd);
58 	int ret = 0, err;
59 	int i;
60 
61 	for (i = 0; i < concat->num_subdev; i++) {
62 		struct mtd_info *subdev = concat->subdev[i];
63 		size_t size, retsize;
64 
65 		if (from >= subdev->size) {
66 			/* Not destined for this subdev */
67 			size = 0;
68 			from -= subdev->size;
69 			continue;
70 		}
71 		if (from + len > subdev->size)
72 			/* First part goes into this subdev */
73 			size = subdev->size - from;
74 		else
75 			/* Entire transaction goes into this subdev */
76 			size = len;
77 
78 		err = mtd_read(subdev, from, size, &retsize, buf);
79 
80 		/* Save information about bitflips! */
81 		if (unlikely(err)) {
82 			if (mtd_is_eccerr(err)) {
83 				mtd->ecc_stats.failed++;
84 				ret = err;
85 			} else if (mtd_is_bitflip(err)) {
86 				mtd->ecc_stats.corrected++;
87 				/* Do not overwrite -EBADMSG !! */
88 				if (!ret)
89 					ret = err;
90 			} else
91 				return err;
92 		}
93 
94 		*retlen += retsize;
95 		len -= size;
96 		if (len == 0)
97 			return ret;
98 
99 		buf += size;
100 		from = 0;
101 	}
102 	return -EINVAL;
103 }
104 
105 static int
106 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
107 	     size_t * retlen, const u_char * buf)
108 {
109 	struct mtd_concat *concat = CONCAT(mtd);
110 	int err = -EINVAL;
111 	int i;
112 
113 	for (i = 0; i < concat->num_subdev; i++) {
114 		struct mtd_info *subdev = concat->subdev[i];
115 		size_t size, retsize;
116 
117 		if (to >= subdev->size) {
118 			size = 0;
119 			to -= subdev->size;
120 			continue;
121 		}
122 		if (to + len > subdev->size)
123 			size = subdev->size - to;
124 		else
125 			size = len;
126 
127 		err = mtd_write(subdev, to, size, &retsize, buf);
128 		if (err)
129 			break;
130 
131 		*retlen += retsize;
132 		len -= size;
133 		if (len == 0)
134 			break;
135 
136 		err = -EINVAL;
137 		buf += size;
138 		to = 0;
139 	}
140 	return err;
141 }
142 
143 static int
144 concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
145 		unsigned long count, loff_t to, size_t * retlen)
146 {
147 	struct mtd_concat *concat = CONCAT(mtd);
148 	struct kvec *vecs_copy;
149 	unsigned long entry_low, entry_high;
150 	size_t total_len = 0;
151 	int i;
152 	int err = -EINVAL;
153 
154 	/* Calculate total length of data */
155 	for (i = 0; i < count; i++)
156 		total_len += vecs[i].iov_len;
157 
158 	/* Check alignment */
159 	if (mtd->writesize > 1) {
160 		uint64_t __to = to;
161 		if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
162 			return -EINVAL;
163 	}
164 
165 	/* make a copy of vecs */
166 	vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
167 	if (!vecs_copy)
168 		return -ENOMEM;
169 
170 	entry_low = 0;
171 	for (i = 0; i < concat->num_subdev; i++) {
172 		struct mtd_info *subdev = concat->subdev[i];
173 		size_t size, wsize, retsize, old_iov_len;
174 
175 		if (to >= subdev->size) {
176 			to -= subdev->size;
177 			continue;
178 		}
179 
180 		size = min_t(uint64_t, total_len, subdev->size - to);
181 		wsize = size; /* store for future use */
182 
183 		entry_high = entry_low;
184 		while (entry_high < count) {
185 			if (size <= vecs_copy[entry_high].iov_len)
186 				break;
187 			size -= vecs_copy[entry_high++].iov_len;
188 		}
189 
190 		old_iov_len = vecs_copy[entry_high].iov_len;
191 		vecs_copy[entry_high].iov_len = size;
192 
193 		err = mtd_writev(subdev, &vecs_copy[entry_low],
194 				 entry_high - entry_low + 1, to, &retsize);
195 
196 		vecs_copy[entry_high].iov_len = old_iov_len - size;
197 		vecs_copy[entry_high].iov_base += size;
198 
199 		entry_low = entry_high;
200 
201 		if (err)
202 			break;
203 
204 		*retlen += retsize;
205 		total_len -= wsize;
206 
207 		if (total_len == 0)
208 			break;
209 
210 		err = -EINVAL;
211 		to = 0;
212 	}
213 
214 	kfree(vecs_copy);
215 	return err;
216 }
217 
218 static int
219 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
220 {
221 	struct mtd_concat *concat = CONCAT(mtd);
222 	struct mtd_oob_ops devops = *ops;
223 	int i, err, ret = 0;
224 
225 	ops->retlen = ops->oobretlen = 0;
226 
227 	for (i = 0; i < concat->num_subdev; i++) {
228 		struct mtd_info *subdev = concat->subdev[i];
229 
230 		if (from >= subdev->size) {
231 			from -= subdev->size;
232 			continue;
233 		}
234 
235 		/* partial read ? */
236 		if (from + devops.len > subdev->size)
237 			devops.len = subdev->size - from;
238 
239 		err = mtd_read_oob(subdev, from, &devops);
240 		ops->retlen += devops.retlen;
241 		ops->oobretlen += devops.oobretlen;
242 
243 		/* Save information about bitflips! */
244 		if (unlikely(err)) {
245 			if (mtd_is_eccerr(err)) {
246 				mtd->ecc_stats.failed++;
247 				ret = err;
248 			} else if (mtd_is_bitflip(err)) {
249 				mtd->ecc_stats.corrected++;
250 				/* Do not overwrite -EBADMSG !! */
251 				if (!ret)
252 					ret = err;
253 			} else
254 				return err;
255 		}
256 
257 		if (devops.datbuf) {
258 			devops.len = ops->len - ops->retlen;
259 			if (!devops.len)
260 				return ret;
261 			devops.datbuf += devops.retlen;
262 		}
263 		if (devops.oobbuf) {
264 			devops.ooblen = ops->ooblen - ops->oobretlen;
265 			if (!devops.ooblen)
266 				return ret;
267 			devops.oobbuf += ops->oobretlen;
268 		}
269 
270 		from = 0;
271 	}
272 	return -EINVAL;
273 }
274 
275 static int
276 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
277 {
278 	struct mtd_concat *concat = CONCAT(mtd);
279 	struct mtd_oob_ops devops = *ops;
280 	int i, err;
281 
282 	if (!(mtd->flags & MTD_WRITEABLE))
283 		return -EROFS;
284 
285 	ops->retlen = ops->oobretlen = 0;
286 
287 	for (i = 0; i < concat->num_subdev; i++) {
288 		struct mtd_info *subdev = concat->subdev[i];
289 
290 		if (to >= subdev->size) {
291 			to -= subdev->size;
292 			continue;
293 		}
294 
295 		/* partial write ? */
296 		if (to + devops.len > subdev->size)
297 			devops.len = subdev->size - to;
298 
299 		err = mtd_write_oob(subdev, to, &devops);
300 		ops->retlen += devops.retlen;
301 		ops->oobretlen += devops.oobretlen;
302 		if (err)
303 			return err;
304 
305 		if (devops.datbuf) {
306 			devops.len = ops->len - ops->retlen;
307 			if (!devops.len)
308 				return 0;
309 			devops.datbuf += devops.retlen;
310 		}
311 		if (devops.oobbuf) {
312 			devops.ooblen = ops->ooblen - ops->oobretlen;
313 			if (!devops.ooblen)
314 				return 0;
315 			devops.oobbuf += devops.oobretlen;
316 		}
317 		to = 0;
318 	}
319 	return -EINVAL;
320 }
321 
322 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
323 {
324 	struct mtd_concat *concat = CONCAT(mtd);
325 	struct mtd_info *subdev;
326 	int i, err;
327 	uint64_t length, offset = 0;
328 	struct erase_info *erase;
329 
330 	/*
331 	 * Check for proper erase block alignment of the to-be-erased area.
332 	 * It is easier to do this based on the super device's erase
333 	 * region info rather than looking at each particular sub-device
334 	 * in turn.
335 	 */
336 	if (!concat->mtd.numeraseregions) {
337 		/* the easy case: device has uniform erase block size */
338 		if (instr->addr & (concat->mtd.erasesize - 1))
339 			return -EINVAL;
340 		if (instr->len & (concat->mtd.erasesize - 1))
341 			return -EINVAL;
342 	} else {
343 		/* device has variable erase size */
344 		struct mtd_erase_region_info *erase_regions =
345 		    concat->mtd.eraseregions;
346 
347 		/*
348 		 * Find the erase region where the to-be-erased area begins:
349 		 */
350 		for (i = 0; i < concat->mtd.numeraseregions &&
351 		     instr->addr >= erase_regions[i].offset; i++) ;
352 		--i;
353 
354 		/*
355 		 * Now erase_regions[i] is the region in which the
356 		 * to-be-erased area begins. Verify that the starting
357 		 * offset is aligned to this region's erase size:
358 		 */
359 		if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
360 			return -EINVAL;
361 
362 		/*
363 		 * now find the erase region where the to-be-erased area ends:
364 		 */
365 		for (; i < concat->mtd.numeraseregions &&
366 		     (instr->addr + instr->len) >= erase_regions[i].offset;
367 		     ++i) ;
368 		--i;
369 		/*
370 		 * check if the ending offset is aligned to this region's erase size
371 		 */
372 		if (i < 0 || ((instr->addr + instr->len) &
373 					(erase_regions[i].erasesize - 1)))
374 			return -EINVAL;
375 	}
376 
377 	/* make a local copy of instr to avoid modifying the caller's struct */
378 	erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
379 
380 	if (!erase)
381 		return -ENOMEM;
382 
383 	*erase = *instr;
384 	length = instr->len;
385 
386 	/*
387 	 * find the subdevice where the to-be-erased area begins, adjust
388 	 * starting offset to be relative to the subdevice start
389 	 */
390 	for (i = 0; i < concat->num_subdev; i++) {
391 		subdev = concat->subdev[i];
392 		if (subdev->size <= erase->addr) {
393 			erase->addr -= subdev->size;
394 			offset += subdev->size;
395 		} else {
396 			break;
397 		}
398 	}
399 
400 	/* must never happen since size limit has been verified above */
401 	BUG_ON(i >= concat->num_subdev);
402 
403 	/* now do the erase: */
404 	err = 0;
405 	for (; length > 0; i++) {
406 		/* loop for all subdevices affected by this request */
407 		subdev = concat->subdev[i];	/* get current subdevice */
408 
409 		/* limit length to subdevice's size: */
410 		if (erase->addr + length > subdev->size)
411 			erase->len = subdev->size - erase->addr;
412 		else
413 			erase->len = length;
414 
415 		length -= erase->len;
416 		if ((err = mtd_erase(subdev, erase))) {
417 			/* sanity check: should never happen since
418 			 * block alignment has been checked above */
419 			BUG_ON(err == -EINVAL);
420 			if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
421 				instr->fail_addr = erase->fail_addr + offset;
422 			break;
423 		}
424 		/*
425 		 * erase->addr specifies the offset of the area to be
426 		 * erased *within the current subdevice*. It can be
427 		 * non-zero only the first time through this loop, i.e.
428 		 * for the first subdevice where blocks need to be erased.
429 		 * All the following erases must begin at the start of the
430 		 * current subdevice, i.e. at offset zero.
431 		 */
432 		erase->addr = 0;
433 		offset += subdev->size;
434 	}
435 	kfree(erase);
436 
437 	return err;
438 }
439 
440 static int concat_xxlock(struct mtd_info *mtd, loff_t ofs, uint64_t len,
441 			 bool is_lock)
442 {
443 	struct mtd_concat *concat = CONCAT(mtd);
444 	int i, err = -EINVAL;
445 
446 	for (i = 0; i < concat->num_subdev; i++) {
447 		struct mtd_info *subdev = concat->subdev[i];
448 		uint64_t size;
449 
450 		if (ofs >= subdev->size) {
451 			size = 0;
452 			ofs -= subdev->size;
453 			continue;
454 		}
455 		if (ofs + len > subdev->size)
456 			size = subdev->size - ofs;
457 		else
458 			size = len;
459 
460 		if (is_lock)
461 			err = mtd_lock(subdev, ofs, size);
462 		else
463 			err = mtd_unlock(subdev, ofs, size);
464 		if (err)
465 			break;
466 
467 		len -= size;
468 		if (len == 0)
469 			break;
470 
471 		err = -EINVAL;
472 		ofs = 0;
473 	}
474 
475 	return err;
476 }
477 
478 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
479 {
480 	return concat_xxlock(mtd, ofs, len, true);
481 }
482 
483 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
484 {
485 	return concat_xxlock(mtd, ofs, len, false);
486 }
487 
488 static int concat_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
489 {
490 	struct mtd_concat *concat = CONCAT(mtd);
491 	int i, err = -EINVAL;
492 
493 	for (i = 0; i < concat->num_subdev; i++) {
494 		struct mtd_info *subdev = concat->subdev[i];
495 
496 		if (ofs >= subdev->size) {
497 			ofs -= subdev->size;
498 			continue;
499 		}
500 
501 		if (ofs + len > subdev->size)
502 			break;
503 
504 		return mtd_is_locked(subdev, ofs, len);
505 	}
506 
507 	return err;
508 }
509 
510 static void concat_sync(struct mtd_info *mtd)
511 {
512 	struct mtd_concat *concat = CONCAT(mtd);
513 	int i;
514 
515 	for (i = 0; i < concat->num_subdev; i++) {
516 		struct mtd_info *subdev = concat->subdev[i];
517 		mtd_sync(subdev);
518 	}
519 }
520 
521 static int concat_suspend(struct mtd_info *mtd)
522 {
523 	struct mtd_concat *concat = CONCAT(mtd);
524 	int i, rc = 0;
525 
526 	for (i = 0; i < concat->num_subdev; i++) {
527 		struct mtd_info *subdev = concat->subdev[i];
528 		if ((rc = mtd_suspend(subdev)) < 0)
529 			return rc;
530 	}
531 	return rc;
532 }
533 
534 static void concat_resume(struct mtd_info *mtd)
535 {
536 	struct mtd_concat *concat = CONCAT(mtd);
537 	int i;
538 
539 	for (i = 0; i < concat->num_subdev; i++) {
540 		struct mtd_info *subdev = concat->subdev[i];
541 		mtd_resume(subdev);
542 	}
543 }
544 
545 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
546 {
547 	struct mtd_concat *concat = CONCAT(mtd);
548 	int i, res = 0;
549 
550 	if (!mtd_can_have_bb(concat->subdev[0]))
551 		return res;
552 
553 	for (i = 0; i < concat->num_subdev; i++) {
554 		struct mtd_info *subdev = concat->subdev[i];
555 
556 		if (ofs >= subdev->size) {
557 			ofs -= subdev->size;
558 			continue;
559 		}
560 
561 		res = mtd_block_isbad(subdev, ofs);
562 		break;
563 	}
564 
565 	return res;
566 }
567 
568 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
569 {
570 	struct mtd_concat *concat = CONCAT(mtd);
571 	int i, err = -EINVAL;
572 
573 	for (i = 0; i < concat->num_subdev; i++) {
574 		struct mtd_info *subdev = concat->subdev[i];
575 
576 		if (ofs >= subdev->size) {
577 			ofs -= subdev->size;
578 			continue;
579 		}
580 
581 		err = mtd_block_markbad(subdev, ofs);
582 		if (!err)
583 			mtd->ecc_stats.badblocks++;
584 		break;
585 	}
586 
587 	return err;
588 }
589 
590 /*
591  * This function constructs a virtual MTD device by concatenating
592  * num_devs MTD devices. A pointer to the new device object is
593  * stored to *new_dev upon success. This function does _not_
594  * register any devices: this is the caller's responsibility.
595  */
596 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],	/* subdevices to concatenate */
597 				   int num_devs,	/* number of subdevices      */
598 				   const char *name)
599 {				/* name for the new device   */
600 	int i;
601 	size_t size;
602 	struct mtd_concat *concat;
603 	uint32_t max_erasesize, curr_erasesize;
604 	int num_erase_region;
605 	int max_writebufsize = 0;
606 
607 	printk(KERN_NOTICE "Concatenating MTD devices:\n");
608 	for (i = 0; i < num_devs; i++)
609 		printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
610 	printk(KERN_NOTICE "into device \"%s\"\n", name);
611 
612 	/* allocate the device structure */
613 	size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
614 	concat = kzalloc(size, GFP_KERNEL);
615 	if (!concat) {
616 		printk
617 		    ("memory allocation error while creating concatenated device \"%s\"\n",
618 		     name);
619 		return NULL;
620 	}
621 	concat->subdev = (struct mtd_info **) (concat + 1);
622 
623 	/*
624 	 * Set up the new "super" device's MTD object structure, check for
625 	 * incompatibilities between the subdevices.
626 	 */
627 	concat->mtd.type = subdev[0]->type;
628 	concat->mtd.flags = subdev[0]->flags;
629 	concat->mtd.size = subdev[0]->size;
630 	concat->mtd.erasesize = subdev[0]->erasesize;
631 	concat->mtd.writesize = subdev[0]->writesize;
632 
633 	for (i = 0; i < num_devs; i++)
634 		if (max_writebufsize < subdev[i]->writebufsize)
635 			max_writebufsize = subdev[i]->writebufsize;
636 	concat->mtd.writebufsize = max_writebufsize;
637 
638 	concat->mtd.subpage_sft = subdev[0]->subpage_sft;
639 	concat->mtd.oobsize = subdev[0]->oobsize;
640 	concat->mtd.oobavail = subdev[0]->oobavail;
641 	if (subdev[0]->_writev)
642 		concat->mtd._writev = concat_writev;
643 	if (subdev[0]->_read_oob)
644 		concat->mtd._read_oob = concat_read_oob;
645 	if (subdev[0]->_write_oob)
646 		concat->mtd._write_oob = concat_write_oob;
647 	if (subdev[0]->_block_isbad)
648 		concat->mtd._block_isbad = concat_block_isbad;
649 	if (subdev[0]->_block_markbad)
650 		concat->mtd._block_markbad = concat_block_markbad;
651 
652 	concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
653 
654 	concat->subdev[0] = subdev[0];
655 
656 	for (i = 1; i < num_devs; i++) {
657 		if (concat->mtd.type != subdev[i]->type) {
658 			kfree(concat);
659 			printk("Incompatible device type on \"%s\"\n",
660 			       subdev[i]->name);
661 			return NULL;
662 		}
663 		if (concat->mtd.flags != subdev[i]->flags) {
664 			/*
665 			 * Expect all flags except MTD_WRITEABLE to be
666 			 * equal on all subdevices.
667 			 */
668 			if ((concat->mtd.flags ^ subdev[i]->
669 			     flags) & ~MTD_WRITEABLE) {
670 				kfree(concat);
671 				printk("Incompatible device flags on \"%s\"\n",
672 				       subdev[i]->name);
673 				return NULL;
674 			} else
675 				/* if writeable attribute differs,
676 				   make super device writeable */
677 				concat->mtd.flags |=
678 				    subdev[i]->flags & MTD_WRITEABLE;
679 		}
680 
681 		concat->mtd.size += subdev[i]->size;
682 		concat->mtd.ecc_stats.badblocks +=
683 			subdev[i]->ecc_stats.badblocks;
684 		if (concat->mtd.writesize   !=  subdev[i]->writesize ||
685 		    concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
686 		    concat->mtd.oobsize    !=  subdev[i]->oobsize ||
687 		    !concat->mtd._read_oob  != !subdev[i]->_read_oob ||
688 		    !concat->mtd._write_oob != !subdev[i]->_write_oob) {
689 			kfree(concat);
690 			printk("Incompatible OOB or ECC data on \"%s\"\n",
691 			       subdev[i]->name);
692 			return NULL;
693 		}
694 		concat->subdev[i] = subdev[i];
695 
696 	}
697 
698 	mtd_set_ooblayout(&concat->mtd, subdev[0]->ooblayout);
699 
700 	concat->num_subdev = num_devs;
701 	concat->mtd.name = name;
702 
703 	concat->mtd._erase = concat_erase;
704 	concat->mtd._read = concat_read;
705 	concat->mtd._write = concat_write;
706 	concat->mtd._sync = concat_sync;
707 	concat->mtd._lock = concat_lock;
708 	concat->mtd._unlock = concat_unlock;
709 	concat->mtd._is_locked = concat_is_locked;
710 	concat->mtd._suspend = concat_suspend;
711 	concat->mtd._resume = concat_resume;
712 
713 	/*
714 	 * Combine the erase block size info of the subdevices:
715 	 *
716 	 * first, walk the map of the new device and see how
717 	 * many changes in erase size we have
718 	 */
719 	max_erasesize = curr_erasesize = subdev[0]->erasesize;
720 	num_erase_region = 1;
721 	for (i = 0; i < num_devs; i++) {
722 		if (subdev[i]->numeraseregions == 0) {
723 			/* current subdevice has uniform erase size */
724 			if (subdev[i]->erasesize != curr_erasesize) {
725 				/* if it differs from the last subdevice's erase size, count it */
726 				++num_erase_region;
727 				curr_erasesize = subdev[i]->erasesize;
728 				if (curr_erasesize > max_erasesize)
729 					max_erasesize = curr_erasesize;
730 			}
731 		} else {
732 			/* current subdevice has variable erase size */
733 			int j;
734 			for (j = 0; j < subdev[i]->numeraseregions; j++) {
735 
736 				/* walk the list of erase regions, count any changes */
737 				if (subdev[i]->eraseregions[j].erasesize !=
738 				    curr_erasesize) {
739 					++num_erase_region;
740 					curr_erasesize =
741 					    subdev[i]->eraseregions[j].
742 					    erasesize;
743 					if (curr_erasesize > max_erasesize)
744 						max_erasesize = curr_erasesize;
745 				}
746 			}
747 		}
748 	}
749 
750 	if (num_erase_region == 1) {
751 		/*
752 		 * All subdevices have the same uniform erase size.
753 		 * This is easy:
754 		 */
755 		concat->mtd.erasesize = curr_erasesize;
756 		concat->mtd.numeraseregions = 0;
757 	} else {
758 		uint64_t tmp64;
759 
760 		/*
761 		 * erase block size varies across the subdevices: allocate
762 		 * space to store the data describing the variable erase regions
763 		 */
764 		struct mtd_erase_region_info *erase_region_p;
765 		uint64_t begin, position;
766 
767 		concat->mtd.erasesize = max_erasesize;
768 		concat->mtd.numeraseregions = num_erase_region;
769 		concat->mtd.eraseregions = erase_region_p =
770 		    kmalloc_array(num_erase_region,
771 				  sizeof(struct mtd_erase_region_info),
772 				  GFP_KERNEL);
773 		if (!erase_region_p) {
774 			kfree(concat);
775 			printk
776 			    ("memory allocation error while creating erase region list"
777 			     " for device \"%s\"\n", name);
778 			return NULL;
779 		}
780 
781 		/*
782 		 * walk the map of the new device once more and fill in
783 		 * in erase region info:
784 		 */
785 		curr_erasesize = subdev[0]->erasesize;
786 		begin = position = 0;
787 		for (i = 0; i < num_devs; i++) {
788 			if (subdev[i]->numeraseregions == 0) {
789 				/* current subdevice has uniform erase size */
790 				if (subdev[i]->erasesize != curr_erasesize) {
791 					/*
792 					 *  fill in an mtd_erase_region_info structure for the area
793 					 *  we have walked so far:
794 					 */
795 					erase_region_p->offset = begin;
796 					erase_region_p->erasesize =
797 					    curr_erasesize;
798 					tmp64 = position - begin;
799 					do_div(tmp64, curr_erasesize);
800 					erase_region_p->numblocks = tmp64;
801 					begin = position;
802 
803 					curr_erasesize = subdev[i]->erasesize;
804 					++erase_region_p;
805 				}
806 				position += subdev[i]->size;
807 			} else {
808 				/* current subdevice has variable erase size */
809 				int j;
810 				for (j = 0; j < subdev[i]->numeraseregions; j++) {
811 					/* walk the list of erase regions, count any changes */
812 					if (subdev[i]->eraseregions[j].
813 					    erasesize != curr_erasesize) {
814 						erase_region_p->offset = begin;
815 						erase_region_p->erasesize =
816 						    curr_erasesize;
817 						tmp64 = position - begin;
818 						do_div(tmp64, curr_erasesize);
819 						erase_region_p->numblocks = tmp64;
820 						begin = position;
821 
822 						curr_erasesize =
823 						    subdev[i]->eraseregions[j].
824 						    erasesize;
825 						++erase_region_p;
826 					}
827 					position +=
828 					    subdev[i]->eraseregions[j].
829 					    numblocks * (uint64_t)curr_erasesize;
830 				}
831 			}
832 		}
833 		/* Now write the final entry */
834 		erase_region_p->offset = begin;
835 		erase_region_p->erasesize = curr_erasesize;
836 		tmp64 = position - begin;
837 		do_div(tmp64, curr_erasesize);
838 		erase_region_p->numblocks = tmp64;
839 	}
840 
841 	return &concat->mtd;
842 }
843 
844 /* Cleans the context obtained from mtd_concat_create() */
845 void mtd_concat_destroy(struct mtd_info *mtd)
846 {
847 	struct mtd_concat *concat = CONCAT(mtd);
848 	if (concat->mtd.numeraseregions)
849 		kfree(concat->mtd.eraseregions);
850 	kfree(concat);
851 }
852 
853 EXPORT_SYMBOL(mtd_concat_create);
854 EXPORT_SYMBOL(mtd_concat_destroy);
855 
856 MODULE_LICENSE("GPL");
857 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
858 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");
859